运筹学案例分析
运筹学实例 含解析
案例1. 工程项目选择问题某承包企业在同一时期内有八项工程可供选择投标。
其中有五项住宅工程,三项工业车间。
由于这些工程要求同时施工,而企业又没有能力同时承担,企业应根据自身的能力,分析这两类工程的盈利水平,作出正确的投标方案。
有关数据见下表:表1 可供选择投标工程的有关数据统计工程类型 预期利润/元 抹灰量/m 2混凝土量/ m 3砌筑量/ m 3住宅每项 50011 25 000 280 4 200 工业车间每项 80 000480 880 1 800 企业尚有能力108 0003 68013 800试建立此问题的数学模型。
解:设承包商承包X 1项住宅工程,X 2项工业车间工程可获利最高,依题意可建立如下整数模型:目标是获利最高,故得目标函数为21X 80000X 50011z Max +=根据企业工程量能力限制与项目本身特性,有约束:利用WinSQB 建立模型求解:1080002X 4801X 25000≤+3680X 880X 28021≤+13800X 1800X 420021≤+为整数,;,2121X X 3X 5X ≤≤综上,承包商对2项住宅工程,3项车间工程进行投标,可获利最大,目标函数Max z=340022 元。
案例2. 生产计划问题某厂生产四种产品。
每种产品要经过A,B两道工序加工。
设该厂有两种规格的设备能完成A工序,以A1 ,A2表示;有三种规格的设备能完成B工序,以B1 ,B2,B3 表示。
产品D可在A,B任何一种规格的设备上加工。
产品E可在任何规格的A设备上加工,但完成B工序时只能在B1设备上加工。
产品F可在A2及B2 ,B3上加工。
产品G可在任何一种规格的A设备上加工,但完成B工序时只能在B1 ,B2设备上加工。
已知生产单件产品的设备工时,原材料费,及产品单价,各种设备有效台时如下表,要求安排最优的生产计划,使该厂利润最大?设设产品设备有效台时1 2 3 4A1 A2 B1 B2 B357647109812111068108601110000400070004000原料费(元/件)单价(元/件)0.251.250.352.000.502.800.42.4解:设Xia(b)j为i产品在a(b)j设备上的加工数量,i=1,2,3,4;j=1,2,3,得变量列表设备产品设备有效台时Ta(b)j1 2 3 4A1 A2 B1 B2 B3X1a1X1a2X1b1X1b2X1b3X2a1X2a2X2b1X3b2X3b3X3a1X3a2X3b1X3b2X3b3X4a1X4a2X4b1X4b2X4b3601110000400070004000原料费Ci (元/件) 单价Pi (元/件) 0.25 1.25 0.352.00 0.50 2.80 0.4 2.4其中,令X 3a 1,X 3b 1,X 3b 2,X 3b 3,X 4b 3=0 可建立数学模型如下: 目标函数: ∑∑==-=4121)](*[Maxi j iaj Ci Pi X z=1.00*(X 1a 1+X 1a 2)+1.65*(X 2a 1+X 2a 2)+2.30* X 3a 2+2.00*( X 4a 1+X 4a 2)约束条件:利用WinSQB 求解(X1~X4,X5~X8,X9~X12,X13~X17,X18~X20分别表示各行变量):4,3,2,1X21j 31==∑∑==i X j ibjiaj2,1T X 41iaj=<=∑=j Taj i iaj 3,2,141=<=∑=j TbjT Xi ibj ibj2,1;4,3,2,10X iaj ==>=j i 且为整数32,1;4,3,2,10X ibj ,且为整数==>=j i 0X X X X X 4b33b33b23b13a1=====综上,最优生产计划如下:设备产品1 2 3 4A1 A2 B1 B2 B3774235004004008732875目标函数zMax=3495,即最大利润为3495案例3. 高校教职工聘任问题 (建摸)由校方确定的各级决策目标为:P 1 要求教师有一定的学术水平。
运筹学在物流管理中的应用 案例解析
运筹学在物流管理中的应用案例解析一、引言随着全球化的深入发展和物流行业的不断壮大,物流管理成为了企业发展中的重要组成部分。
而在物流管理过程中,运筹学被广泛应用,以解决物流中的各类问题。
本文将通过案例解析的方式,探讨运筹学在物流管理中的应用,旨在进一步理解其作用和效果。
二、案例分析1. 优化配送路径某物流公司负责城市间货物配送,面临着如何合理规划配送路径的问题。
利用运筹学中的最优路径算法,可以通过计算不同路径的时间、距离和成本等指标,找到最佳的配送路径。
通过算法的优化,该物流公司成功减少了运输成本和时间,并且提高了配送效率。
2. 车辆调度优化另一家物流公司拥有大量的运输车辆,如何合理安排车辆的调度成为了他们面临的难题。
运筹学中的车辆路径规划算法可以通过考虑各个配送点的货物数量、距离、运输时间等因素,确定最佳的车辆调度方案。
通过该算法的应用,该物流公司有效提升了车辆利用率,减少了空载率,从而节约了成本。
3. 仓库库存管理某电商企业拥有多个仓库,需要根据订单情况合理规划仓库之间的货物调拨,以最大程度地减少库存和仓储成本。
运筹学中的库存模型可以通过统计订单需求和仓库存量,实现供需的匹配,避免库存过多或过少的问题。
该电商企业成功应用了库存模型,减少了库存积压,提高了物流配送效率。
4. 运输网络规划一家物流公司计划扩大业务范围,需要合理布局运输网络。
运筹学中的网络设计模型可以通过综合考虑各个节点的运输距离、成本、需求量等因素,确定最佳的网络布局方案。
利用该模型,该物流公司成功打造了高效的运输网络,实现了物流资源的合理配置,提升了服务水平。
三、结论通过以上案例的解析,我们可以清楚地看到运筹学在物流管理中的重要作用。
无论是优化配送路径、车辆调度优化、仓库库存管理还是运输网络规划,运筹学都可以通过建立数学模型、运用优化算法等方式,帮助物流企业降低成本、提高效率、实现优质服务。
因此,运筹学在物流管理中的应用是不可忽视的,并且在未来的发展中将会发挥更大的作用。
运筹学案例研究
案例研究一、独立投资方案资金投资比的确定独立方案是指各方案的现金流量是独立的,不具有相关性,任一方案的采用与否都不影响其它方案是否采用的决策。
独立方案的特点是具有可加性,即各方案的投资和收益具有可加性。
独立方案的投资分为独立方案的整体投资和独立方案的部分资金的投资两类,整体投资是方案所需资金由一家企业或公司投入;部分资金的投资是方案所需资金由多家企业或公司分别按一定的百分比投入,其收益按各企业或公司投放的百分比来分配。
整体投资可视为部分资金投资的特别情形,即资金投放的百分比为百分之百的情形。
在多个独立的投资方案可供选择时,企业或公司在自有资金额的限定下需要科学地确定自己对哪些方案、按多大的比例投入而使自身所得达到最佳状态,实现企业或公司的资金最佳投放组合。
1.独立投资方案资金投资比确定的理论模型企业或公司在确定自有资金的投放组合时,要考虑诸多因素,如各方案在投资各期(一般情况下方案的投资分几个时期投入)所需资金额;各方案预计的收益情况;企业或公司在各投资期拥有的资金额;投资项目对投资百分比的要求等等。
设有n个独立的投资方案,各方案所需资金分为m期投入,方案j的各期所需资金分别为I1(j)、I2(j)、···I m(j)(j=1、2、3、···n),根据各方案的现金流量和基准收益率测算内部收益率均大于行业基准收益率且各方案的净现值分别为NPV1、NPV2、NPV3、NPV4、···NPV n,投资公司各期可用于投资的资金分别为A 1、A 2、A 3、A m ,投资项目对投资百分比的要求是投资各期投入所需资金的百分比相同。
确定投资公司对n 个投资项目的投资百分比。
对于这样的投资百分比的确定问题,可以利用线性规划理论,综合考虑各个因素,建立线性规划模型,通过对模型求解得到投资公司对各方案的投资百分比。
建立线性规划模型时,以公司的资金投放所带来的净现值总和最大作为目标,为达到投资各期投入所需资金的百分比相同的要求,须对各方案各期所需资金及投资公司各期可用于投资的资金予以累计处理。
运筹学在实际问题中的应用案例分析
运筹学在实际问题中的应用案例分析运筹学作为一门研究如何最优化地解决决策问题的学科,在实际问题中得到了广泛的应用。
本文将通过分析两个实际案例来探讨运筹学在解决复杂问题和优化资源利用方面的应用。
案例一:物流配送优化物流配送是一个典型的运筹学应用领域。
在现代社会,物流配送环节对于企业的运营效率和成本控制至关重要。
如何合理安排车辆路线、调度和配送是一项复杂且具有挑战性的任务。
运筹学可以通过数学建模和优化算法来解决这个问题。
首先,我们可以将物流配送问题建模为一个旅行商问题(Traveling Salesman Problem,TSP)。
TSP是一个经典的组合优化问题,目标是寻找一条最短路径,使得从一个地点出发经过所有其他地点后回到起点,且路径的总长度最小。
通过运筹学方法,可以利用算法来求解最佳路径并优化物流配送效率。
其次,为了进一步优化物流配送的效率,我们可以引入车辆调度问题。
例如,考虑到不同城市的交通堵塞情况,我们可以使用调度算法将不同城市的订单分配给不同的车辆,以减少整体行程时间和成本。
通过运筹学的应用,一家物流公司可以最大限度地减少行程时间、减少燃料消耗,提高物流配送的效率。
因此,运筹学在物流配送问题中的应用具有重要的意义。
案例二:生产排产优化生产排产是制造业中的一个重要环节,它关系到企业的生产效率、生产能力和订单交付时间。
运筹学在生产排产中的应用可以帮助企业提高生产效率,降低成本并及时交付产品。
在生产排产中,我们通常需要考虑到多个因素,如机器的利用率、工人的工作时间和任务的优先级等。
通过运筹学的方法,可以构建一个数学模型,通过数学规划算法来优化生产排产方案。
例如,假设一个工厂有多个机器和多个订单需要排产,每个订单有不同的完成时间和优先级。
我们可以通过运筹学的方法,将这个问题建模为一个调度问题。
然后,利用调度算法来确定每个订单的完成时间和最优的生产顺序,从而实现生产排产的优化。
通过运筹学的应用,企业可以有效地优化生产排产计划,提高生产效率,减少资源浪费,并保证订单能够及时交付。
运筹学在流程优化中的应用案例分析
运筹学在流程优化中的应用案例分析引言:在当今竞争激烈的商业环境中,流程优化成为了各个组织追求高效运作的关键。
流程优化旨在通过改进和重组组织内部流程,提高效率和质量,降低成本和风险。
与此同时,运筹学作为一门管理科学,通过数学建模和优化算法的应用,为流程优化提供了有力的支持。
本文将通过分析多个运筹学在流程优化中的应用案例,讨论其在实践中的价值和效果。
案例一:生产流程优化在传统的生产流程中,生产车间每个工人都独自完成生产任务,导致工人之间产生很多不必要的等待和浪费。
一家制造公司决定引入运筹学方法,重新优化他们的生产流程。
通过运筹学的方法,公司将生产任务分配给工人组成的小组,使得每个小组内的工人专注于各自的任务,提高工作效率。
此外,通过运筹学的算法,公司确定了最优的任务分配方案,最大程度地减少了等待和浪费的时间。
优化后的生产流程大大提高了生产效率,降低了生产成本。
案例二:物流配送优化一家电子商务公司面临着快速增长的客户需求和复杂的物流系统。
为了满足客户的要求,公司决定引入运筹学的方法对物流配送进行优化。
运筹学模型通过考虑客户需求的分布、仓库的位置和运输成本等因素,确定了最优的配送路径和策略。
通过优化后的物流配送系统,公司能够更精确地安排货物的运输,减少运输时间和成本,提高客户满意度。
同时,通过实时监控和预测,公司能够更好地应对突发情况,并做出相应的调整,提高了物流系统的鲁棒性。
案例三:人力资源调度优化在一个大型医院中,不同科室之间的人力资源分配存在瓶颈和浪费。
为了解决这个问题,医院决定应用运筹学模型来优化人力资源的调度。
通过运筹学的方法,医院能够根据就诊人数的预测和就诊科室的需求来合理安排医生和护士的工作。
通过优化后的人力资源调度,医院能够提高科室的工作效率,减少等待时间,并提供更好的医疗服务。
此外,通过运筹学的优化算法,医院还能够合理安排员工的休假和轮班,提高员工的满意度和工作积极性。
案例四:供应链优化一家零售公司面临着供应链管理的挑战,包括供货商管理、库存管理和订单管理等。
管理运筹学案例分析
【案例1】某厂排气管车间生产计划的优化分析
1.问题的提出 排气管作为发动机的重要部件之一,极大地影响发动机的性能。某
发动机厂排气管车间长期以来,只生产一种四缸及一种六缸发动机的排 气管。由于其产量一直徘徊不前,致使投资较大的排气管生产线,一直 处于吃不饱状态,造成资源的大量浪费,全车间设备开动率不足50%。
税收
15 16 14.8 17 16.5 14.5 15.6 15.5
售价
150 160.1 149 172 166 145.6 157.8 155.8
利润
13.545 14.00114.99 15.56 15.312 12.8735 15.892 13.74
(元)
注:表中售价为含税价。
表C-3 设备加工能力一览表
【案例2】配料问题
某饲料公司生产肉用种鸡配合饲料,每千克饲料所需营养质量要求如表
C-4所示。
表C-4
营养成分 肉用种鸡国家标准 肉用种鸡公司标准
产蛋鸡标准
代谢能
2.7~2.8Mcal/kg
≥2.7Mcal/kg
≥2.65Mcal/kg
粗蛋白
135 ~145g/kg
135 ~145g/kg
≥151g/kg
x6 菜饼 0.32 1.62 360 113 8.1 7.1 5.3 8.4
x7 鱼粉 1.54 2.80 450 0 29.1 11.8 63 27
x8 槐叶粉 0.38 1.61 170 108 10.6 2.2 4.0 4.0
x9 DL-met 23.0
980
x10 骨粉 0.56
300 140
8.摇臂钻床 4.1 4.0 4.0 4.3 4.2 3.8 4.3 4.3
运筹学实例分析及lingo求解讲解
运筹学实例分析及lingo 求解一、线性规划某公司有6个仓库,库存货物总数分别为60、55、51、43、41、52,现有8个客户各要一批货,数量分别为35,37,22,32,41,32,43,38。
各供货仓库到8个客户处的单位货物运输价见表试确定各仓库到各客户处的货物调运数量,使总的运输费用最小。
解:设ijx 表示从第i 个仓库到第j 个客户的货物运量。
ij c表示从第i 个仓库到第j 个客户的单位货物运价,i a 表示第i 个仓库的最大供货量,j d 表示第j 个客户的订货量。
目标函数是使总运输费用最少,约束条件有三个:1、各仓库运出的货物总量不超过其库存数2、各客户收到的货物总量等于其订货数量3、非负约束数学模型为:∑∑===6181)(min i j ijij x c x f⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥===≤∑∑==08,,2,1,6,2,1,,..6181ij j i ij i j ij x j d x i a x t s 编程如下:model : Sets :Wh/w1..w6/:ai; Vd/v1..v8/:dj;links(wh,vd):c,x;endsetsData:ai=60,55,51,43,41,52;dj=35,37,22,32,41,32,43,38;c=6,2,6,7,4,2,5,94,9,5,3,8,5,8,25,2,1,9,7,4,3,37,6,7,3,9,2,7,12,3,9,5,7,2,6,55,5,2,2,8,1,4,3;EnddataMin=@sum(links(i,j):c(i,j)*x(i,j));@for(wh(i):@sum(vd(j):x(i,j))<=ai(i));@for(vd(j):@sum(wh(i):x(i,j))=dj(j));endGlobal optimal solution found.Objective value: 664.0000Total solver iterations: 0Variable Value Reduced Cost AI( W1) 60.00000 0.000000 AI( W2) 55.00000 0.000000 AI( W3) 51.00000 0.000000 AI( W4) 43.00000 0.000000 AI( W5) 41.00000 0.000000 AI( W6) 52.00000 0.000000 DJ( V1) 35.00000 0.000000 DJ( V2) 37.00000 0.000000 DJ( V3) 22.00000 0.000000 DJ( V4) 32.00000 0.000000 DJ( V5) 41.00000 0.000000 DJ( V6) 32.00000 0.000000 DJ( V7) 43.00000 0.000000 DJ( V8) 38.00000 0.000000 C( W1, V1) 6.000000 0.000000 C( W1, V2) 2.000000 0.000000 C( W1, V3) 6.000000 0.000000 C( W1, V4) 7.000000 0.000000 C( W1, V5) 4.000000 0.000000 C( W1, V6) 2.000000 0.000000 C( W1, V7) 5.000000 0.000000C( W2, V1) 4.000000 0.000000 C( W2, V2) 9.000000 0.000000 C( W2, V3) 5.000000 0.000000 C( W2, V4) 3.000000 0.000000 C( W2, V5) 8.000000 0.000000 C( W2, V6) 5.000000 0.000000 C( W2, V7) 8.000000 0.000000 C( W2, V8) 2.000000 0.000000 C( W3, V1) 5.000000 0.000000 C( W3, V2) 2.000000 0.000000 C( W3, V3) 1.000000 0.000000 C( W3, V4) 9.000000 0.000000 C( W3, V5) 7.000000 0.000000 C( W3, V6) 4.000000 0.000000 C( W3, V7) 3.000000 0.000000 C( W3, V8) 3.000000 0.000000 C( W4, V1) 7.000000 0.000000 C( W4, V2) 6.000000 0.000000 C( W4, V3) 7.000000 0.000000 C( W4, V4) 3.000000 0.000000 C( W4, V5) 9.000000 0.000000 C( W4, V6) 2.000000 0.000000 C( W4, V7) 7.000000 0.000000 C( W4, V8) 1.000000 0.000000 C( W5, V1) 2.000000 0.000000 C( W5, V2) 3.000000 0.000000 C( W5, V3) 9.000000 0.000000 C( W5, V4) 5.000000 0.000000 C( W5, V5) 7.000000 0.000000 C( W5, V6) 2.000000 0.000000 C( W5, V7) 6.000000 0.000000 C( W5, V8) 5.000000 0.000000 C( W6, V1) 5.000000 0.000000 C( W6, V2) 5.000000 0.000000 C( W6, V3) 2.000000 0.000000 C( W6, V4) 2.000000 0.000000 C( W6, V5) 8.000000 0.000000 C( W6, V6) 1.000000 0.000000 C( W6, V7) 4.000000 0.000000 C( W6, V8) 3.000000 0.000000 X( W1, V1) 0.000000 5.000000 X( W1, V2) 19.00000 0.000000 X( W1, V3) 0.000000 5.000000X( W1, V5) 41.00000 0.000000 X( W1, V6) 0.000000 2.000000 X( W1, V7) 0.000000 2.000000 X( W1, V8) 0.000000 10.00000 X( W2, V1) 1.000000 0.000000 X( W2, V2) 0.000000 4.000000 X( W2, V3) 0.000000 1.000000 X( W2, V4) 32.00000 0.000000 X( W2, V5) 0.000000 1.000000 X( W2, V6) 0.000000 2.000000 X( W2, V7) 0.000000 2.000000 X( W2, V8) 0.000000 0.000000 X( W3, V1) 0.000000 4.000000 X( W3, V2) 11.00000 0.000000 X( W3, V3) 0.000000 0.000000 X( W3, V4) 0.000000 9.000000 X( W3, V5) 0.000000 3.000000 X( W3, V6) 0.000000 4.000000 X( W3, V7) 40.00000 0.000000 X( W3, V8) 0.000000 4.000000 X( W4, V1) 0.000000 4.000000 X( W4, V2) 0.000000 2.000000 X( W4, V3) 0.000000 4.000000 X( W4, V4) 0.000000 1.000000 X( W4, V5) 0.000000 3.000000 X( W4, V6) 5.000000 0.000000 X( W4, V7) 0.000000 2.000000 X( W4, V8) 38.00000 0.000000 X( W5, V1) 34.00000 0.000000 X( W5, V2) 7.000000 0.000000 X( W5, V3) 0.000000 7.000000 X( W5, V4) 0.000000 4.000000 X( W5, V5) 0.000000 2.000000 X( W5, V6) 0.000000 1.000000 X( W5, V7) 0.000000 2.000000 X( W5, V8) 0.000000 5.000000 X( W6, V1) 0.000000 3.000000 X( W6, V2) 0.000000 2.000000 X( W6, V3) 22.00000 0.000000 X( W6, V4) 0.000000 1.000000 X( W6, V5) 0.000000 3.000000 X( W6, V6) 27.00000 0.000000 X( W6, V7) 3.000000 0.000000Row Slack or Surplus Dual Price 1 664.0000 -1.000000 2 0.000000 3.000000 3 22.00000 0.000000 4 0.000000 3.000000 5 0.000000 1.000000 6 0.000000 2.000000 7 0.000000 2.000000 8 0.000000 -4.000000 9 0.000000 -5.000000 10 0.000000 -4.000000 11 0.000000 -3.000000 12 0.000000 -7.000000 13 0.000000 -3.000000 14 0.000000 -6.000000 15 0.000000 -2.000000由以上结果可以清楚的看到由各仓库到各客户处的货物调运数量,由此得出的符合条件的最佳运货方案,而使运费最低,最低为664。
矩阵分析在运筹学中的应用 案例解析
矩阵分析在运筹学中的应用案例解析矩阵分析是一种重要的运筹学工具,在各种实际问题的解决中发挥着关键作用。
本文将以几个案例为例,详细解析矩阵分析在运筹学中的应用。
案例一:城市交通规划假设某城市的交通系统需要进行优化规划,以提高整体的交通效率。
这个问题可以通过矩阵分析来解决。
将城市划分为若干个交通网络节点,并使用矩阵来表示节点间的道路连接情况和交通流量。
通过分析这个矩阵,可以得出各个节点之间的联系程度和交通流量的分布情况。
基于这些信息,可以采取一系列措施,包括增加道路容量、调整交通信号灯时长等,以提高整个交通系统的运行效率。
案例二:物流配送优化某物流公司需要设计最佳的送货路线,以降低成本和提高服务质量。
这个问题可以通过矩阵分析来解决。
将送货点和配送中心抽象成矩阵中的节点,并使用矩阵来表示它们之间的距离、运输费用和送货时效等关系。
通过分析这个矩阵,可以找出最佳的送货路线,使得总运输成本最小化,并且满足送货时效的要求。
案例三:供应链管理某公司在不同的供应链环节中面临着众多决策问题,需要综合考虑各种因素来进行优化。
这个问题可以通过矩阵分析来解决。
将各个供应链环节和相关的因素抽象成矩阵中的节点,通过矩阵元素来表示它们之间的关系和相互作用。
通过分析这个矩阵,可以找出最佳的供应链管理策略,从而提高整个供应链系统的效率和利润水平。
通过以上案例的分析,我们可以看出矩阵分析在运筹学中的重要性和应用广泛性。
无论是城市交通规划、物流配送优化还是供应链管理,矩阵分析都可以帮助我们找到最佳的解决方案。
因此,矩阵分析在实际问题的解决中具有不可替代的作用。
总结起来,矩阵分析在运筹学中的应用多种多样,可以在各个领域中解决实际问题。
通过对问题进行抽象和建模,将问题转化为矩阵的形式,然后通过矩阵分析来找到最佳的解决方案。
在实际应用中,我们可以根据具体问题的特点和需求,选择适当的矩阵分析方法和工具,以达到最佳的效果。
矩阵分析的应用将会进一步推动运筹学的发展,为解决实际问题提供更加有效的手段和方法。
运筹学案例分析
运筹学案例分析⼀.案例描述西兰物业公司承担了正⼤⾷品在全市92个零售店的⾁类、蛋品和蔬菜的运送业务,运送业务要求每天4点钟开始从总部发货,必须在7:30前送完货(不考虑空车返回时间)。
这92个零售点每天需要运送货物吨,其分布情况为:5千⽶以内为A区,有36个点,从总部到该区的时间为20分钟;10千⽶以内5千⽶以上的为B区,有26个点,从总部到该区的时间为40分钟;10千⽶以上的为C区,有30个点,从总部到该区的时间为60分钟;A区各点间的运送的时间为5分钟,B区各点间的运送时间为10分钟,C区各点间的运送时间为20分钟,A区到B区的运送时间为20分钟,B区到C 区的运送时间为20分钟,A区到C区的运送时间为40分钟。
每点卸货、验收时间为30分钟。
该公司准备购买规格为2吨的运送车辆,每车购价5万元。
请确定每天的运送⽅案,使投⼊的购买车辆总费⽤为最少。
⼆.案例中关键因素及其关系分析关键因素:1.⾸先针对⼀辆车的运送情况作具体分析,进⽽推⼴到多辆车的运送情况;2.根据案例中的关键点“零售点每天需要运送货物吨”及“规格为2吨的运送车辆”可知就⼀辆车运送⽽⾔,可承担4个零售点的货物量;3.根据案例中的“运送业务要求每天4点钟开始从总部发货,必须在7:30前送完货(不考虑空车返回时间)”可知每天货物运送的总时间为210分钟,超过该时间的运送⽅案即为不合理;4.如下表以套裁下料的⽅法列出所有可能的下料防案,再逐个分析。
三、模型构建1、决策变量设置设已穷举的12个⽅案中⽅案i所需的车辆数为决策变量Xi (i=1,2…12),即:⽅案1的运送车台数为X1;⽅案2的运送车台数为X2;⽅案3的运送车台数为X3;⽅案4的运送车台数为X4;⽅案5的运送车台数为X5;⽅案6的运送车台数为X6;⽅案7的运送车台数为X7;⽅案8的运送车台数为X8;⽅案9的运送车台数为X9;⽅案10的运送车台数为X10;⽅案11的运送车台数为X11;⽅案12的运送车台数为X12。
生活中运筹学案例分析
生活中运筹学案例分析生活中的许多情境都可以运用运筹学的理念和方法来进行分析和优化。
下面我将通过几个生活中的案例来说明运筹学在实际生活中的应用。
首先,我们来看一个日常生活中的例子,早晨出门上班。
在早晨高峰期,许多人都面临着上班迟到的问题。
这时候我们可以运用运筹学的方法来优化出行路线。
比如,我们可以提前规划好最佳的出行路线,避开交通拥堵的路段,选择合适的出行工具,比如地铁、公交等,以最快的速度到达目的地,从而减少出行时间,提高效率。
其次,我们来看一个生产管理中的案例,生产调度。
在工厂的生产中,如何合理安排生产任务和生产资源是一个重要的问题。
我们可以借助运筹学的方法,通过对生产任务的分析和排程,合理安排生产顺序和生产线的利用率,从而提高生产效率,降低生产成本。
再次,我们来看一个物流配送中的案例,快递配送。
在快递行业中,如何合理安排快递的配送路线和时间是一个关键问题。
我们可以利用运筹学的方法,通过对快递订单的分析和规划,合理安排配送路线和配送顺序,以最短的时间和最低的成本完成配送任务,提高配送效率,提升客户满意度。
最后,我们来看一个市场营销中的案例,促销活动。
在市场营销中,如何制定合适的促销策略是至关重要的。
我们可以运用运筹学的方法,通过对市场需求和产品销售情况的分析,制定合理的促销策略和销售计划,最大限度地提高销售额,实现市场目标。
通过以上几个案例的分析,我们可以看到运筹学在生活中的广泛应用。
无论是日常生活、生产管理、物流配送还是市场营销,都可以通过运筹学的方法来优化资源配置,提高效率,降低成本,实现最佳的决策和规划。
希望大家在生活和工作中能够更多地运用运筹学的理念和方法,从而取得更好的效果。
运筹学 案例
《运筹学》案例分析案例1:超级食品公司的广告混合问题超级食品公司的营销部副总裁克莱略·希文生正面临着一个棘手的挑战:如何才能大规模地进入已有许多供应商的早点谷类食品市场。
值得庆幸的时,该公司的早点谷类食品“脆始”(Crunchy Start)有许多受欢迎的优点:口味佳、营养、松脆。
克莱略·希文生对这一切都如数家珍,她知道这一食品是能够赢得这次促销活动的。
然而,克莱略清楚她必须避免上一次产品促销活动中所犯的错误。
那是她晋升以后第一项重大任务,结果简直是个悲剧!她本以为已经大功告成,却没想到那次活动并没有触及至关重要的目标市场——幼年儿童以及幼年儿童的父母。
同时,她还领悟到未将优惠卷包含在杂志与报纸的广告中是另一大失误。
哎,学习是永无止境的。
这一次,必须吸取上次的教训。
公司的总裁大卫·斯隆已经向她表示脆始这一产品成功与否对公司前途有着重要影响。
她清楚地记得大卫在结束与她的谈话时说:“公司的股东对公司的现状极为不满,我们必须再次纠正方向,增加公司收入。
”克莱略以前也曾听到过这样的语调,但这一次,她从大卫极为严肃的目光中意识到了问题的严重性。
克莱略在攻读MBA管理运筹学课程时,曾经学习过如何通过建立数学模型来解决管理决策问题。
现在是时候让她仔细考虑一下问题,并准备应用所学知识解决问题了。
问题克莱略已经雇佣了一家一流的广告公司G&J公司来帮助设计全国性的促销活动,以使脆始取得尽可能多的消费者的认可。
超级食品公司将根据该广告公司所提供的服务付给一定的酬金(不超过100万美元)并已经预留了另外的400万美元作为广告费用。
G&J公司已经确定了这一产品最有效的三种广告媒介:媒介1:星期六上午儿童节目的电视广告。
媒介2:食品与家庭导向的杂志上的广告。
媒介3:主要报纸星期天增刊上的广告。
现在,要解决的问题是如何确定各广告活动的使用水平(levels)以取得最有效的绩效。
为了确定这一广告投放问题的最佳活动水平组合,首先必须明确该问题的总绩效测度(overall measure of performance)以及每一活动对该测度的贡献。
运筹学案例的分析
运筹学案例的分析一、案例背景介绍本案例涉及一家创造业公司,该公司生产和销售汽车零部件。
由于市场竞争激烈,公司面临着多个挑战,如供应链管理、生产调度和库存管理等方面存在问题。
为了解决这些问题,公司决定运用运筹学方法进行分析和优化。
二、问题分析1. 供应链管理问题公司的供应链管理存在一些瓶颈,如供应商选择、物流运输和库存管理等方面存在问题。
如何优化供应链,降低成本,提高效率是一个亟待解决的问题。
2. 生产调度问题公司的生产线存在一些瓶颈,导致生产效率低下和交货周期延长。
如何优化生产调度,提高生产效率,缩短交货周期是公司急需解决的问题。
3. 库存管理问题公司面临着库存管理方面的挑战,如库存过高、库存周转率低等问题。
如何优化库存管理,降低库存成本,提高库存周转率是公司亟需解决的问题。
三、运筹学方法的应用为了解决上述问题,公司决定运用运筹学方法进行分析和优化。
具体应用如下:1. 供应链管理优化通过对供应链进行建模和分析,确定关键节点和瓶颈环节,优化供应商选择和物流运输方案,以降低成本和提高效率。
同时,建立合理的库存管理模型,通过合理的库存控制策略,降低库存成本,提高库存周转率。
2. 生产调度优化通过对生产线进行建模和分析,确定生产瓶颈和瓶颈环节,优化生产调度方案,提高生产效率和缩短交货周期。
同时,建立合理的生产计划和排程模型,通过合理的生产计划和排程策略,提高生产效率和减少交货周期。
3. 库存管理优化通过对库存管理进行建模和分析,确定库存管理的关键指标和影响因素,优化库存管理策略,降低库存成本和提高库存周转率。
同时,建立合理的库存控制模型和库存管理系统,通过合理的库存控制和管理策略,降低库存成本和提高库存周转率。
四、数据分析和模型建立为了进行运筹学分析和优化,公司需要采集相关的数据,并建立相应的模型。
数据可以包括供应链的各个环节的成本、时间和效率等指标,生产线的各个环节的生产能力和效率等指标,以及库存管理的各个环节的库存成本和库存周转率等指标。
生活中运筹学案例分析
生活中运筹学案例分析运筹学是一门研究如何在有限资源下做出最佳决策的学科,它的应用范围非常广泛,涉及到生产、物流、交通、金融等各个领域。
在生活中,我们也可以运用运筹学的方法来解决一些实际问题。
下面,我们就来看一个生活中的运筹学案例。
某家电商公司在双十一期间需要安排快递员送货上门,为了提高效率和降低成本,他们需要合理安排快递员的路线。
假设有5个快递员,需要分别送货到10个地点,每个地点的货物数量不同,送货的时间也不同。
现在,他们需要运用运筹学的方法来确定每个快递员的最佳路线,以最大限度地提高送货效率。
首先,他们需要收集每个地点的货物数量和送货时间,然后使用运筹学中的最优路径算法来确定每个快递员的最佳路线。
最优路径算法可以帮助他们找到每个快递员的最短路径,从而在最短的时间内完成送货任务。
其次,他们还可以运用运筹学中的分配算法来平衡每个快递员的工作量,确保每个快递员都能够在相同的时间内完成送货任务。
这样不仅可以提高效率,还可以减少快递员之间的工作差距。
最后,他们还可以使用运筹学中的排程算法来确定每个快递员的出发时间,以最大限度地减少等待时间和空载时间,从而提高整个送货过程的效率。
通过运用运筹学的方法,这家电商公司成功地解决了快递员配送路线的问题,提高了送货效率,降低了成本,为双十一期间的顺利进行提供了有力支持。
生活中的运筹学案例告诉我们,运筹学不仅仅是一门理论学科,它在实际生活中也有着重要的应用价值。
通过合理运用运筹学的方法,我们可以更好地解决一些实际问题,提高效率,降低成本,为生活带来更多的便利和效益。
因此,我们应该更加重视运筹学的学习和应用,努力将其运用到实际生活中,为我们的生活带来更多的便利和效益。
管理运筹学之案例分析1:北方化工厂月生产计划
动态规划
动态规划是一种通过将问题分解为子问题并解决这些子问 题以找到全局最优解的方法。在北方化工厂月生产计划中 ,动态规划可以用来解决具有时间依赖性和状态转移的问 题。
动态规划通过将问题分解为一系列相互依赖的决策,以找 到最优的生产路径。这种方法特别适用于具有重叠子问题 和最优子结构的问题,可以避免重复计算和存储子问题的 解决方案。
THANKS FOR WATCHING
感谢您的观看
管理运筹学之案例分析1北方化工 厂月生产计划
目录
• 案例背景介绍 • 生产计划制定 • 生产计划优化 • 生产计划实施与监控 • 案例总结与启示
01 案例背景介绍
化工厂概况
北方化工厂是一家大型化工企业,主 要生产各类化工产品,如化肥、农药、 塑料等。
该化工厂拥有先进的生产设备和技术, 以及一支高素质的员工队伍。
制定具有一定弹性的生产 计划,以应对市场需求波 动、原材料供应不稳定等 因素。
计划调整策略
根据实际情况,适时调整 生产计划,优化资源配置, 确保生产顺利进行。
跨部门协作
生产部门需与采购、仓储、 销售等部门保持密切沟通, 共同应对生产计划调整带 来的影响。
05 案例总结与启示
月生产计划的成功经验
目标明确
03 生产计划优化
线性规划
线性规划是一种数学优化技术,用于解决具有线性约束和线 性目标函数的最大化或最小化问题。在北方化工厂月生产计 划中,线性规划可以用来确定最优的生产组合,以最小化生 产成本或最大化利润。
线性规划的优点在于其数学模型的简洁性和易解性。通过使 用标准形式的线性规划求解器,可以快速找到最优解。此外 ,线性规划还可以处理多种产品、多阶段生产和多资源约束 的情况。
运筹学案例分析报告.doc
运筹学案例分析报告运筹学案例分析报告篇1:一、研究目的及问题表述(一)研究目的:公司、企业或项目单位为了达到招商融资和其它发展目标之目的,在经过前期对项目科学地调研、分析、搜集与整理有关资料的基础上,向读者全面展示公司和项目目前状况、未来发展潜力的书面材料。
这是投资公司在进行投资前非常必要的一个过程。
所以比较有实用性和研究性。
(二)问题表述:红杉资本于1972年在美国硅谷成立。
从2005年9月成立至今,在科技,消费服务业,医疗健康和新能源/清洁技术等投资了众多具有代表意义的高成长公司。
在2011年红杉资本投资的几家企业项目的基础上,规划了未来五年在上述基础上扩大投资金额,以获得更多的利润与合作效应。
已知:项目1(受资方:海纳医信):从第一年到第四年每年年初需要投资,并于次年末收回本利115%项目2(受资方:今世良缘):第三年年初需要投资,到第五年末能收回本利125%,但规定最大投资额不超过40万元。
项目3(受资方:看书网):第二年年初需要投资,到第五年末能收回本利140%,但规定最大投资额不超过30万元。
项目4(受资方:瑞卡租车):五年内每年年初可购买公债,于当年末归还,并加息6%。
该企业5年内可用于投资的资金总额为100万元,问他应如何确定给这些项目的每年投资使得到第五年末获得的投资本例总额为最大?(三)数据来源:以下的公司于受资方等都是在投资网中找到的,其中一些数据为机密部分,所以根据资料中红杉资本所投资的金额的基础上,去编织了部分的数据,以完成此报告研究。
二、方法选择及结果分析(一)方法选择:根据自身的知识所学,选用了运筹学线性规划等知识,再结合Lindo软件,也有其他的方法与软件,但是线性规划为运筹学中比较基本的方法,并且运用起来比较方便简捷,也确保了方法的准确性。
(二)求解步骤:解:设xi1,xi2,xi3,xi4(i=1,2,3,4,5)为第i年初给项目1,2,3,4的投资额,他们都是待定的未知量。
运筹案例分析总结
运筹案例分析总结案例背景运筹是一门涵盖了多个领域的学科,它通过数学建模与算法等方法,以优化问题为核心,研究如何在资源有限的情况下,使得系统能够达到最优的效果。
在实际应用中,运筹帮助企业和组织解决了众多复杂的问题,提高了效率、降低了成本。
本文将对几个运筹案例进行分析,并总结出一些关键点和经验教训。
案例一:生产计划优化公司在某次生产计划中遇到了一个问题,他们需要制定一个最优的生产计划,以便在资源有限的情况下提高产能,并同时满足客户的交货期要求。
为了解决这个问题,他们采用了运筹相关的方法。
方法与结果首先,他们对生产流程进行了详细的分析,找出了瓶颈环节和关键资源。
然后,他们使用数学建模的方法,将生产计划问题转化为一个线性规划问题,并使用了相应的算法进行求解。
通过优化生产计划,他们成功地提高了产能,并在满足客户需求的前提下,降低了生产成本。
教训与经验这个案例告诉我们,在处理生产计划优化问题时,我们需要充分了解整个生产流程,找出关键环节和资源瓶颈。
在数学建模和算法选择方面,我们需要选择合适的模型和算法,以求得最优解。
案例二:物流配送路径优化一家物流公司面临一个配送路径优化的问题。
他们需要确定一条最优的配送路径,以减少行驶距离,提高效率,并保证货物能够准时送达目的地。
方法与结果他们采用了运筹中的启发式算法和近似算法来优化配送路径。
首先,他们利用GIS地理信息系统采集了物流网络的数据,并进行了预处理和清洗。
然后,他们使用模拟退火算法和遗传算法等方法,对物流配送路线进行了求解。
通过优化配送路线,他们成功地减少了行驶距离,提高了效率,并准时送达了货物。
教训与经验通过这个案例我们学到,在处理物流配送问题时,使用GIS地理信息系统是非常有帮助的。
此外,启发式算法和近似算法在求解大规模配送路径问题时也非常有效。
然而,我们需要注意算法的参数调优和收敛性的检验,以求得较好的结果。
案例三:投资组合优化一家投资公司面临一个投资组合优化的问题。
四个运筹学案例
1、年度配矿计划优化——线性规划j(单位:万吨)2 约束条件:包括三部分1)供给(资源)约束:x1 ≤70 x2≤7 x3≤17 x4≤23 x5≤3 x6≤9.5 x7≤1 x8≤15.4 x9≤ 2.7 x10≤7.6 x11≤13.5 x12≤2.7 x13≤1.2 x14≤7.22)品位约束3)非负约束: x j ≥ 0 j = 1,2,3, … ,143 目标函数:此题目要求“效益最佳”有一定的模糊性,由于配矿后的混合矿石将作为后面 工序的原料而产生利润,故在初始阶段,可将目标函数选作配矿总量的极大化。
三、计算结果及分析1 计算结果利用单纯形法可得出该问题的最优解为:x1 = 31.121 x2 = 7 x3 = 17 x4 = 23 x5 = 3 x6 = 9.5 x7 = 1 x8 = 15.4 x9 = 2.7 x10 = 7.6 x11 = 13.5 x12 = 2.7 x13 = 1.2 x14 = 7.2 最优值:Z* = 141.921(万吨)2 分析与讨论1)计算结果是否可被该公司接受?——回答是否定因为:①在最优解中,除第1个采矿点有富裕外,其余13个采矿点的出矿量全部参与了配矿。
而矿点1在配矿以后尚有富余量 70 -31.12 =38.879 (万吨),但矿点1的矿石品位仅为37.16%,属贫矿。
②该公司花费了大量人力、物力、财力后,在矿点1生产的贫矿中却有近39万吨矿石被闲置,而且在大量积压的同时,还会对环境造成破坏,作为该公司的负责人或公司决策者是难以接受这样的生产方案的。
———原因何在?出路何在?2)解决问题的思路经过分析后可知:在矿石品位T Fe 及出矿量都不可变更的情况下,只能把注意力集中在 混合矿石的品位T Fe 要求上。
——不难看出,降低T Fe 的值,可以使更多的低品位矿石参与配矿。
问题:T Fe 的值有可能降低吗?在降低T Fe 的值,使更多的贫矿入选的同时,会产生什么影响?——以上问题就属于运筹学的灵敏度分析(优化后分析)3)经调查,以及与现场操作人员、工程技术人员、管理人员学习、咨询,拟定了三个T Fe 的新值:44% 、43% 、42%3 变动参数之后再计算,结果如下表所示:∑==+++++++++++++14114131211109875432145.0502.04073.05692.05271.04022.0408.04834.05141.064996.04200.04700.0400.05125.03716.0j jx x x x x x x x x x x x x x x ∑==141max j jx zFe境的破坏,故不予以考虑。
运筹学案例分析
一、研究目的运筹学思想在现实的经济管理中应用广泛,因此,熟练掌握运筹学模型方法,对我们以后在企业管理工作中有重大作用。
在企业生产过程中,运筹学模型方法可以很好地为我们寻求出最优生产方案,为企业降低生产成本,谋求最大利益。
二、案例介绍及问题陈述XX有限公司一直致力于玻璃深加工产品的开发和技术应用,凭借开放的经营理念,先进的企业管理模式,契尔不舍的创新精神,引进了玻璃深加工自动化生产线、生产工艺技术。
广聚玻璃深加工专业技术人才,以良好的质量信誉,保证客户满意的服务理念,建立了一大批密切的合作伙伴。
公司生产的产品:各种建筑幕墙玻璃、门窗玻璃、室内外装饰等特种玻璃。
现公司要生产新型门和窗,公司旗下有三个工厂:工厂1生产铝矿和五金件,工厂2生产木框,工厂3生产玻璃和组装门窗。
公司生产新型门需要使用工厂1的生产设备每周约4h,生产新型窗需要使用工厂2的生产设备每周约12h,而生产两种产品需要使用工厂3的生产设备每周约18h(在其余时间工厂1和工厂2照常生产当前产品)。
每扇门需要工厂1生产时间2h,需要工厂3生产时间3h;每扇窗需要工厂2和工厂3生产时间分别为4h。
估计两种产品的单位利润分别为400元和600元。
如下表所示:(一)、问题:(1)找出新型产品的最优生产方案,使公司获利最大。
(2)由于单位利润只是个估值,生产时间也是没有最终确定,若单位利润发生变化可能会对产品组合产生影响,那么单位利润在哪个范围内变动才不会影响最优解?而生产时间的增减也会使利润发生相应的变化,又该怎样控制生产时间?(二)、方法选择:线性规划的特点之一是在经营管理中适用于解决在预定的任务目标下,为公司企业寻求和制定最优生产计划。
因此对问题(1)选择线性规划模型对此案例进行求解和分析。
问题(2)运用灵敏度分析。
三、数据来源公司介绍及生产产品来自网络,但是由于公司很多信息数据是保密的,无法获取,因此我根据所学知识及与实际进行了对比,其余数据是我个人进行设置,以达到研究的目的。
运筹学案例分析报告示例
食油生产问题(案例一)分析报告一、模型构造1.1 变量设置设两种硬质油代号分别为HD1、HD2(HD代表Hard),三种软质油代号分别为SF1、SF2、SF3(SF代表Soft)。
每种油的采购(Buy)、耗用(Use)和储存(Store)量分别在油品的代号前加B、U和S表示。
1—6月份5种油品的采购、耗用和储存量分别在油品代号后面加1—6表示。
总产量用PROD(Product)表示。
第一种硬质油六个月的采购量、耗用量、月末储存量共有17变量,其中,六月末的存储量为500吨。
BHD11,BHD12,BHD13,BHD14,BHD15,BHD16;UHD11,UHD12,UHD13,UHD14,UHD15,UHD16;SHD11,SHD12,SHD13,SHD14,SHD15;第二种硬质油六个月的采购量、耗用量、月末储存量共有17变量,其中,六月末的存储量为500吨。
BHD21,BHD22,BHD23,BHD24,BHD25,BHD26;UHD21,UHD22,UHD23,UHD24,UHD25,UHD26;SHD21,SHD22,SHD23,SHD24,SHD25;第一种软质油六个月的采购量、耗用量、月末储存量共有17变量,其中,六月末的存储量为500吨。
BSF11,BSF12,BSF13,BSF14,BSF15,BSF16;USF11,USF12,USF13,USF14,USF15,USF16;SSF11,SSF12,SSF13,SSF14,SSF15;第二种软质油六个月的采购量、耗用量、月末储存量共有17变量,其中,六月末的存储量为500吨。
BSF21,BSF22,BSF23,BSF24,BSF25,BSF26;USF21,USF22,USF23,USF24,USF25,USF26;SSF21,SSF22,SSF23,SSF24,SSF25;第三种软质油六个月的采购量、耗用量、月末储存量共有17变量,其中,六月末的存储量为500吨。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S4=1.1(S3-X3*)=152.6789万元,X4*=S4=152.6789万元
最大值为maxZ=ƒ1(400)=43.0813万元
(1)
令ƒ= + + + - ( ) - -
求偏导,有
即
因此,解得:
(1)动态规划方法的优越性与不足
f4(S4)=maxX4=S4( )= 及最优解 X4*= S4
f3(S3)=max0≤X3≤s3( +f4(S4))=max0≤X3≤s3(( + )
研究函数h(x)= ,可求得当 时,h(x)max= =
FOC h’(x)= +
Xo =
SOCh (x0)<0
因此 f3(S3)= max0≤X3≤s3(( + )= 及最优解X3*=
令最优值函数fk(sk)表示为第k阶段的初始状态为Sk,从k阶段到4阶段所得效用的最大值。
S1=400XBiblioteka S2X2S3X3S4X4S5设S4=X4S4=1.1(S2-X2)S2=1.1(S1-X1)S1=400
则有S4=X40 X3 S30 2 S20 X1 S1=400
于是用逆推解法,从后向前依次有:
(3)比较两种解法,并说明动态规划方法啊有哪些优点。
动态规划研究的问题是与时间有关的,它是研究具有多阶段决策过程的一类问题,将问题的整体按时间或空间的特征而分成若干个前后衔接的时空阶段,把多阶段决策问题表示为前后有关联的一系列单阶段决策问题,然后逐个加以解决,从而求出了整个问题的最优决策序列。
由于动态规划方法有逆序揭发和顺序解法之分,其关键在于正确写出动态规划的递推关系式。一般来说,当初始状态给定时,用逆推的较方便;当终止状态给定时,用顺推比较方便。
f2(S2)=max0≤X2≤s2(( +f3(S3)=max0≤X2≤s2(( + = 及最优解X2*=
f1(S1)= max0≤X1≤s1( +f2(S2))= max0≤X1≤s1( + = =43.0813万元及最优解X1*= =86.2069万元
S2=1.1(S1-X1)=345.17241万元,X2*= =104.2817万元
动态规划的成功之处在于,它可以把一个n维决策问题变换为n个一维最优化问题,一个一个地求解。这是经典极值方法所做不到,它几乎超越了所有现存的计算方法,特别是经典优化方法。另外,动态规划能够求出全局极大或极小,这也是其它优化方法很难做到的。
应该指出的是,动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是一种特殊的算法,它不像线性规划那样有统一的数学模型和算法(例如单纯形法),而必须对具体问题进行具体分析,针对不同的问题;运用动态规划的原理和方法,建立起相应的模型;然后再用动态规划方法去求解。
n阶段决策过程:
其中取
本题是一个四阶段决策问题,设第n年初有Sn万元资金(连同利息)可用于投资,用掉Xn万元。其中,Sn+1=1.1(Sn-Xn)
maxZ= + + +
s.t.
设状态变量为S1、S2、S3、S4、S5,并记S1=400;取问题中的变量X1、X2、X3、X4为决策变量;各阶段指标函数按加法方式结合。
题目:设某人有400万元金额,计划在四年内全部用于投资。已知在一年内若投资用去X万元就能获得 万元的效用。每年没有用掉的金额,连同利息(年利率10%)可再用于下一年的投资。而每年已打算用于投资的金额不计利息。试制定金额的使用计划,而使四年内获得的总效用最大?
(1)用动态规划方法求解
(2)用拉格朗日乘数法求解