中考数学专题练习--应用题

合集下载

中考数学专题训练(一):列方程解应用题(一元一次方程不等式)

中考数学专题训练(一):列方程解应用题(一元一次方程不等式)

列方程解应用题(一元一次方程不等式)1、(2013•资阳)在芦山地震抢险时,太平镇部分村庄需8组战士步行运送物资,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人11<122、(2013•宜昌)地球正面临第六次生物大灭绝,据科学家预测,到2050年,目前的四分之一到一半的物种将会灭绝或濒临灭绝,2012年底,长江江豚数量仅剩约1000头,其数量年平均下降的百分率在13%﹣15%范围内,由此预测,2013年底剩下江豚的数量可能为()头.3、(2013•呼和浩特)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少道题?4、(2013•黔西南州)义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?,5、(2013•莱芜)某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.(1)两种跳绳的单价各是多少元?(2)若学校准备用不超过2000元的现金购买200条长、短跳绳,且短跳绳的条数不超过长跳绳的6倍,问学校有几种购买方案可供选择?由题意得:.所以长跳绳单价是由题意得:6、(2013年临沂)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A,B 两种型号的学习用品共1000件,已知A 型学习用品的单价为20元,B 型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A,B 两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28000元,则最多购买B 型学习用品多少件?解析:(1)设购买A 型学习用品x 件,则B 型学习用品为(1000)x -. ……(1分)根据题意,得2030(1000)26000x x +-=………………(2分)解方程,得x =400.则10001000400600x -=-=.答:购买A 型学习用品400件,购买B 型学习用品600件. ………………………(4分)(2)设最多购买B 型学习用品x 件,则购买A 型学习用品为(1000)x -件. 根据题意,得20(1000)+3028000x x -≤……………………(6分)解不等式,得800x ≤.答:最多购买B 型学习用品800件. ……………………(7分)7、(2013•绥化)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两(1)求m 的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a (50<a <70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?)依题意得,=,8、(2013•恩施州)某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.(1)求这两种商品的进价.(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?x=,.29329、(2013•黄冈)为支援四川雅安地震灾区,某市民政局组织募捐了240吨救灾物资,现准10、(2013•益阳)“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.,解之得:11、(2013•德州)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)(2)数表A如表2所示,若经过任意一次“操作”以后,便可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的值列a,12、(2013•温州)一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于,问至少取出了多少个黑球?=;由题意,得≥≥.13、(2013•泸州)某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?由题意,得,14、(2013•眉山)2013年4月20日,雅安发生7.0级地震,某地需550顶帐蓬解决受灾群众临时住宿问题,现由甲、乙两个工厂来加工生产.已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的1.5倍,并且加工生产240顶帐蓬甲工厂比乙工厂少用4天.①求甲、乙两个工厂每天分别可加工生产多少顶帐蓬?②若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批救灾帐蓬的加工生产总成本不高于60万元,至少应安排甲工厂加工生产多少天?﹣×15、(2013•攀枝花)某文具店准备购进甲,乙两种铅笔,若购进甲种钢笔100支,乙种铅笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲,乙两种钢笔每支各需多少元?(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案?(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?,16、(2013•自贡)某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.(1)求该校的大小寝室每间各住多少人?(2)预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案?,17、(2013•遵义)2013年4月20日,四川雅安发生7.0级地震,给雅安人民的生命财产带来巨大损失.某市民政部门将租用甲、乙两种货车共16辆,把粮食266吨、副食品169吨全部运到灾区.已知一辆甲种货车同时可装粮食18吨、副食品10吨;一辆乙种货车同时可装粮食16吨、副食11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元;乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的费用最少?最少费用是多少元?,18、(2013•牡丹江)某农场的一个家电商场为了响应国家家电下乡的号召,准备用不超过105700元购进40台电脑,其中A型电脑每台进价2500元,B型电脑每台进价2800元,A 型每台售价3000元,B型每台售价3200元,预计销售额不低于123200元.设A型电脑购进x台、商场的总利润为y(元).(1)请你设计出进货方案;(2)求出总利润y(元)与购进A型电脑x(台)的函数关系式,并利用关系式说明哪种方案的利润最大,最大利润是多少元?(3)商场准备拿出(2)中的最大利润的一部分再次购进A型和B型电脑至少各两台,另一部分为地震灾区购买单价为500元的帐篷若干顶.在钱用尽三样都购买的前提下请直接写出购买A型电脑、B型电脑和帐篷的方案..19、(2013年南京)某商场促销方案规定:商场内所有商品案标价的80%出售,同时,当顾注:300~400表示消费金额大于300元且小于或等于400元,其他类同。

中考数学专题实际应用题(解析版)

中考数学专题实际应用题(解析版)
(2)今年该村村民再投入了10万元,增设了土特产的实体销售和网上销售项目并实现盈利,村民在接受记者采访时说,预计今年餐饮和住宿的收入比去年还会有10%的增长.这两年的总收入除去所有投资外还能获得不少于10万元的纯利润,请问今年土特产销售至少收入多少万元?
【答案】(1)去年餐饮收入11万元,住宿收入5万元;(2)今年土特产销售至少有6.4万元的收入
【解析】
【分析】
(1)设去年餐饮收入为x万元,住宿为收入y万元,根据题意列出方程组,求出方程组的解即可得到结果;
(2)设今年土特产的收入为m万元,根据题意列出不等式,求出不等式的解集即可得到结果.
【详解】解:(1)设去年餐饮收入x万元,住宿收入y万元,
依题意得: ,
解得: ,
答:去年餐饮收入11万元,住宿收入5万元;
【答案】(1) ;(2)①60,②20,1500;(3)当 时,捐赠后 每天的剩余利润不低于1025元
【解析】
【分析】
(1)从表格中取点代入一次函数解析式即可求解;(2)①由表格信息规律直接填写答案,或利用(1)中的函数解析式,求当 时的函数值.②建立W与 的函数关系式,利用二次函数性质求最大值即可.(3)先求捐赠后的利润为1025元时的销售单价,再利用二次函数的性质直接下结论即可;
2.(2019年重庆市中考数学模拟试卷5月份试题)今年五一期间,重庆洪崖洞民俗风情街景区受热棒,在全国最热门景点中排名第二.许多游客慕名来渝到网红景点打卡,用手机拍摄夜景,记录现实中的“千与千寻”,手机充电宝因此热销.某手机配件店有A型(5000毫安)和B型(10000毫安)两种品牌的充电宝出售
(1)已知A型充电宝进价40元,售价60元,B型充电宝进价60元,要使B型充电宝的利润率不低于A型充电宝的利润率,则B型充电宝的售价至少是多少元(利润率= ×100%)

宜昌中考应用题练习题

宜昌中考应用题练习题

宜昌中考应用题练习一、代数应用题1. 某商店举行促销活动,所有商品均按原价的8折销售。

小明购买了一件原价为200元的商品,实际支付了多少元?2. 一辆汽车从A地出发,以60km/h的速度行驶,另一辆汽车从B 地出发,以80km/h的速度行驶。

两车相向而行,3小时后相遇。

求A、B两地之间的距离。

3. 甲、乙两人共同完成一项工作,甲单独完成需要10天,乙单独完成需要15天。

两人合作完成这项工作需要多少天?二、几何应用题1. 在直角坐标系中,点A(2,3)到原点的距离是多少?2. 一个等腰三角形的底边长为10cm,腰长为13cm,求该三角形的面积。

3. 某正方形的对角线长为10cm,求正方形的面积。

三、概率统计应用题1. 从一副去掉大小王的52张扑克牌中随机抽取一张,求抽到红桃的概率。

2. 某班级有50名学生,其中男生30名,女生20名。

随机抽取一名学生,求抽到女生的概率。

3. 一名学生参加数学、语文、英语三科考试,已知他数学及格的概率为0.9,语文及格的概率为0.8,英语及格的概率为0.7。

求该学生至少有一科不及格的概率。

四、实际应用题1. 一辆公交车每站平均上下车人数为20人,若公交车共经过10个站点,求这辆公交车在整个行程中共上下车的人数。

2. 某品牌手机原价为3000元,现在降价20%销售,求手机的现价。

3. 某工厂生产一批产品,合格率为90%,若这批产品共有1000个,求不合格产品的数量。

五、综合应用题1. 甲、乙两人分别从A、B两地同时出发,相向而行。

甲的速度为4km/h,乙的速度为6km/h。

经过2小时后,两人相距10km。

求A、B两地之间的距离。

2. 某商品的原价为x元,现打8折销售,实际售价为y元。

求x与y之间的关系式。

3. 在一个长方形花园中,长是宽的2倍,若宽为10米,求花园的面积。

六、物理应用题1. 一辆小车以20m/s的速度行驶,突然刹车,加速度为5m/s²,求小车停止前行驶的距离。

九年级中考数学应用题专题练习

九年级中考数学应用题专题练习

九年级中考数学应用题专题练习1、某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.2、为落实绿水青山,就是金山银山的发展理念。

某市政府招标一工程队负责在山下修建一个水库。

该工程队有AB两种型号的挖掘机。

已知三台A型和5台B型挖掘机同时施工一小时挖土165立方米。

4台A型和7台B型挖掘机同时施工一小时挖土225立方米。

每台A 型挖掘机一小时的施工费用为300元。

每台B型挖掘机一小时的施工费用为180元。

(1)分别求每台A型B型挖掘机一小时挖土多少立方米?(2)有不同数量的A型和B型挖掘机共12台,同时施工4小时。

至少完成1080立方米的挖土量。

且总费用不超过12960元,问施工最低费时有哪几种调配方案,并指出哪种调配方案的施工费用最低,并指出哪种调配方案的施工费用最低,最低费用是多少元?3、快递公司为提高快递分拣的速度,决定购买机器人代替工人工分拣。

已知购买甲型机器人1台,乙型机器人2台,共需14万元。

购买甲型机器人2台,乙型机器人3台,共需24万元。

(1)求甲乙两种型号的机器人每台的价格是多少万元?(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件。

该公司计划购买这两种机器人共8台,总费用不超过41万元。

并且使这8台机器人每小时分拣快递总和不少于8300件,则该公司有哪几种购买方案,哪种方案费用最低,最低费用为多少万元?4、书店决定用不多于20000元购进甲,乙两种图书共1200本儿进行销售。

初三年级数学应用题

初三年级数学应用题

初三年级数学应用题题目一:速度与时间问题小华骑自行车从家到学校,如果以每小时15公里的速度行驶,他需要40分钟。

现在小华决定加快速度,以每小时20公里的速度行驶,求他需要多少时间才能到达学校。

解答:首先,我们需要将40分钟转换为小时,即40分钟 = 40/60 = 2/3小时。

已知速度v1 = 15公里/小时,时间t1 = 2/3小时。

根据速度、时间和距离的关系:距离 = 速度× 时间,我们可以求出小华家到学校的距离:距离= v1 × t1 = 15 × (2/3) = 10公里。

现在,小华以v2 = 20公里/小时的速度行驶,我们可以求出他需要的时间t2:t2 = 距离 / v2 = 10 / 20 = 1/2小时。

将1/2小时转换为分钟,即1/2 × 60 = 30分钟。

所以,小华以20公里/小时的速度行驶,需要30分钟到达学校。

题目二:成本与利润问题一家工厂生产一种商品,每件商品的成本是50元,如果以每件100元的价格出售,工厂每天可以卖出200件。

现在工厂决定降价销售,每件商品降价10元,求降价后每天的利润和销量。

解答:首先,我们计算原来的利润和销量:每件商品的利润 = 售价 - 成本 = 100 - 50 = 50元。

每天的总利润 = 每件商品的利润× 销量= 50 × 200 = 10000元。

现在,每件商品降价10元,新的售价为90元。

每件商品的新利润 = 新售价 - 成本 = 90 - 50 = 40元。

假设降价后销量增加到x件,我们可以根据利润不变的原则建立方程:原来的总利润 = 新的总利润10000 = 40 × x解得 x = 10000 / 40 = 250件。

所以,降价后每天的利润仍然是10000元,但是销量增加到了250件。

题目三:浓度问题一个容器内装有100升的盐水,其中盐的浓度为5%。

现在向容器中加入50升的纯水,求混合后的盐水浓度。

中考应用题精选(含答案)

中考应用题精选(含答案)

中考应用题精选(含答案)中考应用题精选(含答案)一、小明购买水果小明去水果店购买了一些苹果和橙子,苹果的单价为5元/斤,橙子的单价为4元/斤。

小明共购买了9斤水果,支付了43元。

1. 请问小明购买了多少斤苹果,多少斤橙子?解答:设小明购买的苹果为x斤,橙子为y斤,则由题意可得以下方程组:x + y = 9 (1)5x + 4y = 43 (2)(1)式乘以4,再与(2)式相减可得:4x + 4y - 5x - 4y = 36 - 43 => -x = -7 => x = 7所以小明购买了7斤苹果,9 - 7 = 2斤橙子。

2. 小明购买水果总共需要支付多少金额?解答:设小明购买的苹果总价为a元,橙子总价为b元,由题意可得以下方程组:a +b = 43 (3)5a + 4b = 9 * 5 (4)将(3)式乘以4,再与(4)式相减可得:4a + 4b - 5a - 4b = 172 - 45 => -a = 127 => a = -127(舍去)所以小明购买水果总共需要支付43元。

二、小明的年龄问题小明的爷爷今年87岁,小明今年10岁。

已知小明的爸爸在小明出生时是小明年龄的2倍,现在的爸爸年龄是小明年龄的3倍。

1. 请问小明的爸爸今年多少岁?解答:设小明的爸爸今年为x岁,则可得以下方程:10 - x = 2(x - 10) (5)将(5)式化简,得:10 - x = 2x - 203x = 30x = 10所以小明的爸爸今年10岁。

2. 请问小明的爷爷今年多少岁?解答:根据题意,小明的爷爷今年是小明爸爸的3倍,而小明爸爸今年是10岁,所以小明的爷爷今年87岁。

三、小明和小红的比例题小明和小红一起种植蔬菜,小明每天需要花费2小时来照料蔬菜园,小红每天需要花费3小时来照料蔬菜园。

已知小明比小红每天多照料蔬菜园1小时,两人一共照料蔬菜园13天。

1. 请问小明独自照料蔬菜园需要多少天才能完成任务?解答:设小明独自照料蔬菜园需要x天才能完成任务。

中考数学专题练习应用题

中考数学专题练习应用题

A M 4530B 北第4题 中考应用题附参考答案1。

(2010年广西桂林适应训练)某同学在A 、B 两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A 所有商品打八折销售,超市B 全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),该同学只带了400元钱,他能否在这两家超市都可以买下看中的这两样商品?若两家都可以选择,在哪一家购买更省钱?2。

(2010年黑龙江一模)某车间要生产220件产品,做完100件后改进了操作方法,每天多加工10件,最后总共用4天完成了任务.求改进操作方法后,每天生产多少件产品?设改进操作方法后每天生产x 件产品,则改进前每天生产(10)x -件产品.3。

(2010广东省中考拟)A,B 两地相距18km ,甲工程队要在A ,B 两地间铺设一条输送天然气管道,乙工程队要在A,B 两地间铺设一条输油管道,已知甲工程队每周比乙工程队少铺设1km ,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙工程队每周各铺设多少管道?4.(2010年广东省中考拟)如图,是一个实际问题抽象的几何模型,已知A 、B 之间的距离为300m ,求点M 到直线AB 的距离(精确到整数).并能设计一种测量方案?(参考数据:7.13≈,4.12≈)5。

(2010年湖南模拟)某花木园,计划在园中栽96棵桂花树,开工后每天比原计划多栽2棵,•结果提前4天完成任务,问原计划每天栽多少棵桂花树。

6。

(2010年厦门湖里模拟)某果品基地用汽车装运A 、B 、C三种不同品牌的水果到外地销售,按规定每辆汽车只能装同种水果,且必须装满,其中A 、B 、C 三种水果的重量及利润按下表提供信息: 水果品牌 A B C每辆汽车载重量(吨) 2.2 2.1 2每吨水果可获利润(百元) 6 8 5(1)若用7辆汽车装运A 、C 两种水果共15吨到甲地销售,如何安排汽车装运A 、C 两种水果?(2)计划用20辆汽车装运A 、B 、C 三种不同水果共42吨到乙地销售(每种水果不少于2车),请你设计一种装运方案,可使果品基地获得最大利润,并求出最大利润.7.(2010年杭州月考)某公司有A 型产品40件,B 型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A 型利润B 型利润 甲店 200 170乙店 160 150(1)设分配给甲店A 型产品x 件,这家公司卖出这100件产品的总利润为W (元),求W 关于x 的函数关系式,并求出x 的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A 型产品让利销售,每件让利a 元,但让利后A 型产品的每件利润仍高于甲店B 型产品的每件利润.甲店的B 型产品以及乙店的A B ,型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?8.(2010年河南中考模拟题1)某市一些村庄发生旱灾,市政府决定从甲、乙两水库向A 、B 两村调水,其中A 村需水15万吨,B 村需水13万吨,甲、乙两水库各可调出水14万吨。

初三数学应用题大全及答案

初三数学应用题大全及答案

初三数学应用题大全及答案例1、今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元。

假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3500(B.2500(1+x)2=3500C.2500(1+x%)2=3500D.2500(1+x)+2500(1+x)2=3500【解答】解:设增长率为x,根据题意得2500×(1+x)2=3500,故选B.例2、为落实素质教育要求,促进学生全面发展,某市某中学2009年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2011年投资18.59万元。

则该学校为新增电脑投资的年平均增长率是,从2009年到2011年,该中学三年为新增电脑共投资万元。

【解答】解:设该学校为新增电脑投资的年平均增长率是x11(1+x)2=18.59x=30%(则该学校为新增电脑投资的年平均增长率是30%11×(1+30%)=14.3万元11+14.3+18.59=43.89万元故答案为:30%;43.89练习1、股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停。

已知一只股票某天跌停,之后两天时间又涨回到原价。

若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2=B.(1+x)2=C.1+2x=D.1+2x=【解答】解:设平均每天涨x,则90%(1+x)2=1,即(1+x)2=,故选B。

(2、某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为()A.20%B.40%C.﹣220%D.30%【解答】解:设每年投资的增长率为x,根据题意,得:5(1+x)2=7.2解得:x1=0.2=20%,x2=﹣2.2(舍去),故每年投资的增长率为为20%,故选:A3、随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆。

九年级中考数学应用题专练

九年级中考数学应用题专练

中考冲刺应用专题1.六•一前夕,某幼儿园园长到厂家选购A、B两种品牌的儿童服装,每套A品牌服装进价比B品牌服装每套进价多25元,用2000元购进A种服装数量是用750元购进B种服装数量的2倍.(1)求A、B两种品牌服装每套进价分别为多少元?(2)该服装A品牌每套售价为130元,B品牌每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元,则最少购进A品牌的服装多少套?2.某公司用6000元购进A,B两种电话机25台,购买A种电话机与购买B种电话机的费用相等.已知A种电话机的单价是B种电话机单价的1.5倍.(1)求A,B两种电话机的单价各是多少?(2)若计划用不超过8000元的资金再次购进A,B两种话机共30台,已知A,B两种电话机的进价不变,求最多能购进多少台A种电话机?3.2020年2月22日深圳地铁10号线华南城站试运行,预计今年6月正式开通。

在地铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元;已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元。

(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由。

4.某县积极响应国家优先发展教育事业的重大部署,对通往某偏远学校的一段全长为1200米的道路进行了改造,铺设柏油路面,铺设400米后,为了尽快完成道路改造,后来每天的工作效率比原计划提高25%,结果共用13天完成道路改造任务.(1)求原计划每天铺设路面多少米?(2)若承包商原来每天支付工人工资为1500元,提高工作效率后每天支付给工人的工资为2000元,完成整个工程后承包商共支付工人工资多少元?5. 某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?6. 某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?7.某单位计划购买甲、乙两种品牌的消毒剂,乙种品牌消毒剂每瓶的价格比甲种品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲种品牌消毒剂的数量与用400元购买乙种品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该单位从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙种品牌消毒剂?8.某中学为了创设“书香校园”,准备购买A,B两种书架,用于放置图书.在购买时发现,A种书架的单价比B种书架的单价多20元,用600元购买A种书架的个数与用480元购买B种书架的个数相同.(1)求A,B两种书架的单价各是多少元?(2)学校准备购买A,B两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个A种书架?9.甲、乙两支工程队修建二级公路,已知甲队每天修路的长度是乙队的2倍,如果两队各自修建公路500m,甲队比乙队少用5天.(1)求甲,乙两支工程队每天各修路多少米?(2)我市计划修建长度为3600m的二级公路,因工程需要,须由甲、乙两支工程队来完成.若甲队每天所需费用为1.2万元,乙队每天所需费用为0.5万元,求在总费用不超过40万元的情况下,至少安排乙队施工多少天?10.某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?11.资中某学校为了改善办学条件,计划购置一批电子白板和台式电脑.经招投标,购买一台电子白板比购买2台台式电脑多3000元,购买2台电子白板和3台台式电脑共需2.7万元.(1)求购买一台电子白板和一台台式电脑各需多少元?(2)根据该校实际情况,购买电子白板和台式电脑的总台数为24,并且台式电脑的台数不超过电子白板台数的3倍.问怎样购买最省钱?12.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?13.某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A 种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司5月份运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B 货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?14.某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)购买一个足球、一个篮球各需多少元?(2)根据中学的实际情况,需从体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?15.为建设“生态园林城市”吉安市绿化提质改造工程正如火如荼地进行,某施工队计划购买甲、乙两种树苗共400棵对某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?参考答案1、解:(1)设A 品牌服装每套进价为x 元,则B 品牌服装每套进价为(x ﹣25)元,由题意得:=×2,解得:x =100,经检验:x =100是原分式方程的解,x ﹣25=100﹣25=75,答:A 、B 两种品牌服装每套进价分别为100元、75元;(2)设购进A 品牌的服装a 套,则购进B 品牌服装(2a+4)套,由题意得:(130﹣100)a+(95﹣75)(2a+4)>1200,解得:a >16,答:至少购进A 品牌服装的数量是17套.2、解:(1)设B 种电话机的单价是x 元,则A 种电话机的单价是1.5x 元,依题意,得:+=25, 解得:x =200,经检验,x =200是原方程的解,且符合题意,∴1.5x =300.答:A 种电话机的单价是300元,B 种电话机的单价是200元.(2)设购进m 台A 种电话机,则购进(30﹣m )台B 种电话机,依题意,得:300m+200(30﹣m )≤8000,解得:m ≤20.答:最多能购进20台A 种电话机.3、解:(1)设甲工程队单独完成这项工程需要x 天,则乙工程队单独完成这项工程需要1.5x 天,依题意,得:12x +121.5x=1, 解得:x =20,经检验,x =20是原分式方程的解,且符合题意,∴1.5x =30.答:甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,依题意,得:12y+12(y﹣250)=27720,解得:y=1280,∴y﹣250=1030.甲工程队单独完成共需要费用:1280×20=25600(元),乙工程队单独完成共需要费用:1030×30=30900(元).∵25600<30900,∴甲工程队单独完成需要的费用低,应选甲工程队单独完成.4、解:(1)设原计划每天铺设路面x米,则提高工作效率后每天铺设路面(1+25%)x米,依题意,得:+=13,解得:x=80,经检验,x=80是原方程的解,且符合题意.答:原计划每天铺设路面80米.(2)1500×+2000×(13﹣)=23500(元).答:完成整个工程后承包商共支付工人工资23500元.5、解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.6、解:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,=x=15,。

中考数学复习专题分类练习

中考数学复习专题分类练习

2019年中考数学复习专题分类练习---应用题1.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施.假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件.如果降价后商场销售这批衬衫每天盈利1250元,那么衬衫的单价降了多少元?2.学校准备购进一批篮球和足球,买1个篮球和2个足球共需170元,买2个篮球和1个足球共需190元.(1)求一个篮球和一个足球的售价各是多少元?(2)学校欲购进篮球和足球共100个,且足球数量不多于篮球数量的2倍,求出最多购买足球多少个?3.某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出.(1)用含x的代数式表示第二周旅游纪念品销售数量为个;(2)如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?4.某工程指挥部要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的2;若由甲队先3做10天,剩下的工程再由甲、乙两队合作30天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.84万元,乙队每天的施工费用为0.56万元,工程预算的施工费用为50万元.为缩短工期以减少对住户的影响,拟安排甲、乙两队合作完成这项工程,则工程预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断,并说明理由.5.某经销商销售台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:设当单价从38元/kg下调了x元时,销售量为y kg.(1)写出y与x间的函数关系式.(2)如果凤梨的进价是20元/kg,某天的销售价定为30元/kg,问这天的销售利润是多少?(3)目前两岸还未直接通航,运输要绕行,需耗时一周(7天),凤梨最长的保存期为一个月(30天),若每天售价不低于30元/kg,问一次进货最多只能是多少千克?6.有大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨,求每辆大车和每辆小车一次分别可以运货多少吨?7.为了提高天然气使用效率,保障居民的本机用气需求,某地积极推进阶梯式气价改革,若一户居民的年用气量不超过300m3,价格为2.5元/m3,若年用气量超过300m3,超出部分的价格为3元/m3,(1)根据题意,填写下表:(2)设一户居民的年用气量为xm3,付款金额为y元,求y关于x的解析式;(3)若某户居民一年使用天然气所付的金额为870元,求该户居民的年用气量.8.政府为了美化人民公园,计划对公园某区域进行改造,这项工程先由甲工程队施工10天完成了工程的,为了加快工程进度,乙工程队也加入施工,甲、乙两个工程队合作10天完成了剩余的工程,求乙工程队单独完成这项工程需要几天.9.某市从3月起,居民生活用水按阶梯式计算水价,水价计算方式如图所示,每吨水需另加污水处理费0. 80元.已知小张家3月份用水20吨,交水费52元;4月份用水25吨,交水费69元.(温馨提示:水费=水价+污水处理费)(1)求m、n的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小张计划把5月份的水费控制在不超过月收入的2%.若小张的月收入为6 500元,则小张家5月份最多能用水多少吨?.10.某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月获得的利润为440万元?(3)根据相关部门规定,这种电子产品的销售单价不能高于40元,如果厂商每月的制造成本不超过540万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?11.某个体户购进一批时令水果,20天销售完毕,他将本次销售情况进行了跟踪记录,根据所记录的数据绘制如下的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图(1)所示,销售单价p(元/千克)与销售时间x(天)之间的函数关系如图(2)所示.(销售额=销售单价×销售量).(1)从图(1)可知.第6天日销售量为千克,第18天日销售为千克.(2)求第6天和第18天的销售额;(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中,“最佳销售期”共有多少天?在此期间销售单价最高为多少元?12.某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润y甲(万元)与进货量x(t)近似满足函数关系0.3y x=甲;乙种水果的销售利润y乙(万元)与进货量x(t)近似满足函数关系2y ax bx =+乙(其中0a≠,a、b为常数),且进货量x为1t时,销售利润y乙为1. 4万元;进货量x为2t时,销售利润y乙为2. 6万元.(1)求y乙(万元)与x(t)之间的函数关系式;(2)如果市场准备进甲、乙两种水果共10t,设乙种水果的进货量为t(t),请你写出这两种水果所获得的销售利润之和W(万元)与t(t)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少.感谢您的支持祝您生活愉快。

人教版九年级数学中考应用题专项练习及参考答案

人教版九年级数学中考应用题专项练习及参考答案

人教版九年级数学中考应用题专项练习例1. 某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率)-==利润售价进价进价进价. (2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?【解答】解:(1)设这款空调每台的进价为x 元,根据题意得:16350.89%x x⨯-=, 解得:1200x =,经检验:1200x =是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:10012009%10800⨯⨯=元.例2. 某电器商场销售A 、B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A 、B 两种型号计算器的销售价格分别是多少元?(利润=销售价格-进货价格)(2)商场准备用不多于2500元的资金购进A 、B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?【解答】解:(1)设A 种型号计算器的销售价格是x 元,B 种型号计算器的销售价格是y 元,由题意得:5(30)(40)766(30)3(40)120x y x y -+-=⎧⎨-+-=⎩, 解得:4256x y =⎧⎨=⎩; 答:A 种型号计算器的销售价格是42元,B 种型号计算器的销售价格是56元;(2)设购进A 型计算器a 台,则购进B 型计算器:(70)a -台,则3040(70)2500a a +-,解得:30a ,答:最少需要购进A 型号的计算器30台.例3.某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?【解答】解:(1)设原计划每天修建道路x米,可得:1200120041.5x x=+,解得:100x=,经检验100x=是原方程的解,答:原计划每天修建道路100米;(2)设实际平均每天修建道路的工效比原计划增加%y,可得:120012002 100100100%y=++,解得:20y=,经检验20y=是原方程的解,答:实际平均每天修建道路的工效比原计划增加百分之二十.例4.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?【解答】解:设男生志愿者有x人,女生志愿者有y人,根据题意得:3020680 50401240x yx y+=⎧⎨+=⎩,解得:1216xy=⎧⎨=⎩.答:男生志愿者有12人,女生志愿者有16人.20.(7分)某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?【解答】解:(1)设原计划每天修建道路x米,可得:1200120041.5x x=+,解得:100x=,经检验100x=是原方程的解,答:原计划每天修建道路100米;(2)设实际平均每天修建道路的工效比原计划增加%y,可得:120012002 100100100%y=++,解得:20y=,经检验20y=是原方程的解,答:实际平均每天修建道路的工效比原计划增加百分之二十.例5. 某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等.(1)求该公司购买的A 、B 型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A 型芯片?【解答】解:(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(9)x -元/条, 根据题意得:312042009x x=-, 解得:35x =,经检验,35x =是原方程的解,926x ∴-=.答:A 型芯片的单价为26元/条,B 型芯片的单价为35元/条.(2)设购买a 条A 型芯片,则购买(200)a -条B 型芯片,根据题意得:2635(200)6280a a +-=,解得:80a =.答:购买了80条A 型芯片.例6. 某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?【解答】解:设每轮感染中平均每一台电脑会感染x 台电脑,依题意得:1(1)81x x x +++=, 整理得2(1)81x +=,则19x +=或19x +=-,解得18x =,210x =-(舍去), 2233(1)(1)(1)(18)729700x x x x ∴+++=+=+=>.答:每轮感染中平均每一台电脑会感染8台电脑,3轮感染后,被感染的电脑会超过700台.例7. 某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?【解答】解:(1)设租用甲车x 辆,则乙车(10)x -辆.根据题意,得4030(10)3401620(10)170x x x x +-⎧⎨+-⎩, 解,得47.5x .又x 是整数,4x ∴=或5或6或7.共有四种方案:①甲4辆,乙6辆;②甲5辆,乙5辆;③甲6辆,乙4辆;④甲7辆,乙3辆.(2)①甲4辆,乙6辆;总费用为420006180018800⨯+⨯=元;②甲5辆,乙5辆;总费用520005180019000⨯+⨯=元;③甲6辆,乙4辆;总费用为620004180019200⨯+⨯=元;④甲7辆,乙3辆.总费用为720003180019400⨯+⨯=元;因为乙车的租金少,所以乙车越多,总费用越少.故选方案①.例8. 某品牌瓶装饮料每箱价格26元,某商店对该瓶装饮料进行“买一送三”促销活动,即整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元,问该品牌饮料一箱有多少瓶?【解答】解:设该品牌饮料一箱有x 瓶,依题意,得26260.63x x -=+,化简,得231300x x +-=,解得113x =-(不合题意,舍去),210x =,经检验:10x =符合题意,答:该品牌饮料一箱有10瓶.例9. 据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?【解答】解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x .根据题意得:25000(1)7200x +=,解得10.220%x ==,2 2.2x =-(不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果2012年仍保持相同的年平均增长率,则2012年我国公民出境旅游总人数为7200(1)7200(120%)8640x +=⨯+=(万人次). 答:预测2012年我国公民出境旅游总人数约8640万人次.例10.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10000元,第三天收到捐款12100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?【解答】解:(1)设捐款增长率为x,根据题意列方程得,210000(1)12100x⨯+=,解得10.1x=,22.1x=-(不合题意,舍去);答:捐款增长率为10%.(2)12100(110%)13310⨯+=元.答:第四天该单位能收到13310元捐款.。

数学中考应用题及答案

数学中考应用题及答案

数学中考应用题及答案1. 某工厂生产一种产品,原计划每天生产100件,实际每天生产120件。

若原计划生产时间为30天,实际生产时间为25天,求实际生产效率比原计划提高了百分之几?答案:解:首先计算原计划和实际的生产总量。

原计划生产总量 = 100件/天× 30天 = 3000件实际生产总量 = 120件/天× 25天 = 3000件接下来计算提高的百分比。

提高的百分比 = [(实际生产量 - 原计划生产量) / 原计划生产量] × 100%提高的百分比 = [(3000 - 3000) / 3000] × 100% = 0%答:实际生产效率与原计划相比没有提高。

2. 某商店购进一批商品,进价为每件20元,若按每件30元出售,可售出500件。

若每件商品提价1元,销售量将减少20件。

求该商店为获得最大利润,每件商品应定价多少元?答案:解:设每件商品提价x元,则每件商品的售价为(30+x)元,销售量为(500-20x)件。

利润函数为:y = (30+x-20)(500-20x) = -20x^2 + 300x + 5000这是一个开口向下的二次函数,对称轴为x = 7.5。

当x = 7.5时,y取得最大值,此时售价为30 + 7.5 = 37.5元。

答:每件商品应定价为37.5元,此时利润最大。

3. 某校组织学生去春游,若租用45座客车,则有15人没有座位;若租用同样数量的60座客车,则多出一辆,其余车刚好坐满。

求该校共有多少名学生?答案:解:设租用45座客车x辆,则学生总数为45x + 15。

根据题意,租用60座客车时,有(x-1)辆坐满,一辆空着,所以学生总数为60(x-1)。

将两个表达式相等,得到方程:45x + 15 = 60(x-1)解方程得:45x + 15 = 60x - 6015 + 60 = 60x - 45x75 = 15xx = 5所以,学生总数为:45 × 5 + 15 = 240人。

中考数学专题:实际应用题带答案

中考数学专题:实际应用题带答案

1.2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.2.为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?3.为顺利通过“国家文明城市”验收,东营市政府拟对城区部分路段的人行道地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.4.小刚去超市购买画笔,第一次花60元买了若干支A型画笔,第二次超市推荐了B型画笔,但B型画笔比A型画笔的单价贵2元,他又花100元买了相同支数的B型画笔.(1)超市B型画笔单价多少元?(2)小刚使用两种画笔后,决定以后使用B型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次购买不超过20支,则每支B型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折.设小刚购买的B型画笔x 支,购买费用为y元,请写出y关于x的函数关系式.(3)在(2)的优惠方案下,若小刚计划用270元购买B型画笔,则能购买多少支B 型画笔?5.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.甲、乙两种书柜每个的价格分别是多少元?若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.6.受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2016年利润为2亿元,2018年利润为2.88亿元.(1)求该企业从2016年到2018年利润的年平均增长率;(2)若2019年保持前两年利润的年平均增长率不变,该企业2019年的利润能否超过3.4亿元?7.为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?8.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?9.今年植树节期间,某景观园林公司购进一批成捆的A,B两种树苗,每捆A种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.10.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2) 当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3) 将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元.答案和解析1.【答案】解:(1)设生产甲、乙两种型号的防疫口罩分别是x万只和y万只,由题意可得:,解得:,答:生产甲、乙两种型号的防疫口罩分别是15万只和5万只;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a万只和(20-a)万只,利润为w万元,由题意可得:12a+4(20-a)≤216,∴a≤17,∵w=(18-12)a+(6-4)(20-a)=4a+40是一次函数,w随a的增大而增大,∴a=17时,w有最大利润=108(万元),答:安排生产甲种型号的防疫口罩17万只,乙种型号的防疫口罩3万只,最大利润为108万元.【解析】(1)设生产甲、乙两种型号的防疫口罩分别是x万只和y万只,由“某医药公司每月生产甲、乙两种型号的防疫口罩共20万只和该公司三月份的销售收入为300万元”列出方程组,可求解;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a万只和(20-a)万只,利润为w万元,由“四月份投入成本不超过216万元”列出不等式,可求a的取值范围,找出w与a的函数关系式,由一次函数的性质可求解.本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,弄清题中的等量关系是解本题的关键.2.【答案】解:设降价后的销售单价为x元,则降价后每天可售出[300+5(200-x)]个,依题意,得:(x-100)[300+5(200-x)]=32000,整理,得:x2-360x+32400=0,解得:x1=x2=180.180<200,符合题意.答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元.【解析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.设降价后的销售单价为x元,则降价后每天可售出[300+5(200-x)]个,根据总利润=每个产品的利润×销售数量,即可得出关于x的一元二次方程,解之即可得出结论.3.【答案】解:(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x 天,由题意得=解得:x=15,经检验,x=15是原分式方程的解,2x=30.答:甲工程队单独完成此项工程需15天,乙工程队单独完成此项工程需30天.(2)设甲工程队做a天,乙工程队做b天根据题意得a/15+b/30=1整理得b+2a=30,即b=30-2a所需费用w=4.5a+2.5b=4.5a+2.5(30-2a)=75-0.5a根据一次函数的性质可得,a 越大,所需费用越小,即a=15时,费用最小,最小费用为75-0.5×15=67.5(万元)所以选择甲工程队,既能按时完工,又能使工程费用最少.答:选择甲工程队,既能按时完工,又能使工程费用最少.【解析】(1)如果设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.4.【答案】解:(1)设超市B型画笔单价为a元,则A型画笔单价为(a-2)元.根据题意得,=,解得a=5.经检验,a=5是原方程的解.答:超市B型画笔单价为5元;(2)由题意知,当小刚购买的B型画笔支数x≤20时,费用为y=0.9×5x=4.5x,当小刚购买的B型画笔支数x>20时,费用为y=0.9×5×20+0.8×5(x-20)=4x+10.所以,y关于x的函数关系式为y=(其中x是正整数);(3)当4.5x=270时,解得x=60,∵60>20,∴x=60不合题意,舍去;当4x+10=270时,解得x=65,符合题意.答:若小刚计划用270元购买B型画笔,则能购买65支B型画笔.【解析】(1)设超市B型画笔单价为a元,则A型画笔单价为(a-2)元.根据等量关系:第一次花60元买A型画笔的支数=第二次花100元买B型画笔的支数列出方程,求解即可;(2)根据超市给出的优惠方案,分x≤20与x>20两种情况进行讨论,利用售价=单价×数量分别列出y关于x的函数关系式;(3)将y=270分别代入(2)中所求的函数解析式,根据x的范围确定答案.本题考查了一次函数的应用,分式方程的应用等知识,解题的关键是:(1)理解题意找到等量关系列出方程;(2)理解超市给出的优惠方案,进行分类讨论,得出函数关系式;(3)根据函数关系式中自变量的取值范围对答案进行取舍.5.【答案】(1)解:设甲种书柜单价为x元,乙种书柜的单价为y元,由题意得:,解之得:,答:甲种书柜单价为180元,乙种书柜的单价为240元.(2)解:设甲种书柜购买m个,则乙种书柜购买(20-m)个;由题意得:,解之得:8≤m≤10,因为m取整数,所以m可以取的值为:8,9,10,即:学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个,方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.【解析】本题主要考查二元一次方程组、一元一次不等式组的综合应用能力,根据题意准确抓住相等关系或不等关系是解题的根本和关键.(1)设甲种书柜单价为x元,乙种书柜的单价为y元,根据:若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元列出方程组求解即可;(2)设甲种书柜购买m个,则乙种书柜购买(20-m)个.根据:购买的乙种书柜的数量≥甲种书柜数量且所需资金≤4320列出不等式组,解不等式组即可得不等式组的解集,从而确定方案.6.【答案】解:(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解得x1 =0.2=20%,x2 =-2.2 (不合题意,舍去).答:这两年该企业年利润平均增长率为20%.(2)如果2019年仍保持相同的年平均增长率,那么2019年该企业年利润为:2.88(1+20%)=3.456,3.456>3.4答:该企业2019年的利润能超过3.4亿元.【解析】此题考查一元二次方程的应用,根据题意寻找相等关系列方程是关键,难度不大.(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解方程即可;(2)根据该企业从2016年到2018年利润的年平均增长率来解答.7.【答案】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10-a)所,由题意得:,解得,∴3≤a≤5,∵a取整数,∴a=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.【解析】(1)可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的改造方案.本题考查了一元一次不等式组的应用,二元一次方程组的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.8.【答案】解:(1)当售价为55元/千克时,每月销售水果=500-10×(55-50)=450千克;(2)设每千克水果售价为x元,由题意可得:8750=(x-40)[500-10(x-50)],解得:x1=65,x2=75,答:每千克水果售价为65元或75元;(3)设每千克水果售价为m元,获得的月利润为y元,由题意可得:y=(m-40)[500-10(m-50)]=-10(m-70)2+9000,∴当m=70时,y有最大值为9000元,答:当每千克水果售价为70元时,获得的月利润最大值为9000元.【解析】本题主要考查二次函数的应用,一元二次方程的应用,解题的关键是熟练掌握销售问题中关于销售总利润的相等关系,并据此列出函数解析式及熟练掌握二次函数的性质.(1)由月销售量=500-(销售单价-50)×10,可求解;(2)设每千克水果售价为x元,由利润=每千克的利润×销售的数量,可列方程,即可求解;(3)设每千克水果售价为m元,获得的月利润为y元,由利润=每千克的利润×销售的数量,可得y与x的关系式,由二次函数的性质可求解.9.【答案】解:(1)设这一批树苗平均每棵的价格是x元,根据题意列,得:,解这个方程,得x=20,经检验,x=20是原分式方程的解,并符合题意,答:这一批树苗平均每棵的价格是20元;(2)由(1)可知A种树苗每棵的价格为:20×0.9=18(元),B种树苗每棵的价格为:20×1.2=24(元),设购进A种树苗t棵,这批树苗的费用为w元,则:w=18t+24(5500-t)=-6t+132000,∵w是t的一次函数,k=-6<0,∴w随t的增大而减小,又∵t≤3500,∴当t=3500棵时,w最小,此时,B种树苗每棵有:5500-3500=2000(棵),w=-6×3500+132000=111000,答:购进A种树苗3500棵,BA种树苗2000棵时,能使得购进这批树苗的费用最低,最低费用为111000元.【解析】【试题解析】(1)设这一批树苗平均每棵的价格是x元,根据题意列方程解答即可;(2)分别求出A种树苗每棵的价格与B种树苗每棵的价格,设购进A种树苗t棵,这批树苗的费用为w元,根据题意求出w与t的函数关系式,再根据一次函数的性质解答即可.本题考查了分式方程的应用,一次函数的应用以及一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.10.【答案】解:(1)y=300-10(x-44),即y=-10x+740(44≤x≤52);(2)根据题意得(x-40)(-10x+740)=2400,解得x1=50,x2=64(舍去),答:当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)w=(x-40)(-10x+740)=-10x2+1140x-29600=-10(x-57)2+2890,而a=-10<0,且对称轴为直线x=57,当x<57时,w随x的增大而增大,而44≤x≤52,所以当x=52时,w有最大值,最大值为-10(52-57)2+2890=2640,答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.【解析】(1)销售单价每上涨1元,每天销售量减少10本,则销售单价每上涨(x-44)元,每天销售量减少10(x-44)本,所以y=300-10(x-44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;(2)利用每本的利润乘以销售量得到总利润得到(x-40)(-10x+740)=2400,然后解方程后利用x的范围确定销售单价;(3)利用每本的利润乘以销售量得到总利润得到w=(x-40)(-10x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w的值即可.本题考查了二次函数的应用:利用二次函数解决利润问题,解此类题的关键是通过题意,确定出二次函数的解析式,然后利用二次函数的性质确定其最大值;在求二次函数的最值时,一定要注意自变量x的取值范围.也考查了一元二次方程的应用.。

中考数学冲刺专题训练(附答案):应用题

中考数学冲刺专题训练(附答案):应用题

精品基础教育教学资料,仅供参考,需要可下载使用!中考数学冲刺专题训练(附答案):应用题一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( ) A .160元 B .180元 C .200元 D .220元【答案】C 【解析】设这种衬衫的原价是x 元, 依题意,得:0.6x+40=0.9x-20, 解得:x=200. 故选:C .2.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( ) A .4 B .5 C .6 D .7【答案】C 【解析】设这种植物每个支干长出x 个小分支, 依题意,得:2143x x ++=, 解得: 17x =-(舍去),26x =. 故选:C .3.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有( )A .3种B .4种C .5种D .6种【答案】B 【解析】设购买A 品牌足球x 个,购买B 品牌足球y 个, 依题意,得:60751500x y +=,∴4205y x =-.x ,y 均为正整数,∴11516x y =⎧⎨=⎩,221012x y =⎧⎨=⎩,33158x y =⎧⎨=⎩,44204x y =⎧⎨=⎩,∴该学校共有4种购买方案.故选:B .4.为提高市民的环保意识,某市发出“节能减排,绿色出行”的倡导,某企业抓住机遇投资20万元购买并投放一批A 型“共享单车”,因为单车需求量增加,计划继续投放B 型单车,B 型单车的投放数量与A 型单车的投放数量相同,投资总费用减少20%,购买B 型单车的单价比购买A 型单车的单价少50元,则A 型单车每辆车的价格是多少元?设A 型单车每辆车的价格为x 元,根据题意,列方程正确的是( )A .200000200000(120%)50x x -=- B .200000200000(120)50x x x +=- C .200000200000(120%)50x x -=+ D .200000200000(120)50x x x +=+ 【答案】A 【解析】设A 型单车每辆车的价格为x 元,则B 型单车每辆车的价格为(50)x -元, 根据题意,得200000200000(120)50x x x -=- 故选A .5.《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其23的钱给乙.则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x ,乙的钱数为y ,则可建立方程组为( )A .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩B .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩C .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩D .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩【答案】A【解析】设甲的钱数为x ,乙的钱数为y ; 由甲得乙半而钱五十,可得:1x y 502+= 由甲把其23的钱给乙,则乙的钱数也为50;可得:2503x y += 故答案为:A6.红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有( ) A .3种 B .4种C .5种D .6种【答案】C 【解析】设该店购进甲种商品x 件,则购进乙种商品()50x -件,根据题意,得:()()60100504200102050750x x x x ⎧+-≤⎪⎨+->⎪⎩,解得:2025x ≤<, ∵x 为整数,∴20x、21、22、23、24,∴该店进货方案有5种, 故选:C .7.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( ) A .1201508x x =- B .1201508x x=+ C .1201508x x=- D .1201508x x =+ 【答案】D 【解析】∵甲每小时做x 个零件,∴乙每小时做(x+8)个零件, ∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x =+, 故选D.8.为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共( )只. A .55 B .72C .83D .89【答案】C 【解析】设该村共有x 户,则母羊共有()517x +只,由题意知,()()517710517713x x x x ⎧+-->⎪⎨+--<⎪⎩解得:21122x <<, ∵x 为整数, ∴11x =,则这批种羊共有115111783+⨯+=(只), 故选C .二、填空题(本大题共4个小题,每小题6分,共24分)9.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为_____.【答案】 4.5112x yx y +=⎧⎪⎨-=⎪⎩【解析】设木条长x 尺,绳子长y 尺,依题意,得: 4.5112x yx y +=⎧⎪⎨-=⎪⎩10.某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为________. 【答案】20%.【解析】设这两年中投入资金的平均年增长率是x ,由题意得: 5(1+x )2=7.2,解得:x 1=0.2=20%,x 2=﹣2.2(不合题意舍去). 答:这两年中投入资金的平均年增长率约是20%. 故答案是:20%.11.一艘轮船在静水中的最大航速为30/km h ,它以最大航速沿江顺流航行120km 所用时间,与以最大航速逆流航行60km 所用时间相同,则江水的流速为______/km h . 【答案】10 【解析】设江水的流速为/x km h ,根据题意可得:120603030x x=+-,解得:10x =,经检验:10x =是原方程的根, 答:江水的流速为10/km h . 故答案为:10.12.有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整晾衣杆的高度. 图2是支撑杆的平面示意图,AB 和CD 分别是两根不同长度的支撑杆,夹角∠BOD=α. 若AO=85cm ,BO=DO=65cm. 问: 当74α=︒,较长支撑杆的端点A 离地面的高度h 约为_____cm .(参考数据:sin 370.6,≈cos30.8≈,sin530.8,cos530.6≈≈.)【答案】120. 【解析】过O 作OE ⊥BD ,过A 作AF ⊥BD ,可得OE ∥AF ,∵BO=DO , ∴OE 平分∠BOD , ∴∠BOE=12∠BOD=12×74°=37°,∴∠FAB=∠BOE=37°,在Rt △ABF 中,AB=85+65=150cm , ∴h=AF=AB•cos ∠FAB=150×0.8=120cm , 故答案为:120三、解答题(本大题共3个小题,每小题12分,共36分. 解答应写出文字说明、证明过程或演算步骤)13.小明同学在综合实践活动中对本地的一座古塔进行了测量.如图,他在山坡坡脚P 处测得古塔顶端M 的仰角为60︒,沿山坡向上走25m 到达D 处,测得古塔顶端M 的仰角为30︒.已知山坡坡度3:4i =,即3tan 4θ=,请你帮助小明计算古塔的高度ME .(结果精确到0.1m ,参考数据:3 1.732≈)【答案】古塔的高度ME 约为39.8m . 【解析】解:作DC EP ⊥交EP 的延长线于点C ,作DF ME ⊥于点F ,作PH DF ⊥于点H ,则DC PH FE ==,DH CP =,HF PE =,设3DC x =,∵3tan 4θ=,∴4CP x =, 由勾股定理得,222PD DC CP =+,即22225(3)(4)x x =+,解得,5x =, 则315DC x ==,420CP x ==, ∴20DH CP ==,15FE DC ==, 设MF y =,则15ME y =+, 在Rt MDF 中,tan MF MDF DF∠=,则3tan 30MFDF y ==, 在Rt MPE 中,tan ME MPE PE ∠=,则3(15)tan 603ME PE y ==+, ∵DH DF HF =-, ∴33(15)203y y -+=,解得,7.5103y =+, ∴7.51031539.8ME MF FE =+=++≈. 答:古塔的高度ME 约为39.8m .14.某蔬菜种植基地为提高蔬菜产量,计划对甲、乙两种型号蔬菜大棚进行改造,根据预算,改造2个甲种型号大棚比1个乙种型号大棚多需资金6万元,改造1个甲种型号大棚和2个乙种型号大棚共需资金48万元.(1)改造1个甲种型号和1个乙种型号大棚所需资金分别是多少万元?(2)已知改造1个甲种型号大棚的时间是5天,改造1个乙种型号大概的时间是3天,该基地计划改造甲、乙两种蔬菜大棚共8个,改造资金最多能投入128万元,要求改造时间不超过35天,请问有几种改造方案?哪种方案基地投入资金最少,最少是多少?【答案】(1)改造1个甲种型号大棚需要12万元,改造1个乙种型号大棚需要18万元;(2)共有3种改造方案,方案1:改造3个甲种型号大棚,5个乙种型号大棚;方案2:改造4个甲种型号大棚,4个乙种型号大棚;方案3:改造5个甲种型号大棚,3个乙种型号大棚;方案3投入资金最少,最少资金是114万元.【解析】(1)设改造1个甲种型号大棚需要x万元,改造1个乙种型号大棚需要y万元,依题意,得:26248 x yx y-=⎧⎨+=⎩,解得:1218 xy=⎧⎨=⎩.答:改造1个甲种型号大棚需要12万元,改造1个乙种型号大棚需要18万元.(2)设改造m个甲种型号大棚,则改造(8﹣m)个乙种型号大棚,依题意,得:53(8)35 1218(8)128 m mm m+-⎧⎨+-⎩,解得:83≤m≤112.∵m为整数,∴m=3,4,5,∴共有3种改造方案,方案1:改造3个甲种型号大棚,5个乙种型号大棚;方案2:改造4个甲种型号大棚,4个乙种型号大棚;方案3:改造5个甲种型号大棚,3个乙种型号大棚.方案1所需费用12×3+18×5=126(万元);方案2所需费用12×4+18×4=120(万元);方案3所需费用12×5+18×3=114(万元).∵114<120<126,∴方案3改造5个甲种型号大棚,3个乙种型号大棚基地投入资金最少,最少资金是114万元.15.超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?【答案】(1)1502y x=-+(2)当x为10时,超市每天销售这种玩具可获利润2250元(3)当x为20时w 最大,最大值是2400元 【解析】(1)根据题意得,1502y x =-+; (2)根据题意得,()1405022502x x ⎛⎫+-+= ⎪⎝⎭, 解得:150x =,210x =, ∵每件利润不能超过60元, ∴10x =,答:当x 为10时,超市每天销售这种玩具可获利润2250元; (3)根据题意得,()211405030200022w x x x x ⎛⎫=+-+=-++ ⎪⎝⎭()213024502x =--+,∵102a =-<, ∴当30x <时,w 随x 的增大而增大,∴当20x时,2400w =增大,答:当x 为20时w 最大,最大值是2400元.。

中考数学专题复习应用题行程问题

中考数学专题复习应用题行程问题

中考数学专题复习应用题
行程问题
Prepared on 21 November 2021
行程问题应用题
1.一列队伍长120米,在队伍行进时,通讯员从队尾赶到队首又立即返回队尾,若这段时间内队伍向前进了288米,队伍及通讯员速度始终不变,那么这段时间通讯员行走路程是多少
2.某铁路桥长1000米,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用1分钟,整列火车完全在桥上的时间共40S,求火车的速度和长度。

3.甲乙二人分别从AB两地同时出发,相向而行,他们第一次相遇时距离A地60千米,然后两人继续前行,分别到达BA后调头继续前行。

当他们第二次相遇时距离B地30千米。

问AB两地的距离是多少
4.在复线铁路上,快车和慢车分别从两个车站开出,相向而行。

快车车身长是180米,速度为每秒钟9米;慢车车身长210米,车速为每秒钟6米。

从两车头相遇到两车的尾部离开,需要几秒钟
5.甲、乙二人分别从A、B两地同时相向而行,甲每小时行5千米,乙每小时行4千米。

二人第一次相遇后,都继续前进,分别到达B、A两地后又立即按原速度返回。

从开始走到第二次相遇,共用了6小时。

A、B两地相距多少千米
6.一排解放军从驻地出发去执行任务,每小时行5千米。

离开驻地3千米时,排长命令通讯员骑自行车回驻地取地图。

通讯员以每小时10千米的速度回到驻地,取了地图立即返回。

通讯员从驻地出发,几小时可以追上队伍。

中考数学应用题专项练习

中考数学应用题专项练习

中考数学应用题专项练习1. 某生态农业有限公司帮助和指导当地车厘子种植基地种植和销售车厘子,已知该车厘子的成本是12元/千克,规定销售价格不高于成本的2倍。

经市场调查发现,该车厘子的销售量y(千克)与销售价格x(元/千克)之间的函数关系如图所示:(1) 求y与x的函数关系式;(2) 当销售价格为多少时,销售车厘子所获的利润W最大?并求出此时的最大利润。

2. 某网店销售一种消毒用紫外线灯很畅销,该网店店主结合店铺数据发现日销量y(件)是售价x(元/件)的一次函数,其售价、日销售量、日销售纯利润W(元)的四组对应值如表:已知该商品进价是100元/件,该网店每日的固定成本折算下来为2000元。

注:日销售纯利润=日销售量×(售价-进价)-每日固定成本。

(1) 求y与x的函数关系式;(2) 当售价x(元/件)定为多少时,日销售纯利润W(元)最大?求出最大纯利润。

3. 某乡镇的主要经济作物为茶叶,该地政府为了推进乡村振兴战略,解决当地茶农卖茶困难的问题,决定在新茶上市30天内,帮助茶农集中销售.根据销售记录发现:第1天销售量为42斤,后面每天比前一天增加2斤;前10天的价格为500元/斤,后20天价格每天比前一天降低10元,设第x天(x为整数)的售价为y(元/斤),日销售额为w(元)。

(1) 求y与x的函数关系式;(2) 当第几天时日销售额w最大?求最大的日销售额。

4. 作为全球三大黄肉型猕猴桃种植地之一,成都市蒲江县是世界上少有、成都唯一的红、黄、绿三色齐聚的猕猴桃产地.某水果经销商到猕猴桃种植基地采购一种红心猕猴桃,经销商一次性采购红心猕猴桃的采购单价y(元/千克)与采购量x(千克)之间的函数关系如图所示。

(1) 求y与x的函数关系式;(2) 若红心猕猴桃的种植成本为6元/千克,某经销商一次性采购红心猕猴桃的采购量不超过200千克,求当采购量是多少时,猕猴桃种植基地获利最大?求最大利润。

5. 端午节前,某商店用8000元购进一批粽子礼盒,很快售完,于是商店又用20000元购进了第二批粽子礼盒,所购数量是第一批购进量的两倍,但每个礼盒的进价贵了20元。

中考初中数学应用题经典练习题

中考初中数学应用题经典练习题

中考初中数学应用题经典练习题中考初中数学应用题经典练题一、综合题(共8题;共85分)1.(10分)(2015•深圳)下表为深圳市居民每月用水收费标准,(单位:元/m3)。

根据表格,当用水量不超过22立方米时,每立方米的水费为a元,超过22立方米后,每立方米的水费为1.5元。

1) 已知某用户用水10立方米,共交水费23元,求a的值。

解:设a为每立方米的水费。

当用水量不超过22立方米时,总用水量为10立方米,总水费为10a元。

当用水量超过22立方米时,总用水量为0立方米,总水费为0元。

因此,总水费为10a元,根据题意,有10a+12(1.5)=23,解得a=1.05.2) 在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?解:当用水量不超过22立方米时,总用水量为x立方米,总水费为xa元。

当用水量超过22立方米时,总用水量为5月份用水量减去22立方米,总水费为(5月份用水量-22)×1.5元。

因此,总水费为xa+(5月份用水量-22)×1.5元,根据题意,有xa+(5月份用水量-22)×1.5=71,代入a=1.05,解得5月份用水量为34立方米。

2.(10分)XXX要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜,若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元。

1) 求每个A型放大镜和每个B型放大镜各多少元?设每个A型放大镜的价格为x元,每个B型放大镜的价格为y元。

根据题意,有8x+5y=220,4x+6y=152.解得x=12,y=28,因此每个A型放大镜12元,每个B 型放大镜28元。

2) XXX决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?设购买A型放大镜的数量为m,购买B型放大镜的数量为n。

根据题意,有mx+ny≤1180,m+n=75.要求购买的A型放大镜数量最多,即要求x/m的值最小。

中考数学分题型复习应用题

中考数学分题型复习应用题

2021中考专项练习---应用题1.某县政府打算用25000元用于为某乡福利院购置每台价格为2000元彩电与每台价格为1800元冰箱,并方案恰好全部用完此款.〔1〕问原方案所购置彩电与冰箱各多少台?〔2〕由于国家出台“家电下乡〞惠农政策,该县政府购置彩电与冰箱可获得13%财政补贴,假设在不增加县政府实际负担情况下,能否多购置两台冰箱?谈谈你想法.2. 北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2021年10月11日到2021年2月28日期间,地面公交日均客运量与轨道交通日均客运量总与为1696万人次,地面公交日均客运量比轨道交通日均客运量4倍少69万人次.在此期间,地面公交与轨道交通日均客运量各为多少万人次?3. 整理一批图书,如果由一个人单独做要花60小时。

现先由一局部人用一小时整理,随后增加15人与他们一起又做了两小时,恰好完成整理工作。

假设每个人工作效率一样,那么先安排整理人员有多少人?4. 某刊物报道:“2021年12月15日,两岸海上直航、空中直航与直接通邮启动,‘大三通’根本实现.‘大三通’最直接好处是省时间与省本钱,据测算,空运平均每航次可节省4小时,海运平均每航次可节省22小时,以两岸每年往来合计500万人次计算,那么共可为民众节省2900万小时……〞根据文中信息,求每年采用空运与海运往来两岸人员各有多少万人次.5.面对全球金融危机挑战,我国政府毅然启动内需,改善民生.国务院决定从2021年2月1日起,“家电下乡〞在全国范围内实施,农民购置人选产品,政府按原价购置总额....13%...给予补贴返还.某村委会组织局部农民到商场购置人选同一型号冰箱、电视机两种家电,购置冰箱数量是电视机2倍,且按原价购置冰箱总额为40000元、电视机总额为15000元.根据“家电下乡〞优惠政策,每台冰箱补贴返还金额比每台电视机补贴返还金额多65元,求冰箱、电视机各购置多少台?〔1〕设购置电视机台,依题意填充以下表格:工程家电种类购置数量〔台〕原价购置总额〔元〕政府补贴返还比例补贴返还总金额〔元〕每台补贴返还金额〔元〕冰箱40 00013%电视机15 00013%〔2〕列出方程〔组〕并解答.6.某公司经销某品牌运动鞋,年销售量为10万双,每双鞋按250元销售,可获利25﹪,设每双鞋本钱价为元.(1)试求值;(2)为了扩大销售量,公司决定拿出一定量资金做广告,根据市场调查,假设每年投入广告费为(万元)时,产品年销售量将是原销售量倍,且与之间关系如下图,可近似看作是抛物线一局部. ①根据图象提供信息,求与之间函数关系式; ②求年利润(万元)与广告费(万元)之间函数关系式,并请答复广告费(万元)在什么范围内,公司获得年利润(万元)随广告费增大而增多?〔注:年利润7.为了防控甲型H1N1流感,某校积极进展校园环境消毒,购置了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶. 〔1〕如果购置这两种消毒液共用780元,求甲、乙两种消毒液各购置多少瓶?〔2〕该校准备再次..购置这两种消毒液〔不包括已购置100瓶〕,使乙种瓶数是甲种瓶数2倍,且所需费用不多于...1200元〔不包括780元〕,求甲种消毒液最多能再购置多少瓶?8.某企业2006年盈利1500万元,2021年克制全球金融危机不利影响,仍实现盈利2160万元.从2006年到2021年,如果该企业每年盈利年增长率一样,求:〔1〕该企业2007年盈利多少万元?〔2〕假设该企业盈利年增长率继续保持不变,预计2021年盈利多少万O 24 1y 〔倍〕x 〔万1.1.元?9.去年5月12日,四川省汶川县发生了里氏8.0级大地震,兰州某中学师生自愿捐款,第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款人数是多少?人均捐款多少元?10. 为了拉动内需,广东启动“家电下乡〞活动。

中考数学第二轮复习专题训练--三角函数应用题

中考数学第二轮复习专题训练--三角函数应用题

3 3精典例题:【例 1】如图,塔 AB 和楼 CD 的水平距离为 80 米,从楼顶 C 处及楼底 D 处测得塔顶 A 的仰角分别为 450 和 600,试求塔高与楼高(精确到 0.01 米)。

(参考数据: =1.41421…, =1.73205…)分析:此题可先通过解 Rt △ABD 求出塔高 AB ,再利用 CE =BD =80 米,解 Rt △AEC 求出 AE ,最后求出 CD =BE =AB -AE 。

解:在 Rt △ABD 中,BD =80 米,∠BAD =600 A∴AB = BD tan 6080 138.56 (米)450C在 Rt △AEC 中,EC =BD =80 米,∠ACE =450 ∴AE =CE =80 米∴CD =BE =AB -AE = 80 80 58.56 (米)EBD F例 1 图答:塔 AB 的高约为 138. 56 米,楼 CD 的高约为 58. 56 米。

【例 2】如图,直升飞机在跨河大桥 AB 的上方 P 点处,此时飞机离地面的高度 PO =450 米,且 A 、B 、 O 三点在一条直线上,测得大桥两端的俯角分别为300 , 450 ,求大桥 AB 的长(精确到 1 米,选用数据: =1.41, =1.73)分析:要求 AB ,只须求出 OA 即可。

可通过解 Rt △POA 达到目的。

解:在 Rt △PAO 中,∠PAO =300∴OA = PO cot PAO450 cot 300450 (米)在 Rt △PBO 中,∠PBO = ∴OB =OP =450(米)∴AB =OA -OB = 450 450450 P329 (米) 答:这座大桥的长度约为 329 米。

OBA例 2 图评注:例 1 和例 2 都是测量问题(测高、测宽等), 解这类问题要理解仰角、俯角的概念,合理选择关系式,按要求正确地取近似值。

【例 3】一艘渔船正以 30 海里/小时的速度由西向东追赶鱼群,在 A 处看见小岛 C 在船的北偏东 600方向,40 分钟后,渔船行至 B 处,此时看见小岛 C 在船的北偏东 300 方向,已知以小岛 C 为中心周围 10 海里以内为我军导弹部队军事演习的着弹危险区,问这艘渔船继续向东追赶鱼群,是否有进入危险区域的可能?分析:此题可先求出小岛 C 与航向(直线 AB )的距离,再与 10 海里进行比较得出结论。

中考数学专题:实际应用题带答案

中考数学专题:实际应用题带答案

中考数学专题:实际应用题带答案购进甲型书柜,每个书柜可放置20本书,每个书柜的成本为200元;购进乙型书柜,每个书柜可放置30本书,每个书柜的成本为300元。

现有预算元,需要购进的书柜总数不能超过200个。

1)如何购进书柜,才能最大化放置的图书数量?2)如果要求购进的书柜数量必须要超过100个,应该如何购进书柜,才能最大化放置的图书数量?3)如果要求购进的书柜数量必须要超过100个,并且每个书柜必须要放置至少25本书,应该如何购进书柜,才能最大化放置的图书数量?树苗的总价最低,应该购进多少捆A种树苗和多少捆B 种树苗?1) 学校需要购买甲种书柜3个、乙种书柜2个,共需1020元;需要购买甲种书柜4个、乙种书柜3个,共需1440元。

求甲、乙两种书柜每个的价格分别是多少元?2) 学校需要购买共20个书柜,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供4320元资金。

请设计几种购买方案供学校选择。

1) 某汽车零部件生产企业从2016年到2018年的年平均增长率为12%。

若2019年保持前两年的年平均增长率不变,该企业2019年的利润能否超过3.4亿元?2) 某县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担。

若国家财政拨付资金不超过万元,地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元。

请问共有哪几种改扩建方案?1) 当售价为55元/千克时,每月销售水果为450千克。

2) 每千克水果售价为17.5元时,月利润为8750元。

3) 获得的月利润最大的每千克水果售价为52元。

1) 这一批树苗平均每棵的价格为615元。

2) 应该购进3500棵A种树苗和2000捆B种树苗。

树苗的费用最低,应该购买多少A种树苗和B种树苗才能达到最低费用?并求出最低费用。

在俄罗斯世界杯足球赛期间,一家商店销售了一批足球纪念册,每本进价40元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AM45°30°B北第4题中考应用题附参考答案1.(2010年广西桂林适应训练)某同学在A 、B 两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A 所有商品打八折销售,超市B 全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),该同学只带了400元钱,他能否在这两家超市都可以买下看中的这两样商品?若两家都可以选择,在哪一家购买更省钱?2.(2010年黑龙江一模)某车间要生产220件产品,做完100件后改进了操作方法,每天多加工10件,最后总共用4天完成了任务.求改进操作方法后,每天生产多少件产品? 设改进操作方法后每天生产x 件产品,则改进前每天生产(10)x -件产品.3.(2010广东省中考拟)A,B 两地相距18km ,甲工程队要在A ,B 两地间铺设一条输送天然气管道,乙工程队要在A ,B 两地间铺设一条输油管道,已知甲工程队每周比乙工程队少铺设1km ,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙工程队每周各铺设多少管道?4.(2010年广东省中考拟)如图,是一个实际问题抽象的几何模型,已知A 、B 之间的距离为300m ,求点M 到直线AB 的距离(精确到整数).并能设计一种测量方案? (参考数据:7.13≈,4.12≈)5.(2010年湖南模拟)某花木园,计划在园中栽96棵桂花树,开工后每天比原计划多栽2棵,•结果提前4天完成任务,问原计划每天栽多少棵桂花树.6.(2010年厦门湖里模拟)某果品基地用汽车装运A、B、C三种不同品牌的水果到外地销售,按规定每辆汽车只能装同种水果,且必须装满,其中A、B、C三种水果的重量及利润按下表提供信息:水果品牌 A B C每辆汽车载重量(吨)2.2 2.1 2每吨水果可获利润(百元) 6 8 5(1)若用7辆汽车装运A、C两种水果共15吨到甲地销售,如何安排汽车装运A、C两种水果?(2)计划用20辆汽车装运A、B、C三种不同水果共42吨到乙地销售(每种水果不少于2车),请你设计一种装运方案,可使果品基地获得最大利润,并求出最大利润.7.(2010年杭州月考)某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A型利润B型利润甲店200 170乙店160 150(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型,型产产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A B品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?8.(2010年河南中考模拟题1)某市一些村庄发生旱灾,市政府决定从甲、乙两水库向A、B两村调水,其中A村需水15万吨,B村需水13万吨,甲、乙两水库各可调出水14万吨。

甲、乙两水库到A、B两村的路程和运费如下表:路程(千米)运费(元/万吨·千米)甲水库乙水库甲水库乙水库A村50 30 1200 1200B村60 45 1000 900(1)如果设甲水库调往A村x万吨水,求所需总费用y(元)与x的函数关系式;(2)如果经过精心组织实行最佳方案,那么市政府需要准备的调运费用最低为多少?9.(2010年河南中考模拟题2)某批发市场欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开办海产品运输业务,已知运输路程为120千米,汽车和火车的速度分别是60千米/小时、100千米/小时,两货运公司的收费项目和收费标准如下表所示:运输工具运输费单价(元/吨·千米)冷藏费单价(元/吨·小时)过路费(元)装卸及管理费用(元)汽车 2 5 200 0火车 1.8 5 0 1600 (元/吨·千米表示每吨货物每千米的运费;元/吨·小时表示每吨货物每小时冷藏费)(1)设批发商待运的海产品有x吨,汽车货运公司和铁路货运公司所要收取的费用分别为y1(元)和y2(元),分别写出y1、y2与x的关系式.(2)若该批发商待运的海产品不少于30吨,为节省费用,他应该选哪个货运公司承担运输业务?∴所运海产品不少于30吨且不足50吨应选汽车货运公司;所运海产品刚好50吨,可任选一家;所运海产品多于50吨,应选铁路货运公司体积(m 3/件) 质量(吨/件) A 型商品 0.8 0.5 B 型商品 2 1 10.(2010年河南中考模拟题3)某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成.(2)乙队单独完成这项工程要比规定日期多用6天.(3)若甲、乙两队合作3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.11.(2010年河南中考模拟题5)宏远商贸公司有A 、B 两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:(1)已知一批商品有A 、B 两种型号,体积一共是20 m 3,质量一共是10.5吨,求A 、B 两种型号商品各有几件?(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6 m 3,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元; ②按吨收费:每吨货物运输到目的地收费200元.要将(1)中的商品一次或分批运输到目的地,宏远商贸公司应如何选择运送、付费方式运费最少?并求出该方式下的运费是多少元?12.(2010年河南中考模拟题6)绿谷商场“家电下乡”指定型号冰箱,彩电的进价和售价如下表所示:类别冰箱彩电进价(元/台)2320 1900售价(元/台)2420 1980(1)按国家政策,农民购买“家电下乡”产品享受售价13℅的政府补贴。

农民田大伯到该商场购买了冰箱,彩电各一台,可以享受多少元的补贴?(2)为满足农民需求,商场决定用不超过85000元采购冰箱,彩电共40台,且冰箱的数量不少于彩电数量的56。

①请你帮助该商场设计相应的进货方案;②用哪种方案商场获得利润最大?(利润=售价-进价),最大利润是多少?13.(2010年江苏省泰州市济川实验初中中考模拟题)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:x(万元) 1 2 2.5 3 5yA(万元) 0.4 0.8 1 1.2 2信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出yB与x的函数关系式.(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式.(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?第14题图 14.(2010年广州中考数学模拟试题(四))小明家想要在自己家的阳台上铺地砖,经测量后设计了如右图的图纸,黑色区域为宽度相等的一条“7”形的健身用鹅卵石小路,空白部分为地砖铺设区域.(1)要使铺地砖的面积为14平方米,那么小路的宽度应为多少?(2)小明家决定在阳台上铺设规格为80×80的地砖(即边长为80厘米的正方形),为了美观起见,工人师傅常采用下面的方法来估算至少需要的地砖数量:尽量保证整块地砖的铺设,边上有多余空隙的,空隙宽度小于地砖边长一半的,可将一块割成两块来铺设空隙处,大于一半的只能铺设一处一边长80厘米的矩形空隙,请你帮助工人师傅估算一下小明家至少需要多少块地砖?15.(2010年河南省南阳市中考模拟数学试题)某市政府为响应党中央建设社会主义新农村和节约型社会的号召,决定资助部分农村地区修建一批沼气池,使农民用到经济、环保的沼气能源.红星村共有264户村民,村里得到34万元的政府资助款,不足部分由村民集资解决.修建A 型、B 型沼气池共20个.两种型号沼气池每个修建费用、可供使用的户数、修建用地情况见下表:沼气池修建费用(万元/个) 可供使用户数(户/个) 占地面积(m 2/个) A型3 20 48 B型236政府土地部门只批给该村沼气池修建用地708m 2.若修建A 型沼气池x 个,修建两种型号沼气池共需费用y 万元.(1)求y 与x 之间的函数关系式;(2)既不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种?(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案?答案:1.解:(1)解法一:设书包的单价为x 元,则随身听的单价为()48x -元根据题意,得48452x x -+=解这个方程,得 x =92484928360x -=⨯-= 答:该同学看中的随身听单价为360元,书包单价为92元。

(2)在超市A 购买随身听与书包各一件需花费现金:45280%3616⨯=.(元) 因为3616400.<,所以可以选择超市A 购买。

在超市B 可先花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购 买书包,总计共花费现金:360+2=362(元) 因为362400<,所以也可以选择在超市B 购买。

因为3623616>.,所以在超市A 购买更省钱2.答案:依题意有220100100410x x -+=-. 整理得2653000x x -+=.解得5x =或60x =.5x =时,1050x -=-<,5x ∴=舍去. 60x ∴=.答:改进操作方法后每天生产60件产品.3.解:设甲工程队铺设xkm/周,则乙工程队铺设(x+1)/周,依题意得:118318+=-x x 解这个方程,得x 1=2,x 2= -3.经检验,x 1=2,x 2= -3都是原方程的解,但.x 2= -3不符合题意,应舍去。

答:甲工程队铺设2km/周,则乙工程队铺设3km/周4.解: 过点M 作AB 的垂线MN ,垂足为N .∵M 位于B 的北偏东45°方向上, ∴∠MBN = 45°,BN = MN . 又M 位于A 的北偏西30°方向上,∴∠MAN =60°,AN =tan 603MN MN=.∵AB = 300,∴AN +NB = 300 . ∴3003=+MN MN .MN 191≈.方案:利用三角函数知识或相似三角形或全等三角形知识,合理都可以给分(由于计算方式及取近似值时机不同有多个值,均不扣分)5.解:设原计划每天栽树x 棵AM45°30°B北 第6题答案图 N根据题意,得96962x x -+=4 整理,得x 2+2x-48=0 解得x 1=6,x 2=-8经检验x 1=6,x 2=-8都是原方程的根,但x 2=-8不符合题意(舍去) 答:原计划每天栽树6棵. 6.解:(1)设安排x 辆汽车装运A 种水果,则安排(7-x )辆汽车装运C 种水果. 根据题意得,2.2x +2(7-x )=15 解得,x=5,∴7-x=2 答:安排5辆汽车装运A 种水果,安排2辆汽车装运C 种水果。

相关文档
最新文档