高频小信号放大器实验报告

合集下载

高频实验报告(电子模板)4题版

高频实验报告(电子模板)4题版

高频实验报告(电子版)班级:班级:学号:学号:姓名:姓名:201年月实验一、小信号谐振放大器 1:本次实验电原理图输入信号Ui(mV P-P)50mV P-P放大管电流Ic 1 0.5mA 1mA 2mA 3mA 4mA 4.5mA 输出信号Uo(V P-P)2-1:直流工作点与对放大器影响关系得结论:输入信号Ui(mV P-P) 50mV P-P阻尼电阻R Z (1K2=1) R=∞(R11) R=100 Ω(R7) R=1K(R6) R=10K(R5) R=100K输出信号Uo(V P-P)3-1:阻尼电阻—LC 回路的特性曲线图3-2:阻尼电阻—LC 回路的特性结论4:逐点法测量放大器的幅频特性实验电原理图粘贴处特性曲线图 粘贴处输入信号幅度(mV P-P)50mV P-P输入信号(MHz )2727.52828.52929.530输出幅值(V P-P)输入信号 (MHz ) 30.53131.53232.533输出幅值(V P-P)4-1:放大器的幅频特性曲线图4-2:放大器的的特性结论5:本次实验实测波形选贴选作思考题:(任选一题)1. 单调谐放大器的电压增益K U 与哪些因素有关?双调谐放大器的有效频带宽度B 与哪些因素有关?2.改变阻尼电阻R 数值时电压增益K U 、有效频带宽度B 会如何变化?为什么?3. 用扫频仪测量电压增益输出衰减分别置10dB 和30dB 时,哪种测量结果较合理?4. 用数字频率计测量放大器的频率时,实测其输入信号和输出信号时,数字频率计均能正确显示吗?为什么?5. 调幅信号经放大器放大后其调制度m 应该变化吗?为什么?思考题( )答案如下:幅频特性曲线图粘贴处实测波形1 粘贴处 实测波形2 粘贴处实验二、高频谐振功率放大器1:本次实验电原理图2: 谐振功放电路的交流工作点统调实测值级别激励放大级器(6BG1) 末级谐振功率放大器(6BG2)测量项目注入信号U i(V6-1)激励信号U bm(V6-2)输出信号U0(V6-3)未级电流I C(mA)峰峰值V P-P有效值VU bm(V p-p)1 2 3 4 5 Uo(V p-p)Ic(mA)3-1:谐振功率放大器的激励特性U bm–U0特性曲线图3-2:谐振功率放大器的的特性结论U bm–U0特性曲线图粘贴处实验电原理图粘贴处RL(Ω) 50Ω 75Ω 100Ω 125Ω 150Ω 螺旋天线Uo(V p-p) (V6-3) Ic(mA) (V2)4-1:谐振功率放大器的负载特性RL-- Uo 特性曲线图4-2:谐振功率放大器的RL-- Uo 特性结论V2 (V) 2 V 4V 6V 8V 10V 12V U O (V p-p ) Ic (mA)5-1:谐振功率放大器的电压特性V2—Uo 特性曲线图5-2:谐振功率放大器的V2—Uo 特性结论V2—Uo 特性曲线图粘贴处RL-- Uo 特性曲线图粘贴处6:谐振放大器高频输出功率与工作效率的测量:电源输入功率P D : Ic = mA 、 V2 = V 、 P D = mW 高频输出功率P 0 : Uo = V p-p RL = Ω P 0 = mW 电路工作效率η: %5:本次实验实测波形选贴选作思考题:(任选一题)1 当调谐末级谐振回路时,会出现i C 的最小值和U 0的最大值往往不能同时出现。

高频小信号放大器实验报告

高频小信号放大器实验报告

实验1高频小信号放大器幅频特性曲线为:带宽:8.0*0.7=5.6Bw1=6.6-6.1=0.5MHz2、观察集电极负载对单调谐回路谐振放大器幅频特性的影响当放大器工作于放大状态下,运用上步点测法测出接通与不接通1R3的幅频特性曲线。

既令2K1置“on”,重复测量并与上步图表中数据作比较。

f/MHz 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1U/mV 1.7 1.9 2.0 2.4 2.6 3.2 3.6 4.0 5.2 5.6 5.6 5.2 4.4 3.8 3.2 2.6 2.4 2.0幅频特性曲线为:5.6*0.7=3.92;Bw2=6.65-6.1=0.55MHz3、双调谐回路谐振放大器幅频特性测量(保持输入幅度不变,改变输入信号的频率,测出与频率相对应的双调谐放大器的输出幅度,然后画出频率与幅度的关系曲线,该曲线即为双调谐回路放大器的幅频特性。

)2K2往上拨,接通2C6(80P),2K1置off。

高频信号源输出频率6.3MHZ(用频率计测量),幅度300mv,然后用铆孔线接入双调谐放大器的输入端(IN)。

2K03往下拨,使高频信号送入放大器输入端。

示波器CH1接2TP01,示波器CH2接放大器的输出(2TP02)端。

反复调整2C04、2C11使双调谐放大器输出为最大值,此时回路谐振于6.3MHZ。

按照下表改变高频信号源的频率(用频率计测量),保持高频信号源输出幅度峰——峰值为300mv(示波器CH1监视),从示波器CH2上读出与频率相对应的双调谐放大器的幅度值,并把数据填入下表中。

f/MHz 4.8 5.0 5.2 5.4 5.7 5.8 5.9 6.0 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 U/mV 0.8 1.4 2.6 4.2 8.0 8.8 8.0 8.0 8.0 8.2 8.4 6.4 4.8 3.2 2.0 1.8 1.4 1.2 幅频特性曲线:8*0.7=5.6V;Bw3=6.55-5.5-1.05MHz4、放大器动态范围测量2K1置off,2K2置单调谐,接通2C6.高频信号源输出接双调谐放大器的输入端(IN),调整高频信号源频率为6.3MHz,幅度为100mV。

高频小信号放大器实验报告

高频小信号放大器实验报告

基于Multisim的通信电路仿真实验实验一高频小信号放大器1.1 实验目的1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。

2、熟悉谐振回路的调谐方法及测试方法。

3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。

1.2 实验容1.2.1 单调谐高频小信号放大器仿真图1.1 单调谐高频小信号放大器1、根据电路中选频网络参数值,计算该电路的谐振频率ωp。

ωp=1/(L1*C3)^2=2936KHz fp=ωp/(2*pi)=467KHz2、通过仿真,观察示波器中的输入输出波形,计算电压增益Av0。

下图中绿色为输入波形,蓝色为输出波形Avo=Vo/Vi=1.06/0.252=4.2063、利用软件中的波特图仪观察通频带,并计算矩形系数。

通频带BW=2Δf0.7=7.121MHz-28.631KHz=7.092MHz矩形系数Kr0.1=(2Δf0.1)/( 2Δf0.7)=(14.278GHz-9.359KHz)/7.092MHz=2013.2544、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av相应的图,根据图粗略计算出通频带。

Fo(KHz) 65 75 165 265 365 465 1065 1665 2265 2865 3465 4065 Uo(mV) 0.669 0.765 1 1.05 1.06 1.06 0.977 0.816 0.749 0.653 0.574 0.511 Av 2.655 3.036 3.968 4.167 4.206 4.206 3.877 3.238 2.972 2.591 2.278 2.0285、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。

2次谐波4次谐波6次谐波1.2.2 双调谐高频小信号放大器图1.2 双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益Av0。

高频小信号放大器 实验报告

高频小信号放大器 实验报告

高频小信号放大器实验报告高频小信号谐振放大器一、实验目的1、了解高频小信号谐振放大器的电路组成、工作原理。

2、进一步理解高频小信号放大器与低频小信号放大器的不同。

3、掌握用Multisim8分析、测试高频小信号放大器的基本性能。

4、掌握谐振放大器的调试方法。

5、掌握用示波器测试小信号谐振放大器的基本性能。

6、学会用扫频仪测试小信号谐振放大器幅频特性的方法。

二、实验仪器双踪示波器 数字频率计 高频毫伏表频率特性测试仪BT —3 直流稳压电源 万用表高频信号发生器三、实验原理高频小信号谐振放大器最典型的单元电路如图4.2.1所示,由LC 单调谐回路作为负载构成晶体管调谐放大器。

晶体管基极为正偏,工作在甲类状态,负载回路调谐在输入信号的频率10.7MHz 上。

该放大电路能够对输入的高频小信号进行反相放大。

LC 调谐回路的作用主要有两个:一是选频滤波,选择放大o f f =的工作信号频率,抑制其它频率的信号。

二是提供晶体管集电极所需的负载电阻,同时进行阻抗匹配变换。

高频小信号频带放大器的主要性能指标有:(1)中心频率o f :指放大器的工作频率。

它是设计放大电路时,选择有源器件、计算谐振回路元件参数的依据。

(2)增益:指放大器对有用信号的放大能力。

通常表示为在中心频率上的电压增益和功率增益。

电压增益 o o i A V V υ= (4.2.1)功率增益 po o i A P P = ( 4.2.2)图4.2.1 晶体管单调谐回路调谐放大器式中o V 、i V 分别为放大器中心频率上的输出、输入电压,o P 、i P 分别为放大器中心频率上的输出、输入功率。

增益通常用分贝表示为()20lg o o i A dB V V υ= ( 4.2.3) ()10lg po o i A dB P P = ( 4.2.4)(3)通频带:指放大电路增益由最大值下降3db 时所对应的频带宽度,用BW 0,7表示。

它相当于输入不变时,输出电压由最大值下降到0.707倍或功率下降到一半时对应的频带宽度,如图4.2.2所示。

实训1 高频小信号谐振放大器(高频书后实验报告)

实训1   高频小信号谐振放大器(高频书后实验报告)

实训1 高频小信号谐振放大器
1.实训目的
(1)EWB常用菜单的使用;
(2)搭接实训电路及各种测量仪器设备;
(3)估算小信号谐振放大器的宽频和矩形系数。

2.实训内容及步骤
(1)利用软件绘制出如图1所示的高频小信号谐振放大器实训电路
图1
(2)当接上信号源U S(50Mv/6MHz/0)时,开启仿真实训电源开关,双击示波器,调整适当的时基及A、B通道的灵敏度,即可看到如图所示的输入、输出波形
图2
(3)观察并对比输入与输出波形,估算此电路的电压增益。

Au=25.04
(4)双击波特图仪,适当选择垂直坐标与水平坐标的起点与终点值,即可看到如图所示的高频小信号放大器的幅频特性曲线。

从波特图仪上的幅频特性曲线分析此电路的带宽与矩形系数。

f=6.439MHz
(5)改变电阻R4的阻值,观察频带宽度的变化。

结论:由图上可以知道,它的输入波形没有什么变化但是它的频带宽度并不是一直增加的,而是有一个峰值。

一般在实际电路中通常采用在LC回路两端并联电阻的办法,来降
低调谐回路的有载品质因数Qe的值,以达到展宽放大器的通频带的目的。

高频小信号调谐放大器实验结论

高频小信号调谐放大器实验结论

高频小信号调谐放大器实验结论高频小信号调谐放大器是一种常见的电路,在无线通信中起到了至关重要的作用。

我们进行了一系列实验,研究了这种电路的性能和特点,得出了以下结论。

首先,高频小信号调谐放大器的主要作用是放大高频小信号。

在实验中,我们使用了两个变容二极管,一个电感和一个晶体管来构建这个电路。

当输入的高频小信号经过变容二极管调谐后,经由电感和晶体管放大后输出。

其次,调谐电路的参数非常重要,对电路性能有重要影响。

我们通过改变两个变容二极管的电容值和电感器的电感值,调整电路的谐振频率,从而得到最佳的放大效果。

在调整电路参数时,我们需要注意电路共振的问题,以防止电路失稳。

第三,晶体管的选择也非常关键。

我们选择了高频放大器专用的双极晶体管,能够提供更高的放大倍数和更好的线性度。

在实验中,我们还尝试了改变晶体管的偏置电压和失谐度对电路性能的影响。

第四,我们还研究了高频小信号调谐放大器的频率响应特性。

实验结果表明,电路在其工作频率范围内,输出信号的增益随着频率的变化而变化。

我们根据实验结果绘制了频率响应曲线,从而对电路的性能有了更深刻的了解。

最后,我们还针对不同的应用场景,进行了一系列的实际测试。

实验结果表明,在不同的频段和输入信号功率下,电路的增益和性能均有不同程度的变化。

因此,在实际应用中,需要根据具体情况进行参数调整和电路优化。

总之,高频小信号调谐放大器是一种非常实用的电路,在无线通信、雷达和电视等行业有着广泛的应用。

通过本次实验,我们对这种电路的特点、性能和应用有了更深入的了解,并可以为实际应用提供指导意义。

高频实验:小信号调谐放大器实验报告综述

高频实验:小信号调谐放大器实验报告综述

实验一 小信号调谐放大器实验报告一 实验目的1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。

2.掌握高频小信号调谐放大器的调试方法。

3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试。

二、实验使用仪器1.小信号调谐放大器实验板 2.200MH 泰克双踪示波器 3. FLUKE 万用表 4. 模拟扫频仪(安泰信) 5. 高频信号源 三、实验基本原理与电路 1、 小信号调谐放大器的基本原理所谓“小信号”,通常指输入信号电压一般在微伏 毫伏数量级附近,放大这种信号的放大器工作在线性范围内。

所谓“调谐”,主要是指放大器的集电极负载为调谐回路(如LC 调谐回路)。

这种放大器对谐振频率0f 及附近频率的信号具有最强的放大作用,而对其它远离0f 的频率信号,放大作用很差,如图1-1所示。

图1.1 高频小信号调谐放大器的频率选择特性曲线小信号调谐放大器技术参数如下:K ( f ) / K 010.7070.10f 0B 0.7B 0.1f1.增益:表示高频小信号调谐放大器放大微弱信号的能力2.通频带和选择性:通常规定放大器的电压增益下降到最大值的0.707倍时,所对应的频率范围为高频放大器的通频带,用B0.7表示。

衡量放大器的频率选择性,通常引入参数——矩形系数K0.1。

2.实验电路原理图分析:In1是高频信号输入端,当信号从In1输入时,需要将跳线TP1的上部连接起来。

In2是从天线接收空间中的高频信号输入,电感L1和电容C1,C2组成选频网络,此时,需要将跳线TP1的下部连接起来。

电容C3是隔直电容,滑动变阻器RW2和电阻R2,R3是晶体管基极的直流偏置电阻,用来决定晶体管基极的直流电压,电阻R1是射极直流负反馈电阻,决定了晶体管射极的直流电流Ie。

晶体管需要设置一个合适的直流工作点,才能保证小信号谐振放大器正常工作,有一定的电压增益。

通常,适当的增加晶体管射极的直流电流Ie可以提高晶体管的交流放大倍数 ,增大小信号谐振放大器的放大倍数。

高频小信号调谐放大器实验报告

高频小信号调谐放大器实验报告

⾼频⼩信号调谐放⼤器实验报告⾼频⼩信号调谐放⼤器实验报告⼀、实验⽬的1、熟悉单级⼩信号调谐放⼤器的⼯作原理和设计⽅法2、熟悉并联调谐回路两端并联电阻RL对于频率特性的影响,并分析回路品质因数,回路通频带以及选择性之间的关系3、理解放⼤器的传输特性,了解放⼤器电压传输曲线Vom-Vim在谐振点的测量⽅法,并了解Ic对于传输特性曲线的影响⼆、实验原理⾼频⼩信号单调谐放⼤器上图为晶体管共发射极⾼频单级⼩信号单调谐放⼤器,它不仅可以放⼤⾼频信号⽽且还具有⼀定的选频作⽤,此电路采⽤LC 并联谐振回路作为负载。

Cb为输⼊耦合电容,滤除直流信号,Rb1,Rb2,Re提供静态⼯作点,使其⼯作在放⼤区Ce是Re的旁路电容,LC构成并联谐振回路。

RL是集电极交流电阻,它影响了回路的品质因数,增益带宽。

三、实验内容与步骤(1)实验电路图:(2)静态测量短接JP2_A的3_4,选择发射结电阻Re_A = 1K,断开JP_A,使RLA不连⼊电路,车辆VBQ,VEQ,VCQ。

静态⼯作点测量静态⼯作点VBQ(V) VEQ(V) VCQ(V)实际测量值 1.90 1.20 12.06(3)动态研究1、电路连接选取RLA = 10k,Re_A=1K,将⾼频信号发⽣器Vpp设置为100mV,频率为10.7MHz,接⼊电路输⼊J1_A⽰波器探头,连接J2_A,观察2、调节电路调节CT1_A的值,当电压幅度最⼤时,转去调节⾼频⼩信号发⽣器,直⾄⽰波器显⽰输出幅值最⼤,记下f0为谐振频率3、数据测量选择RL=10k,⾼频信号发⽣器调节f0,Re_A=2K,调节输⼊电压Vi从20mV--820mV,逐点记录并填表(4)数据处理频率和相应输出电压值频率与相应的输出电压值f(MHz) 7.9 8.1 8.3 8.5 8.7 8.9 9.1 9.3 9.5Vo(V)RL_A= 10K Ω 0.78 0.93 1.07 1.22 1.51 1.91 2.46 3.33 4.08RL_A= 2K Ω 0.655 0.724 0.792 0.892 0.989 1.104 1.206 1.297 1.35 RL_A= 470Ω0.370.378 0.390.398 0.406 0.410.414 0.418 0.41f(MHz) 9.79.910.110.310.510.710.911.1Vo(V)RL_A= 10K Ω 3.68 2.84 2.2 1.77 1.45 1.3 1.1 0.98 RL_A= 2K Ω 1.4 1.351.281.19 1.11 1.01 0.95 0.88 RL_A= 470Ω0.422 0.418 0.410.40.40.390.40.3900.511.522.533.544.57.588.599.51010.51111.5频率与相应的输出电压值RL_A=10KRL_A=2KRL_A=0.47K输⼊电压和相应输出电压值输⼊电压与相应的输出电压值Vi(mV) 20 70 120 170 220 270 320 370 420Vo(V)RL_A= 10K Ω 0.579 1.71 2.35 2.71 2.93 3.13 3.26 3.4 3.55 RL_A= 10K Ω 1.2 3.3 4.5 5.1 5.5 5.9 6.16.46.6 RL_A= 10K Ω2.01 5.89 8.01 9.13 9.86 10.4 10.94 11.5 11.8Vi(mV) 470520 570 620 670 720 770 820Vo(V)Re_A= 2K Ω 3.67 3.78 3.9 4.01 4.11 4.25 4.34 4.46 Re_A= 1K Ω 6.9 7.2 7.4 7.6 7.8 8 8.2 8.4 RL_A= 510Ω12.112.312.612.812.912.912.913.0四、课后思考题1、引起⼩信号谐振放⼤器不稳定的原因:主要是集电极内部反馈电容,使输出电压反馈到输⼊端如果实验中出现⾃激现象,消除的⽅法:A 、中和法B 、失配法024*********100200300400500600700800900输⼊电压与相应的输出电压值Re_A=2KRe_A=1KRe_A=0.51K2、负载电阻和三极管β值负载电阻RL增加时电压增益减⼩通频带增⼤。

高频小信号调谐放大器实验报告

高频小信号调谐放大器实验报告

高频小信号调谐放大器实验报告一、实验目的。

本实验旨在通过搭建高频小信号调谐放大器电路,了解调谐放大器的工作原理,掌握其特性参数的测量方法,并通过实验数据分析和计算,验证理论知识。

二、实验仪器与设备。

1. 信号发生器。

2. 示波器。

3. 电压表。

4. 电流表。

5. 电阻箱。

6. 电容箱。

7. 电感箱。

8. 双踪示波器。

三、实验原理。

高频小信号调谐放大器是一种能够对特定频率的信号进行放大的放大器。

其主要由电容、电感和晶体管等器件组成。

在电路中,通过调节电容和电感的数值,可以实现对特定频率信号的放大。

四、实验步骤。

1. 按照实验电路图连接电路,注意接线的正确性。

2. 打开信号发生器和示波器,调节信号发生器的频率和幅度,观察示波器上的波形。

3. 通过改变电容和电感的数值,调节电路的共振频率,观察输出波形的变化。

4. 测量电路中各个元件的电压、电流等参数,并记录实验数据。

5. 根据实验数据,计算电路的增益、带宽等特性参数。

五、实验数据与分析。

在实验中,我们通过改变电容和电感的数值,成功调节了电路的共振频率,观察到输出波形的变化。

通过测量和计算,得到了电路的增益、带宽等特性参数,并与理论数值进行了对比分析。

六、实验结果与讨论。

根据实验数据分析,我们得出了电路的增益、带宽等特性参数,并与理论数值进行了对比。

通过对比分析,我们发现实验数据与理论计算结果基本吻合,验证了调谐放大器的工作原理和特性。

七、实验总结。

通过本次实验,我们深入了解了高频小信号调谐放大器的工作原理和特性参数的测量方法,掌握了调谐放大器的实际应用技巧。

实验结果与理论计算基本吻合,证明了实验的有效性和准确性。

八、参考文献。

1. 《电子电路分析与设计》,张三,XX出版社,2010年。

2. 《电子电路实验指导》,李四,XX出版社,2015年。

以上为高频小信号调谐放大器实验报告内容,谢谢阅读。

高频小信号放大器实习报告

高频小信号放大器实习报告

实验名称:高频小信号放大器一、实习目的《通信电子电路》是通信工程的专业课程,以基础技能训练和能力培养为主线,从培养学生动手能力,培养工程技术实际应用型人才入手,强化综合性、实际性。

目的是通过实习使学生掌握通信电子电路的实际开发所要掌握技术,培养其动手能力,观察能力,分析和解决实际问题的能力,巩固、加深理论课知识,增加感性认识,进一步加深对通信电子电路应用的理解,提高对电路制造调试能力和系统设计能力。

提高对常见电路故障的分析和判断能;培养学生严肃认真、实事求是的科学态度,理论联系实际的工作作风和辩证思维能力。

二、实习内容1掌握发射系统电路和接收系统电路的基本组成。

2.理解各个单元模块的工作原理,和调试方法。

3.掌握电路印刷板的设计与开发方法。

4.掌握实际电路的制作技术与焊接工艺。

5.掌握单元电路和系统电路的调试技术。

6.能对简单的高频电子电路进行设计、制作及调试。

7.实习报告(一、制作电路的印刷板图,二、电路的制作过程,调试和实习心得)三、实验仪器:示波器10直流电源导线若干高频信号源电路板 3个可变电容 3个固定电容 1个电感 n勾道mos管一个四、实习方式本实习为校内集中实习,主要在老师讲授方式下,学生通过上机使用PROTEL绘制电路原理图,印刷电路板PCB,然后实践操作,制作电路模块、调试、排除故障。

五、实验步骤1、用protel99es设计并好绘制好电路图:2、安要求将各元器件进行,标号,封装,赋值。

3具栏的tool中的erc菜单检查连线是否正确,没有错误的话,则出现以下提示:4反回绘制好的图层,在design的下拉菜单中选择update pcb,在弹出的对话框中把第一个勾去掉,然后点击excute,弹出的界面入土所示:5先进行动工布线,之后再进行自动布线,并重复以上操作,直至显示布线100%为止:6、放置矩形填充,7放置泪滴8、放置敷铜,电路设计便完成了:。

高频小信号谐振放大器实验报告

高频小信号谐振放大器实验报告

高频小信号谐振放大器实验报告1. 引言本实验旨在研究高频小信号谐振放大器的工作原理和性能参数。

通过实验,我们将评估谐振放大器的放大增益、带宽、输入阻抗和输出阻抗等关键参数,并通过实际测量数据进行分析。

2. 实验装置和方法2.1 实验装置本实验所使用的装置包括: - 高频信号发生器 - 谐振放大器电路板 - 示波器 - 负载电阻 - 多用表2.2 实验方法1.搭建谐振放大器电路,连接信号发生器、示波器和负载电阻。

2.调节信号发生器的频率,使其工作在谐振放大器的谐振频率附近。

3.测量输入和输出电压,并计算放大倍数。

4.调节信号发生器的频率,测量放大倍数与频率之间的关系,绘制特性曲线。

5.测量输入和输出阻抗,并计算实际数值。

6.记录实验数据并进行分析。

3. 实验结果和分析3.1 放大倍数与频率特性曲线通过调节信号发生器的频率并测量输入和输出电压,得到如下数据:频率 (MHz) 输入电压 (mV) 输出电压 (mV) 放大倍数1.00 0.50 1.002.001.50 0.80 1.50 1.882.00 1.00 1.80 1.802.50 1.20 2.00 1.67据此数据,我们可以绘制出放大倍数与频率的特性曲线。

根据拟合曲线,可以估计谐振放大器的带宽。

3.2 输入阻抗和输出阻抗通过测量输入和输出电压,并使用Ohm’s Law计算电流,我们可以得到输入和输出阻抗的实际数值。

频率(MHz) 输入电压(mV)输出电压(mV)输入电流(mA)输出电流(mA)输入阻抗(Ω)输出阻抗(Ω)1.00 0.50 1.00 0.10 0.20 500 5001.50 0.80 1.50 0.16 0.30 500 5002.00 1.00 1.80 0.20 0.36 500 500 2.50 1.20 2.00 0.24 0.40 500 500根据以上数据,我们可以得到谐振放大器的输入阻抗和输出阻抗的平均值。

高频小信号调谐放大器试验报告

高频小信号调谐放大器试验报告

高频小信号调谐放大器试验报告通信电子电路实验实验一高频小信号调谐放大器实验报告学院:信息与通信工程学院班级:姓名:学号:班内序号:一.课题名称:高频小信号调谐放大器二.实验目的1、掌握高频小信号调谐放大器的工作原理;2、掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法。

三.仪器仪表四.实验内容及步骤实验中,电路部分元器件值,R2=10KΩ, R3=1KΩ, R10=2KΩ, R12=51Ω,R13=10KΩ,R24=2KΩ, R27=5.1KΩ, R28=18KΩ, R30=1.5KΩ, R31=1KΩ, R32=5.1KΩ, R33=18KΩ, R35=1.5KΩ,W3=47KΩ, W4=47KΩ,C20=1nF, C21=10nF, C23=10nF。

(一)、单级单调谐放大器1、计算选频回路的谐振频率范围如图1-1 所示,它是一个单级单调谐放大电路,输入信号由高频信号源或者振荡电路提供。

调节电位器W3 可改变放大电路的静态工作点,调节可调电容CC2 和中周T2 可改变谐振回路的幅频特性。

谐振回路的电感量L=1.8uH~2.4uH,回路总电容C=105 pF~125pF,根据公式范围。

,计算谐振回路谐振频率 f0 的图1-1 单级单调谐放大器实验原理图2、检查连线正确无误后,测量电源电压正常,电路中引入电压。

实验板中,注意TP9接地,TP8 接TP10;3、用万用表测三极管Q2 发射极对地的直流电压,调节可变电阻使此电压为5V。

4、用高频信号源产生频率为10.7MHz,峰峰值约400mV 的正弦信号,用示波器观察,调节电感电容的大小,适当调节静态工作点,使输出信号Vo的峰峰值Vop-p 最大不失真。

记录各数据,得到谐振时的放大倍数。

5、测量该放大器的通频带、矩形系数对放大器通频带的测量有两种方式:(1) 用扫频仪直接测量;(2) 用点频法来测量,最终在坐标纸上绘出幅频特性曲线。

在放大器的频率特性曲线上读取相对放大倍数下降为0.1 处的带宽BW0.1 或0.01 处的带宽BW0.01 。

实验一高频小信号调谐放大器实验报告

实验一高频小信号调谐放大器实验报告

实验一高频小信号调谐放大器实验报告一、实验目的本实验旨在通过设计和搭建一个高频小信号调谐放大器电路,掌握高频小信号调谐放大器的工作原理和性能参数,并能正确测量和分析电路的电压增益和频率响应。

二、实验原理高频小信号调谐放大器是一种用于放大和调谐高频小信号的电路。

它主要由三个部分组成:一个输入电路、一个放大电路和一个输出电路。

输入电路用于匹配输入信号和放大电路的阻抗,使输入信号能够有效传入放大电路;放大电路用于增大输入信号的幅度;输出电路用于匹配放大电路和负载。

三、实验仪器和材料1.高频信号发生器2.高频放大器3.幅度调制器4.示波器5.电阻、电容和电感等元器件四、实验步骤1. 根据电路原理图,使用Multisim软件进行电路仿真。

2.根据仿真结果选择并调整合适的元器件数值,搭建实际电路。

3.将信号源连接至输入电路,逐步增大信号源频率观察输出波形,记录输出电压随频率变化的情况。

4.测量电路的电压增益,并与理论计算值进行对比。

5.测量电路的频率响应,绘制电压增益与频率的波形图。

6.分析实验现象和结果,总结实验中的经验教训。

五、实验结果与分析根据仿真结果,我们成功搭建了一个高频小信号调谐放大器,并进行了实验测试。

测得的电压增益与理论计算值非常接近,验证了电路的设计和搭建的准确性。

实验还得出了电路的频率响应曲线,发现放大器在一定频率范围内有较高的增益,但在较高频率处迅速下降。

六、实验结论通过本实验,我们学习到了高频小信号调谐放大器的工作原理和性能参数的测量方法。

实验结果和数据分析验证了电路设计和搭建的正确性。

此外,我们还了解到了电路的频率响应特性,对于在实际应用中的频率选择提供了参考。

七、实验心得通过本次实验,我深入了解了高频小信号调谐放大器的原理和性能参数,掌握了相关的测量技术。

同时,我也意识到了电路设计和搭建的重要性,只有精确选取和调整元器件数值,才能得到准确的实验结果。

希望以后能继续进行相关实验,提升自己的电路设计和测量能力。

高频小信号放大器实验报告

高频小信号放大器实验报告

高频小信号放大器实验报告高频小信号放大器实验报告引言:在电子学领域中,放大器是一种非常重要的电子元件,用于放大电信号的幅度。

而高频小信号放大器则是一种专门用于放大高频小信号的放大器。

本实验旨在通过实际操作,深入了解高频小信号放大器的工作原理和性能特点。

一、实验目的本实验的主要目的是通过搭建高频小信号放大器电路,观察和分析其放大性能,并对其进行测试和评估。

二、实验原理高频小信号放大器是一种特殊的放大器,其工作频率高达数百兆赫兹甚至更高。

其主要原理是通过放大器电路中的晶体管或场效应管等元件,将输入的高频小信号放大到所需的幅度。

三、实验器材和元件1. 实验器材:示波器、信号发生器、电压表、电流表等。

2. 实验元件:晶体管、电容、电阻等。

四、实验步骤1. 搭建电路:按照实验指导书上给出的电路图,使用示波器、信号发生器等器材搭建高频小信号放大器电路。

2. 调整参数:根据实验要求,调整信号发生器的频率和幅度,观察示波器上输出信号的变化。

3. 测试性能:使用电压表和电流表等仪器,测量并记录放大器电路中的电压和电流数值,分析其性能特点。

4. 数据分析:根据实验数据,计算放大器的增益、频率响应等参数,并进行数据分析和比较。

五、实验结果与分析通过实验,我们得到了高频小信号放大器的增益、频率响应等性能参数。

根据实验数据,我们可以看出在一定频率范围内,放大器的增益较为稳定,但随着频率的增加,增益会逐渐下降。

这是由于放大器电路中的元件在高频下产生了一些不可忽视的损耗。

此外,我们还发现在实验中,放大器的输入和输出信号之间存在一定的相位差。

这是由于放大器电路中的元件对信号的相位进行了一定的改变。

六、实验总结通过本次实验,我们深入了解了高频小信号放大器的工作原理和性能特点。

在实验过程中,我们不仅学会了搭建放大器电路,还掌握了使用示波器、信号发生器等仪器进行测试和分析的方法。

然而,本实验还存在一些不足之处。

首先,在实验中我们没有对放大器电路中的元件进行详细的参数测量和分析,这对于进一步了解放大器的性能特点有一定的限制。

实验报告.高频小信号调谐放大器

实验报告.高频小信号调谐放大器
其关系为 (1-6)
rb’b——基极体电阻,一般为几十欧姆;
Cb’c——集电极电容,一般为几皮法;
Cb’e——发射结电容,一般为几十皮法至几百皮法。
由此可见,晶体管在高频情况下的分布参数除了与静态工作电流IE,电流放大系数β有关外,还与工作频率ω有关。晶体管手册中给出的分布参数一般是在测试条件一定的情况下测得的。如在f0=30MHz,IE=2mA,UCE=8V条件下测得3DG6C的y参数为:
六、心得体会(可选)
通过这次的实验,在对谐振回路的调试,以及对放大器处于谐振时各项技术指标的测试如电压放大倍数、通频带、矩形系数,进一步掌握了高频小信号调谐放大器的工作原理。从而学会了小信号调谐放大器的设计方法。也将课堂所学的理论对于小信号调谐放大器是高频电子线路中的基本单元电路,主要用于高频小信号或微弱信号的线性放大、以及在高频调谐放大器中,由于晶体体管集电结电容的内部反馈,形成了放大器的输出电路与输入电路之间的相互影响。它使高频调谐放大器存在工作不稳定的问题等一系列的知识有了更加深刻的理解。
如果工作条件发生变化,上述参数则有所变动。因此,高频电路的设计计算一般采用工程估算的方法。
图2中所示的等效电路中,p1为晶体管的集电极接入系数,即
(1-7)
式中,N2为电感L线圈的总匝数。
P2为输出变压器T的副边与原边的匝数比,即
(1-8)
式中,N3为副边(次级)的总匝数。
gL为调谐放大器输出负载的电导,gL=1/RL。通常小信号调谐放大器的下一级仍为晶体管调谐放大器,则gL将是下一级晶体管的输入导纳gie2。
由式(1-14)可得
(1-16)
图3谐振曲线
通频带越宽放大器的电压放大倍数越小。要想得到一定宽度的通频宽,同时又能提高放大器的电压增益,由式(1-15)可知,除了选用yfe较大的晶体管外,还应尽量减小调谐回路的总电容量CΣ。如果放大器只用来放大来自接收天线的某一固定频率的微弱信号,则可减小通频带,尽量提高放大器的增益。

关于高频小信号调谐放大器的实验报告

关于高频小信号调谐放大器的实验报告

实验一高频小信号调谐放大器一、实验目的;1、掌握高频小信号调谐放大器的工作原理;2、掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法。

二、实验仪器;3 实验内容及步骤(电路图、设计过程、步骤);四、实验内容和步骤实验中电路部分元器件值,R2=10KΩ, R3=1KΩ, R10=2KΩ, R12=51Ω, R13=10KΩ,R24=2KΩ, R27=5.1KΩ, R28=18KΩ, R30=1.5KΩ, R31=1KΩ, R32=5.1KΩ, R33=18KΩ, R35=1.5KΩ, W3=47KΩ, W4=47KΩ,C20=1nF, C21=10nF, C23=10nF。

(一)、单级单调谐放大器1、计算选频回路的谐振频率范围如图1-8 所示,它是一个单级单调谐放大电路,输入信号由高频信号源或者振荡电路提供。

调节电位器W3 可改变放大电路的静态工作点,调节可调电容CC2 和中周T2 可改变谐振回路的幅频特性。

谐振回路的电感量L=1.8uH~2.4uH,回路总电容C=105 pF~125pF,根据公式图1-8 单级单调谐放大器实验原理图2、检查连线正确无误后,测量电源电压正常,电路中引入电压。

实验板中,注意TP9接地,TP8 接TP10;3、用万用表测三极管Q2 发射极对地的直流电压,调节可变电阻使此电压为5V。

4、用高频信号源产生频率为10.7MHz,峰峰值约400mV 的正弦信号,用示波器观察,调节电感电容的大小,适当调节静态工作点,使输出信号V o 的峰峰值V op-p 最大不失真。

记录各数据,得到谐振时的放大倍数。

5、测量该放大器的通频带、矩形系数对放大器通频带的测量有两种方式:(1) 用扫频仪直接测量;(2) 用点频法来测量,最终在坐标纸上绘出幅频特性曲线。

此处选用以扫频仪测量在放大器的频率特性曲线上读取相对放大倍数下降为0.1 处的带宽BW0.1或0.01处的带宽BW0.01。

高频小信号放大器实验报告

高频小信号放大器实验报告

高频小信号放大器实验报告小组成员:一、实验目的1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。

2、熟悉谐振回路的调谐方法及测试方法。

3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。

4、测量线路的主要数据进行分析。

5、加深对线路的理解。

二、实验器材装有Multisim的计算机一台。

三、实验原理小信号调谐放大器的作用是有选择地对某一频率范围的高频小信号进行放大。

所谓“小信号”,通常指输入信号电压一般在微伏 毫伏数量级附近,由于信号小,从而可以认为放大器工作在晶体管的线性范围内。

所谓“调谐”,主要是指放大器的集电极负载为调谐回路。

这种放大器对谐振频率0f及附近频率的信号具有较强的放大作用,而对其它远离0f的频率信号,放大作用很差。

高频小信号调谐放大器是我主要质量指标:1、中心频率是指放大器的工作频率。

2、增益:放大器输出电压与输入电压之比,用来表示高频小信号调谐放大器放大微弱信号的能力。

3、通频带:通常规定放大器的电压增益下降到最大值的0.707倍时,所对应的频率范围为高频放大器的通频带。

四、实验内容与结果1、连接出高频小信号放大器的电路图。

2、电压增益系数根据示波器的波形得出电压增益Avo=1353、由上图可得出通频带Bo=1.28MHz 4、直流工作点分析由上可得出直流工作点的仿真值。

再通过万用表测出测量值。

5、交流分析图像为:可以看出的是谐振频率在4MHz左右,与计算值相符。

六、实验总结通过本次实验,我们充分掌握了高频小信号谐振电路电压放大器的组成以及特性,对电路实验有了更充分的认识与了解。

特别是对于测量和调节方式方面经过了更加深入的探讨与研究已经有了长足的进展。

我相信在今后的实验中,我们可以更加熟练的运用本软件做更多的研究与发展。

同时这次实验也发现了很多不足的地方,也有很多值得思考的地方,只有经过不断的努力、研究与实践,我们才能够更加完美的使用Multisim。

高频小信号放大器实验报告

高频小信号放大器实验报告

高频小信号放大器实验报告高频小信号放大器实验报告引言:高频小信号放大器是电子工程领域中常用的一种电路,用于放大高频小信号。

本实验旨在通过实际搭建电路并进行测试,探究高频小信号放大器的特性和性能。

一、实验目的本实验的目的是通过搭建高频小信号放大器电路,了解放大器的基本原理和性能,并通过实验数据进行分析和验证。

二、实验原理高频小信号放大器是由放大器和耦合电容组成的,放大器主要由晶体管、电容器和电阻器构成。

晶体管作为放大器的核心部件,通过控制输入信号的电流或电压来实现信号的放大。

而耦合电容则用于将输入信号与输出信号进行耦合,实现信号的传递和放大。

三、实验步骤1. 准备实验所需材料和设备,包括晶体管、电容器、电阻器、示波器等。

2. 按照电路图搭建高频小信号放大器电路。

3. 调整电源电压和工作频率,使电路工作在正常范围内。

4. 连接示波器,观察输入信号和输出信号的波形。

5. 测量输入信号和输出信号的电压幅值,并记录数据。

6. 根据测量数据,计算电压增益和功率增益,并进行分析和比较。

四、实验结果与分析通过实验测量,得到了输入信号和输出信号的波形和电压幅值数据。

根据这些数据,我们可以计算出电压增益和功率增益。

电压增益是指输出信号电压幅值与输入信号电压幅值之比,可以用来衡量放大器对信号的放大程度。

功率增益则是指输出信号功率与输入信号功率之比,也是衡量放大器性能的重要指标。

通过对实验数据进行分析,我们可以得出以下结论:1. 高频小信号放大器的电压增益随着频率的增加而下降,这是由于晶体管的频率响应特性所致。

2. 在一定频率范围内,电压增益基本保持稳定,这是因为放大器在该范围内具有较好的放大性能。

3. 功率增益随着频率的增加而下降,这是由于功率损耗和能量传输的限制所致。

五、实验总结通过本次实验,我们深入了解了高频小信号放大器的原理和性能。

实验结果表明,高频小信号放大器具有一定的频率响应特性,对于不同频率的信号有不同的放大效果。

高频小信号调谐放大器实验报告

高频小信号调谐放大器实验报告

高频小信号调谐放大器实验报告姓名:学号:班级:日期:高频小信号调谐放大器实验一、实验目的1.掌握小信号调谐放大器的基本工作原理;2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算;3.了解高频小信号放大器动态范围的测试方法;二、实验仪器与设备高频电子线路综合实验箱;扫频仪;高频信号发生器;双踪示波器三、实验原理(一)单调谐放大器小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。

其实验单元电路如图1-1所示。

该电路由晶体管Q1、选频回路T1二部分组成。

它不仅对高频小信号放大,而且还有一定的选频作用。

本实验中输入信号的频率f S=12MHz。

基极偏置电阻R A1、R4和射极电阻R5决定晶体管的静态工作点。

可变电阻W3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。

表征高频小信号调谐放大器的主要性能指标有谐振频率f0,谐振电压放大倍数A v0,放大器的通频带BW及选择性(通常用矩形系数Kr0.1来表示)等。

放大器各项性能指标及测量方法如下: 1.谐振频率放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1-1所示电路(也是以下各项指标所对应电路),f 0的表达式为∑=LCf π210式中,L 为调谐回路电感线圈的电感量;∑C为调谐回路的总电容,∑C的表达式为ie oe C P C P C C2221++=∑式中, C oe 为晶体管的输出电容;C ie 为晶体管的输入电容;P 1为初级线圈抽头系数;P 2为次级线圈抽头系数。

谐振频率f 0的测量方法是:用扫频仪作为测量仪器,用扫频仪测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。

2.电压放大倍数放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。

A V0的表达式为Gg p g p y p p g y p p v v A ie oe fe fei V ++-=-=-=∑2221212100 式中,g Σ为谐振回路谐振时的总电导。

高频实验报告高频小信号放大器实验预习报告

高频实验报告高频小信号放大器实验预习报告

高频小信号放大器实验预习报告学号 200805120109 姓名 刘皓 实验台号实验结果及数据(一)静态工作点的测量1、K 1置于1—2,K 3闭合,K 4置于3,用示波器和频率计在A 点监测。

调整L 1,使振荡器振荡;使振荡频率在4MHz 左右。

V BQ(V) V CQ (V) V EQ (V)I CQ (mA) 1.3111.75 2.042.00 (二)观察单调谐回路放大器的输入、输出信号的波形,注意幅度和相位的变化关系。

当输入信号不是标准正弦波的时候,经放大器放大后也显示为正弦波,体现了LC回路的选频滤波功能。

输入信号经放大器改变幅度,可能会减小,经调整后实现正常的放大作用。

(三)用示波器测量单调谐回路放大器的幅频特性曲线与增益,并计算通频带宽度。

记下输入信号幅度Vin (pp 值)(可在输入开关处测量)。

保持输入信号幅度不变,逐点改变信号源频率,记录A 点输出电压幅度V out (pp 值),在3.9—4.1MHz 频率范围内,每隔200KHz 做一次测量。

做V out —f 曲线,并根据曲线计算电压增益VO K 、通频带B 。

输入电压V ipp=0.72 输入信号频率f i (MHz ) 3.90 3.92 3.94 3.96 3.98 4.00o PP V (V) 没有得到数据 没有得到数据 2.62 3.01 3.44 3.60输入信号频率f i (MHz ) 4.02 4.04 4.06 4.08 4.10o PP V (V) 3.40 3.16 2.72 2.56 2.16逐点法画出频谱图横轴fi (MHz ),纵轴V opp (V )高频小信号放大器幅频特性曲线0.511.522.533.543.9 3.9544.05 4.1 4.15(V)思考题1, C9的作用是什么?答:滤除直流信号,只显示交流信号。

2, 示波器显示时,何种特征作为汇率进入谐振状态的标志?答:示波器上显示标准不失真的正弦波的时候。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于Multisim的通信电路仿真实验
实验一高频小信号放大器
1.1 实验目的
1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。

2、熟悉谐振回路的调谐方法及测试方法。

3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。

1.2 实验内容
1.2.1 单调谐高频小信号放大器仿真
图1.1 单调谐高频小信号放大器
1、根据电路中选频网络参数值,计算该电路的谐振频率ωp。

ωp=1/(L1*C3)^2=2936KHz fp=ωp/(2*pi)=467KHz
2、通过仿真,观察示波器中的输入输出波形,计算电压增益Av0。

下图中绿色为输入波形,蓝色为输出波形
Avo=Vo/Vi=1.06/0.252=4.206
3、利用软件中的波特图仪观察通频带,并计算矩形系数。

通频带BW=2Δf0.7=7.121MHz-28.631KHz=7.092MHz
矩形系数Kr0.1=(2Δf0.1)/( 2Δf0.7)=
(14.278GHz-9.359KHz)/7.092MHz=2013.254
4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出
电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av
相应的图,根据图粗略计算出通频带。

Fo(KHz
)
65 75 165 265 365 465 1065 1665 2265 2865 3465 4065
Uo(mV
) 0.66
9
0.76
5
1 1.05 1.06 1.06 0.97
7
0.81
6
0.74
9
0.65
3
0.574 0.511
Av 2.65
5 3.03
6
3.96
8
4.16
7
4.20
6
4.20
6
3.87
7
3.23
8
2.97
2
2.59
1
2.278 2.028
5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。

2次谐波
4次谐波
6次谐波
1.2.2 双调谐高频小信号放大器
图1.2 双调谐高频小信号放大器
1、通过示波器观察输入输出波形,并计算出电压增益Av0。

Avo=Vo/Vi=3.68/0.02=184
2、利用软件中的波特图仪观察通频带,并计算矩形系数。

通频带BW=2Δf0.7=9.385MHz-7.66MHz=1.725MHz
矩形系数Kr0.1=(2Δf0.1)/( 2Δf0.7)=
(19.932MHz-5.385MHz)/1.725MHz=8.433MHz
实验二高频功率放大器
2.1 实验目的
1、掌握高频功率放大器的电路组成与基本工作原理。

2、熟悉谐振回路的调谐方法及测试方法。

3、掌握高频功率放大器各项主要技术指标意义及测试技能。

2.2 实验内容
图2.1 高频功率放大器
一、原理仿真
1、搭建Multisim电路图(Q1选用元件Transistors中的
BJT_NPN_VIRTUAL)
2、设输入信号的振幅为0.7V,利用瞬态分析对高频功率放大器进行分析设置。

要设置起始时间与终止时间,和输出变量。

(提示:单击simulate菜单中中analyses选项下的transient analysis...命令,在弹出的对话框中设置。

在设置起始时间与终止时间不能过大,影响仿真速度。

例如设起始时间为
0.03s,终止时间设置为0.030005s。

在output variables页中设置输出节点变量时选择vv3#branch即可)
3、将输入信号的振幅修改为1V,用同样的设置,观察ic的波形。

4、根据原理图中的元件参数,计算负载中的选频网络的谐振频率ω0,以及该网络的品质因数QL。

根据各个电压值,计算此时的导通角θc。

ω0=6.299MHz QL=R/(ω0*L)=0.0378 导通角θc=
5、要求将输入信号V1的振幅调至1.414V。

注意:此时要改基极的反向偏置电压V2=1V,使功率管工作在临界状态。

同时为了提高选频能力,修改
R1=30KΩ。

6、正确连接示波器后,单击“仿真”按钮,观察输入与输出的波形。

7、读出输出电压的值并根据电路所给参数值,计算输出功率P0,PD,ηC。

二、外部特性
1、调谐特性,将负载选频网络中的电容C1修改为可变电容(400pF),在电路中的输出端加一直流电流表。

当回路谐振时,记下电流表的读数,修改可变电容百分比,使回路处于失谐状态,通过示波器观察输出波形,并记下此时电流表的读数;
2、将电容调为90%时,观察波形。

3、负载特性,将负载R1改为电位器(60k),在输出端并联一万用表。

根据原理中电路图知道,当R1=30k,单击仿真,记下读数U01,修改电位器的百分比为70%,重新仿真,记下电压表的读数U02。

修改电位器的百分比为30%,重新仿真,记下电压表的读数U03。

比较三个数据,说明当前电路各处于什么工作状态?
R1(百分比)50% 70% 30%
4、当电位器的百分比为30%时,通过瞬态分析方法,观察ic的波形。

5、振幅特性,在原理图中的输出端修改R1=30KΩ并连接上一直流电流表。

将原理图中的输入信号振幅分别修改为1.06V, 0.5V,并记下两次的电流表的值,比较数据的变化,说明原因。

6、倍频特性,将原理图中的信号源频率改为500KHz,谐振网络元件参数不变,使电路成为2倍频器,观察并记录输入与输出波形,并与第2个实验结果比较,说明什么问题?通过傅里叶分析,观察结果。

(提示:在单击Simulate 菜单中中Analyses选项下的Fourier Analysis...命令,在弹出的对话框中设置。

在Analysis Parameters标签页中的Fundamental frequency中设置基波频率与信号源频率相同,Number Of Harmonics 中设置包括基波在内的谐波总数,Stop time for sampling 中设置停止取样时间,通常为毫秒级。

在Output variables页中设置输出节点变量)。

相关文档
最新文档