用加减消元法解二元一次方程组ppt课件
合集下载
用加减消元法解二元一次方程组-七年级数学上册课件(沪科版)
x=a (5) 写解: 将方程组的解表示成 y=b 的形式.
x=a
(5) 写解:将方程组的解表示成
的形式.
y=b
课前热身
根据等式的基本性质填空: (1) 若 a=b,那么 a±c = b±c . (等式性质1) 思考:若 a=b,c=d,那么 a+c=b+d 吗? (2) 若 a=b,那么 ac = bc . (等式性质2)
探究新知
例 1 解方程组
3x 5y 21 2x 5y 11
4、解方程组
用加减法消去 x 的方法
5x-6y=33, ②
是 ①×5-②×3 ,消去 y 的方法是 ①×3+②×2 .
巩固练习
3x+5y=m+2 5、已知关于 x,y 的二元一次方程组
2x+3y=m 的解满足 x+y=-10,求代数式 m2-2m+1 的值.
巩固练习
6、已知 (3x+2y-5)2 与 │5x+3y-8│互为相反数, 则 x= 1 , y= 1 .
知识回顾 三、用代入消元法解二元一次方程组的步骤:
(1) 变形:选择一个系数比较简单的方程,用含有 x 的代数式 表示 y (或用含有 y 的代数式表示 x );
(2) 代入:将变形后的方程代入另外一个方程中,消去一个未知 数,得到一个一元一次方程;
(3) 解:解消元后的一元一次方程;
(4) 反代:把求得的未知数的值代入原方程组中任意的一个方程 (或代入变形后的方程)中,求得另一个未知数数的值;
①
除代入消元法,还
② 有其他方法吗?
认真观察此方程组中各个未知数的 系数有什么特点,并相互讨论看还有 没有其它的解法.
x=a
(5) 写解:将方程组的解表示成
的形式.
y=b
课前热身
根据等式的基本性质填空: (1) 若 a=b,那么 a±c = b±c . (等式性质1) 思考:若 a=b,c=d,那么 a+c=b+d 吗? (2) 若 a=b,那么 ac = bc . (等式性质2)
探究新知
例 1 解方程组
3x 5y 21 2x 5y 11
4、解方程组
用加减法消去 x 的方法
5x-6y=33, ②
是 ①×5-②×3 ,消去 y 的方法是 ①×3+②×2 .
巩固练习
3x+5y=m+2 5、已知关于 x,y 的二元一次方程组
2x+3y=m 的解满足 x+y=-10,求代数式 m2-2m+1 的值.
巩固练习
6、已知 (3x+2y-5)2 与 │5x+3y-8│互为相反数, 则 x= 1 , y= 1 .
知识回顾 三、用代入消元法解二元一次方程组的步骤:
(1) 变形:选择一个系数比较简单的方程,用含有 x 的代数式 表示 y (或用含有 y 的代数式表示 x );
(2) 代入:将变形后的方程代入另外一个方程中,消去一个未知 数,得到一个一元一次方程;
(3) 解:解消元后的一元一次方程;
(4) 反代:把求得的未知数的值代入原方程组中任意的一个方程 (或代入变形后的方程)中,求得另一个未知数数的值;
①
除代入消元法,还
② 有其他方法吗?
认真观察此方程组中各个未知数的 系数有什么特点,并相互讨论看还有 没有其它的解法.
加减消元法课件 丽萍.ppt2
把y=-2代入①式得: x=3 所以该方程组的解是 x 3 的值?
y 2 x?能否把y的值代入②式求出 x 思考:能否用④- ③ 消去未知数
【活动四】
2 x y 8 小组讨论如何消去方程组 中的未知数y(如何 3x 2Βιβλιοθήκη y 5让y的系数相反),
并将讨论结果展示。
节的消元问题,是一节有关二元一次方程组的计 算问题。再求二元一次方程组的解的过程中,通 过化未知为已知的转化过程,理解化归的思想, 通过将二元化为一元的过程,理解消元的思想, 熟练掌握加减消元法解同一未知数的系数不相等 或不相反的二元一次方程组的方法。
教学目标
(一)知识与技能 会将同一未知数的系数化为相等或相反 会用加减消元法解二元一次方程组 体会解二元一次方程组的思想——消元;化未知为已知的化归 思想 (二)过程与方法 通过将二元一次方程组中同一未知数的系数化为相等或者相反, 并用加减消元法解二元一次方程组的练习,会选用适当的方法 解二元一次方程组,培养运算能力。 (三)情感与态度 通过研究解决问题的方法,培养学生合作交流的意识与探究精 神。
教学重点、难点
(一)教学重点 将二元一次方程组中同一未知数的系数化为 相反或相等,用加减消元法解二元一次方程 组的方法 (二)教学难点 化同一未知数的系数相同或相等; 化未知为已知的化归思想的理解与应用
教学方法
本节课主要应用了演示文稿的形式来启发 引导学生在已经掌握代入消元法,同一未 知数的系数相等或相反用加减消元法解二 元一次方程组的基础上,探究、交流、讨 论、总结、归纳,通过感性上升到理性, 使学生掌握用加减消元法解同一未知数的 系数不同的方法,并能熟练的运用加减法 解二元一次方程组。
用加减消元法解二元一次方程组ppt课件
所以这个方程组的解是:xy
0.6 0.1
探究3 你能归纳刚才的解法吗?
加减消元法的概念 从上面方程组中的解法可以看出:当二元 一次方程组中的两个方程中同一未知数的 系数相反或相等时,把这两个方程的两边 分别相加或相减,就能消去这个未知数, 得到一个一元一次方程。这种方法叫做加 减消元法,简称加减法。
知识回顾
1. 解二元一次方程组的基本思想:
二元一次 方程组
消元
一元一次 方程
2. 用代入法解二元一次方程组的关键? 用含一个未知数的代数式表示另一个未知数.
探究1 还记得等式的性质1吗?
如果a=b,那么a±c=b ±c
除了用代入法 求解外,还有 其他方法吗?
1x y 10 ① 2x y 16 ②
这两个方程 中 有去用, 什未②么知y-的关数①系系y可数吗?消?
两个方程中 y的系数相等
解:②-①,得
-(
)-
① - ②也能
解得: x=6
消去未知数y ,
把 x=6代入①得: y=4 x 6 求出x吗?
所以这个方程组的解是:
y
4
等式两边加(或减)同一个数(或式子),结果仍相等.
探究2 联系刚才的解法,想一想怎样解方程组:
-y=-2
y=2
练习2
x 2y 9 ①
用加减消元法解方程组:(1)
3x
2
y
1
②
解:(1)
①+② ,得: 4x=8
x=2
把 x=2代入①,得:
2+2y=9
y7
2 x 2
所以这个方程组的解是:
y
7 2
1、方程组
2x 3y 5 2x 8y 3
加减消元法_课件
1.已知方程组 2x-3y=6
两个方程
只要两边_分__别__相___加__就可以消去未知数y___
25x-7y=16
2.已知方程组
两个方程
25x+6y=10
只要两边_分__别__相___减__就可以消去未知数x___
练习
6x+7y=-19①
用加减法解方程组 6x-5y=17②
应用B( )
A.①-②消去y
(x+y)-(2x+y)=10-16
把这两个方程的两边分别相加或相减,就能消去这个未知数 ,这种方法叫做加减消元法,简称加减法.
例题 2x-5y=7,①
用加减消元法解方程组: 2x+3y=-1.②
解:把 ②-①得:8y=-8 y=-1
解得:x=1 x=1
所以原方程组的解是 y=-1
练习 x+3y=17
练习 2.一条船顺流航行,每小时行20km;逆流航行,每小时行 16km.求轮船在静水中的速度与水的流速.
练习
3.运输360t化肥,装载了6节火车车厢和15辆汽车;运输440t 化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽 车平均各装多少吨化肥?
思考
怎样解下面的方程组?
2x+y=1.5,
x+2y=3,
0.8x+0.6y=1.3;
3x-2y=5.
追问1 第一个方程组选择哪种方法更简便?第二个方程组选择哪种方法更简便?
追问2 我们依据什么来选择更简便的方法?
第一个方程的系数含有小数,且刚好有一个未知数的系数是1,用加减法不方便, 适合用代入法.
进一步化简得:x=6
把x=6代入①得:y=4 x=6
两个方程
只要两边_分__别__相___加__就可以消去未知数y___
25x-7y=16
2.已知方程组
两个方程
25x+6y=10
只要两边_分__别__相___减__就可以消去未知数x___
练习
6x+7y=-19①
用加减法解方程组 6x-5y=17②
应用B( )
A.①-②消去y
(x+y)-(2x+y)=10-16
把这两个方程的两边分别相加或相减,就能消去这个未知数 ,这种方法叫做加减消元法,简称加减法.
例题 2x-5y=7,①
用加减消元法解方程组: 2x+3y=-1.②
解:把 ②-①得:8y=-8 y=-1
解得:x=1 x=1
所以原方程组的解是 y=-1
练习 x+3y=17
练习 2.一条船顺流航行,每小时行20km;逆流航行,每小时行 16km.求轮船在静水中的速度与水的流速.
练习
3.运输360t化肥,装载了6节火车车厢和15辆汽车;运输440t 化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽 车平均各装多少吨化肥?
思考
怎样解下面的方程组?
2x+y=1.5,
x+2y=3,
0.8x+0.6y=1.3;
3x-2y=5.
追问1 第一个方程组选择哪种方法更简便?第二个方程组选择哪种方法更简便?
追问2 我们依据什么来选择更简便的方法?
第一个方程的系数含有小数,且刚好有一个未知数的系数是1,用加减法不方便, 适合用代入法.
进一步化简得:x=6
把x=6代入①得:y=4 x=6
二元一次方程组的解法加减消元法北师大版八年级数学上册PPT精品课件
解:
①+②×4,得7x=35. 解得x=5. 把x=5代入②,得y=1. 所以方程组的解为
二级能力提升练
13. 已知二元一次方程x+y=a+1的一个解也是方程组
的解,则a的值为( A )
A. -1
B. 1
C. 0
D. 2
14. 若方程组
可直接用加减法消去y,
则a,b的关系为( C ) A. 互为相反数
●
4.开篇写 湘君眺 望洞庭 ,盼望 湘夫人 飘然而 降,却 始终不 见,因 而心中 充满愁 思。续 写沅湘 秋景, 秋风扬 波拂叶 ,画面 壮阔而 凄清。
●
5.以景物 衬托情 思,以 幻境刻 画心理 ,尤其 动人。 凄清、 冷落的 景色, 衬托出 人物的 惆怅、 幽怨之 情,并 为全诗 定下了 哀怨不 已的感 情基调 。
●
8.只要我们用心去聆听,用情去触摸 ,你终 会感受 到生命 的鲜活 ,人性 的光辉 ,智慧 的温暖 。
●
9.能准确 、有感 情的朗 读诗歌 ,领会 丰富的 内涵, 体会诗 作蕴涵 的思想 感情。
B. 互为倒数
C. 绝对值相等
D. 相等
三级拓展延伸练
15. 已知实数a,b满足方程组
的值是( B )
A. 3
B. -3
C. 4
D. -4
则a2-b2
16. 若abk≠0,且a,b,k满足方程组
则
的值为( D )
●
1. 中国人只要看到土地,就会想种点 什么。 而牛叉 的是, 这花花 草草庄 稼蔬菜 还就听 中国人 的话, 怎么种 怎么活 。
4. 解方程组
要( C )
A. ①×2-② B. ①×3-②×2 C. ①×2+② D. ①×3+②×2
①+②×4,得7x=35. 解得x=5. 把x=5代入②,得y=1. 所以方程组的解为
二级能力提升练
13. 已知二元一次方程x+y=a+1的一个解也是方程组
的解,则a的值为( A )
A. -1
B. 1
C. 0
D. 2
14. 若方程组
可直接用加减法消去y,
则a,b的关系为( C ) A. 互为相反数
●
4.开篇写 湘君眺 望洞庭 ,盼望 湘夫人 飘然而 降,却 始终不 见,因 而心中 充满愁 思。续 写沅湘 秋景, 秋风扬 波拂叶 ,画面 壮阔而 凄清。
●
5.以景物 衬托情 思,以 幻境刻 画心理 ,尤其 动人。 凄清、 冷落的 景色, 衬托出 人物的 惆怅、 幽怨之 情,并 为全诗 定下了 哀怨不 已的感 情基调 。
●
8.只要我们用心去聆听,用情去触摸 ,你终 会感受 到生命 的鲜活 ,人性 的光辉 ,智慧 的温暖 。
●
9.能准确 、有感 情的朗 读诗歌 ,领会 丰富的 内涵, 体会诗 作蕴涵 的思想 感情。
B. 互为倒数
C. 绝对值相等
D. 相等
三级拓展延伸练
15. 已知实数a,b满足方程组
的值是( B )
A. 3
B. -3
C. 4
D. -4
则a2-b2
16. 若abk≠0,且a,b,k满足方程组
则
的值为( D )
●
1. 中国人只要看到土地,就会想种点 什么。 而牛叉 的是, 这花花 草草庄 稼蔬菜 还就听 中国人 的话, 怎么种 怎么活 。
4. 解方程组
要( C )
A. ①×2-② B. ①×3-②×2 C. ①×2+② D. ①×3+②×2
加减消元法(第课时)PPT课件
3
a
2
b
8
,②
3
分析:方法一:直接解方程组,求出 a 与 b 的值,然后就
可以求出 a + b.
方法二:① + ② 得 4a + 4b = 12,
故a + b = 3.
巩固练习
6.已知关于,的二元一次方程组
2 + 3 =
的解互为相反数,
+ 2 = −1
求的值。
解:
2 + 3 =
6x - 5y = 17
②
A. ① - ② 消去 y
B. ① - ② 消去 x
C. ② - ① 消去常数项
D. 以上都不对
应用( B)
巩固练习
3.已知
+ = 7
=2
是二元一次方程组
的解,求 − 的值
=1
− = 1
解:把
=2
代入原方程组中可以得到:
=1
2 + = 7
解得
n=7.
3m+2×7=8,
m=﹣2.
m=﹣2,
n=7.
(4)
2x-4y=34, ①
5x+2y=31; ②
把x=8代入①式,得
解得
因此原方程组的解是
[选自教材P10 练习]
x=8.
2×8-4y=34,
9
y=﹣2 .
x=8,
9
y=﹣2 .
巩固练习
2. 用加减法解方程组
6x + 7y = -19,①
找系数的最小公倍数
归纳总结
用加减法解二元一次方程组:
特点:同一个未知数的系数相同或互为相反数
a
2
b
8
,②
3
分析:方法一:直接解方程组,求出 a 与 b 的值,然后就
可以求出 a + b.
方法二:① + ② 得 4a + 4b = 12,
故a + b = 3.
巩固练习
6.已知关于,的二元一次方程组
2 + 3 =
的解互为相反数,
+ 2 = −1
求的值。
解:
2 + 3 =
6x - 5y = 17
②
A. ① - ② 消去 y
B. ① - ② 消去 x
C. ② - ① 消去常数项
D. 以上都不对
应用( B)
巩固练习
3.已知
+ = 7
=2
是二元一次方程组
的解,求 − 的值
=1
− = 1
解:把
=2
代入原方程组中可以得到:
=1
2 + = 7
解得
n=7.
3m+2×7=8,
m=﹣2.
m=﹣2,
n=7.
(4)
2x-4y=34, ①
5x+2y=31; ②
把x=8代入①式,得
解得
因此原方程组的解是
[选自教材P10 练习]
x=8.
2×8-4y=34,
9
y=﹣2 .
x=8,
9
y=﹣2 .
巩固练习
2. 用加减法解方程组
6x + 7y = -19,①
找系数的最小公倍数
归纳总结
用加减法解二元一次方程组:
特点:同一个未知数的系数相同或互为相反数
湘教版七年级数学下册第一章《加减消元法----解二元一次方程组(2)》优课件
谢谢观赏
You made my day!
我们,还在路上……
我会做
解下列方程组:
2x+5y=8
(1)
3x+2y=5
+
=6
(2)
4(x+y)-5(x-y)=2
尝试应用
在方程y=kx+b中,当x=1 时,y=-1;当x=-1时,y=3。 试求k和b的值。
-1=k+b
3=-k+b
变式练习
3x+5y=m+2
已知方程组:
的解满足方
2x+3y=m
程x+y=8,求m的值。
归纳整合
加减消元法解方程组基本思 路是什么?主要步骤有哪些?
基本思路: 加减消元: 二元
一元
主要步骤: 变形
同一个未知数的系 数相同或互为相反数
加减
消去一个元
求解
求出两个未知数的值
写解
写出方程组的解
思考: 已知a、b满足方程组
a+2b=8 2a+b=7
则a+b=
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月1日星期五2022/4/12022/4/12022/4/1 •书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/12022/4/12022/4/14/1/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/12022/4/1April 1, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。
解二元一次方程组
——加减消元(第2课时)
复习引入
方程特点: 同一个未知数的系数相同或互为相反数
You made my day!
我们,还在路上……
我会做
解下列方程组:
2x+5y=8
(1)
3x+2y=5
+
=6
(2)
4(x+y)-5(x-y)=2
尝试应用
在方程y=kx+b中,当x=1 时,y=-1;当x=-1时,y=3。 试求k和b的值。
-1=k+b
3=-k+b
变式练习
3x+5y=m+2
已知方程组:
的解满足方
2x+3y=m
程x+y=8,求m的值。
归纳整合
加减消元法解方程组基本思 路是什么?主要步骤有哪些?
基本思路: 加减消元: 二元
一元
主要步骤: 变形
同一个未知数的系 数相同或互为相反数
加减
消去一个元
求解
求出两个未知数的值
写解
写出方程组的解
思考: 已知a、b满足方程组
a+2b=8 2a+b=7
则a+b=
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月1日星期五2022/4/12022/4/12022/4/1 •书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/12022/4/12022/4/14/1/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/12022/4/1April 1, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。
解二元一次方程组
——加减消元(第2课时)
复习引入
方程特点: 同一个未知数的系数相同或互为相反数
第八章二元一次方程组课件8.2.2加减消元法解二元一次方程组
解: ①+②得:
① ②
5x=10
x=2
把x=2代入①得: 3×2+5y=21
x 2 ∴原方程组的解是 y 3
y=3
练习:用加减消元法解方程组 ① 2 s 5 t 13 ② 3 s 5 t 7
用加减消元法解方程组
3x 2 y 0 4 x 2 y 2
解:由题意得:
∵
2x y 7 3x y 8 x3 y 1
∴
ax y b x by a ab 3 x3 ∴把 方程组得: y 1 3a b 1 a 1 解这个方程组得: b2
∵
例2. 用加减法解方程组:
分析:解方程组的方法就是消元,
加减消元法的前提条件是同一个 但是当同一个未知数的系数既不相
同也不互为相反数,怎么解呢?
未知数的系数必须相同或者互为相反数。
用短除法求两个数的最小公倍数。
我们把几个数公有的倍数叫做这几 个数的公倍数,其中最小的一个数叫
做这几个数的最小公倍数。
利用短除法,求下面各组数的最小公倍数。
12和18
3 12 18 2 2
分析:把含小数系数的二元一
次方程组化为整数系数方程组, 可以简化运算。
原方程组可化为
3 x 10 y 10 ① 2 x 5 y 190 ②
悟空顺风探妖踪,
千里只行四分钟。
归时四分行六百,
风速多少才称雄。
解:设悟空在静风中行走的速度为 x 里/分,风速为 y 里/分。
由题意得:
2 mn 3m 2 n 2n 5
解 : 根据同类项的定义, 有
台大收割机和2台小收割机工作5
小时收割小麦8公倾。 问:1台大收割机和1台小收割 机1小时分别收割小麦多少公倾? 分析:两种情况下的工作量
① ②
5x=10
x=2
把x=2代入①得: 3×2+5y=21
x 2 ∴原方程组的解是 y 3
y=3
练习:用加减消元法解方程组 ① 2 s 5 t 13 ② 3 s 5 t 7
用加减消元法解方程组
3x 2 y 0 4 x 2 y 2
解:由题意得:
∵
2x y 7 3x y 8 x3 y 1
∴
ax y b x by a ab 3 x3 ∴把 方程组得: y 1 3a b 1 a 1 解这个方程组得: b2
∵
例2. 用加减法解方程组:
分析:解方程组的方法就是消元,
加减消元法的前提条件是同一个 但是当同一个未知数的系数既不相
同也不互为相反数,怎么解呢?
未知数的系数必须相同或者互为相反数。
用短除法求两个数的最小公倍数。
我们把几个数公有的倍数叫做这几 个数的公倍数,其中最小的一个数叫
做这几个数的最小公倍数。
利用短除法,求下面各组数的最小公倍数。
12和18
3 12 18 2 2
分析:把含小数系数的二元一
次方程组化为整数系数方程组, 可以简化运算。
原方程组可化为
3 x 10 y 10 ① 2 x 5 y 190 ②
悟空顺风探妖踪,
千里只行四分钟。
归时四分行六百,
风速多少才称雄。
解:设悟空在静风中行走的速度为 x 里/分,风速为 y 里/分。
由题意得:
2 mn 3m 2 n 2n 5
解 : 根据同类项的定义, 有
台大收割机和2台小收割机工作5
小时收割小麦8公倾。 问:1台大收割机和1台小收割 机1小时分别收割小麦多少公倾? 分析:两种情况下的工作量
华东师大版数学七年级下册 7.2.2《加减消元法解二元一次方程组》课件(共16张PPT)
把②变形得:x 5 y 11 2
x 代入①,不就消去 了!
3x 5y 21 ① 2x 5y -11 ②
把②变形得
5 y 2x 11
可以直接代入①
3x 5y 21 ① 解方程组 2x 5y -11 ②
分析: (3x + 5y)+(2x - 5y)=21 + (-11)
①左边 + ② 左边 = ① 右边 +
一元
主要步骤:变形
同一个未知数的系数化为 相同或互为相反数
加减 求解 写解
消去一个元 求出两个未知数的值 写出方程组的解
2. 二元一次方程组解法有 代入法、加减法 .
作业布置
解方程组:
(1) -3x+2v=-4 3u-4v= -18
3 x 1 4 y 2
x 5
y
2
上面的例题是通过将两个方程相 加(或相减)消去一个未知数, 将方程组转化为一元一次方程来 解,这种解法叫做加减消元法 简称加减法。
解方程组:
x+y=7,
①
3x+y= 17. ②
解 ②- ①,得 2x=10, 解得 x=5.
把x=5代入①,得 5+y=7,
y=7-5, 解得 y=2.
x=5, 所以方程组的解为
y=2.
解方程组:
6a+7b 5 ① 6a-7b 19 ②
消未知数a用减法
消未知数b用加法
解方程组:
3x - 2y =10, ①
5x+6y = 40. ②
解 ① ×5,得15x - 10y = 50, ③
② ×3,得15x+18y = 120. ④
③- ④,得 -28y = -70,
x 代入①,不就消去 了!
3x 5y 21 ① 2x 5y -11 ②
把②变形得
5 y 2x 11
可以直接代入①
3x 5y 21 ① 解方程组 2x 5y -11 ②
分析: (3x + 5y)+(2x - 5y)=21 + (-11)
①左边 + ② 左边 = ① 右边 +
一元
主要步骤:变形
同一个未知数的系数化为 相同或互为相反数
加减 求解 写解
消去一个元 求出两个未知数的值 写出方程组的解
2. 二元一次方程组解法有 代入法、加减法 .
作业布置
解方程组:
(1) -3x+2v=-4 3u-4v= -18
3 x 1 4 y 2
x 5
y
2
上面的例题是通过将两个方程相 加(或相减)消去一个未知数, 将方程组转化为一元一次方程来 解,这种解法叫做加减消元法 简称加减法。
解方程组:
x+y=7,
①
3x+y= 17. ②
解 ②- ①,得 2x=10, 解得 x=5.
把x=5代入①,得 5+y=7,
y=7-5, 解得 y=2.
x=5, 所以方程组的解为
y=2.
解方程组:
6a+7b 5 ① 6a-7b 19 ②
消未知数a用减法
消未知数b用加法
解方程组:
3x - 2y =10, ①
5x+6y = 40. ②
解 ① ×5,得15x - 10y = 50, ③
② ×3,得15x+18y = 120. ④
③- ④,得 -28y = -70,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.2.2加减消元法解二元一次方程组
.
知识回顾
1. 解二元一次方程组的基本思想:
二元一次 方程组
消元
一元一次 方程
2. 用代入法解二元一次方程组的关键? 用含一个未知数的代数式表示另一个未知数.
.
探究1 还记得等式的性质1吗?
如果a=b,那么a±c=b ±c
除了用代入法 求解外,还有 其他方法吗?
.
未知数x的 练习1 如何用加减系消数元相法同消去未知数x,求出未知数y?
x3y 13 ①
2x5y6 ①
(1)x2y 10 ②
(2) 4y2x4
②
解:(1)①-②,得 x+3y-(x+2y)=13-10 y=3 (2)①+②,得
未知数x的 系数相反
2x-5y+(4y-2x )=-6+4
-y=-2
y=2
1x y 11 00 ①
22 xx
yy
11 66
②
这两个方程 中用,②y-的①系可数消 有去什未么知关数系y 吗??
两个方程中 y的系数相等
解:②-①,得
-(
)-
解得: x=6
把 x=6代入①得: y=4 x 6
所以这个方程组的解是:
y
4
① - ②也能 消去未知数y , 求出x吗?
等式两边加(或减)同一个.数(或式子),结果仍相等.
等式的性质1ຫໍສະໝຸດ 3×0.6+10y=2.8
y=0.1
所以这个方程组的解是: .
x y
0 .6 0 .1
探究3 你能归纳刚才的解法吗?
加减消元法的概念 从上面方程组中的解法可以看出:当二元 一次方程组中的两个方程中同一未知数的 系数相反或相等时,把这两个方程的两边 分别相加或相减,就能消去这个未知数, 得到一个一元一次方程。这种方法叫做加 减消元法,简称加减法。
探究2 联系刚才的解法,想一想怎样解方程组:
3x10y 2.8 ① 15x10y 8 ②
未知数y的系数互为相反数, 由①+②,可消去未知数y, 从而求出未知数x的值.
解:①+②,得
3x+
10y+(15x-10y) 18x=10.8
=2.这据8 +一是8步什的么依 ?
x=0.6
把x=0.6代入①,得
2、用加减法解方程组32xx
-4y 8 4y 2
① ②
得——5x—=1—0 ——
。
时,①+②
.
3.(芜湖·中考)方程组
2x 3y 7,
x
3
y
8
① ②
的解是
.
【解析】先观察3y与-3y互为相反数,再用①+②,
得3x=15,x=5.最后把x=5代入①,得y= -1.
【答案】
x y
5
, 1
.
练习2
x2y 9 ①
用加减消元法解方程组:(1)3x2y 1 ②
解:(1)
①+② ,得: 4x=8
x=2
把 x=2代入①,得:
2+2y=9
y 7
2 x 2
所以这个方程组的解是:
.
y
7 2
1、方程组
2x 3y 5 2x 8y 3
① ②
,①-②得(B
)
A、5y 8 B、5y 8 C、5y8 D、5y8
.
布置作业
教材98页习题8.2第3(2)(4)、5、6题.
.
.
(中考)若3aa22bb48
①,
②
则a+b等于_3__
。
分析:法一,直接解方程组,求出a 与b的值,然后就可以求出a+b
法二,+得4a+4b=12 a+b=3
.
变式训练
根据时间,教师可临场变题,也可 编题。
.
体验收获
今天我们学习了哪些知识?
1.解二元一次方程组的基本思路是消元. 2.消元的方法有:代入消元和加减消元. 3.解二元一次方程组的一般步骤:消元、求解、写解.
.
知识回顾
1. 解二元一次方程组的基本思想:
二元一次 方程组
消元
一元一次 方程
2. 用代入法解二元一次方程组的关键? 用含一个未知数的代数式表示另一个未知数.
.
探究1 还记得等式的性质1吗?
如果a=b,那么a±c=b ±c
除了用代入法 求解外,还有 其他方法吗?
.
未知数x的 练习1 如何用加减系消数元相法同消去未知数x,求出未知数y?
x3y 13 ①
2x5y6 ①
(1)x2y 10 ②
(2) 4y2x4
②
解:(1)①-②,得 x+3y-(x+2y)=13-10 y=3 (2)①+②,得
未知数x的 系数相反
2x-5y+(4y-2x )=-6+4
-y=-2
y=2
1x y 11 00 ①
22 xx
yy
11 66
②
这两个方程 中用,②y-的①系可数消 有去什未么知关数系y 吗??
两个方程中 y的系数相等
解:②-①,得
-(
)-
解得: x=6
把 x=6代入①得: y=4 x 6
所以这个方程组的解是:
y
4
① - ②也能 消去未知数y , 求出x吗?
等式两边加(或减)同一个.数(或式子),结果仍相等.
等式的性质1ຫໍສະໝຸດ 3×0.6+10y=2.8
y=0.1
所以这个方程组的解是: .
x y
0 .6 0 .1
探究3 你能归纳刚才的解法吗?
加减消元法的概念 从上面方程组中的解法可以看出:当二元 一次方程组中的两个方程中同一未知数的 系数相反或相等时,把这两个方程的两边 分别相加或相减,就能消去这个未知数, 得到一个一元一次方程。这种方法叫做加 减消元法,简称加减法。
探究2 联系刚才的解法,想一想怎样解方程组:
3x10y 2.8 ① 15x10y 8 ②
未知数y的系数互为相反数, 由①+②,可消去未知数y, 从而求出未知数x的值.
解:①+②,得
3x+
10y+(15x-10y) 18x=10.8
=2.这据8 +一是8步什的么依 ?
x=0.6
把x=0.6代入①,得
2、用加减法解方程组32xx
-4y 8 4y 2
① ②
得——5x—=1—0 ——
。
时,①+②
.
3.(芜湖·中考)方程组
2x 3y 7,
x
3
y
8
① ②
的解是
.
【解析】先观察3y与-3y互为相反数,再用①+②,
得3x=15,x=5.最后把x=5代入①,得y= -1.
【答案】
x y
5
, 1
.
练习2
x2y 9 ①
用加减消元法解方程组:(1)3x2y 1 ②
解:(1)
①+② ,得: 4x=8
x=2
把 x=2代入①,得:
2+2y=9
y 7
2 x 2
所以这个方程组的解是:
.
y
7 2
1、方程组
2x 3y 5 2x 8y 3
① ②
,①-②得(B
)
A、5y 8 B、5y 8 C、5y8 D、5y8
.
布置作业
教材98页习题8.2第3(2)(4)、5、6题.
.
.
(中考)若3aa22bb48
①,
②
则a+b等于_3__
。
分析:法一,直接解方程组,求出a 与b的值,然后就可以求出a+b
法二,+得4a+4b=12 a+b=3
.
变式训练
根据时间,教师可临场变题,也可 编题。
.
体验收获
今天我们学习了哪些知识?
1.解二元一次方程组的基本思路是消元. 2.消元的方法有:代入消元和加减消元. 3.解二元一次方程组的一般步骤:消元、求解、写解.