最新北师大版九年级数学试卷
北师大版九年级上册数学期末考试试卷带答案
北师大版九年级上册数学期末考试试题一、单选题1.一元二次方程x(x-3)=4的解是()A.1B.4C.-1或4D.1或-42.一个由5个相同的正方体组成的立体图形,如图所示,则这个立体图形的左视图是A.B.C.D.3.如图,在直角坐标系中,△OAB的顶点为O(0,0),A(4,3),B(3,0).以点O为位似中心,在第三象限内作与△OAB的位似比为13的位似图形△OCD,则点C坐标A.(﹣1,﹣1)B.(﹣43,﹣1)C.(﹣1,﹣43)D.(﹣2,﹣1)4.在Rt△ABC中,∠C=90°,BC=4,AC=3,则cosA的值是()A.45B.35C.54D.435.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC =9,则BF的长为()A.4B.C.4.5D.56.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=cx(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是()A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <27.如图,在直角三角形ABC 中,90ACB ∠=︒,3AC =,4BC =,点M 是边AB 上一点(不与点A ,B 重合),作ME AC ⊥于点E ,MF BC ⊥于点F ,若点P 是EF 的中点,则CP 的最小值是()A .1.2B .1.5C .2.4D .2.58.反比例函数4y x =和6y x =在第一象限的图象如图所示,点A 在函数6y x=图象上,点B 在函数4y x=图象上,AB ∥y 轴,点C 是y 轴上的一个动点,则△ABC 的面积为()A .1B .2C .3D .49.如图,正方形ABCD 的边长为2,E 为对角线AC 上一动点,90EDP ∠=︒,DE DP =,当点E 从点A 运动到点C 的过程中,EPC ∆的周长的最小值为()A .222B .42C .324D .22310.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x .根据题意列方程,则下列方程正确的是A .22500(1)9100x +=B .22500(1%)9100x +=C .22500(1)2500(1)9100x x +++=D .225002500(1)2500(1)9100x x ++++=11.如图,某次课外实践活动中,小红在地面点B 处利用标杆FC 测量一旗杆ED 的高度.小红眼睛点A 与标杆顶端点F ,旗杆顶端点E 在同一直线上,点B ,C ,D 也在同一条直线上.已知小红眼睛到地面距离 1.6AB =米,标杆高 3.8FC =米,且1BC =米,7CD =米,则旗杆ED 的高度为()A .15.4米B .17米C .17.6米D .19.2米12.若0ab >,则一次函数y ax b =-与反比例函数aby x=在同一坐标系数中的大致图象是A .B .C .D .二、填空题13.一元二次方程220x x -+=的解是______.14.一个反比例函数的图象过点A(-3,2),则这个反比例函数的表达式是_____.15.如图,Rt △ABC 中,∠ACD=90°,直线EF BD ∥,交AB 于点E ,交AC 于点G ,交AD 于点F .若S △AEG=13S 四边形EBCG ,则CF AD=_________.16.如图,在ABC 中,D ,E 分别是边AB ,AC 的中点.若ADE 的面积为12.则四边形DBCE 的面积为_______.三、解答题17.解方程(1)2230x x --=(公式法);(2)23740x x -+=(配方法);(3)22(2)(23)x x -=+(因式分解法);(4)2(1)22x x -=-(适当的方法).18.现有5个质地、大小完全相同的小球上分别标有数字–1,–2,1,2,3.先将标有数字–2,1,3的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里.现分别从两个盒子里各随机取出一个小球.(1)请利用列表或画树状图的方法表示取出的两个小球上数字之和所有可能的结果;(2)求取出的两个小球上的数字之和等于0的概率.19.如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P 从点O 开始沿OA 边向点A 以1厘米/秒的速度移动;点Q 从点B 开始沿BO 边向点O 以1厘米/秒的速度移动.如果P 、Q 同时出发,用t (秒)表示移动的时间(0≤t≤6),那么,当t 为何值时,△POQ 与△AOB 相似?20.如图,△ABC 是等边三角形,点D 在AC 上,连接BD 并延长,与∠ACF 的角平分线交于点E .(1)求证:△ABD ∽△CED ;(2)若AB=8,AD=2CD ,求CE 的长.21.如图,已知反比例函数y 1=1k x与一次函数y 2=k 2x+b 的图象交于点A (1,8)、B (﹣4,m ).(1)求一次函数和反比例函数的表达式;(2)求△AOB 的面积;(3)若y 1<y 2,直接写出x 的取值范围.22.如图,在菱形ABCD ,对角线AC,与BD 交于点O,过点C 作BD 的平行线,过点D 作AC 的平行线,两直线交于点E,(1)求证:四边形OCED 是矩形;(2)若CE=1,菱形ABCD的周长为ABCD 的面积.23.如图,反比例函数ky x(k≠0)的图象经过点A (1,2)和B (2,n ),(1)以原点O 为位似中心画出△A1B1O ,使11AB A B =12;(2)在y 轴上是否存在点P ,使得PA+PB 的值最小?若存在,求出P 的坐标;若不存在,请说明理由.24.某品牌童装平均每天可售出40件,每件盈利40元.为了迎接“元旦”,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出4件.要想平均每天销售这种童装盈利2400元,那么每件童装应降价多少元?25.如图,在正方形ABCD 中,点G 是对角线上一点,CG 的延长线交AB 于点E ,交DA 的延长线于点F ,连接AG .(1)求证:AG =CG ;(2)求证:△AEG ∽△FAG ;(3)若GE•GF =9,求CG 的长.参考答案1.C 2.A 3.B 4.B 5.A 6.C 7.A 8.A 9.A 10.D 11.D 12.C13.120,2x x ==【分析】利用因式分解法解一元二次方程即可得.【详解】解:220x x -+=,(2)0x x -+=,0,20x x =-+=,则120,2x x ==,故答案为:120,2x x ==.【点睛】本题考查了解一元二次方程,熟练掌握因式分解法解一元二次方程是解题关键.14.6y x=-【分析】根据反比例函数的意义待定系数法求解析式.【详解】解:∵反比例函数的图象过点A(-3,2),∴6k =-∴这个反比例函数的表达式是6y x=-故答案为:6y x=-15.12【详解】解:∵EF BD∥∴∠AEG=∠ABC ,∠AGE=∠ACB ,∴△AEG ∽△ABC ,且S △AEG=13S 四边形EBCG∴S △AEG :S △ABC=1:4,∴AG :AC=1:2,又EF BD∥∴∠AGF=∠ACD ,∠AFG=∠ADC ,∴△AGF ∽△ACD ,且相似比为1:2,∴S △AFG :S △ACD=1:4,∴S △AFG=13S 四边形FDCGS △AFG=14S △ADC ∵AF :AD=GF :CD=AG :AC=1:2∵∠ACD=90°∴AF=CF=DF∴CF :AD=1:2.故答案为:1216.32【分析】先根据三角形中位线定理得出1//,2DE BC DE BC =,再根据相似三角形的判定与性质得出2()ADE ABC S DE S BC= ,从而可得ABC 的面积,由此即可得出答案.【详解】 点D ,E 分别是边AB ,AC 的中点1//,2DE BC DE BC ∴=ADE ABC∴ 21(4ADE ABC S DE S BC ∴==△△,即4ABCADES S =△△又12ADES =1422ABCS ∴=⨯= 则四边形DBCE 的面积为13222ABC ADE S S -=-= 故答案为:32.17.(1)123,1x x ==-(2)124,13x x ==(3)121,53x x =-=-(4)123,1x x ==【分析】(1)利用公式法求解即可;(2)利用配方法求解即可;(3)利用因式分解法求解即可;(4)利用因式分解法求解即可.(1)解:∵2230x x --=,∴1a =,2b =-,3c =-,∴()()22=42413160b ac ∆-=--⨯⨯-=>,∴242x ±==,∴13x =,21x =-;(2)解:∵23740x x -+=,∴2374x x -=-,∴27433x x -=-,∴22277473636x x ⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭,∴271636x ⎛⎫-= ⎪⎝⎭,∴7166x -=±,∴143x =,21x =;(3)解:∵22(2)(23)x x -=+∴22(2)(23)0x x -+-=,∴()(223)2230x x x x -++---=,∴()()3150x x ++=,∴113x =-,25x =-;(4)解:∵2(1)22x x -=-,∴()2(1)210x x --=-,∴()(12)10x x ---=,∴13x =,21x =.18.(1)详见解析;(2)13【分析】(1)首先根据题意列出表格,由表格即可求得取出的两个小球上数字之和所有等可能的结果;(2)首先根据(1)中的表格,求得取出的两个小球上的数字之和等于0的情况,然后利用概率公式即可求得答案.【详解】解:(1)列表得:-12-2-30103325则共有6种结果,且它们的可能性相同;(2)∵取出的两个小球上的数字之和等于0的有:(1,-1),(-2,2),∴两个小球上的数字之和等于0的概率为:2163=.19.当t=4或t=2时,△POQ 与△AOB 相似.【详解】试题分析:根据题意可知:OQ=6-t ,OP=t ,然后分OQ OP OB OA =和OQ OP OA OB=两种情况分别求出t 的值.试题解析:解:①若△POQ ∽△AOB 时,=,即=,整理得:12﹣2t=t ,解得:t=4.②若△POQ ∽△BOA 时,=,即=,整理得:6﹣t=2t ,解得:t=2.∵0≤t≤6,∴t=4和t=2均符合题意,∴当t=4或t=2时,△POQ 与△AOB 相似.20.(1)见解析;(2)CE=4【分析】(1)根据等边三角形的性质得到60A ACB ∠=∠=︒,则120ACF ∠=︒,根据角平分线的性质,得到60ACE ∠=︒,即可求证;(2)利用相似三角形的性质得到CD CE AD AB=,即可求解.【详解】(1)证明:∵△ABC 是等边三角形,∴∠BAC=∠ACB=60°,∠ACF=120°;∵CE 平分∠ACF ,∴∠ACE=60°;∴∠BAC=∠ACE ;又∵∠ADB=∠CDE ,∴△ABD ∽△CED ;(2)解:∵△ABD ∽△CED ,∴CD CE AD AB=,∵AD=2DC ,AB=8;∴1842CD CE AB AD =⨯=⨯=21.(1)18y x =,y 2=2x+6,过程见解析;(2)15,过程见解析;(3)﹣4<x <0或x >1,过程见解析.【分析】(1)利用待定系数法即可求得结论;(2)设直线AB 与x 轴交于点D ,与y 轴交于点C ,利用直线AB 解析式求得点C ,D 的坐标,用△AOC ,△OCD 和△OBD 的面积之和表示△AOB 的面积即可;(3)利用图象即可确定出x 的取值范围.(1)解:点A (1,8)在反比例函数11ky x =上,∴k 1=1×8=8.∴18y x =.∵点B (﹣4,m )在反比例函数18y x =上,∴﹣4m =8.∴m =﹣2.∴B (﹣4,﹣2).∵点A (1,8)、B (﹣4,﹣2)在一次函数y 2=k 2x+b 的图象上,∴22842k b k b +=⎧⎨-+=-⎩,解得:226k b =⎧⎨=⎩.∴y 2=2x+6.(2)解:设直线AB 与y 轴交于点C,如图,由直线AB:y 2=2x+6,令x =0,则y =6,∴C (0,6).∴OC =6.过点A 作AF ⊥y 轴于点F ,过点B 作BE ⊥y 轴于点E ,∵A (1,8),B (﹣4,﹣2),∴AF =1,BE =4.∴AOBAOC BOC S S S =+△△△11××22OC AF OC BE =+1=6(14)2⨯⨯+=15答:△AOB 的面积是15.(3)解:由图象可知,点A 右侧的部分和点B 与点C 之间的部分y 1<y 2,∴若y 1<y 2,x 的取值范围为:﹣4<x <0或x >1.【点睛】本题是一道反比例函数与一次函数图象的交点问题,主要考查了待定系数法,一次函数图象上点的坐标的特征,反比例函数图象上点的坐标的特征,利用点的坐标表示出相应线段的长和利用数形结合的思想方法求得x 的取值范围是解题的关键.22.(1)证明见解析;(2)4.【分析】(1)欲证明四边形OCED 是矩形,只需推知四边形OCED 是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)证明:因为四边形ABCD 是菱形,所以AC BD ⊥,90COD ︒∴∠=,//,//CE OD DE OC ,所以四边形OCED 是平行四边形,90COD ︒∠= ,∴四边形OCED 是矩形;(2)由(1)知,四边形OCED 是矩形,则CE=OD=1,∵四边形ABCD 是菱形,∴AB=AD=CD=BC ,∵菱形ABCD 的周长为CD ∴2OC∴==,24,22 AC OC BD OD==== ,∴菱形ABCD的面积为:11424 22AC BD⋅=⨯⨯=.23.(1)作图见解析;(2)存在,P(0,5 3).【分析】(1)有两种情形,分别画出图象即可;(2)存在.如图作点A关于y轴的对称点A′,连接BA′交y轴于P,连接PA,此时PA+PB 的值最小.求出直线BA′的解析式即可解决问题.【详解】(1)△A1B1O的图象如图所示.(2)存在.如图作点A关于y轴的对称点A′,连接BA′交y轴于P,连接PA,此时PA+PB 的值最小.∵点A(1,2)在反比例函数y=kx上,∴k=2,∴B (2,1),∵A′(﹣1,2),设最小BA′的解析式为y=kx+b ,则有221k b k b -+⎧⎨+⎩==,解得1253k b ⎧-⎪⎪⎨⎪⎪⎩==,∴直线BA′的解析式为y=﹣13x+53,∴P (0,53).24.每件童装应降价20元.【分析】设每件童装应降价x 元,再根据题意即可列出关于x 的一元二次方程,解出x ,最后舍去不合题意的解即可.【详解】解:设每件童装应降价x 元,依题意可列方程为(40)(404)2400x x -+=,解得:121020x x ==,,∵要减少库存,∴20x =,答:每件童装应降价20元.【点睛】本题考查一元二次方程的实际应用.根据题意找出等量关系,列出方程是解题关键.25.(1)见解析;(2)见解析;(3)CG =3【分析】(1)根据正方形的性质得到∠ADB =∠CDB =45°,AD =CD ,从而利用全等三角形的判定定理推出△ADG ≌△CDG (SAS ),进而利用全等三角形的性质进行证明即可;(2)根据正方形的性质得到AD ∥CB ,推出∠FCB =∠F ,由(1)可知△ADG ≌△CDG ,利用全等三角形的性质得到∠DAG =∠DCG ,结合图形根据角之间的和差关系∠DAB−∠DAG =∠DCB−∠DCG ,推出∠BCF =∠BAG ,从而结合图形可利用相似三角形的判定定理得到△AEG ∽△FAG ,(3)根据相似三角形的性质进行求解即可.【详解】(1)证明:∵BD 是正方形ABCD 的对角线,∴∠ADB =∠CDB =45°,又AD =CD ,在△ADG 和△CDG 中,AD CDADG CDG DG DG=⎧⎪∠=∠⎨⎪=⎩,∴△ADG ≌△CDG (SAS ),∴AG =CG ;(2)解:∵四边形ABCD 是正方形,∴AD ∥CB ,∴∠FCB =∠F ,由(1)可知△ADG ≌△CDG ,∴∠DAG =∠DCG ,∴∠DAB−∠DAG =∠DCB−∠DCG ,即∠BCF =∠BAG ,∴∠EAG =∠F ,又∠EGA =∠AGF ,∴△AEG ∽△FAG ;(3)∵△AEG ∽△FAG ,∴GEGAGA GF =,即GA 2=GE•GF ,∴GA =3或GA =−3(舍去),根据(1)中的结论AG =CG ,∴CG =3.。
九年级数学第一次月考卷(北师大版)(全解全析)【测试范围:第一章~第三章】A4版
2024-2025学年九年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一章~第三章(北师大版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单选题1.下列方程是关于x的一元二次方程的是().A.1+x=2B.x2―2y=0xC.x2+2x=x2―1D.x2=0【答案】D【分析】本题考查了一元二次方程的定义,掌握一元二次方程的定义是解题的关键.根据一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程,逐项分析判断即可求解.+x=2,是分式方程,不是一元二次方程;故该选项不符合题意;【详解】解:A.1xB.x2―2y=0,含有两个未知数,不是一元二次方程,故该选项不符合题意;C.x2+2x=x2―1,化简后为:2x+1=0,不是一元二次方程,故该选项不符合题意;D.x2=0,是一元二次方程,故该选项符合题意;故选D.2.下列事件中,属于必然事件的是()A.打开电视,正在播放跳水比赛B.一个不透明的袋子中装有3个红球和1个白球,除颜色外,这些球无其他差别,随机摸出两个球,至少有一个是红球C.抛掷两枚质地均匀的骰子,点数和为6D.一个多边形的内角和为600°【答案】B【分析】本题考查事件的分类,必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,由此对每一项进行分析即可.【详解】A,打开电视,可能播放跳水比赛,也可能不播放,因此该事件是随机事件;B,一个不透明的袋子中装有3个红球和1个白球,除颜色外,这些球无其他差别,随机摸出两个球,可能是2个红球,也可能是1个红球和1个白球,因此至少有一个是红球,该事件是必然事件;C,抛掷两枚质地均匀的骰子,点数和为可能是6,也可能不是6,因此该事件是随机事件;D,设一个n边形的内角和为600°,则(n―2)⋅180°=600°,解得n=16,不是整数,因此这种情3况不存在,该事件是不可能事件;故选B.3.下列命题是假命题的是()A.有一组邻边相等的矩形是正方形B.有一组邻边相等的四边形是平行四边形C.有三个角是直角的四边形是矩形D.对角线互相垂直且平分的四边形是菱形【答案】B【分析】根据正方形的判定、平行四边形的判定、矩形和菱形的判定判断即可.【详解】解:A、有一组邻边相等的矩形是正方形,是真命题;B、有一组邻边相等的四边形不一定是平行四边形,如筝形,原命题是假命题;C、有三个角是直角的四边形是矩形,是真命题;D、对角线互相垂直且平分的四边形是菱形,是真命题;故选:B.【点睛】本题考查的是命题的真假判断,主要包括平行四边形的判定和特殊平行四边形的判定.判断命题的真假关键是要熟悉课本中的性质定理.4.已知m是方程x2―x―4=0的一个根,则―2m2+2m的值为()A.4B.―4C.8D.―8【答案】D【分析】根据一元二次方程的根的定义,可知m2―m=4,然后整体代入求值即可.【详解】解:∵m是方程x2―x―4=0的一个根,∴m2―m―4=0,整理,可得m2―m=4,∴―2m2+2m=―2(m2―m)=―2×4=―8.故选:D.【点睛】本题主要考查了一元二次方程的根的定义以及代数式求值,理解一元二次方程的根的定义是解题关键.5.某农机厂4月份生产零件50万个,第二季度共生产零件182万个,设该厂5,6月份平均每月的增长率为x,那么x满足的方程是()A.50(1―x)2=182B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)=182【答案】B【分析】本题主要考查一元二次方程的增长率问题,根据题意分别表示出五月份,六月份生产零件的量,最后相加列出等式即可.【详解】解:根据题意,该厂五月份生产零件为:50(1+x),则该厂六月份生产零件为:50(1+x)(1+x)=50(1+x)2,故该厂第二季度共生产零件为:50+50(1+x)+50(1+x)2=182.故选:B6.如图,在3×3的正方形网格中,已有两个小正方形被凃黑,再将图中剩余的小正方形中任意一个涂黑,则三个被涂黑的小正方形能构成轴对称图形的概率是()A.17B.37C.47D.57【答案】B【分析】本题考查了概率公式,轴对称图形,熟记概率公式和能识别轴对称图形是解题的关键.分别将7个空白处涂黑,判断出所得图案是轴对称图形的个数,再根据概率公式进行计算.【详解】解:如图①②③任意一处涂黑时,图案为轴对称图形,∵共有7个空白处,将①②③处任意一处涂黑,图案为轴对称图形,共3处,∴构成轴对称图形的概率是3,7故选:B7.若1和―1有一个是关于x的方程x2+bx+a=0的根,则一元二次方程(a+1)x2+2bx+(a+1)=0根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.有两个实数根D.没有实数根【答案】B【分析】本题考查了一元二次方程的根,一元二次方程的根的判别式.熟练掌握:当Δ=0时,一由(a+1)x2+2bx+(a+1)=0,可知Δ=4b2―4(a+1)2,由题意,当1是方程的根时,b=―(1+a),则Δ=0,此时,方程有两个相等的实数根;当―1是方程的根时,b=1+a,则Δ=0,此时,方程有两个相等的实数根;然后作答即可.【详解】解:∵(a+1)x2+2bx+(a+1)=0,∴Δ=4b2―4(a+1)2,∵1和―1有一个是关于x的方程x2+bx+a=0的根,当1是方程的根时,则1+b+a=0,解得,b=―(1+a),∴Δ=4b2―4(a+1)2=4[―(1+a)]2―4(a+1)2=0,此时,方程有两个相等的实数根;当―1是方程的根时,则1―b+a=0,解得,b=1+a,∴Δ=4b2―4(a+1)2=4(1+a)2―4(a+1)2=0,此时,方程有两个相等的实数根;综上,方程有两个相等的实数根,故选:B.8.如图,菱形ABCD的顶点A,B的坐标分别为1,2,―2,―1,BC∥x轴,将菱形ABCD平移,使点B与原点O重合,则平移后点D的对应点的坐标为()A.3―1,2B.2,3)C.+1,2)D.+3,3)【答案】D【分析】本题考查了菱形的性质,坐标与图形,勾股定理以及平移等知识,先利用勾股定理求出AB,然后利用菱形的性质求出点D的坐标,最后利用平移的性质求解即可.【详解】解∶∵A,B的坐标分别为1,2,―2,―1,∴AB==∵菱形ABCD,∴AD=AB=AD∥BC,又BC∥x轴,∴AD∥x轴,∴D的坐标为(1+,∵菱形ABCD平移,使点B与原点O重合,∴菱形ABCD向右平移2个单位,向上平移1个单位,∴平移后点D的对应点的坐标为3,3),故选∶D.9.如图,在平行四边形ABCD中,∠C=135°,AB=2,AD=3,点H,G分别是CD,BC上的动点,连接AH,GH.E,F分别为AH,GH的中点,则EF的最小值是( )A.2B C D.【答案】C【分析】作AQ⊥BC,根据中位线定理可推出EF=12AG,进一步可得当AG⊥BC时,AG有最小值,此时EF的值也最小.据此即可求解.【详解】解:作AQ⊥BC,如图:∵E,F分别为AH,GH的中点∴EF=12AG故:当AG⊥BC时,AG有最小值,此时EF的值也最小∴EF的最小值是12AQ∵∠C=135°,AB=2∴∠B=180°―135°=45°∴AQ=AB×sin45°=∴EF故选:C【点睛】本题考查了中位线定理、平行四边形的性质、解直角三角形等.掌握相关结论即可.10.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a―b+c=0,则b2―4ac≥0;②若方程ax2+c=0有两个不相等的实数根,则方程ax2+bx+c=0必有两个不相等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则b2―4ac=(2ax0+b)2;⑤若方程ax2+bx+c=0(a≠0)两根为x1,x2且满足x1≠x2≠0,则方程cx2+bx+a=0(c≠0),必有实数根1x1,1x2.其中,正确的是( )A.②④⑤B.②③⑤C.①②③④⑤D.①②④⑤【答案】D【分析】一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,则Δ=b2―4ac>0;有两个相等的实数根,则Δ=b2―4ac=0;没有实数根,则Δ=b2―4ac<0;若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则x1+x2=―ba ,x1·x2=ca.【详解】解:①若a―b+c=0,则x=―1是一元二次方程ax2+bx+c=0的解∴Δ=b2―4ac≥0,故①正确;②∵方程ax2+c=0有两个不相等的实数根∴Δ=―4ac>0∴b2―4ac≥4ac>0∴方程ax2+bx+c=0必有两个不相等的实数根,故②正确;③∵c是方程ax2+bx+c=0的一个根∴ac2+bc+c=0当c=0时,无法得出ac+b+1=0,故③错误;④∵x0是一元二次方程ax2+bx+c=0的根∴x0=∴±=2ax0+b∴b2―4ac=(2ax0+b)2,故④正确;⑤∵方程ax2+bx+c=0(a≠0)两根为x1,x2∴x1+x2=―ba ,x1·x2=ca∴b=―a(x1+x2),c=ax1x2∴方程cx2+bx+a=0(c≠0)可化为:ax1x2x2―a(x1+x2)x+a=0(c≠0)即:x1x2x2―(x1+x2)x+1=0∴(x1x―1)(x2x―1)=0∴x=1x1或x=1x2,故⑤正确;综上分析可知,正确的是①②④⑤.故选:D【点睛】本题考查了一元二次方程根的判别式和根与系数的关系.熟记相关结论是解题关键.第II卷(非选择题)二、填空题11.已知关于x的一元二次方程(m―2)x2―2x+1=0有实数根,则实数m的取值范围是.【答案】m≤3且m≠2【分析】本题考查了一元二次方程的定义及根的判别式,根据一元二次方程的定义及根的判别式可得,解不等式即可求解,掌握一元二次方程的定义及根的判别式与根的关系是解题的关键.【详解】解:由题意得,Δ=(―2)2―4(m―2)×1=12―4m≥0,且m―2≠0,∴m≤3且m≠2.12.在一个不透明的盒子中装有6个红球、若干个黑球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是红球的概率为23,则盒子中黑球的个数为.【答案】3【分析】设黑球的个数为x个,根据概率的求法得:66+x =23,解方程即可求出黑球的个数.【详解】解:设黑球的个数为x个根据题意得:66+x =23解得:x=3经检验:x=3是原分式方程的解∴黑球的个数为3故答案为:3.【点睛】本题考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.13.把关于x的一元二次方程x²―8x+c=0配方,得(x―m)²=11,则c+m=.【答案】9【分析】本题考查了配方法解一元二次方程;把常数项c移项后,在左右两边同时加上一次项系数8的一半的平方得(x―4)2=16―c,进而得出c=5,m=4,即可求解.【详解】解:x2―8x+c=0配方,得(x―4)2=16―c∴m=4,16―c=11∴c=5∴c+m=9,故答案为:9.14.如图,在Rt△ABC中,∠ACB=90°,且Rt△ABC的周长是12cm,斜边上的中线CD长为52cm,则S△ABC=.【答案】6cm2【分析】先根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD=5cm,再利用勾股定理可得AC2 +BC2=25cm2,利用三角形的周长公式可得AC+BC=7cm,然后利用完全平方公式可得AC⋅BC的值,最后利用三角形的面积公式求解即可得.cm,【详解】解:∵在Rt△ABC中,斜边上的中线CD长为52∴AB=2CD=5cm,∴AC2+BC2=AB2=25(cm2),∵Rt△ABC的周长是12cm,∴AC+BC+AB=AC+BC+5=12,∴AC+BC=7(cm),×(72―25)=12(cm2),∴AC⋅BC=AC+BC)2―(AC2+BC2)=12AC⋅BC=6cm2,则S△ABC=12故答案为:6cm2.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半、勾股定理、完全平方公式等知识点,熟练掌握直角三角形斜边上的中线等于斜边的一半是解题关键.15.如图,在矩形ABCD中,AB=4,AD=3.P是射线AB上一动点,将矩形ABCD沿着PD对折,点A的对应点为A′.当P,A′,C三点在同一直线上时,则AP的长.【答案】4±【分析】分类讨论:当点P在AB上时,由折叠的性质得AD=A′D=3,AP=A′P,∠A=∠DA′P=90°,利用勾股定理求得A′C=AP=A′P=x,则PB=4―x,PC=x+定理列方程求解即可;当点P在AB的延长线上时,由折叠的性质得∠A=∠A′=90°,AP=A′P,AD=A′D=3,利用勾股定理求得A′C=AP=A′P=a,则CP=a―BP=a―4,利用勾股定理列方程求解即可.【详解】解:如图,当点P在AB上时,由折叠的性质得,AD=A′D=3,AP=A′P,∠A=∠DA′P=90°,∴∠DA′C=90°,在Rt△DA′C中,A′C==设AP=A′P=x,则PB=4―x,PC=x+在Rt△BCP中,BC2+BP2=PC2,即32+(4―x)2=(x+2,解得x=4―∴AP=4―如图,当点P在AB的延长线上时,由折叠的性质得,∠A=∠A′=90°,AP=A′P,AD=A′D=3,在Rt△A′DC中,A′C==设AP=A′P=a,则CP=a―BP=a―4,在Rt△BCP中,BC2+BP2=CP2,即32+(a―4)2=(a―2,解得a=4+综上所述,AP=±+4,故答案为:4±【点睛】本题考查矩形的性质、折叠的性质、勾股定理、解一元一次方程,运用分类讨论思想解决问题是解题的关键.16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图所示放置,点A1,A2,A3,…,在直线y=x+2上,点C1,C2,C3,…在x轴上,则B2023的坐标是.【答案】(22024―2,22023)【分析】利用一次函数图象上点的坐标特征及正方形的性质可得出B1,B2,B3,……,的坐标,根据点的坐标的变化找出变化规律,再代入n=2023即可得出结论.【详解】解:∵直线y=x+2,当x=0时,y=2,∴A1的坐标为(0,2).∵四边形A1B1C1O为正方形,∴B1的坐标为(2,2),C1的坐标为(2,0).当x=2时,y=4,∴A2的坐标为(2,4),∵四边形A2B2C2C1为正方形,∴B2的坐标为(6,4),C2的坐标为(6,0).同理,可知:B3的坐标为(14,8),……,∴B n的坐标为(2n+1―2,2n)(n为整数),∴点B2023的坐标是(22024―2,22023).故答案为:(22024―2,22023).【点睛】本题考查了一次函数图象上点的坐标特征,正方形的性质及规律型,解题的关键是根据点的坐标的变化找出变化规律.三、解答题17.解方程:(1)x2―4x―1=0.(2) x(x―1)+2=2x【答案】(1)x1=2+2=2―(2)x1=2,x2=1【分析】(1)利用配方法解方程即可;(2)利用因式分解法解方程即可.【详解】(1)x2―4x―1=0x2―4x=1x2―4x+4=1+4(x―2)2=5x―2=±x1=2x2=2―(2)x(x―1)+2=2xx(x―1)+2―2x=0x(x―1)―2(x―1)=0(x―2)(x―1)=0x1=2,x2=1【点睛】本题考查了解一元二次方程,选择合适的方法是解题的关键.18.小明的手机没电了,现有一个只含A,B,C,D四个同型号插座的插线板(如图,假设每个插座都适合所有的充电插头,且被选中的可能性相同),请计算:(1)若小明随机选择一个插座插入,则插入插座C的概率为______;(2)现小明同时对手机和学习机两种电器充电,请用列表或画树状图的方法计算两种电器插在不相邻的插座的概率.【答案】(1)14(2)12【分析】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.(1)直接利用概率公式计算;(2)画树状图展示所有12种等可能的结果数,再找出两个插头插在不相邻插座的结果数,然后根据概率公式计算.【详解】(1)小明随机选择一个插座插入,则插入A 的概率=14;故答案为:14;(2)画树状图为:共有12种等可能的结果数,其中两个插头插在不相邻插座的结果数为6,所以两个插头插在不相邻插座的概率=612=12.19.如图,用长为34米的篱笆,一面利用墙(墙的最大可用长度为20米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC 上用其他材料做了宽为1米的两扇小门(如图),设花圃垂直于墙的边AB 长为x 米.(1)用含x 的代数式表示BC ;(2)当AB 为多少米时,所围成花圃面积为105平方米?【答案】(1)(36―3x )米(2)当AB 为7米时,所围成花圃面积为105平方米【分析】(1)用绳子的总长减去三个AB 的长,然后加上两个门的长即可表示出BC ;(2)由(1)得花圃长BC=36―3x,宽为x,然后再根据面积为105,列一元二次方程方程解答即可.【详解】(1)解:设花圃垂直于墙的边AB长为x米,则长BC=34―3x+2=36―3x(米)故答案为:(36―3x);(2)由题意可得:(36―3x)x=105解得:x1=5,x2=7∵当AB=5时,BC=36―3×5=21>20,不符合题意,故舍去;当AB=7时,BC=36―3×7=15<20,符合题意,∴AB=7(米).答:当AB为7米时,所围成花圃面积为105平方米.【点睛】本题主要考查一元二次方程的应用,弄清题意、用x表示出BC是解答本题的关键.20.已知关于x的一元二次方程x2+6x―m2=0.(1)求证:该方程有两个不相等的实数根;(2)若该方程的两个实数根x1,x2满足x1+2x2=―5,求m的值.【答案】(1)见解析(2)m=±【分析】(1)根据一元二次方程根的判别式,代入计算即可解答;(2)根据一元二次方程根与系数的关系,求得x1,x2,再将其代入求得m的值即可.【详解】(1)证明:∵在方程x2+6x―m2=0中,Δ=62―4×1×(―m2)=36+4m2>0,∴该方程有两个不相等的实数根.(2)解:∵该方程的两个实数根分别为x1,x2,∴x1+x2=―6①,x1⋅x2=―m2②.∵x1+2x2=―5③,∴联立①③,解得x1=―7,x2=1.∴x1⋅x2=―7=―m2,解得m=±【点睛】本题考查了一元二次方程根的判别式,根与系数的关系,熟知相关公式是解题的关键.21.如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交DE 于点F,连接AE、CF.(1)求证:四边形AECF是菱形;(2)若CF=2,∠FAC=30°,∠B=45°,求AB的长.【答案】(1)见解析(2)AB=【分析】(1)由题意可得△AFD≌△CED(AAS),则AF=EC,根据“一组对边平行且相等的四边形是平行四边形”可得四边形AECF是平行四边形;又EF垂直平分AC,根据垂直平分线的性质可得AF=CF,根据“有一组邻边相等的平行四边形是菱形”可得结论;(2)过点A作AG⊥BC于点G,根据题意可得∠AEG=60°,AE=2,则BG=AG=AB=BG=【详解】(1)证明:在△ABC中,点D是AC的中点,∴AD=DC,∵AF∥BC,∴∠FAD=∠ECD,∠AFD=∠CED,∴△AFD≌△CED(AAS),∴AF=EC,∴四边形AECF是平行四边形,又EF⊥AC,点D是AC的中点,即EF垂直平分AC,∴平行四边形AECF是菱形.(2)解:如图,过点A作AG⊥BC于点G,由(1)知四边形AECF是菱形,又CF=2,∠FAC=30°,∴AF∥EC,AE=CF=2,∠FAE=2∠FAC=60°,∴∠AEB=∠FAE=60°,∵AG⊥BC,∴∠AGB=∠AGE=90°,∴∠GAE=30°,AE=1,AG==∴GE=12∵∠B=45°,∴∠GAB=∠B=45°,∴BG=AG=∴AB==.【点睛】本题主要考查菱形的性质与判定,含30°角的直角三角形的三边关系,等腰直角三角形的性质与判定等内容,根据45°,30°等特殊角作出正确的垂线是解题关键.22.如图,在Rt△ABC中,AC=24cm,BC=7cm,点P在BC上从B运动到C(不包括C),速度为2cm/s;点Q在AC上从C运动到A(不包括A),速度为5cm/s.若点P,Q分别从B,C同时出发,当P,Q两点中有一个点运动到终点时,两点均停止运动.设运动时间为t秒,请解答下列问题,并写出探索的主要过程.(1)当t为何值时,P,Q两点的距离为?(2)当t 为何值时,△PCQ 的面积为15cm 2【答案】(1)经过1秒,P ,Q 两点的距离为(2)经过1.5秒或2秒,△PCQ 的面积为15cm 2【分析】本题考查一元二次方程的应用,勾股定理.熟练掌握勾股定理,列出一元二次方程,是解题的关键.(1)设经过t 秒,P ,Q 两点的距离为,勾股定理列式求解即可;(2)利用S △PCQ =12PC ⋅CQ ,列式计算即可.【详解】(1)解:设经过t 秒,P ,Q 两点的距离为,由题意,得:BP =2t cm ,CQ =5t cm ,∵在Rt △ABC 中,AC =24cm ,BC =7cm ,∴CP =BC ―BP =(7―2t )cm ,由勾股定理,得:CP 2+CQ 2=PQ 2,即:(7―2t )2+(5t )2=2,解得:t 1=1,t 2=―129(舍去);∴经过1秒,P ,Q 两点的距离为;(2)解:设经过t 秒,△PCQ 的面积为15cm 2,此时:BP =2t cm ,CQ =5t cm ,则:CP =BC ―BP =(7―2t )cm ,∴S △PCQ =12PC ⋅CQ =12(7―2t )⋅5t =15,解得:t 1=2,t 2=1.5,∴经过1.5秒或2秒,△PCQ 的面积为15cm 2.23.暑假期间某景区商店推出销售纪念品活动,已知纪念品每件的进货价为30元,经市场调研发现,当该纪念品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.(销售利润=销售总额-进货成本)(1)若该纪念品的销售单价为45元时则当天销售量为 件.(2)当该纪念品的销售单价为多少元时,该产品的当天销售利润是2610元.(3)该纪念品的当天销售利润有可能达到3700元吗?若能,请求出此时的销售单价;若不能,请说明理由.【答案】(1)230(2)59元或39元(3)不可能达到3700元,理由见解析【分析】本题考查一元二次方程的应用,找准等量关系是解题的关键,正确列出一元二次方程是解题的关键.(1)根据当天销售量=280―10×增加的销售单价,即可得到答案;(2)设该纪念品的销售单价为x元,则当天的销售利润为[280―(x―10)×10]件,列出一元二次方程即可得到答案;(3)设该纪念品的销售单价为y元,则当天的销售利润为[280―(y―10)×10]件,列出一元二次方程根据根的判别式判断即可.【详解】(1)解:280―(45―40)×10=230(件),故答案为:230;(2)解:设该纪念品的销售单价为x元,则当天的销售利润为[280―(x―10)×10]件,依题意得(x―30)[280―(x―40)×10]=2610,整理得x2―98x+2301=0,整理解得x1=39,x2=59,答:当该纪念品的销售单价定价为59元或39元时,该产品的当天销售利润是2610元.(3)解:不能,理由如下:设该纪念品的销售单价为y元,则当天的销售利润为[280―(y―10)×10]件,依题意得(y―30)[280―(y―40)×10]=2610,整理得y2―98y+2410=0,∵Δ=(―98)2―4×1×2410=―36<0,故该方程没有实数根,即该纪念品的当天利润不可能达到3700元.24.如图,正方形ABCD中,点P是线段BD上的动点.(1)当PE⊥AP交BC于E时,①如图1,求证:PA=PE.②如图2,连接AC 交BD 于点O ,交PE 于点F ,试探究线段PA 2、PO 2、PF 2之间用等号连接的数量关系,并说明理由;(2)如图3,已知M 为BC 的中点,PQ 为对角线BD 上一条定长线段,若正方形边长为4,随着P 的运动,CP +QM 的最小值为PQ 的长.【答案】(1)①见解析;②PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2【分析】(1)①连接PC ,根据SAS 证明△ABP≌△CBP (SAS),得到PA =PC ,∠BAP =∠BCP ,再求出∠BAP +∠BEP =180°,进一步证明∠BCP =∠PEC 得到PC =PE ,等量代换可得结果;②先根据PE ⊥AP 得到S △APF =12PO ⋅AF =12PA ⋅PF ,得到PO 2⋅AF 2=PA 2⋅PF 2,结合勾股定理得到PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2;(2)连接AC 交BD 于点O ,先根据正方形的性质得到AC ⊥BD ,BO =CO =P 与点O 重合时,CP 的最小值,QM 的最小值,以及此时QM ⊥BD ,QM∥AC ,最后根据M 为BC 中点得到Q 为BO 中点,即可求解.【详解】(1)解:①如图1,连接PC ,∵四边形ABCD 是正方形,∴AB =BC ,∠ABC =90°,∠ABD =∠CBD =45°,在△ABP 和△CBP 中,AB =BC ∠ABD =∠CBD BP =BP,∴△ABP≌△CBP (SAS),∴PA =PC ,∠BAP =∠BCP,∵PE ⊥AP ,∴∠APE =90°,又∠BAP +∠BEP +∠ABC +∠APE =360°,∴∠BAP +∠BEP =180°,∵∠PEC +∠BEP =180°,∴∠BAP =∠PEC ,∴∠BCP =∠PEC ,∴PC =PE ,∴PA =PE ;②如图,PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2,理由是:∵PE ⊥AP ,∴PA 2+PF 2=AF 2,∵四边形ABCD 是正方形,∴AC ⊥BD ,∵S △APF =12PO ⋅AF =12PA ⋅PF ,∴PO 2⋅AF 2=PA 2⋅PF 2,∴PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2;(2)如图,连接AC 交BD 于点O ,∵四边形ABCD 是正方形,边长为4,∴AC ⊥BD ,BO =CO ==∴当点P 与点O 重合时,CP 的最小值为CO =∵CP +QM 的最小值为∴QM ∴当点P 与点O 重合时,QM ⊥BD ,如图,∴QM∥AC ,∵M 为BC 中点,∴Q 为BO 中点,∴PQ =12BO =12×=。
2024-2025学年北师版九年级数学上学期 期中综合模拟测试卷2
2024-2025学年北师版九年级数学上学期期中综合模拟测试卷本试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置.考试结束后,只交答题卡.第Ⅰ卷(选择题共60分)一、选择题(本题共15个小题,每题只有一个正确答案,每小题4分,共60分)1.下列各点在反比例函数y=x6图象上的是()A(2,-3)B(2,4)C(-2,3)D(2,3)2.右图所示的几何体的俯视图是()A B C D 3.下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是()4.连续两次掷一枚质地均匀的硬币,两次都是正面朝上的概率是()A.61 B.41 C.D.5.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.21B.41C.61D.1216.在一个暗箱里放有a 个除颜色外其它完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸1213到红球的频率稳定在25%,那么可以推算出a 大约是()A.12B.9C.4D.37.如图,在△ABC 中,DE ∥BC ,AD =6,BD =3,AE =4,则EC 的长为()A.1B .2C.3D.4第7题图第8题图第9题图第10题图8.如图,下列条件不能..判定△ADB ∽△ABC 的是()A.∠ABD =∠ACBB.∠ADB =∠ABCB.AB 2=AD •AC D.AD ABAB BC=9.如图,点D、E 分别为△ABC 的边AB、AC 上的中点,则△ADE 的面积与四边形BCED 的面积的比为()A.1:2B.1:3C.1:4D.1:110.如图,在直角坐标系中,有两点A (6,3)、B (6,0).以原点O 为位似中心,相似比为31,在第一象限内把线段AB 缩小后得到线段CD ,则点C 的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)11.已知点A (-2,y 1),B (-3,y 2)是反比例函y=x6-图象上的两点,则有()A.y 1>y 2B.y 1<y 2C.y 1=y 2D.不能确定12.函数xay =(0≠a )与a ax y -=(0≠a )在同一平面直角坐标系中的大致图象是()13.某村耕地总面积为50公顷,且该村人均耕地面积y (单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是()A.该村人均耕地面积随总人口的增多而增多B.该村人均耕地面积y 与总人口x 成正比例C.若该村人均耕地面积为2公顷,则总人口有100人D.当该村总人口为50人时,人均耕地面积为1公顷14.(2018·重庆)如图,菱形ABCD 的边AD⊥y 轴,垂足为点E,顶点A 在第二象限,顶点B 在y 轴的正半轴上,反比例函数()0,0y >≠=x k xk的图象同时经过顶点C.D,若点C 的横坐标为5,BE=3DE.则k 的值为()A.25 B.3 C.415 D.515.如图,在正方形ABCD 中,点P 是AB 上一动点(不与A、B 重合),对角线AC、BD 相交于点O,过点P 分别作AC、BD 的垂线,分别交AC、BD 于点E、F,交AD、BC 于点M、N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE 2+PF 2=PO 2;④△POF∽△BNF;⑤当△PMN∽△AMP 时,点P 是AB 的中点.其中正确的结论有()A.5个B.4个C.3个D.2个第Ⅱ卷(非选择题共90分)二、填空题(本题共7个小题,每题4分,共28分)16.若3x=5y ,则yx=;已知0,2≠++===f d b fed c b a 且,则fd b ec a ++++=.17.(2018•新疆)一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是.18.把长度为20cm 的线段进行黄金分割,则较长线段的长是________cm.(结果保留根号)19.如图所示,一个底面为等边三角形的三棱柱,底面边长为2,高为4,如图放置,则其左视图的面积是.ABCDPO MNEF主视图俯视图左视图20.如下图,为了测量校园内一棵不可攀的树的高度,实验学校“玩转数学”社团做了如下的探索:根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把镜子放在离树(AB)9米的点E 处,然后沿着直线BE 后退到点D,这是恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7米,观察者目高CD=1.8米,则树(AB)的高度为____________米.第20题图第21题图21.如图,点A 为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C 是x 轴上一点,且AO=AC,则△ABC 的面积为.22.如图,在RT△ABC 中,∠C=90°,BC=8,AC=6,动点Q 从B 点开始在线段BA 上以每秒2个单位长度的速度向点A 移动,同时点P 从A 点开始在线段AC 上以每秒1个单位长度的速度向点C 移动.当一点停止运动,另一点也随之停止运动.设点Q,P 移动的时间为t 秒.当t=秒时△APQ 与△ABC相似.三.解答题23.(8分)同一时刻,物体的高与影子的长成比例,某一时刻,高1.6m 的人影长1.2m,一电线杆影长为9m,则电线杆的高为多少米?24.(8分)在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.25.(8分)如图,在△ABC 中,点D,E 分别是AB,AC 边上的两点,且AB=8,AC=6,AD=3,AE=4,DE=6,求BC 的长.26.(12分)如图,△ABC 为锐角三角形,AD 是BC 边上的高,正方形EFGH 的一边FG 在BC 上,顶点E、H 分别在AB、AC 上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.EA DCB27.(12分)如图,已知反比例函数xky =与一次函数bx y +=的图象在第一象限相交于点A(1,4+-k ).(1)试确定这两个函数的表达式;(2)求出这两个函数的另一个交点B 的坐标,并求出△AOB 的面积.(3)直接写出当反比例函数值大于一次函数值时,x 的取值范围.28(14分)如图,在平面直角坐标系中,OA⊥OB,AB⊥x 轴于点C,点A(3,1)在反比例函数y=xk的图象上.(1)求反比例函数y=xk的表达式;(2)在x 轴上是否存在一点P,使得S ΔAOP =21S ΔAOB ,若存在求点P 的坐标;若不存在请说明理由.(3)若将ΔBOA 绕点B 按逆时针方向旋转60°得到ΔBDE,直接写出点E 的坐标,并判断点E 是否在该反比例函数的图象上,说明理由.A BOxy C备用图数学试题答案一选择题1~5DBABC6~10ABDBA11~15AADCB二填空题16.35217.12【解析】用A 和a 分别表示第一个有盖茶杯的杯盖和茶杯;用B 和b 分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:Aa、Ab、Ba、Bb.所以颜色搭配正确的概率是12.18.(105—10)注:无括号也不再扣分19.4320.621.622.13501130或三解答题23.解设电线杆高x 米,由题意得:x 1.6=91.2---------------------------------------------------5分X=12---------------------------------------------------7分答:电线高为12米--------------------------------------------------8分24.解:(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,刚好是男生的概率=433 =73;---------------------------------------------2分(2)画树状图为:开始---------------5分共有12种等可能的结果数,------------------------6分其中刚好是一男生一女生的结果数为6,----------------------------7分所以刚好是一男生一女生的概率==.----------------------8分25解:∵,-------------------------------1分,-----------------------------------2分∴AC AD =ABAE-------------------------------------3分∵∠A=∠A,---------------------------------4分∴△ADE ∽△ACB.----------------------------------5分∴21==AC AD BCDE即216=BC --------------------------------------7分∴BC=12---------------------------------------------8分26解:(1)证明:∵四边形EFGH 是正方形,∴EH∥BC ,-----------------------1分∴∠AEH=∠B,----------------------2分∠AHE=∠C,-----------------------3分∴△AEH ∽△ABC.-------------------4分(2)解:如图设AD 与EH 交于点M.-----------------------5分∵∠EFD=∠FEM=∠FDM=90°,∴四边形EFDM 是矩形,∴EF=DM ,设正方形EFGH 的边长为x,-------------------6分∵△AEH ∽△ABC,∴=,-------------------------------------------8分∴=,-------------------------------------10分∴x=,-----------------------------------------11分∴正方形EFGH 的边长为cm,面积为cm 2.------------------------12分27题(1)∵点A(1,4k -+)在反比例函数ky x=的图象上∴=4k k -+解得=2k ----------------------------------------------------1分∴A(1,2)∵点A(1,2)在一次函数y x b =+的图象上∴12b +=解得1b =-----------------------------------------2分反比例函数的解析式为2y x =,一次函数的解析式为1y x =+-------4分(2)解方程组12y x y x =+⎧⎪⎨=⎪⎩得21x y =-⎧⎨=-⎩或12x y =⎧⎨=⎩∵点B 在第三象限∴点B 坐标为(2-,1-)-----------------6分∵1y x =+,当0y =时1x =-∴点C 坐标为(1-,0)------------7分∴S △A O B =23-----------------------------10分(3)x<-2或0<x<1----------------------------------12分注:写出一种情况给1分28题∵点A(3,1)在反比例函数y=xk的图象上∴k=3×1=3∴y=x3-------------------------------------2分(2)∵A(3,1)∴OC=3,AC=1由△OAC ∽△BOC 得OC 2=AC •BC 可得BC=3,∴BA=4---------6分∴S ΔA O B =21×3×4=23∵S ΔA O P =21S ΔA O B ∴S ΔA O P =3设P(m,0)∴21×m ×1=3∴m =23∴m=-23或23∴P(-23,0)或(23,0)----------10分(3)E(-3,-1),点E 在反比例函数y=x 3的图象上,---11分理由如下:当x=-3时,133y -=-=∴点E 在反比例函数y=x 3的图象上.-----------------------14分注:若说明∵(-3)×(-1)=3=k,也可.。
2024-2025学年北师大版九年级数学上册期中复习试卷
九年级上学期数学期中复习试卷一、单选题1.如果有意义,则a 的取值范围是()A.0a ≥ B.0a ≤ C.3a ≥ D.3a ≤2.是同类二次根式的是()A. B.C. D.3.下列运算正确的是()A.=B.1-=C.-=D.=4.若关于x 的一元二次方程方程kx 2﹣2x ﹣1=0有实数根,k 的取值范围是()A.k >﹣1 B.k ≥﹣1且k ≠0 C.k <﹣1 D.k <1且k ≠05.若关于x 的一元二次方程2210kx x --=有实数根,则实数k 的取值范围是().A.1k >- B.1k < C.1k ≥-且0k ≠ D.1k >-且0k ≠6.如图,在ABC V 中,78,6,9A AB AC ∠=︒==.将ABC V 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A. B.C. D.7.如图,一次函数y ax b =+与反比例函数()0k y k x=>的图象交于点()1A m ,,()2B n -,.则关于x的不等式k ax b x +>的解集是()A.01x <<或<2x - B.1x <-或02x <<C.1x >或20x -<< D.2x >或10x -<<8.我们把宽与长的比值等于黄金比例512-的矩形称为黄金矩形.如图,在黄金矩形ABCD (AB BC >)的边AB 上取一点E ,使得BE BC =,连接DE ,则AE AD 等于()A .22 B.512 C.352- D.512+9.如图,在四边形ABDC 中,不等长的两对角线AD 、BC 相交于O 点,且将四边形ABDC 分成甲、乙、丙、丁四个三角形.若OA :OB =OC :OD =2:3,则此四个三角形的关系,下列叙述正确的是()A.甲与丙相似,乙与丁相似B.甲与丙相似,乙与丁不相似C.甲与丙不相似,乙与丁相似D.甲与丙不相似,乙与丁不相似10.已知蓄电池的电压为定值.使用电池时,电流I (A )与电阻R (Ω)是反比例函数关系,图象如图所示.如果以此蓄电池为电源的电器的限制电流不能超过3A ,那么电器的可变电阻R (Ω)应控制在()A.R≥1B.0<R≤2C.R≥2D.0<R≤1二、填空题11.一元二次方程27x x =的解是__.12.若某人沿坡度i =1:2的斜坡前进m ,则他所在的位置比原来的位置升高________m .13.如图,已知ABC V 与DEF 位似,位似中心为O ,且ABC V 的面积与DEF 的面积之比是169∶,则AO OD=______.14.如图,在平面直角坐标系中,点A 在第一象限,AB y ⊥轴于点B ,反比例函数k y x=(0k >,0x >)的图象与线段AB 交于点C ,且3BC .若AOB V 的面积为12,则k 的值为______.15.二次函数21y ax bx =++(0a <,0b <)的图象经过点(),1P n (0n ≠),此函数图象与x 轴有两个不同的交点,若其中一个交点的坐标为()2,0n +,则另一个交点的坐标为______.三、解答题(62分)16.解下列方程(1)2420x x ++=(2)2(21)3(21)+=-+x x17如图,AB CD ∥,AD BC 、相交于点O ,2OA =,4OD =,3AB =.(1)求证:AOB DOC ∽△△;(2)求C 的长度.18如图,有一块长为30米,宽为20米的矩形场地,计划在该场地上修建两条互相垂直的小道,横向小道与竖向小道的宽比为2:3,余下矩形场地建成草坪,草坪的面积为486平方米,请求出横向小道的宽.19.如图,小丽在观察某建筑物AB .(1)请你根据小丽在阳光下的投影,画出建筑物AB 在阳光下的投影.(2)已知小丽的身高为1.65m ,在同一时刻测得小丽和建筑物AB 的投影长分别为1.2m 和8m ,求建筑物AB 的高.20.一款服装每件进价为80元,销售价为120元时,每天可售出30件.经市场调查发现,如果每件服装降价1元,那么平均每天可多售出3件.设每件服装降价x 元.(1)则每天销售量增加件,每件服装盈利为元(用含x 的代数式表示);(2)在让利于顾客的情况下,每件服装降价多少元时,商家平均每天能盈利1800元?21.已知22335A x y xy =+-,22234B xy y x =-+(1)化简:2B A -;(2)已知22x a b --与13y ab 是同类项,求2B A -的值.22.如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.1●○x 73-…(1)可知x =,●=,○=;(2)试判断第2023个格子中的数是多少?并给出相应的理由.(3)判断:前n 个格子中所填整数之和是否可能为2024?若能,求出n 的值,若不能,请说明理由.23.我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.例如,式子2x -的几何意义是数轴上x 所对应的点与2所对应的点之间的距离;因为()+=--x 1x 1,所以1x +的几何意义就是数轴上x 所对应的点与-1所对应的点之间的距离.结合数轴与绝对值的知识回答下列问题:(1)若23x -=,则x =;32x x -++的最小值是.(2)若327x x -++=,则x 的值为;若43113x x x ++-++=,则x 的值为.(3)是否存在x 使得32143x x x ++++取最小值,若存在,直接写出这个最小值及此时x 的取值情况;若不存在,请说明理由.。
2024-2025学年九年级数学上学期期中测试卷(陕西专用,北师大版九上全部)(考试版A4)
2024-2025学年九年级数学上学期期中模拟卷(陕西专用)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:北师大版九年级(九上全册)。
5.难度系数:0.69。
一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.下列函数不是反比例函数的是( )A.y=3x﹣1B.y=―x3C.xy=5D.y=12x2.如图是某个几何体的三视图,则该几何体是( )A.圆锥B.长方体C.三棱柱D.圆柱3.若双曲线y=k―1x的图象经过第二、四象限,则k的取值范围是( )A.k>1B.k<1C.k=1D.不存在4.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.7左右,则布袋中白球可能有( )A.15个B.20个C.30个D.35个5.如图,AD∥BE∥CF,若AB=2,AC=5,EF=4,则DE的长度是( )A .6B .23C .53D .836.在长为30m ,宽为20m 的长方形田地中开辟三条入口宽度相等的道路,已知剩余田地的面积为468m 2,求道路的宽度设道路的宽度为x (m ),则可列方程( )A .(30﹣2x )(20﹣x )=468B .(20﹣2x )(30﹣x )=468C .30×20﹣2×30x ﹣20x =468D .(30﹣x )(20﹣x )=4687.如图,正方形四个顶点分别位于两个反比例函数y =3x和y =n x 的图象的四个分支上,则实数n 的值为( )A .﹣3B .―13C .13D .38.如图,在菱形ABCD 中,DE ⊥AB ,垂足为E ,DE AE =34,BE =1,F 是BC 的中点.现有下列四个结论:①DE =3;②四边形DEBC 的面积等于9;③(AC +BD )(AC ﹣BD )=80;④DF =DE .其中正确结论的个数为( )A .1个B .2个C .3个D .4个二、填空题(共5小题,每小题3分,计15分)9.广场上,一个大型字母宣传牌垂直于地面放置,其投影如图所示,则该投影属于__________.(填“平行投影”或“中心投影”)10.反比例函数y =k x的图象经过点(1,6)和(m ,﹣3),则m =__________.11.已知等腰三角形的两边长是方程x 2﹣9x +18=0的两个根,则该等腰三角形的周长为__________.12.如图,在菱形ABCD 中,AC =24,BD =10.E 是CD 边上一动点,过点E 分别作EF ⊥OC 于点F ,EG⊥OD 于点G ,连接FG ,则FG 的最小值为__________.13.如图,在Rt △ABC 中,∠C =90°,AC =10cm ,BC =8cm .点P 从点C 出发,以2cm /s 的速度沿着CA向点A 匀速运动,同时点Q 从点B 出发,以1cm /s 的速度沿BC 向点C 匀速运动,当一个点到终点时,另一个点随之停止.经过__________秒后,△PCQ 与△ABC 相似.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)解方程:x 2﹣4x +1=0.15.(5分)已知:a 2=b 3=c 4≠0,且2a ﹣b +c =10.求a 、b 、c 的值.16.(5分)一个几何体由一些大小相同的小正方块儿搭建,如图是从上面看到的这个几何体的形状如图,小正方形的数字表示在该位置的小正方块儿的个数,请在网格中画出从正面和左面看到的几何体的形状图..17.(5分)如图所示,BE,CF是△ABC的高,D是BC边的中点,求证:DE=DF.18.(5分)已知矩形ABCD中,AB=2,在BC中取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,求AD的长.19.(5分)如图,小明用自制的直角三角形纸板DEF测量水平地面上树AB的高度,已知两直角边EF:DE=2:3,他调整自己的姿势和三角形纸板的位置,使斜边DF保持水平,并且边DE与点B在同一直线上,DM垂直于地面,测得AM=21m,边DF离地面的距离为1.6m,求树高AB.20.(5分)如图所示某地铁站有三个闸口.(1)一名乘客随机选择此地铁闸口通过时,选择A闸口通过的概率为 .(2)当两名乘客随机选择此地铁闸口通过时,请用树状图或列表法求两名乘客选择不同闸口通过的概率.21.(6分)如图,小亮利用所学的数学知识测量某旗杆AB的高度.(1)请你根据小亮在阳光下的投影,画出旗杆AB在阳光下的投影.(2)已知小亮的身高为1.72m,在同一时刻测得小亮和旗杆AB的投影长分别为0.86m和6m,求旗杆AB的高.22.(7分)如图,在平面直角坐标系中,每个小正方形的边长都是1个单位长度,△ABC的顶点都在格点上.(1)以原点O 为位似中心,在第三象限内画出将△ABC 放大为原来的2倍后的位似图形△A 1B 1C 1;(2)已知△ABC 的面积为72,则△A 1B 1C 1的面积是__________.23.(7分)实验数据显示,一般成人喝50毫升某品牌白酒后,血液中酒精含量y (毫克/百毫升)与时间x(时)变化的图象如图(图象由线段OA 与部分双曲线AB 组成)所示.国家规定,车辆驾驶人员血液中的酒精含量大于或等于20(毫克/百毫升)时属于“酒后驾驶”,不能驾车上路.(1)求部分双曲线AB的函数表达式;(2)参照上述数学模型,假设某驾驶员晚上22:00在家喝完50毫升该品牌白酒,第二天早上6:30能否驾车去上班?请说明理由.24.(8分)如图所示,A、B、C、D是矩形的四个顶点,AB=16cm,AD=6cm,动点P,Q分别从点A,C 同时出发,点P以3cm/s的速度向点B移动,一直到达点B为止,点Q以2cm/s的速度向点D移动(1)P,Q两点从出发开始到几秒时,四边形PBCQ的面积为33cm2?(2)P,Q P和点Q的距离第一次是10cm?25.(8分)如图,已知四边形ABCD为正方形,AB=E为对角线AC上一动点,连接DE,过点E 作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG 是正方形;(2)探究:CE +CG 的值是否为定值?若是,请求出这个定值;若不是,请说明理由.26.(10分)如图,12y kx =+的图象与反比例函数2y mx =图象相交于A 、B 两点,已知点B 坐标为(3,﹣1).(1)求一次函数和反比例函数的表达式;(2)求得另一个交点A(﹣1,3),观察图象,请直接写出不等式kx+2≤mx的解集;(3)P为y轴上的点,Q为反比例函数图象上的点,若以ABPQ为顶点的四边形是平行四边形,求出满足条件的点P的坐标.。
2023-2024学年九年级上学期数学(北师大版)第一次月考试卷附详细答案精选全文
可编辑修改精选全文完整版2023-2024学年九年级上学期数学(北师大版)第一次月考试卷▼(上册1.1~2.4) ▼说明:共有六个大题,23个小题,满分120分,作答时间120分钟. 一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填入题后括号内.错选、多选或未选均不得分. 1.下列方程是一元二次方程的是( )A.3x −1=0B.a x 2+b x +c=0(a ,b ,c 为常数)C.x ²+x =3D.3x 2−2x y −5y 2=0 2.菱形具有而平行四边形不一定具有的性质是( )A.对角线互相垂直B.对边相等C.对角相等D.是中心对称图形 3.一元二次方程x 2=4的解为( )A.x =2B.x =4C.x 1=−2,x 2=2D.x 1=−4,x 2=4 4.如图,若四边形ABCD 是平行四边形,则下列结论中错误的是( ) A.当AC ⊥BD 时,它是菱形 B.当AC=BD 时,它是矩形 C.当∠ABC=90°时,它是矩形 D.当AB=BC 时,它是正方形5.已知关于x 的一元二次方程x 2+b x +c=0有一个非零实数根c ,则b+c 的值为( )ADCBOA.1B.−1C.0D.26.如图,把一张矩形纸片ABCD 按如下方法进行两次折叠:第一次将DA 边折叠到DC 边上得到DA ´,折痕为DM ,连接A ´M ,CM ,第二次将△MBC 沿着MC 折叠,MB 边恰好落在MD 边上.若AD=1,则AB 的长为( )A.32 B.√2 C.√3 D.√2−1 二、填空题(本大题共6小题,每小题3分,共18分)7.把一元二次方程x (x −3)=4化成a x 2+b x +c=0的一般形式,其中a=1,则常数项c=______.8.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,如果∠ADB=25°,那么∠AOB 的度数为______.9.若关于x 的方程x 2−2x +1−k=0有两个相等的实数根,则k 的值为______. 10.若关于x 的一元二次方程a x 2=b(ab >0)的两个根分别为m 与2m −6,则m 的值为______.11.如图,在平面直角坐标系x Oy 中,四边形ABCO 是正方形,已知点A 的坐标为(2,1),则点C 的坐标为______.12.如图,在菱形ABCD 中,AB=20,∠A=45°,点E 在边AB 上,AE=13,点P 从点A第8题图ADCBO第12题图A D BCPE第11题图ACDB出发,沿着A →D →C →B 的路线向终点B 运动,连接PE ,若△APE 是以AE 为腰的等腰三角形,则AP 的长可以是______.三、解答题(本大题共5小题,每小题6分,共30分) 13.(1)解方程:x 2−2x −1=0.(2)如图,在Rt △ABC 中,∠ACB=90°,D 为AB 的中点,∠A=30°,BC=2,求CD 的长.14.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点C 作BD 的平行线交AB 的延长线于点E.求证:AC=CE.15.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,过点A 作AE ⊥BC 于点E ,若OB=2,S 菱形ABCD =4,求AE 的长.16.如图,△ACB 和△CED 都是等腰直角三角形,点B ,C ,E 在同一直线上,且E 是BC 的中点,请仅用无刻度的直尺......按要求完成以下作图(保留作图痕迹). (1)在图1中,作□ABMC. (2)在图2中,作正方形ACBN.ADBEO ABCDEOADBC17.如图,矩形绿地的长为12m ,宽为9m ,将此绿地的长、宽各增加相同的长度后,绿地面积增加了72m 2,求绿地的长、宽增加的长度.四、解答题(本大题共3小题,每小题8分,共24分)18.设关于x 的一元二次方程为x 2+b x +c=0.在下面的四组条件中选择其中一组b ,c 的值,使这个方程有两个不相等的实数根,并解这个方程. ①b=2,c=1;②b=1,c=2;③b=3,c=−1;④b=−3,c=2. 注:如果选择多组条件分别作答,按第一个解答计分.19.定义:如果关于x 的一元二次方程a x 2+b x +c=0(a ≠0)满足b=a+c ,那么我们称这个方程为“完美方程”.(1)下面方程是“完美方程”的是______.(填序号) ①x 2−4x +3=0;②2x 2+x +3=0;③2x 2−x −3=0.(2)已知3x 2+m x +n=0是关于x 的“完美方程”,若m 是此“完美方程”的一个根,求m 的值.20.如图,在□ABCD 中,E ,F 分别是边CD ,BC 上的点,连接BE ,DF ,BE 与DF 交于点P ,BE=DF.添加下列条件之一使□ABCD 成为菱形:①CE=CF ;②BE ⊥CD ,DF ⊥BC. (1)你添加的条件是_______(填序号),并证明.图1ADCBEA图2CDE B(2)在(1)的条件下,若∠A=45°,△BFP 的周长为4,求菱形的边长.五、解答题(本大题共2小题,每小题9分,共18分) 21.【阅读】解方程:(x −1)2−5(x −1)+4=0.解:设x −1=y ,则原方程可化为y 2−5y+4=0,解得y 1=1,y 2=4. 当y=1时,即x −1=1,解得x =2;当y=4时,即x −1=4,解得x =5. 所以原方程的解为x 1=2,x 2=5. 上述解法称为“整体换元法”. 【应用】 (1)若在方程x−1x−3xx−1=0中,设y=x−1x,则原方程可化为整式方程:________.(2)请运用“整体换元法”解方程:(2x −3)2−(2x −3)−2=0.22.如图1,在□ABCD 中,点E ,F 在对角线AC 上,AE=CF ,DE ⊥AC ,过点D 作DG ∥AC 交BF 的延长线于点G. (1)求证:四边形DEFG 是矩形.(2)如图2,连接DF ,BE ,当∠DFG=∠BEF 时,判断四边形 DEFG 的形状,并说明理由.图1E F ABCDG图2ABDGCFE AFCDE P B六、解答题(本大题共12分) 23.【课本再现】(1)如图1,在正方形ABCD 中,F 为对角线AC 上一点,连接BF ,DF.你能找出图中的全等三角形吗?结论猜想:图中的全等三角形有__________ (不必证明). 【知识应用】(2)如图2,P 为DF 延长线上一点,且BP ⊥BF ,DP 交BC 于点E.判断△BPE 的形状,并说明理由. 【拓展提升】(3)如图3,过点F 作HF ⊥BF 交DC 的延长线于点H. ①求证:HF=DF.②若AB=√3+1,∠CBF=30°,请直接写出CH 的长.2023-2024学年九年级上学期数学(北师大版)第一次月考试卷参考答案▼(上册1.1~2.4) ▼说明:共有六个大题,23个小题,满分120分,作答时间120分钟. 一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填入题后图1AB CDFA图2B PDC EF图3ABDHCF括号内.错选、多选或未选均不得分. 1.下列方程是一元二次方程的是( )A.3x −1=0B.a x 2+b x +c=0(a ,b ,c 为常数)C.x ²+x =3D.3x 2−2x y −5y 2=01.解:A 是一元一次方程,B 当a ≠0时是一元二次方程,C 是一元二次方程,D 是二元二次方程,故选C 。
2024-2025学年初中九年级上学期数学第一次月考卷及答案(北师大版)
2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第1章~第3章(北师版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.单项选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列方程中,是一元二次方程的是()A.xx2−3xx−5=−5B.2xx2−yy−1=0C.xx2−xx(xx+2.5)=0D.aaxx2+bbxx+cc=02.下列命题为真命题的是()A.有两边相等的平行四边形是菱形B.有一个角是直角的平行四边形是菱形C.对角线互相垂直的平行四边形是矩形D.有三个角是直角的四边形是矩形3.若关于xx的方程xx2+mmxx−6=2.则mm为()A.−2B.1 C.4 D.−34.a是方程xx2+2xx−1=0的一个根,则代数式aa2+2aa+2020的值是()A.2018 B.2019 C.2020 D.20215.如图,在正方形AAAAAAAA中,EE为AAAA上一点,连接AAEE,AAEE交对角线AAAA于点FF,连接AAFF,若∠AAAAEE=35°,则∠AAFFAA的度数为()A.80°B.70°C.75°D.45°6.有一块长40m,宽32m的矩形种植地,修如图等宽的小路,使种植面积为1140m2,求小路的宽.设小路的宽为x,则可列方程为()A.(40﹣2x)(32﹣x)=1140 B.(40﹣x)(32﹣x)=1140C.(40﹣x)(32﹣2x)=1140 D.(40﹣2x)(32﹣2x)=11407.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2 B.12 C.18 D.248.如图,在菱形AAAAAAAA中,对角线AAAA,AAAA相交于点OO,EE是AAAA的中点,若菱形的周长为20,则OOEE的长为()A.10 B.5 C.2.5D.19.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为xx人,则根据题意可列方程为()A.xx(xx−1)=110B.xx(xx+1)=110C.(xx+1)2=110D.(xx−1)2=11010.关于xx的一元二次方程kkxx2−2xx−1=0有两个不相等的实数根,则kk的取值范围是()A.kk>−1B.kk>−1且kk≠0C.kk<1D.kk<1且kk≠011.如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为()A.74B.95C.1910D.76�312.如图,在正方形AAAAAAAA中,AAAA=4,E为对角线AAAA上与点A,C不重合的一个动点,过点E作EEFF⊥AAAA于点F,EEEE⊥AAAA与点G,连接AAEE,FFEE,有下列结论:①AAEE=FFEE.②AAEE⊥FFEE.③∠AAFFEE=∠AAAAEE.④FFEE的最小值为3,其中正确结论的序号为()A.①②B.②③C.①②③D.①③④第Ⅱ卷二.填空题(本题共6小题,每小题3分,共18分.)13.一元二次方程5xx2+2xx−1=0的一次项系数二次项系数常数项.14.xx1,xx2为一元二次方程xx2−2xx−10=0的两根,则1xx1+1xx2=.15.如图,矩形ABCD中,对角线AC、BD相交于点O,若OB=2,∠ACB=30°,则AB的长度为.16.如图所示,菱形AAAAAAAA的对角线AAAA、AAAA相交于点OO.若AAAA=6,AAAA=8,AAEE⊥AAAA,垂足为EE,则AAEE的长为.17.如图,将一张长方形纸片AAAAAAAA沿AAAA折起,重叠部分为ΔΔAAAAEE,若AAAA=6,AAAA=4,则重叠部分ΔΔAAAAEE的面积为.18.如图,在正方形AAAAAAAA中,AAAA=6,点E,F分别在边AAAA,AAAA上,AAEE=AAFF=2,点M在对角线AAAA上运动,连接EEEE和EEFF,则EEEE+EEFF的最小值等于.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)解下列方程:(1)3xx2−4xx−1=0;(2)2�xx−3�2=xx2−920.(8分)已知方程xx2+�kk+1−6=0是关于xx的一元二次方程.(1)求证:对于任意实数kk方程中有两个不相等的实数根.(2)若xx1,xx2是方程的两根,kk=6,求1xx1+1xx2的值.21.(8分)如图,在菱形AAAAAAAA中,对角线AAAA,AAAA交于点OO,AAEE⊥AAAA交AAAA延长线于EE,AAFF∥AAEE交AAAA延长线于点FF.(1)求证:四边形AAEEAAFF是矩形;(2)若AAEE=4,AAAA=5,求AAAA的长.22.(10分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品公司为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图.请根据以上信息回答:(1)参加本次调查的有______人,若该居民区有8000人,估计整个居民区爱吃D粽的有______人.(2)请将条形统计图补充完整;(3)食品公司推出一种端午礼盒,内有外形完全相同的A、B、C、D粽各一个,小王购买了一个礼盒,并从中任意取出两个食用,请用列表或画树状图的方法,求他恰好能吃到C粽的概率.23.(8分)阅读材料,回答问题.材料1:为了解方程�xx2�2−13xx2+36=0,如果我们把xx2看作一个整体,然后设yy=xx2,则原方程可化为yy2−13yy+36=0,经过运算,原方程的解为xx1,2=±2,xx3,4=±3,我们把以上这种解决问题的方法通常叫做换元法.材料2:已知实数mm,nn满足mm2−mm−1=0,nn2−nn−1=0,且mm≠nn,显然mm,nn是方程xx2−xx−1=0的两个不相等的实数根,由韦达定理可知mm+nn=1,mmnn=−1.根据上述材料,解决以下问题:(1)为解方程xx4−xx2−6=0,可设yy=____,原方程可化为____.经过运算,原方程的解是____.(2)应用:若实数aa,bb满足:2aa4−7aa2+1=0,2bb4−7bb2+1=0且aa≠bb,求aa4+bb4的值;24.(10分)中秋期间,某商场以每盒140元的价格购进一批月饼,当每盒月饼售价为180元时,每天可售出60盒.为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每盒月饼降价2元,那么商场每天就可以多售出5盒.(1)设售价每盒下降xx元,则每天能售出______盒(用含xx的代数式表示);(2)当月饼每盒售价为多少元时,每天的销售利润恰好能达到2550元;(3)该商场每天所获得的利润是否能达到2700元?请说明理由.25.(12分)在数学实验课上,老师让学生以“折叠筝形”为主题开展数学实践探究活动.定义:两组邻边分别相等的四边形叫做“筝形”.(1)概念理解:如图1,将一张纸对折压平,以折痕为边折出一个三角形,然后把纸展平,折痕为四边形AAAAAAAA.判断四边形AAAAAAAA的形状:筝形(填“是”或“不是”);(2)性质探究:如图2,已知四边形AAAAAAAA纸片是筝形,请用测量、折叠等方法猜想筝形的角、对角线有什么几何特征,然后写出一条性质并进行证明;(3)拓展应用:如图3,AAAA是锐角△AAAAAA的高,将△AAAAAA沿边AAAA翻折后得到△AAAAEE,将△AAAAAA沿边AAAA翻折后得到△AAAAFF,延长EEAA,FFAA交于点G.①若∠AAAAAA=50°,当△AAAAEE是等腰三角形时,请直接写出∠AAAAAA的度数;②若∠AAAAAA=45°,AAAA=2,AAAA=5,AAEE=EEEE=FFEE,求AAAA的长.26.(12分)探究式学习是新课程倡导的重要学习方式,某兴趣小组学习正方形以后做了以下探究:在正方形AAAAAAAA中,E,F为平面内两点.【初步感知】(1)如图1,当点E在边AAAA上时,AAEE⊥AAFF,且B,C,F三点共线.请写出AAEE与FFAA的数量关系______;【深入探究】(2)如图2,当点E在正方形AAAAAAAA外部时,AAEE⊥AAFF,AAEE⊥EEFF,E,C,F三点共线.若AAEE=2,AAEE=4,求AAEE的长;【拓展运用】(3)如图3,当点E在正方形AAAAAAAA外部时,AAEE⊥EEAA,AAEE⊥AAFF,AAEE⊥AAEE,且D,F,E三点共线,猜想并证明AAEE,AAEE,AAFF之间的数量关系.2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
北师大版九年级上册数学期末考试试卷及答案
北师大版九年级上册数学期末考试试题一、单选题1.下列关系式中y 是x 的反比例函数的是()A .5y x=B .k y x=C .25y x =D .3xy =2.如图,三视图正确的是()A .主视图B .左视图C .左视图D .俯视图3.用配方法解方程2250x x --=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=4.反比例函数ky x=的图象如图所示,则k 值可能是()A .-2B .2C .4D .85.已知四边形ABCD 是平行四边形,下列结论:①当AB =BC 时,它是菱形;②当AC ⊥BD 时,它是菱形;③当∠ABC =90°时,它是矩形;④当AC =BD 时,它是正方形,其中错误的有()A .1个B .2个C .3个D .4个6.如图,在△ABC 中,点D 、E 在边AB 上,点F 、G 在边AC 上,且DF ∥EG ∥BC ,AD=DE =EB ,若Δ1ADF S =,则EBCG S =四边形()A .3B .4C .5D .67.若关于x 的方程()()22222280x x x x +++-=有实数根,则22x x +的值为()A .-4B .2C .-4或2D .4或-28.在一只不透明的口袋中放入红球5个,黑球1个,黄球n 个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为13,则放入口袋中的黄球总数n 是()A .3B .4C .5D .69.如图,O 是矩形ABCD 对角线AC 的中点,M 是AD 的中点,若BC =8,OB =5,则OM 的长为()A .1B .2C .3D .410.如图,将矩形ABCD 沿对角线BD 折叠,点A 落在点E 处,DE 交BC 于点F ,若∠CFD =40°,则∠ABD 的度数为()A .50°B .60°C .70°D .80°二、填空题11.反比例函数ky x=图象上有两点A (-3,4)、B (m ,2),则m =_____.12.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_____条.13.已知一元二次方程(m -2)m x +3x -4=0,那么m 的值是_____.14.在平面直角坐标系中,△ABC 中点A 的坐标是(2,3),以原点O 为位似中心把△ABC 放大,使放大后的三角形与△ABC 的相似比为3:1,则点A 的对应点A′的坐标为_____.15.若一元二次方程220x -=的两根分别为m 与n ,则m nn m+=_____.16.在矩形ABCD 中,AB =6,BC =8,BD ⊥DE 交AC 的延长线于点E ,则DE =_____.17.如图,在平行四边形ABCD 中,CE ⊥AB 且E 为垂足,如果∠A =125°,则∠BCE =____.三、解答题18.如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BC 相交于点N ,连接BM ,DN .(1)求证:四边形BMDN 是菱形;(2)若AB =4,AD =8,求菱形BMDN 的面积.19.等腰三角形的三边长分别为a 、b 、c ,若6a =,b 与c 是方程22(31)220x m x m m -+++=的两根,求此三角形的周长.20.如图,一次函数2y kx =+与y 轴交于点A ,与反比例函数my x=的图象相交于B 、C 两点,BD ⊥y 轴交y 轴于点D ,OA =OD ,8ABDS ∆=.(1)求一次函数与反比例函数的表达式;(2)求点C 的坐标,并直接写出不等式2mkx x+>的解集;(3)在所在平面内,存在点E 使以点B 、C 、D 、E 为顶点的四边形为平行四边形,请直接写出所有满足条件的点E 的坐标.21.如图,在四边形ABCD 中,BD 为一条对角线,//AD BC ,2AD BC =,90ABD ∠=︒,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分BAD ∠,1BC =,求AC 的长.22.某数学小组为调查实验学校周五放学时学生的回家方式,随机抽取了部分学生进行调查,所有被调查的学生都需从“A :乘坐电动车,B :乘坐普通公交车或地铁,C :乘坐学校的定制公交车,D :乘坐家庭汽车,E :步行或其他”这五种方式中选择最常用的一种,随后该数学小组将所有调查结果整理后绘制成如图不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.(1)本次调查中一共调查了名学生;扇形统计图中,E选项对应的扇形圆心角是度;(2)请补全条形统计图;(3)若甲、乙两名学生放学时从A、B、C三种方式中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两名学生恰好选择同一种交通工具上班的概率.23.如图,在▱ABCD中过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.(1)求证:△ABF∽△BEC;(2)若AD=5,AB=8,sinD=45,求AF的长.24.已知:如图,△ABO与△BCD都是等边三角形,点O为坐标原点,点B、D在x轴上,AO=2,点A、C在一反比例函数图象上.(1)求此反比例函数解析式;(2)求点C的坐标;(3)问:以点A为顶点,且经过点C的抛物线是否经过点(0?请说明理由.25.如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.26.如图,点A、B在反比例函数kyx的图象上,且点A、B的横坐标分别为a、2a(a>0),AC⊥x轴,垂足为点C,且△AOC的面积为2(1)求该反比例函数的解析式;(2)若点(﹣a,y1),(﹣2a,y2)在该反比例函数的图象上,试比较y1与y2的大小;(3)求△AOB的面积.参考答案1.D 【分析】根据反比例函数的定义:(0)ky k x=≠且k 为比例系数,即可作出判断.【详解】A 、此函数为一次函数,故不符合题意;B 、不一定反比例函数,当k=0时,则y=0,故不符合题意;C 、不是反比例函数,未知数x 的指数不满足反比例函数的定义,故不符合题意;D 、由3xy =得:3y x=,符合反比例函数的定义,故符合题意;故选:D【点睛】本题主要考查了反比例函数的定义,掌握其解析形式是关键,特别注意k 是不为零的常数.2.A 【分析】根据几何体的形状,从三个角度得到其三视图即可.【详解】解:主视图是一个矩形,内部有两条纵向的实线,故选项A 符合题意;左视图是一个矩形,内部有一条纵向的实线,故选项B 、C 不符合题意;俯视图是一个“T ”字,故选项D 不符合题意;故选:A .【点睛】此题主要考查了画三视图的知识,解题的关键是掌握主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.3.B 【分析】根据配方法解一元二次方程的步骤首先把常数项移到右边,方程两边同时加上一次项系数一半的平方配成完全平方公式.【详解】解:2250x x --=移项得:225x x -=方程两边同时加上一次项系数一半的平方得:22151x x -+=+配方得:()216x -=.故选:B .【点睛】此题考查了配方法解一元二次方程的步骤,解题的关键是熟练掌握配方法解一元二次方程的步骤.配方法的步骤:配方法的一般步骤为:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.4.B 【分析】根据函数所在象限和反比例函数上的点的横纵坐标的积小于4判断.【详解】解:∵反比例函数图象在第一、三象限,∴k >0,∵当图象上的点的横坐标为2时,纵坐标小于2,∴k <4,故选:B .【点睛】本题考查了反比例函数图象上点的坐标特点,反比例函数的图象与性质,比例系数等于在它上面的点的横纵坐标的积,熟练掌握反比例函数的图象与性质是解答本题的关键.5.A 【分析】根据矩形、菱形、正方形的判定可以判断题目中的各个小题的结论是否正确,从而可以解答本题.【详解】解: 四边形ABCD 是平行四边形,A 、当AB BC =时,它是菱形,选项不符合题意,B 、当AC BD ⊥时,它是菱形,选项不符合题意,C 、当90ABC ∠=︒时,它是矩形,选项不符合题意,D 、当AC BD =时,它是矩形,不一定是正方形,选项符合题意,故选:A .【点睛】本题考查正方形、菱形、矩形的判定,解答本题的关键是熟练掌握矩形、菱形、正方形的判定定理.6.C 【分析】利用////DF EG BC ,得到ADF ABC ∆∆∽,ADF AEG ∆∆∽,利用AD DE EB ==,得到13AD AB =,12AD AE =,利用相似三角形的性质,相似三角形的面积比等于相似比的平方,分别求得AEG ∆和ABC ∆的面积,利用ABC AEG EBCG S S S ∆∆=-四边形即可求得结论.【详解】解:AD DE EB == ,∴13AD AB =,12AD AE =.////DF EG BC ,ADF ABC ∴∆∆∽,ADF AEG ∆∆∽.∴2(ADF ABC S AD S AB∆∆=,2(ADF AEG S AD S AE ∆∆=.99ABC ADF S S ∆∆∴==,44AEG ADF S S ∆∆==.945ABC AEG EBCG S S S ∆∆∴=-=-=四边形.故选:C .【点睛】本题主要考查了相似三角形的判定与性质,解题的关键是利用相似三角形的面积比等于相似比的平方,用ABC AEG EBCGS S S ∆∆=-四边形解答.7.B 【分析】设22x x y +=,则原方程可化为2280y y +-=,解得y 的值,即可得到22x x +的值.【详解】解:设22x x y +=,则原方程可化为2280y y +-=,解得:14y =-,22y =,当4y =-时,224x x +=-,即2240x x ++=,△224140=-⨯⨯<,方程无解,当2y =时,222x x +=,即2220x x +-=,△()22412=120=-⨯⨯->,方程有实数根,22x x ∴+的值为2,故选:B .【点睛】本题考查了换元法解一元二次方程,的关键是把22x x +看成一个整体来计算,即换元法思想.8.A 【分析】根据概率公式列出关于n 的分式方程,解方程即可得.【详解】解:根据题意可得51n n ++=13,解得:n =3,经检验n =3是分式方程的解,即放入口袋中的黄球总数n =3,故选:A .【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n.9.C 【分析】由O 是矩形ABCD 对角线AC 的中点,可求得AC 的长,然后运用勾股定理求得AB 、CD 的长,又由M 是AD 的中点,可得OM 是△ACD 的中位线,即可解答.【详解】解:∵O 是矩形ABCD 对角线AC 的中点,OB =5,∴AC =2OB =10,∴CD =AB 6,∵M 是AD 的中点,∴OM =12CD =3.故答案为:C .【点睛】本题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.10.C 【分析】根据矩形的性质和平行线的性质得到∠FDA =40°,根据翻折变换的性质得到∠ADB =∠EDB =20°,根据直角三角形的性质可求出∠ABD 的度数,即可求出答案.【详解】∵四边形ABCD 是矩形,∴AD ∥BC ,∠A =90°,∴∠FDA =∠CFD =40°,由翻折变换的性质得到∠ADB =∠EDB =20°∴∠ABD =70°故选C .【点睛】本题考查平行线的性质、图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.11.6-【分析】由点A 的坐标得到反比例函数的解析式,再把点B 的坐标代入可得m 的值.【详解】解:把(3,4)A -代入ky x =可得3412k =-⨯=-,所以反比例函数的解析式是12y x=-,当2y =时,6m =-.故答案为:6-.【点睛】本题考查反比例函数图象上点的坐标特征,解题的关键是掌握待定系数法求得解析式.12.20000【详解】试题分析:1000÷10200=20000(条).考点:用样本估计总体.13.2-【分析】根据一元二次方程的定义进行计算即可.【详解】解:由题意可得:||2m =且20m -≠,2m ∴=±且2m ≠,2m ∴=-,故答案为:2-.【点睛】本题考查了绝对值,一元二次方程的定义,解题的关键是熟练掌握一元二次方程的定义,即()200ax bx c a ++=≠.14.(6,9)或(6,9)--【分析】根据如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或k -进行解答.【详解】解:以原点O 为位似中心,把ABC ∆放大,使放大后的三角形与ABC ∆的相似比为3:1,则点(2,3)A 的对应点A '的坐标为(6,9)或(6,9)--.故答案为:(6,9)或(6,9)--.【点睛】本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或k -.15.72-【分析】先根据根与系数的关系得m n +=mn=-2,再把原式变形为2()2m n mn mn+-,然后利用整体代入的方法计算.【详解】解:∵一元二次方程220x -=的两根分别为m 与n ,根据根与系数的关系得m n +=,mn=-2,所以原式=()(()2222222722m n mn m n mn mn -⨯-+-+===--.故答案为:72-.16.1207【分析】由勾股定理可求AC 的长,由矩形的性质可得5OD OB ==,由面积法可求DH 的长,通过证明OD DE OH DH =,即可求解.【详解】解:如图:过点D 作DH AC ⊥于H ,6AB = ,8BC =,10AC ∴==,四边形ABCD 是矩形,152AO CO BO DO AC ∴=====, 11··22ADC S AD CD AC DH == ,6810DH ∴⨯=,245DH ∴=,75OH ∴===,∵=90DOH ODH ∠+︒∠,=90DOH E ∠+︒∠,∴ODH E∠=∠90DHO EHD ∠=∠=︒Q ,ODH DEH ∴∆∆∽,∴OD DE OH DH=,∴572455DE =,1207DE ∴=,故答案为:1207.17.35【详解】分析:根据平行四边形的性质和已知,可求出∠B ,再进一步利用直角三角形的性质求解即可.详解:∵AD ∥BC ,∴∠A+∠B=180°,∴∠B=180°-125°=55°,∵CE ⊥AB ,∴在Rt △BCE 中,∠BCE=90°-∠B=90°-55°=35°.故答案为35.点睛:本题主要考查了平行四边形的性质,运用平行四边形对边平行的性质,得到邻角互补的结论,这是运用定义求四边形内角度数的常用方法.18.(1)见解析;(2)菱形BMDN 的面积是20【分析】(1)证△DMO ≌△BNO ,得出OM =ON ,根据对角线互相平分证四边形BMDN 是平行四边形,再根据对角线互相垂直证菱形即可;(2)设BM=x ,根据勾股定理列出方程,求出菱形边长,再用面积公式求解即可.【详解】解:(1)证明:∵四边形ABCD 是矩形,MN 垂直平分BD ,∴AD ∥BC ,∠A =90°,OB =OD ,∴∠MDO =∠NBO ,∠DMO =∠BNO ,∵在△DMO 和△BNO 中,DMO BNO MDO NBO OB OD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DMO ≌△BNO (AAS )∴OM =ON又∵OB =OD∴四边形BMDN 是平行四边形∵MN 垂直平分BD ,即MN ⊥BD∴平行四边形BMDN 是菱形.(2)解:∵四边形BMDN 是菱形∴MB =MD在Rt △AMB 中,设BM=x ,BM 2=AM 2+AB 2即x 2=(8﹣x )2+42解得:x =5,MD=5∴BN=MD=5∴5420BMDN S BN AB =⨯=⨯=菱形答:菱形BMDN 的面积是20.19.此三角形的周长为16或22.【分析】分两种情况进行讨论分析:①若6a =是三角形的腰,则b 与c 中至少有一边长为6;若6a =是三角形的底边,则b 、c 为腰,即b c =;根据题意,代入方程确定m 的值,然后代入方程求解,确定三边长度,考虑三边关系判定能否构成三角形,然后求周长即可得.【详解】解:①若6a =是三角形的腰,则b 与c 中至少有一边长为6,代入方程得:()226316220m m m -+⨯++=,解得3m =或5m =,∴当3m =时,方程可化为210240x x -+=,解得14x =,26x =,∴三角形三边长分别为4、6、6,周长为:46616++=;当5m =时,方程可化为216600x x -+=,解得16x =,210x =;三角形三边长分别为6、6、10,周长为:106622++=;∴三角形的周长为16或22;②若6a =是三角形的底边,则b 、c 为腰,即b c =,则方程有两个相等的实数根,∴()()22314220m m m ⎡⎤-+-+=⎣⎦,解得1m =,∴原方程可化为2440x x -+=,解得122x x ==,此时,6a =,2b c ==,不能构成三角形,舍去;综上所述,三角形的周长为16或22.【点睛】题目主要考查等腰三角形的定义及一元二次方程的解法,三角形的三边关系等,理解题意,进行分类讨论是解题关键.20.(1)一次函数的解析式为:2y x =+;反比例函数的解析式为:8y x=(2)40x -<<或2x >(3)(6,4)、(-6,-8)、(-2,4)【分析】(1)首先求出点D 的坐标,从而得出AD 的长,由8ABD S ∆=,得出BD 的长,从而得出点B 的坐标,从而解决问题;(2)由(1)可联立方程组28y x y x =+⎧⎪⎨=⎪⎩,解方程组得出点C 的坐标,根据图象可得答案;(3)分当BC 、CD 、BD 为对角线三种情形,分别通过对角互相平分进行求解.(1)解: 点A 是一次函数2y kx =+与y 轴的交点,∴令0x =,则022y k =⨯+=,即(0,2)A 2OA ∴=,又OD OA =Q ,2OD ∴=,(0,2)D ∴-,24AD OD ∴==.BD y ⊥ 轴,∴点B 的纵坐标为2-,8ABD S ∆= ,∴182AD BD ⋅=,∴1482BD ⨯⨯=,4BD ∴=,∴点B 的坐标为(4,2)--,把点(4,2)B --分别代入一次函数2y kx =+与反比例函数my x =,可得:422k -=-+,24m-=-,1k ∴=,8m =,∴一次函数的解析式为:2y x =+,反比例函数的解析式为:8y x =;(2)解:由(1)可联立方程组28y x y x=+⎧⎪⎨=⎪⎩,解这个方程组得:42x y =-⎧⎨=-⎩或24xy =⎧⎨=⎩,点C 在第一象限,故点C 坐标为(2,4),由图象可得当40x -<<或2x >时,2mkx x +>;(3)解:如图,当BC 为对角线时,取对角线的交点为(,)F x y ,根据对角线互相平分,即(,)F x y 为1,BC DE 的中点,(4,2),(2,4),(0.2)B C D --- ,42241,122x y -+-+==-==,设111(,)E x y ,11021,122x y+-+-==,解得:112,4x y =-=,1(2,4)E ∴-;如图,当CD 为对角线时,取对角线的交点为(,)F x y ,根据对角线互相平分,即(,)F x y 为2,CD BE 的中点,(4,2),(2,4),(0.2)B C D --- ,20421,122x y +-====,设222(,)E x y ,22421,122x y --==,解得:116,4x y ==,2(6,4)E ∴;如图,当BD 为对角线时,取对角线的交点为(,)F x y ,根据对角线互相平分,即(,)F x y 为3,BD CE 的中点,(4,2),(2,4),(0.2)B C D --- ,40222,222x y -+--==-==-,设333(,)E x y ,33242,222x y ++-=-=,解得:336,8x y =-=-,3(6,8)E ∴--;∴符合条件的点E 的坐标为:(6,4)、(6,8)--、(2,4)-.【点睛】本题是反比例函数综合题,主要考查了反比例函数图象与一次函数图象交点问题,平行四边形的性质,函数与不等式的关系等知识,解题的关键是运用分类思想来解答.21.(1)见解析;(2)AC =(1)根据2AD BC =,E 为AD 的中点,证得四边形BCDE 是平行四边形,再根据BE=DE 即可证得结论;(2)根据AD ∥BC ,AC 平分BAD ∠,求出AD=2BC=2=2AB ,得到30ADB ∠=︒,60ADC ∠=︒,90ACD ∠=︒,根据Rt ACD ∆求出答案即可.【详解】(1)证明:2AD BC = ,E 为AD 的中点,DE BC ∴=.//AD BC ,∴四边形BCDE 是平行四边形.90ABD ∠=︒ ,AE DE =,BE DE ∴=,则四边形BCDE 是菱形;(2)解:如答图所示,连接AC ,//AD BC ,AC 平分BAD ∠,BAC DAC BCA ∴∠=∠=∠.1AB BC ∴==.22AD BC ∴==,2AD AB ∴=,∴在Rt ABD ∆中,30ADB ∠=︒.30DAC ∴∠=︒,60ADC ∠=︒,90ACD ∠=︒.在Rt ACD ∆中2AD = ,1CD ∴=,∴AC ==.22.(1)200,72;(2)见解析;(3)13.【分析】(1)根据B 的人数以及百分比得到被调查的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;(2)求出C 组的人数即可补全图形;(3)列表得出所有等可能结果,即可运用概率公式得甲、乙两名学生恰好选择同一种交通工具回家的概率.【详解】解:(1)本次调查的学生人数为6030%200÷=(名),扇形统计图中,B项对应的扇形圆心角是40 36072200︒⨯=︒,故答案为:200;72;(2)C选项的人数为200(20603040)50-+++=(名),补全条形图如下:(3)画树状图如图:共有9个等可能的结果,甲、乙两名学生恰好选择同一种交通工具上班的结果有3个,∴甲、乙两名学生恰好选择同一种交通工具上班的概率为31 93=.【点睛】此题考查了列表法与树状图法、条形统计图、扇形统计图和概率公式,解题的关键是仔细观察统计图并从中整理出解题的有关信息,正确画出树状图.23.(1)证明见解析;(2)【分析】(1)由平行四边形的性质得出AB∥CD,AD∥BC,AD=BC,得出∠D+∠C=180°,∠ABF=∠BEC,证出∠C=∠AFB,即可得出结论;(2)由勾股定理求出BE,由三角函数求出AE,再由相似三角形的性质求出AF的长.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AD=BC,∴∠D+∠C=180°,∠ABF=∠BEC,∵∠AFB+∠AFE=180°,∴∠C=∠AFB ,∴△ABF ∽△BEC ;(2)解:∵AE ⊥DC ,AB ∥DC ,∴∠AED=∠BAE=90°,在Rt △ABE 中,根据勾股定理得:=在Rt △ADE 中,AE=AD•sinD=5×45=4,∵BC=AD=5,由(1)得:△ABF ∽△BEC ,∴AF AB BC BE=,即5AF =解得:.24.(1)y =(2)(1C -;(3)是,理由见解析.【分析】(1)首先过点A 、C 分别作AF ⊥OB 于点F ,CE ⊥DB 于点E ,根据AO =2,△ABO 与△BCD 是等边三角形,得出A 点坐标,进而求出反比例函数解析式;(2)首先表示出C 点坐标,进而代入函数解析式求出即可;(3)首先设y =a (x +1)2C 坐标代入得出a 的值,进而将点(0答案.【详解】解:(1)过点A 、C 分别作AF ⊥OB 于点F ,CE ⊥DB 于点E ,∵AO =2,△ABO 与△BCD 是等边三角形,∴OF =1,FAA 的坐标是(-1,把(-1k y x=,得k∴反比例函数的解析式是y =(2)设BE =a ,则CE∴点C 的坐标是(-2-a),把点C 的坐标代入y=2-a a 1,∴点C的坐标是(-1-);(3)过点C的抛物线是经过点(0.理由:设y=a(x+1)2把点C坐标代入得a,∴y(x+1)2当x=0时,代入上式得y=2,∴点C的抛物线是经过点(0,2).【点睛】此题主要考查了反比例函数的综合应用以及图象上点的坐标特点等知识,根据已知表示出C点坐标是解题关键.25.(1)见解析(2)四边形CEFG的面积为20 3.【分析】(1)根据题意和翻折的性质,可以得到△BCE≌△BFE,再根据全等三角形的性质和菱形的判定方法即可证明结论成立;(2)根据题意和勾股定理,可以求得AF的长,进而求得EF和DF的值,从而可以得到四边形CEFG的面积.(1)证明:由题意可得,△BCE≌△BFE,∴∠BEC=∠BEF,FE=CE,∵FG∥CE,∴∠FGE=∠CEB,∴∠FGE=∠FEG,∴FG=FE,∴FG=EC,∴四边形CEFG 是平行四边形,又∵CE=FE ,∴四边形CEFG 是菱形;(2)解:∵矩形ABCD 中,AB=6,AD=10,BC=BF ,∴∠BAF=90°,AD=BC=BF=10,∴AF=8,∴DF=2,设EF=x ,则CE=x ,DE=6-x ,∵∠FDE=90°,∴22+(6-x )2=x 2,解得,x=103,∴CE=103,∴四边形CEFG 的面积是:CE•DF=103×2=203.【点睛】本题考查翻折变化、菱形的性质和判定、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.26.(1)4y x =(2)y 1<y 2(3)3【分析】(1)由122AOC S xy ∆==,设反比例函数的解析式k y x =,则4k xy ==;(2)由于反比例函数的性质是:在0x <时,y 随x 的增大而减小,2a a ->-,则12y y <;(3)连接AB ,过点B 作BE x ⊥轴,交x 轴于E 点,通过分割面积法AOB AOC BOE ACEB S S S S ∆∆∆=+-梯形求得.(1)解:2AOC S ∆= ,24AOC k S ∆∴==;4y x ∴=;(2)解:0k > ,∴函数y 的值在各自象限内随x 的增大而减小;0a > ,2a a ∴-<-;12y y ∴<;(3)解:连接AB ,过点B 作BE x ⊥轴,2AOC BOE S S ∆∆==,4(,)A a a ∴,2(2,)B a a ;()124232ACEB S a a a a ⎛⎫=+⨯-= ⎪⎝⎭梯形,3AOB AOC BOE ACEB S S S S ∆∆∆∴=+-=梯形.。
2024-2025学年北师大版九年级数学上册期中复习试卷
2024-2025学年北师大版九年级数学上册期中复习试卷1.一个几何体如图水平放置,它的主视图是()A.B.C.D.2.已知a,b,c,d是成比例线段,若,则d的长为()A.B.C.D.3.方程的解是()A.B.C.D.无实数根4.已知反比例函数,下列各点中,在此函数图象上的点的是()A.(,1)B.(2,2)C.(1,2)D.(2,)5.在中,,,,下列四个选项,正确的是()A.B.C.D.6.如图,,若,,,则DE的长度是()A.6B.C.D.7.二次函数的图象如图所示,下列结论中错误的是()A.B.C.D.8.如图,正方形的对角线相交于点O,点E在边上,点F在上,过点E作,垂足为点G,若,,,则的长为()A.3B.C.D.9.下列图形都是由同样大小的△按一定规律组成的,其中第①个图形中一共有5个,第②个图形中一共有12个,第③个图形中一共有21个,……,按此规律排列,则第⑧个图形中的个数为()A.96B.88C.86D.9810.已知,对多项式任意添加绝对值(不可添加为单个字母的绝对值或绝对值中含有绝对值的情况)后仍只含加减法运算,称这种操作为“添绝对值操作”,例如:,等,下列结论正确的个数是()①至少存在一种“添绝对值操作”,使化简其结果与原多项式相等;②存在某种“添绝对值操作”,使其结果与原多项式之和为0;③若只添加一个绝对值,则所有可能的化简结果共有8种.A.0B.1C.2D.311.若,则_________.12.时光飞逝,十五六岁的我们,童年里都少不了“弹珠”。
小朋友甲的口袋中有粒弹珠,其中粒红色,粒绿色,他随机拿出颗送给小朋友乙,则送出的弹珠颜色为红色的概率是__________.13.已知是关于x的方程的一个根,则______.14.如图,线段BD、CE相交于点A,DE∥BC.如果AB=4,AD=2,DE=1.5,那么BC的长为_____.15.如图,点,反比例函数的图象上,轴于点D,轴于点C,点E在上,,的面积为10,则点E的坐标是_____.16.计算(1);(2).17.如图,在中,连接.(1)用直尺和圆规过点B作的垂线,交线段的延长线于点E,连接,要求尺规作图(用基本工具作图,要保留作图痕迹,不写作法,不写结论).(2)若,求证:四边形为菱形.证明:∵,∴_________________,∵在中,,∴,∴_________________,∴,∵,∴_________________,∵,∴,∴,∴四边形为_________________,∵,∴四边形为菱形(__________________________________).18.在最新版《义务教育课程方案》和《课程标准》中,劳动教育课程从原来的综合实践课程中独立出来,某校为了了解学生做家务的情况,对七、八年级学生进行了劳动能力测试,并从七、八年级中各随机抽取25名学生的测试成绩,进行整理分析(测试成绩用表示,;;;;其中等级为优秀),下面给出了部分信息:抽取的七年级学生成绩在组的全部数据为:82、81、83、84、84、81、86、88、87、89抽取的八年级学生成绩在、组的全部数据为:76、78、85、72、85、85、79、85、85、88、79、87、85、87、88、85、86抽取的七年级学生劳动能力测评成绩条形统计图抽取的八年级学生劳动能力测评成绩扇统计图七、八年级学生劳动能力测评成绩统计表年级平均数中位数众数七年级78.979八年级78.985根据以上信息,回答下列问题:(1)填空:_______________________,____________.(2)根据以上数据分析,你认为从七、八年级的劳动能力测评成绩来看,哪个年级学生的劳动能力更强?请说明理由(写一条理由即可).(3)若该校七、八年级一共有4500名学生,请你估计该校七、八年级共有多少名学生劳动能力达到优秀?19.甲、乙两支队伍计划自驾去旅游.两队计划同一天出发,沿不同的路线前往目的地汇合.甲队走路线,全程1600千米,乙队走路线,全程2000千米,由于路线高速公路较多,乙队平均每天行驶的路程是甲队的1.5倍,这样乙队用以比甲队提前1天到达目的地.(1)求甲、乙两队分别多少天到达目的地?(2)在他们的旅行计划中,乙队每人每天的平均花费始终为336元.甲队最开始计划有13个人同行,计划每人每天花费400元,后来又有若干个人一起加入甲队,经过计算,甲队实际每增加1人时,每人每天的平均花费将减少40元.若最终甲、乙两队一起旅行的人数相同,且旅行天数与各自原计划天数一致,两队共需花费48000元,后来有多少人加入甲队?20.居民区内的“广场舞”引起媒体关注,小王想了解本小区居民对“广场舞”的看法,进行一次分四个层次的抽样调查(四个层次为:A,非常赞同;B.赞同但要有时间限制;C.无所谓;D.不赞同),并把调查结果绘制成如下两幅不完整的统计图,请根据统计图中的倍息解答下列问题:(1)本次被抽查的居民人数是人,将条形统计图补充完整.(2)图中∠α的度数是度;该小区有3000名居民,请估计对“广场舞”表示赞同(包括A 层次和B层次)的大约有人(3)据了解,甲、乙、丙、丁四位居民投不赞同票,小王想从这四位居民中随机选择两位了解具体情况,请用列表或画树状图的方法求出恰好选中甲和乙的概率.21.如图,正方形中,,E是上一点,过E作交于点F,连接.(1)证明:.(2)当时,求的长.22.2020年,某家庭纯收入为2500元,通过政府产业扶持,发展养殖业,到2022年,家庭收入为3600元.(1)求该家庭2022年到2022年人均收入的年平均增长率.(2)若年平均增长率保持不变,2023年家庭年收入是否达到4200元?23.已知一次函数的图象与反比例函数的图象交于点,两点,连接,直线与x轴相交于点C.(1)求反比例函数和一次函数的解析式.(2)求点C的坐标和的面积.(3)直接写出不等式的解集.24.(1)问题如图1,在四边形中,点P为上一点,当时,求证:.(2)探究若将角改为锐角(如图2),其他条件不变,上述结论还成立吗?说明理由.(3)应用如图3,在中,,,以点A为直角顶点作等腰.点D 在上,点E在上,点F在上,且,若,求的长.25.如图,一次函数y=﹣x+3的图象与反比例函数y=(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标;(3)若点P在y轴上,是否存在点P,使△ABP是以AB为一直角边的直角三角形?若存在,求出所有符合条件的P点坐标;若不存在,请说明理由.。
九上数学北师大版第一章测试卷
九上数学北师大版第一章测试卷一、选择题(每题3分,共30分)1. 下列方程中,是关于x的一元二次方程的是()A. ax^2+bx + c = 0B. x^2+(1)/(x^2)=0C. x^2-x - 2 = 0D. 3x - 2y = 52. 一元二次方程x^2-6x - 5 = 0配方后可变形为()A. (x - 3)^2=14B. (x - 3)^2=4C. (x + 3)^2=14D. (x + 3)^2=43. 方程x^2=x的解是()A. x = 1B. x = 0C. x_1=1,x_2=0D. x_1=-1,x_2=04. 关于x的一元二次方程(m - 1)x^2+5x + m^2-3m + 2 = 0的常数项为0,则m等于()A. 1B. 2C. 1或2D. 05. 若关于x的一元二次方程x^2+kx + 4k^2-3 = 0的两个实数根x_1,x_2满足x_1+x_2=x_1x_2,则k的值为()A. -1或(3)/(4)B. -1C. (3)/(4)D. 不存在。
6. 已知一元二次方程x^2-3x - 2 = 0的两个实数根为x_1,x_2,则(x_1-1)(x_2-1)的值是()A. -4B. -2C. 0D. 27. 对于一元二次方程ax^2+bx + c = 0(a≠0),下列说法:若a + c = 0,方程ax^2+bx + c = 0必有实数根;若b^2+4ac<0,则方程ax^2+bx + c = 0一定有实数根;若a - b + c = 0,则方程ax^2+bx + c = 0一定有一个根为-1;④若方程ax^2+bx + c = 0有两个实数根,则方程cx^2+bx + a = 0一定有两个实数根。
其中正确的是()A.B.C.D. ④.8. 若方程(m - 2)x^2-√(3 - m)x+(1)/(4)=0有两个实数根,则m的取值范围是()A. m≤slant(5)/(2)且m≠2B. m>(5)/(2)C. m≤slant3且m≠2D. m≤slant39. 某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A. (3 + x)(4 - 0.5x)=15B. (x + 3)(4 + 0.5x)=15C. (x + 4)(3 - 0.5x)=15D. (x + 1)(4 - 0.5x)=1510. 已知关于x的方程x^2+(2k + 1)x + k^2-2 = 0的两个实数根的平方和为11,则k的值为()A. -3或1B. -3C. 1D. 3二、填空题(每题3分,共15分)11. 一元二次方程(x + 1)(x - 2)=x + 1的解是______。
北师大版九年级上册数学试题
北师大版九年级上册数学试题一、选择题(每题3分,共30分)1. 一元二次方程公式的解是()A. 公式B. 公式C. 公式D. 公式解析:对于方程公式,我们可以提取公因式公式,得到公式。
则公式或者公式,即公式,公式。
所以答案是C。
2. 二次函数公式的顶点坐标是()A. 公式B. 公式C. 公式D. 公式解析:对于二次函数的顶点式公式(公式),其顶点坐标为公式。
在二次函数公式中,公式,公式,所以顶点坐标是公式,答案是A。
3. 下列图形中,既是轴对称图形又是中心对称图形的是()A. 等边三角形B. 平行四边形C. 正五边形D. 圆解析:等边三角形是轴对称图形,有三条对称轴,但不是中心对称图形。
平行四边形是中心对称图形,但不是轴对称图形。
正五边形是轴对称图形,有五条对称轴,但不是中心对称图形。
圆既是轴对称图形,有无数条对称轴,又是中心对称图形,对称中心是圆心。
所以答案是D。
4. 已知关于公式的一元二次方程公式的两根分别为公式,公式,则公式与公式的值分别为()A. 公式B. 公式C. 公式D. 公式解析:根据韦达定理,在一元二次方程公式中,两根公式,公式有公式,公式。
对于方程公式,公式,已知公式,公式。
则公式,所以公式;公式,所以公式。
答案是A。
5. 把抛物线公式向上平移1个单位,再向右平移1个单位后,得到的抛物线是()A. 公式B. 公式C. 公式D. 公式解析:抛物线公式向上平移公式个单位得到公式,再向右平移公式个单位,根据“左加右减,上加下减”的原则,得到公式。
答案是B。
6. 如图,在公式中,弦公式的长为公式,圆心公式到公式的距离为公式,则公式的半径为()A. 公式B. 公式C. 公式D. 公式解析:设圆公式的半径为公式,圆心公式到弦公式的距离为公式,弦长公式。
根据垂径定理和勾股定理,公式,因为公式,所以公式。
答案是A。
7. 一个不透明的口袋中装有公式个完全相同的小球,把它们分别标号为公式,公式,公式,公式,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于公式的概率为()A. 公式B. 公式C. 公式D. 公式解析:第一次摸球有公式种可能,第二次摸球因为不放回,所以有公式种可能,总共的可能性有公式种。
北师大版九年级上册数学期中考试试卷有答案-2022年最新修改
北师大版九年级上册数学期中考试试题一、单选题1.用配方法解方程x2﹣6x﹣1=0时,配方结果正确的是()A.(x﹣3)2=10B.(x﹣3)2=8C.(x﹣6)2=10D.(x﹣3)2=1 2.下列方程是一元二次方程的是()A.2x+1=0B.y2+x=1C.x2+1=0D.1x+x2=13.若点C是线段AB的中点,则CA与BA的比值是()A.1B.2C.12D.234.平行四边形ABCD如图所示,E为AB上的一点,F、G分别为AC与DE、DB的交点.若:3:2AB AE ,则四边形BGFE与ABCD的面积之比为()A.7:60B.8:70C.5:43D.3:265.在Rt△ABC中,∠ACB=90°,AC=3,∠BAC=30°,把Rt△ABC沿AB翻折得到Rt△ABD,过点B作BE⊥BC,交AD于点E,点F是线段BE上一点,且∠ADF=45°.则下列结论:①AE=BE;②△BED∽△ABC;③BD2=AD⋅DE;④,其中正确的有()A.①④B.②③④C.①②③D.①②③④6.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是()A .13B .14C .16D .187.小芳掷一枚硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为()A .711B .12C .811D .18.若0是关于x 的一元二次方程mx 2+5x +m 2-m =0的一个根,则m 等于()A .1B .0C .0或1D .无法确定9.如图,已知AD ∥BE ∥CF ,AB BC=23,DE =3,则DF 的长为()A .2B .4.5C .3D .7.510.如图,已知ABC 与DEF 位似,位似中心为点O ,ABC 的面积与DEF 面积之比为16:9,则:CO OF 的值为()A .3:4B .4:7C .4:3D .7:411.如图,矩形ABCD 中,AB =2BC ,点E 在CD 上,AE =AB ,则∠ABE 的度数为()A .60°B .70°C .72°D .75°12.如图,在矩形ABCD 中,AD=2AB ,点M 、N 分别在边AD 、BC 上,连接BM 、DN .若四边形MBND 是菱形,则AMMD等于()A .35B .23C .38D .45二、填空题13.若23x y =,则x y y+的值为_____.14.方程x 2=3x 的解为:_____.15.已知关于x 的一元二次方程(k +1)x 2+2x +1=0有实数根,则k 的取值范围是________.16.如图,等边△EFG 的顶点分别在矩形ABCD 的边AD 、AB 、CD 上,若AE =1,DE =4,则DG 的值为________.三、解答题17.解方程:()()2323x x x -=-18.先化简,再求值:22122()121x x x xx x x x ----÷+++,其中x 满足x 2-2x -2=0.19.在一个不透明的盒子中,共有“一白三黑”4个围棋子,它们除了颜色之外没有其他区别.(1)随机地从盒中提出1子,则提出黑子的概率是多少?(2)随机地从盒中提出两子,请你用画树状图或列表的方法表示所有等可能的结果,并求恰好提出“一黑一白”子的概率.20.如图,已知菱形ABCD,点E、F是对角线BD所在直线上的两点,且∠AED=45°,DF=BE,连接CE、AF、CF,得四边形AECF.(1)求证四边形AECF是正方形;(2)若BD=4,BE=3,求菱形ABCD的面积.21.某公司展销如图所示的长方形工艺品,该工艺品长60cm,宽40cm,中间镶有宽度相同的三条丝绸花边.650cm,求丝绸花边的宽度;(1)若丝绸花边的面积为2(2)已知该工艺品的成本是40元/件,如果以单价100元/件销售,那么每天可售出200件,另外每天除工艺品的成本外所需支付的各种费用是2000元,根据销售经验,如果将销售单价降低1元,每天可多售出20件,请问该公司每天把销售单价定为多少元所获利润为22500元.22.已知如图,在菱形ABCD中,对角线AC、BD相交于点O,DE//AC,AE//BD.(1)求证:四边形AODE是矩形;(2)若△ABC是边长为4的正三角形,求四边形AODE的面积.23.某公司2月份销售新上市的A产品20套,由于该产品的经济适用性,销量快速上升,4月份该公司A产品达到45套,并且2月到3月和3月到4月两次的增长率相同.(1)求该公司销售A产品每次的增长率;(2)若A产品每套盈利2万元,则平均每月可售30套.为了尽量减少库存,该公司决定采取适当的降价措施,经调查发现,A产品每套每降2万元,公司平均每月可多售出80套;若该公司在5月份要获利70万元,则每套A产品需降价多少?24.如图,在矩形ABCD中,E为AD边上的一点,过C点作CF⊥CE交AB的延长线于点F.(1)求证:△CDE∽△CBF;(2)若B为AF的中点,CB=3,DE=1,求CD的长.25.如图,在矩形ABCD中,AB=8,BC=6,点E是对角线BD上一点.(1)如图1,当CE⊥BD时,求CE的值;(2)如图2,当△BCE为等腰三角形时,直接写出DE的值;(3)如图3,当点F 在AB 边上,且四边形CEFG 为矩形,连接BG .①EFCE的值是否为定值?如果是,请求出此定值;若不是,请说明理由;②请直接写出BG 的最大值.参考答案1.A 2.C 3.C 4.A 5.D 6.A 7.B 8.A 9.D 10.C 11.D 12.A 13.5314.x 1=0,x 2=315.k≤0且k≠-116.17.13x =-或23x =18.1219.(1)34;(2)12.20.(1)见解析;(2)25.【分析】(1)连接AC,根据菱形的性质即可证明四边形AECF是正方形;(2)根据菱形ABCD的性质和BD=4,BE=3,DF=BE,可得EF=10,OA=5,进而可得菱形ABCD的面积.【详解】证明:(1)如图,连接AC,∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥EF,∵BE=DF,∴OB+BE=OD+DF,即OE=OF,∵OA=OC,OE=OF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形;∵∠AED=45°,∴∠OAE=90°-45°=45°=∠AED,∴OA=OE,∴AC=EF,∴四边形AECF是正方形;(2)∵四边形ABCD是菱形,BD=4,BE=3,DF=BE,∴EF=BE+BD+DF=2BE+BD=10,∴OE=12EF=5,∵∠AED=45°,AC⊥EF,∴OA=tan AED∠·OE=tan45︒·5=5,∴AC=10,∴菱形ABCD的面积=12AC•BD=12×10×5=25.故答案为:25.21.(1)5cm;(2)75元.【解析】(1)设花边的宽度为x cm,根据题意得:(60-2x)(40-x)=60×40-650,然后求解即可;(2)设每件工艺品降价x元出售,根据题意直接列方程求解即可.【详解】解:(1)设花边的宽度为x cm,根据题意得:(60-2x)(40-x)=60×40-650,整理得x2-70x+325=0,解得:x=5或x=65(舍去).答:丝绸花边的宽度为5cm.(2)设每件工艺品降价x元出售,由题意得:(100-x-40)(200+20x)-2000=22500解得:1225x x==;∴售价为100-25=75(元).答:当售价定为75元时能达到利润22500元.【点睛】本题主要考查一元二次方程的实际应用,关键是根据题意得到一元二次方程,然后进行求解即可.22.(1)证明见解析;(2)【解析】【分析】(1)根据菱形的性质得出AC BD⊥,再根据平行四边形的判定定理得四边形AODE为平行四边形,由矩形的判定定理得出四边形AODE 是矩形;(2)由ABC ∆是等边三角形,得出122OA AC ==,由勾股定理得出OB =得出OD OB ==AODE 的面积.【详解】(1)证明://DE AC ,//AE BD ,∴四边形AODE 是平行四边形,在菱形ABCD 中,AC BD ⊥,∴平行四边形AODE 是矩形,故四边形AODE 是矩形;(2)解:∵ABC ∆是等边三角形,∴OA=AB=BC=4,在菱形ABCD 中,AC BD ⊥,OA=OC ,OB=OD.1422OA ∴=⨯=,∴OD=OB ===∴四边形AODE 的面积122OA OD =⨯== .【点睛】本题考查了矩形的判定以及菱形的性质,还考查了平行四边形的判定,掌握平行四边形的判定方法是解题的关键.23.(1)该公司销售A 产品每次的增长率为50%(2)每套A 产品需降价1万元【解析】(1)设该公司销售A 产品每次的增长率为x ,利用增长率表示4约分销售量为20(1+x )2根据4月份销量等量关系列方程即可;(2)设每套A 产品需降价y 万元,则平均每月可售出(30+802y)套,求出每套利润,根据每套利润×销售套数=70万,列方程求解即可.(1)解:设该公司销售A 产品每次的增长率为x ,依题意,得:20(1+x)2=45,解得:x1=0.5=50%,x2=-2.5(不合题意,舍去).答:该公司销售A产品每次的增长率为50%.(2)解:设每套A产品需降价y万元,则平均每月可售出(30+802y)套,依题意,得:(2-y)(30+802y)=70,整理,得:4y2-5y+1=0,解得:y1=14,y2=1,∵尽量减少库存,∴y=1.答:每套A产品需降价1万元.24.(1)证明见解析;(2)【解析】(1)如图,通过证明∠D=∠1,∠2=∠4即可得;(2)由△CDE∽△CBF,可得CD:CB=DE:BF,根据B为AF中点,可得CD=BF,再根据CB=3,DE=1即可求得.【详解】(1)∵四边形ABCD是矩形,∴∠D=∠1=∠2+∠3=90°,∵CF⊥CE,∴∠4+∠3=90°,∴∠2=∠4,∴△CDE∽△CBF;(2)∵四边形ABCD是矩形,∴CD=AB,∵B 为AF 的中点,∴BF=AB ,∴设CD=BF=x ,∵△CDE ∽△CBF ,∴CD DE CB BF =,∴13x x=,∵x>0,∴即:25.(1)CE =245(2)DE 的值为5或4或145(3)①是,EF CE 的值为34;②BG 最大值为245【解析】(1)勾股定理求得BD ,进而根据等面积法即可求得CE 的值;(2)当△BCE 为等腰三角形时,分,,BC BE CB CE EC EB ===三种情况分析讨论;(3)①过E 作AB 、CD 的垂线,交CD 于M ,交AB 于N ,则四边形MCBN 是矩形,进而证明MCE NEF ∽,可得EF CE =EN CM ,由tan DBA ∠=EN BN =AD AB =34,CM BN =,即可求得EF CE 为定值;②证明△CDE ∽△CBG ,BG DE =BC CD =34,BG =34DE ,求BG 最大值,即求DE 最大值,又DE 在△CDE 中,当CE 取最小值即CE ⊥BD 时,DE 取最大值为325,则BG 最大值为34DE .(1)解:∵四边形ABCD 是矩形,∴90BCD ∠=︒在Rt BCD 中,AB =8,BC =6,∴10BD ==1122BDC S BC DC DB EC =⋅=⋅ △4824105DC BCCE DB ⋅∴===∴CE =245;(2)①当BC BE =时,如图,6BC BE == 1064DE BD BE ∴=-=-=②当CB CE =时,如图,过点C 作CH BD ⊥于点H ,由(1)可得245CH =由cos BC BHDBC BD BC∠==则23618105BC BH BD ===,CB CE CH BD=⊥ 3625BE BH ∴==36141055DE BD BE ∴=-=-③当EC EB =时,如图,则ECB EBC∠=∠90EBC BDC ECB ECD ∠+∠=∠+∠=︒ EDC ECD∴∠=∠DE CE∴=152DE EB BD ∴===综上所述,DE 的长为5或4或145;(3)①是,EFCE 的值为34,如图,过E 作AB 、CD 的垂线,交CD 于M ,交AB 于N ,90CME ENF ∴∠=∠=︒,四边形MCBN 是矩形∴90CEM MCE ∠+∠=︒,MC BN= 四边形CEFG 是矩形90CEF ∴∠=︒90CEM NEF ∴∠+∠=︒MCE NEF∴∠=∠MCE NEF∴ ∽∴EF CE =ENCMtan DBA ∠= ENBN =AD AB =34;MC BN=∴EFCE =ENCM =ENBN =ADAB =34;②由①知EF ADEC AB=,,EF CG AD BC AB CD=== CGBCCE CD∴=又90DCE ECB BCG∠=︒-∠=∠∴△CDE∽△CBG,∴BGDE=BCCD=34,∴BG=34DE,求BG最大值,即求DE最大值,又DE在△CDE中,当CE取最小值即CE⊥BD时,由(2)可知183255 DE DB=-=∴DE取最大值为32 5.∴BG最大值为34DE=332=45⨯245.。
24-25学年九年级数学期中测试卷(北师大版)(解析版)【测试范围:第一章~第四章】A4版
2024-2025学年九年级数学上学期期中测试卷(北师大版)(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一章~第四章(北师大版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)用配方法解一元二次方程2x2﹣2x﹣1=0,下列配方正确的是( )A.(x―14)2=34B.(x―14)2=32C.(x―12)2=34D.(x―12)2=32【分析】方程整理后,利用完全平方公式配方得到结果,即可作出判断.【解答】解:方程2x2﹣2x﹣1=0,整理得:x2﹣x=1 2,配方得:x2﹣x+14=34,即(x―12)2=34.故选:C.2.(3分)如图,AB∥CD∥EF,AF交BE于点G,若AC=CG,AG=FG,则下列结论错误的是( )A .DG BG =12B .CD EF =12C .DG BE =13D .CG CF =13【分析】根据平行线分线段成比例定理进行逐项判断即可.【解答】解:∵AB ∥CD ,∴DG BG =CG AG ,∵AC =CG ,∴DG BG =CG AG =12,故A 正确,不符合题意;∵CD ∥EF ,∴CD EF =CG FG ,∵AC =CG ,AG =FG ,∴FG =2CG ,∴EG =2DG ,∴CD EF =CG FG =12,故B 正确,不符合题意;∵AB ∥CD ∥EF ,∴BG EG =AG FG ,∵AG =FG ,∴BG =EG ,∴BE =2BG ,∵DG BG =CG AG =12,∴BG =2DG ,∵BE =4DG ,∴DGBE=14,故C错误,符合题意;∵CD∥EF,∴CGCF=DGDE∵BG=2DG,BE=4DG,∴DE=3DG,∴CGCF=DGDE=13,故D正确,不符合题意;故选:C.3.(3分)如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AE⊥BC于点E,连接OE.若OB=6,菱形ABCD的面积为54,则OE的长为( )A.4B.4.5C.5D.5.5【分析】由菱形的性质得出BD=12,由菱形的面积得出AC=9,再由直角三角形斜边上的中线性质即可得出结果.【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD=12BD,BD⊥AC,∴BD=2OB=12,∵S菱形ABCD =12AC•BD=54,∴AC=9,∵AE⊥BC,∴∠AEC=90°,∴OE=12AC=4.5,故选:B.4.(3分)已知关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,则m的取值范围是( )A .m ≥23B .m <23C .m >23且m ≠1D .m ≥23且m ≠1【分析】利用一元二次方程有实数根的条件得到关于m 的不等式组,解不等式组即可得出结论.【解答】解:∵关于x 的一元二次方程(m ﹣1)x 2+2x ﹣3=0有实数根,∴Δ=22―4(m ―1)×(―3)≥0m ―1≠0,解得:m ≥23且m ≠1.故选:D .5.(3分)下列说法正确的是( )A .邻边相等的平行四边形是矩形B .矩形的对角线互相平分C .对角线互相垂直的四边形是菱形D .一组对边相等,另一组对边平行的四边形是平行四边形【分析】由菱形的判定、矩形的判定与性质、平行四边形的判定与性质分别对各个选项进行判断即可.【解答】解:A 、邻边相等的平行四边形是菱形,故选项A 不符合题意;B 、矩形的对角线互相平分,故选项B 符合题意;C 、对角线互相垂直的平行四边形是菱形,故选项C 不符合题意;D 、一组对边相等,另一组对边平行的四边形不一定是平行四边形,故选项D 不符合题意;故选:B .6.(3分)在第十九届亚运会中国国家象棋队选拔赛的第一阶段中,采用分组单循环(每两人之间都只进行一场比赛)制,每组x 人.若每组共需进行15场比赛,则根据题意可列方程为( )A .12x (x ﹣1)=15B .12x (x +1)=15C .x (x ﹣1)=15D .x (x +1)=15【分析】设一共邀请了x 支球队参加比赛,赛制为单循环形式(每两支球队之间都进行一场比赛),则每个队参加(x ﹣1)场比赛,则共有x(x―1)2场比赛,可以列出一元二次方程.【解答】解:由题意得,x(x―1)2=15.故选:A .7.(3分)掷一个骰子,向上一面的点数大于2且小于5的概率为p 1,抛两枚硬币,正面均朝上的概率为p 2,则( )A .p 1<p 2B .p 1>p 2C .p 1=p 2D .不能确定【分析】计算出各种情况的概率,然后比较即可.【解答】解:大于2小于5的数有2个数,∴p1=26=13;投掷一次正面朝上的概率为12,两次正面朝上的概率为p2=12×12=14,∵13>14,∴p1>p2.故选:B.8.(3分)顶角为36°的等腰三角形我们把这种三角形称为“黄金三角形”,它的底与腰的比值为黄金比.如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC交AC于点D,若CD=1,则AC的长为( )A B C D【分析】根据等腰三角形的性质得到∠ABC=∠ACB,根据角平分线的性质得到∠ABD=∠DBC,证明△CBD∽△CAB,根据相似三角形的性质列出比例式,解方程得到答案.【解答】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠DBC=∠A,∠ABD=∠A,∠BDC=36°+36°=72°=∠C,∴AD=BD=BC,∵∠C=∠C,∴△CBD∽△CAB,∴BCAC=CDBC,即AD1+AD=1AD,整理得:AD2﹣AD﹣1=0,解得:AD1=AD2=则AC=AD+CD=+1=故选:D .9.(3分)如图,在平面直角坐标系中,四边形OABC 为矩形,且A (0,2),C (4,0).点E 为OC 上一点,连接AE ,射线AF ⊥AE .以点A 为圆心,适当长为半径作弧,分别交AE ,AF 于点N ,M ,再分别以点M ,N 为圆心,大于12MN 的长为半径作弧,两弧交于点P ,作射线AP ,交BC 于点G .若OE =1,则点G 的坐标为( )A .(4,23)B .(4,1)C .(4D .(4【分析】延长CB 交射线AF 于点Q ,过点G 作GH ⊥AF 于点H ,求出CG ,可得结论.【解答】解:延长CB 交射线AF 于点Q ,过点G 作GH ⊥AF 于点H ,如解图所示.∵AE ⊥AF ,四边形ABCO 是矩形,∴∠EAF =∠OAB =90°,∴∠OAE =∠BAF ,∵GH ⊥AF ,∴∠GHF =∠ABQ =∠AOE =90°,∵∠AQB =∠CQH ,∴△GHQ ∽△ABQ ∽△AOE ,∴GH HQ =AB BQ =AO OE =21,∴GH =2HQ ,BQ =12AB =2.∴AQ ==AP 平分∠EAF ,∴∠HAG =45°.又∵GH⊥AF,∴AH=HG.设HQ=x,则AH=HG=2x.∴AQ=AH+HQ=3x,即3x=∴x=∴HG=∴GQ===10 3.∴CG=BC+BQ―GQ=2+2―103=23.∴点G的坐标为(4,23 ),故选:A.10.(3分)如图,在正方形ABCD中,点E是CD上一点,延长CB至点F,使BF=DE,连结AE,AF,EF,EF交AB于点K,过点A作AG⊥EF,垂足为点H,交CF于点G,连结HD,HC.下列四个结论:①AH=HC;②HD=CD;③∠FAB=∠DHE;④AK•HD=2.其中正确结论的个数为( )A.1个B.2个C.3个D.4个【分析】①证明△EAF是等腰直角三角形,根据直角三角形斜边中线可得AH=12EF=CH,可得①正确;②证明∠DAH与∠AHD不一定相等,则AD与DH不一定相等,可知②不正确;③证明△ADH≌△CDH(SSS),则∠ADH=∠CDH=45°,再由等腰直角三角形的性质可得结论正确;④证明△AKF∽△HED,列比例式可得结论正确.【解答】解:①∵四边形ABCD是正方形,∴AD=AB,∠ADE=∠ABC=90°,∴∠ADE=∠ABF=90°,∵DE=BF,∴△ADE≌△ABF(SAS),∴AE=AF,∠DAE=∠BAF,∵∠DAE+∠EAB=90°,∴∠BAF+∠EAB=90°,即∠EAF=90°,∵AG⊥EF,∴EH=FH,∴AH=12 EF,Rt△ECF中,∵EH=FH,∴CH=12 EF,∴AH=CH;故①正确;③∵AH=CH,AD=CD,DH=DH,∴△ADH≌△CDH(SSS),∴∠ADH=∠CDH=45°,∵△AEF为等腰直角三角形,∴∠AFE=45°,∴∠AFK=∠EDH=45°,∵四边形ABCD为正方形,∴AB∥CD,∴∠BKF=∠CEH,∴∠AKF=∠DEH,∴∠FAB=∠DHE,故③正确;②∵∠ADH=∠AEF,∴∠DAE=∠DHE,∵∠BAD=∠AHE=90°,∴∠BAE=∠AHD,∵∠DAE与∠BAG不一定相等,∴∠DAH与∠AHD不一定相等,则AD与DH不一定相等,即DH与CD不一定相等,故②不正确;④∵∠FAB=∠DHE,∠AFK=∠EDH,∴△AKF∽△HED,∴AKEH=AFDH,∴AK•DH=AF•EH,在等腰直角三角形AFH中,AF==,∴AK•HD=2.故④正确;∴本题正确的结论有①③④,共3个.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.(3分)若xy=23,则代数式x―yx+2y的值是 .【分析】利用x与y的比可x=2t,y=3t,然后把它们代入代数式中进行分式的运算.【解答】解:∵xy=23,∴设x=2t,y=3t,∴x―yx+2y=2t―3t2t+6t=―t8t=―18.故答案为―1 8.12.(3分)在一个不透明的袋子中,有除颜色外完全相同的6个白球和若干个红球.通过大量重复摸球试验后,发现摸到红球的频率稳定在0.4,由此可估计袋中红球的个数为 .【分析】根据摸到红球的频率,可以得到摸到白球的概率,从而可以求得总的球数,从而可以得到红球的个数.【解答】解:由题意可得:摸到白球的频率之和为:1﹣0.4=0.6,∴总的球数为:6÷0.6=10,∴红球有:10﹣6=4(个),故答案为:4.13.(3分)设α,β是x2+x﹣18=0的两个实数根,则α2+3α+2β的值是 .【分析】先根据一元二次方程根的定义得到α2+α=18,则α2+3α+2β化为(α2+α)+2(α+β),再根据根与系数的关系得到x1+x2=﹣1,然后利用整体代入的方法计算.【解答】解:∵α,β是x2+x﹣18=0的两个实数根,∴α2+α﹣18=0,α+β=﹣1,∴α2+α=18,∴α2+3α+2β=(α2+α)+2(α+β)=18﹣2=16.故答案为:16.14.(3分)菱形有一个内角为120°,较长的对角线长为 .【分析】由菱形ABCD中,对角线AC和BD相交于点O,∠BAD=120°,BD=BAC的度数,利用菱形的性质可求出∠ABO的度数,进而得到AO的长,根据菱形的面积等于对角线乘积的一半则可求得答案.【解答】解:∵菱形ABCD中,∠BAD=120°,∴∠BAC=12∠BAD=60°,AC⊥BD,∴∠ABO=30°,∵BD=∴BO=设AO=x,则AB=2x,故x2+(2=(2x)2,解得:x=3,∴AO=3,∴AC=6,∴菱形的面积=×6÷2=故答案为:15.(3分)如图,在△ABC中,E是BC上一点,EC=2BE,点F是AC的中点,若S△ABC=12,求S△ADF ﹣S△BED= .【分析】过F 作FH ∥AE 交BC 于H ,由EC =2BE ,得到S △AEC =23S △ABC =23×12=8,根据点F 是AC 的中点,得到S △BCF =S △ABF =12S △ABC =12×12=6,根据平行线等分线段定理得到CH =EH ,求得BD =DF ,得到S △BFH =23S △BCF =23×6=4,S △ADF =12S △ABF =3,根据相似三角形的性质得到S △BDE =14×4=1,于是得到结论.【解答】解:过F 作FH ∥AE 交BC 于H ,∵EC =2BE ,∴S △AEC =23S △ABC =23×12=8,∵点F 是AC 的中点,∴S △BCF =S △ABF =12S △ABC =12×12=6,∵FH ∥AE ,点F 是AC 的中点,∴CH =EH ,∵EC =2BE ,∴BE =EH ,∵DE ∥FH ,∴BD =DF ,∴S △BFH =23S △BCF =23×6=4,S △ADF =12S △ABF =3,∵DE ∥FH ,∴△BDE ∽△BFH ,∴S △BDE S △BFH =14,∴S △BDE =14×4=1,∴S △ADF +S △BED 的值为1+3=4,故答案为:4.16.(3分)如图,在边长为4的菱形ABCD 中,∠ABC =120°,将△ADC 沿射线AC 的方向平移得到△A 'D 'C ',分别连接A 'B ,D ′B ,则A 'B +D ′B 的最小值为 .【分析】根据菱形的性质得到AB =4,∠ABC =120°,得出∠BAC =30°,根据平移的性质得到A ′D ′=AD =4,A ′D ′∥AD ,推出四边形A ′BCD ′是平行四边形,得到A ′B =D ′C ,于是得到A 'B +BD '的最小值=CD ′+BD ′的最小值,根据平移的性质得到点D ′在过点D 且平行于AC 的定直线上,作点C 关于定直线的对称点E ,连接BE 交定直线于D ′,则BE 的长度即为BA '+BD '的最小值,求得CE =CB ,得到∠E =∠CBE =30°,于是得到结论.【解答】解:∵在边长为4的菱形ABCD 中,∠ABC =120°,∴AB =CD =4,∠BAC =∠DAC =30°,∵将△ADC 沿射线AC 的方向平移得到△A 'D 'C ',∴A ′D ′=AD =4,A ′D ′∥AD ,∵四边形ABCD 是菱形,∴AD=CB,AD∥CB,∴∠ADC=120°,∴A′D′=CB,A′D′∥CB,∴四边形A′BCD′是平行四边形,∴A′B=D′C,∴A'B+BD'的最小值=BD′+CD′的最小值,∵点D′在过点D且平行于AC的定直线上,∴作点C关于定直线的对称点E,连接BE交定直线于D′,则BE的长度即为BD'+BA'的最小值,在Rt△CHD中,∵∠D′DC=∠ACD=30°,AD=4,∴CH=EH=12AD=2,∴CE=4,∴CE=CB,∵∠ECB=∠ECA′+∠ACB=90°+30°=120°,∴∠E=∠BCE=30°,∴BE=2×=故答案为:三.解答题(共8小题,满分72分)17.(6分)解方程:(1)x2﹣4x+2=0;(2)3(x﹣5)2+2(x﹣5)=0.【分析】(1)利用配方法求解即可;(2)利用因式分解法求解即可.【解答】解:(1)∵x2﹣4x+2=0,∴x2﹣4x=﹣2,∴x2﹣4x+4=﹣2+4,即(x﹣2)2=2,∴x―2=±∴x1=2+x2=2―(2)3(x﹣5)2+2(x﹣5)=0,(x﹣5)[3(x﹣5)+2]=0,x﹣5=0或3x﹣13=0,∴x1=5,x2=13 3.18.(6分)小华和小林想用标杆来测量如图1所示的古塔的高,如图2,小林在F处竖立了一根标杆EF,小华走到C处时,站立在C处恰好看到标杆顶端E和塔的顶端B在一条直线上,此时测得小华的眼睛到地面的距离DC=1.5米,EF=2.4米,CF=1.8米,FA=71.2米,点C、F、A在一条直线上,CD⊥AC,EF⊥AC,AB⊥AC,根据以上测量数据,请你求出该塔的高AB.【分析】过D作DP⊥AB于P,交EF于N,根据相似三角形的判定和性质即可得到结论.【解答】解:过D作DP⊥AB于P,交EF于N,则DN=CF=1.8米,AP=DC=1.5米,DP=AC=CF+AF=1.8+71.2=73(米),EN=EF﹣CD=2.4﹣1.5=0.9(米),由题意得,∠EDN=∠BDP,∠BPD=∠END=90°,∴△DEN∽△DBP,∴BPEN=DPDN,∴AB―1.50.9=731.8,∴AB=38(米),答:树AB的高度为38米.19.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,(1)将△ABC向上平移4个单位长度,得到△A1B1C1;(点A、B、C分别对应A1、B1、C1)(2)以原点O为位似中心,在第二象限将△ABC放大得到△A2B2C2,使得△ABC与△A2B2C2的位似比为12,并直接写出C2的坐标.【分析】(1)先根据平移的性质在坐标系中描点,再顺次连接即可得;(2)先根据位似图形的性质在坐标系中描点并顺次连接即可得.【解答】解:(1)如图1,△A1B1C1即为所作.;(2)如图2,△A2B2C2即为所作.C2(﹣6,6).20.(8分)如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的边长.【分析】(1)先证四边形BEDF是平行四边形,再证BE=DE,即可证四边形BEDF为菱形;(2)过点D作DH⊥BC于H,由含30°角的直角三角形的性质可求解.【解答】(1)证明:∵DE∥BC DF∥AB,∴四边形BEDF是平行四边形,∵DE∥BC,∴∠EDB=∠DBF,∵BD平分∠ABC,∴∠ABD=∠DBF,∴∠ABD=∠EDB,∴DE=BE,∴平行四边形BEDF是菱形;(2)解:如图,过点D作DH⊥BC于H,∵∠A=90o,∠C=30o,∴∠ABC=60°,由(1)得:四边形BEDF是菱形,∴BE=DE=BF=DF,∵DF∥AB,∴∠ABC=∠DFC=60°,∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∵BD=12,∴DH=12BD=6,∵∠FDH=90°﹣∠DFC=30°,∴FH==∴DF=2DH=即菱形BEDF的边长为21.(10分)某校为落实“双减”工作,增强课后服务的吸引力,充分用好课后服务时间,为学有余力的学生拓展学习空间,成立了5个活动小组(每位学生只能参加一个活动小组):A.音乐;B.体育;C.美术;D.阅读;E.人工智能.为了解学生对以上活动的参与情况,随机抽取部分学生进行了调查统计,并根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)①此次调查一共随机抽取了 名学生;②补全条形统计图(要求在条形图上方注明人数);③扇形统计图中圆心角α= 度;(2)若该校有1600名学生,估计该校参加D 组(阅读)的学生人数;(3)学校计划从E 组(人工智能)的甲、乙、丙、丁四位学生中随机抽取两人参加市青少年机器人竞赛,请用树状图法或列表法求出恰好抽中甲、乙两人的概率.【分析】(1)①由B 组的人数除以所占百分比即可;②求出A 组、C 组的人数,补全条形统计图即可;③由360°乘以C 组所占的比例即可;(2)由该校共有学生人数乘以参加D 组(阅读)的学生人数所占的比例即可;(3)画树状图,共有12种等可能的结果,其中恰好抽中甲、乙两人的结果有2种,再由概率公式求解即可.【解答】(1)①此次调查一共随机抽取学生人数为:100÷25%=400(名),故答案为:400;②A 组的人数:400×15%=60(名),C 组的人数:400﹣100﹣140﹣40﹣60=60(名),补全条形统计图如下:③扇形统计图中圆心角α=360°×60400=54°,故答案为:54;(2)1600×140400=560(名),答:参加D 组(阅读)的学生人数为560名;(3)画树状图如下:共有12种等可能的结果,其中恰好抽中甲、乙两人的结果有2种,∴恰好抽中甲、乙两人的概率为212=16.22.(10分)根据以下销售情况,解决销售任务.任务2:,由盈利=每件盈利×销售量,分别列式计算即可;任务3,设每件衬衫下降m元时,两家分店一天的盈利和为2244元,列出一元二次方程,解方程即可.【解答】解:任务1,甲店每天的销售量为(20+2a)件,乙店每天的销售量为(32+2b)件,故答案为:(20+2a)件,(32+2b)件;任务2,当a=5时,甲店每天的盈利为(40﹣5)×(20+2×5)=1050(元);当b=4时,乙店每天的盈利为(30﹣4)×(32+2×4)=1040(元);任务3,设每件衬衫下降m元时,两家分店一天的盈利和为2244元,由题意得:(40﹣m)(20+2m)+(30﹣m)(32+2m)=2244,整理得:m2﹣22m+121=0,解得:m1=m2=11,即每件衬衫下降11元时,两家分店一天的盈利和为2244元.23.(12分)阅读下面材料:小元遇到这样一个问题:如图1,在正方形ABCD中,点E、F分别为DC、BC边上的点,∠EAF =45°,连结EF,设DE=a,EF=b,FB=c,则把关于x的一元二次方程ax2﹣bx+c=0叫做正方形ABCD的关联方程,正方形ABCD叫做方程ax2﹣bx+c=0的关联四边形.探究方程ax2﹣bx+c=0是否存在常数根t.小元是这样思考的:要想解决这个问题,首先应想办法把这些分散的线段集中到同一条线段上.他先后尝试了平移、翻折、旋转的方法,发现通过旋转可以解决此问题.他的方法是把△ADE绕点A顺时针旋转90°得到△ABG(如图2),此时GF即是DE+BF.请回答:t= .参考小元得到的结论和思考问题的方法,解决下列问题:(1)如图1,若AD=10,DE=4,则正方形ABCD的关联方程为 ;(2)正方形ABCD的关联方程是2x2﹣bx+3=0,则正方形ABCD的面积= .【分析】阅读下面材料:由四边形ABCD是正方形,把△ADE绕点A顺时针旋转90°得到△ABG,可证明△GAF≌△EAF (SAS),从而GF=EF,即BG+BF=EF,有a+c=b,即a﹣b+c=0,故关于x的一元二次方程ax2﹣bx+c=0有一个根是x=1,即t=1;(1)在Rt△CEF中,CF2+CE2=EF2,可得(10﹣c)2+62=(c+4)2,从而可解得正方形ABCD的关联方程为4x2―587x+307=0;(2)由阅读材料知,正方形ABCD的关联方程2x2﹣bx+3=0存在常数根x=1,可得b=5,即得DE=2,BF=3,EF=5,设正方形ABCD的边长为m,有(m﹣2)2+(m﹣3)2=52,解得正方形ABCD的边长为6,正方形ABCD的面积为36.【解答】解:阅读下面材料:如图:∵四边形ABCD是正方形,∴∠D=∠ABC=∠BAD=90°,∵把△ADE绕点A顺时针旋转90°得到△ABG,∴AE=AG,∠ABG=∠D=90°,∠GAB=∠EAD,DE=BG=a,∴∠AGB+∠ABC=180°,∠EAD+∠BAE=90°=∠GAB+∠BAE,∴G,B,F共线,∠GAE=90°,∵∠EAF=45°,∴∠GAF=∠EAF=45°,在△GAF和△EAF中,AG=AE∠GAF=∠EAF AF=AF,∴△GAF≌△EAF(SAS),∴GF=EF,即BG+BF=EF,∵BG=a,EF=b,FB=c,∴a+c=b,即a﹣b+c=0,∴关于x的一元二次方程ax2﹣bx+c=0有一个根是x=1,∴t=1,故答案为:1;(1)如图:∵四边形ABCD是正方形,∴BC=CD=AD=10,∵DE=4=a,∴CE=CD﹣DE=6,由阅读材料知DE+BF=EF=b,FB=c,∴EF=4+c,CF=BC﹣BF=10﹣c,在Rt△CEF中,CF2+CE2=EF2,∴(10﹣c)2+62=(c+4)2,解得c=30 7,∴b=EF=4+c=58 7,而a=4,∴正方形ABCD的关联方程为4x2―587x+307=0,化简整理得14x2﹣29x+15=0,故答案为:14x2﹣29x+15=0;(2)如图:由阅读材料知,正方形ABCD的关联方程2x2﹣bx+3=0存在常数根x=1,∴2×12﹣b+3=0,解得b=5,∴正方形ABCD的关联方程是2x2﹣5x+3=0,∴DE=2,BF=3,EF=5,设正方形ABCD 的边长为m ,在Rt △CEF 中,CF 2+CE 2=EF 2,∴(m ﹣2)2+(m ﹣3)2=52,解得m =6,∴正方形ABCD 的边长为6,∴正方形ABCD 的面积为36,故答案为:36.24.(12分)教材再现:(1)如图1,在矩形ABCD 中,AB =3,AD =4,P 是AD 上不与A 和D 重合的一个动点,过点P 分别作AC 和BD 的垂线,垂足分别为E ,F ,则PE +PF 的值为 125 .知识应用:(2)如图2,在矩形ABCD 中,点M ,N 分别在边AD ,BC 上,将矩形ABCD 沿直线MN 折叠,使点D 恰好与点B 重合,点C 落在点C 1处,点P 为线段MN 上一动点(不与点M ,N 重合),过点P 分别作直线BM ,BC 的垂线,垂足分别为E 和F ,以PE ,PF 为邻边作平行四边形PEQF ,若DM =13,CN =5,▱PEQF 的周长是否为定值?若是,请求出▱PEQF 的周长;若不是,请说明理由.(3)如图3,当点P 是等边△ABC 外一点时,过点P 分别作直线AB 、AC 、BC 的垂线、垂足分别为点E 、D 、F .若PE +PF ﹣PD =3,请直接写出△ABC 的面积.【分析】(1)由矩形的性质得出S 矩形ABCD =12,OA =OC =OB =OD ,S △ABD =S △BCD ,∠ABC =90°,BC =AD =4,再由勾股定理得AC =5,则S △AOD =3,OA =OD =52,然后由三角形面积即可得出结论;(2)先求DM =BM =BN =13,则AD =BC =18,再由勾股定理得AB =12,然后由三角形面积求出PE +PF =12,即可解决问题;(3)由S △ABC =S △ABP +S △BCP ﹣S △ACP ,可求AB 的长,从而求出S △ABC .【解答】解:(1)如图1,设AC 与BD 的交点为O ,连接PO ,∵四边形ABCD 是矩形,∴S 矩形ABCD =AB •BC =3×4=12,OA =OC =OB =OD ,S △ABD =S △BCD ,∠ABC =90°,BC =AD =4,∴AC ==5,S △AOD =S △ABO =S △BOC =S △COD ,∴S △AOD =14S 矩形ABCD =14×12=3,OA =OD =12AC =52,∴S △AOD =S △AOP +S △DOP =12OA •PE +12OD •PF =12OA (PE +PF )=12×52×(PE +PF )=3,解得:PE +PF =125,故答案为:125;(2)▱PEQF 的周长是定值,理由如下:∵四边形ABCD 是矩形,∴AD =BC ,∠A =∠ABC =90°,AD ∥BC ,∴∠DMN =∠BNM ,连接BP ,过点M 作MH ⊥BC 于H ,如图2所示:则四边形ABHM 是矩形,∴MH =AB ,由折叠的性质得:DM =BM ,∠DMN =∠BMN ,∴∠BNM =∠BMN ,∴DM =BM =BN =13,∴AD =BC =BN +CN =13+5=18,∴AM =AD ﹣DM =18﹣13=5,在Rt △ABM 中,由勾股定理得:AB ===12,∴MH =12,∵S △BMN =S △PBM +S △PBN ,PE ⊥BM ,PF ⊥BN ,∴12BN •MH =12BM •PE +12BN •PF ,∵BM =BN ,∴PE +PF =MH =12,∴▱PEGF 的周长=2(PE +PF )=2×12=24;(3)如图3,连接AP ,BP ,CP ,∵S △ABC =S △ABP +S △BCP ﹣S △ACP ,2=12AB •PE +12BC •PF ―12AC •PD=PE +PF ﹣PD ,∵PE +PF ﹣PD =3,∴AB =∴S △ABC =2=。
2024-2025北师大版九年级(上)第六单元 反比例函数 单元测试卷(含答案)
第六单元反比例函数测试卷(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分,下列各小题均有四个答案,其中只有一个是正确的)1.下列函数中,y 是x 的反比例函数的是 ( )A. x(y-1)=1B.y =1x +1 C.y =1x2 D.y =13x 2.已知甲、乙两地相距s( km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度 v( km/h)的函数关系图象大致是 ( )3.已知反比例函数 y =kx(k ≠0)的图象经过点(2,3),若点(1,n)在反比例函数的图象上,则n 等于( )A.(-2,3)B.(-2,-3)C.(2,3)D.(3,2)5.已知反比例函数 y =−3x,则下列描述不正确的是 ( )A.图象位于第二、第四象限B.图象必经过点(-3,1)C.图象不可能与坐标轴相交D. y 随x 的增大而增大6.如果等腰三角形的面积为10,底边长为x ,底边上的高y ,则y 与x 的函数关系式为( )A.y =10xB.y =5xC.y =20xD.y =x 207.如图,在同一平面直角坐标系中,直线y =k ₁x (k ₁≠0)与双曲线y =k 2x(k 2≠0)相交于A ,B 两点,已知点 A 的坐标为(1,2),则点B 的坐标为 ( )A.(-1,-2) B.(-2,-1) C.(-1,-1) D.(-2,-2)8.如图所示,A ,B 是函数 y =1x的图象上关于原点O 的任意一对对称点,AC 平行于y 轴,BC平行于x 轴,△ABC 的面积为S ,则 ( )A. S=1 B. S=2 C.1<S<2 D. S>29.在同一直角坐标系中,函数y= kx-k 与 y =kx (k ≠0)的图象大致是 ( )10.如图,在第一象限内,A 是反比例函数y= k1x (k 1⟩0)图象上的任意一点,AB 平行于 y 轴交反比例函数 y =k 2x(k 2<0)的图象于点 B ,作以 AB 为边的平行四边形 ABCD,其顶点 C,D在 y 轴上,若 S ABCD =7,则这两个反比例函数可能是 ( )A.y =2x 和y =−3x B.y =3x 和y =−4x C.y =4x 和y =−5x D.y =5x和y =−6x 二、填空题(本大题共5小题,每小题3分,共15分)11.反比例函数 y =(m +2)x m 2−10的图象分布在第二、四象限内,则m 的值为 .12.若A(-2,y ₁),B(--1,y ₂),C(1,y ₃)三点都在函数 y =kx(k<0)的图象上,则 y ₁,y ₂,y ₃的大小关系是 (用“>”“<”或“=”连接)。
北师大版九年级上册数学期中考试试卷含答案
北师大版九年级上册数学期中考试试题一、单选题1.若x 2﹣3x 的值等于零,则x 的值为()A .﹣3B .0C .0或3D .0或﹣32.若234a b c==,a ﹣b+c =18,则a 的值为()A .11B .12C .13D .143.若两个等腰直角三角形斜边的比是1:3,则它们的面积比是()A .1:4B .1:6C .1:9D .1:104.三角形两边的长是2和4,第三边的长是方程x 2﹣12x+35=0的根,则该三角形的周长为()A .11B .13C .11或13D .以上都不对5.如图,P 是直角△ABC 斜边AB 上任意一点(A ,B 两点除外),过点P 作一条直线,使截得的三角形与△ABC 相似,这样的直线可以作()A .4条B .3条C .2条D .1条6.如图,已知正方形ABCD 的边长为6,点E ,F 分别在边AB ,BC 上,BE =CF =2,CE 与DF 交于点H ,点G 为DE 的中点,连接GH ,则GH 的长为()AB C .4.5D .4.37.如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,在DC 的延长线上取一点E ,连接OE 交BC 于点F ,若AB =4,BC =6,CE =1,则CF 的长为()AB .1.5C D .18.如图,在正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连接BD 、DP ,BD 与CF 交于点H .下列结论:①CF =2AE ;②△DFP ∽△BPH ;③DP 2=PH•PC ;④PE :BC =(3):3.正确的有()A .1个B .2个C .3个D .4个二、填空题9.一个不透明的口袋中装有10个黑球和若干个白球,小球除颜色外其余均相同,从中随机摸出一球记下颜色,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,由此估计口袋中白球的个数约为_____个.10.已知线段AB =4cm ,C 是AB 的黄金分割点,且AC >BC ,则AC =_____.11.若关于y 的一元二次方程24334ky y y --=+有实根,则k 的取值范围是______12.如图,矩形ABCD 的两条对角线AC ,BD 交于点O ,∠AOB =60°,AB =3,则矩形的周长为_____.13.如图,菱形ABCD 的周长为16cm ,BC 的垂直平分线EF 经过点A ,则对角线BD 长为_____________cm .14.某超市第二季度的营业额为200万元,第四季度的营业额为288万元.如果每季度营业额的平均增长率相同,那么每季度的平均增长率为_____.15.如图,正方形ABCD的面积为18,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为_____.16.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n个矩形的面积为_____.三、解答题17.计算:(1)3x2+3=7x;(用配方法解方程)(2)4y(3﹣y)=(y﹣3)2.18.如图在平面直角坐标系中,△ABC的位置如图所示,顶点坐标分别为:A(﹣2,0),B(﹣3,2),C(﹣1,1).(1)做出△ABC关于y轴对称的图形△A1B1C1;(2)以原点O为位似中心,在y轴右侧画出△ABC的位似图形△A2B2C2,使它与△ABC的相似比是2:1;(3)若M(x,y)是线段AB上一点,则点M关于y轴对称的对应点M1的坐标为.19.为了参加全市中学生“党史知识竞赛”,某校准备从甲、乙2名女生和丙、丁2名男生中任选2人代表学校参加比赛.(1)如果已经确定女生甲参加,再从其余的候选人中随机选取1人,则女生乙被选中的概率是______;(2)求所选代表恰好为1名女生和1名男生的概率.20.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?21.如图,△ABC中,AB=AC,D、F分别为BC、AC的中点,连接DF并延长到点E,使DF=FE,连接AE、AD、CE.(1)求证:四边形AECD是矩形.(2)当△ABC满足什么条件时,四边形AECD是正方形,并说明理由.22.如图,在▱ABCD中,对角线AC,BD交于点O,E是BD延长线上一点,且△ACE 是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,AB=a,求四边形ABCD的面积.23.如图,△ABD中,∠A=90°,AB=6cm,AD=12cm.某一时刻,动点M从点A出发沿AB方向以1cm/s的速度向点B匀速运动;同时,动点N从点D出发沿DA方向以2cm/s 的速度向点A匀速运动,运动的时间为ts.(1)求t为何值时,△AMN的面积是△ABD面积的2 9;(2)当以点A,M,N为顶点的三角形与△ABD相似时,求t值.24.如图,过矩形ABCD(AD>AB)的对角线AC的中点O作AC的垂直平分线EF,分别交AD、BC于点E、F,分别连接AF和CE.(1)判断四边形AFCE是什么特殊四边形,并证明;(2)过点E作AD的垂线交AC于点P,求证:2AE2=AC•AP.25.在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为α(0°<α<90°),连接AC1、BD1,AC1与BD1交于点P.(1)如图1,若四边形ABCD是正方形.①求证:△AOC1≌△BOD1;②请直接写出AC1与BD1的位置关系;(2)如图2,若四边形ABCD是菱形,AC=3,BD=5,设AC1=kBD1.判断AC1与BD1的位置关系,请说明理由,并求出k的值.(3)如图3,若四边形ABCD 是平行四边形,AC =6,BD =12,连接DD 1,设AC 1=kBD 1.请直接写出k 的值和AC 12+(kDD 1)2的值.参考答案1.C 【解析】根据题意得出x 2﹣3x =0,再利用因式分解法求解即可.【详解】解:根据题意,得:x 2﹣3x =0,∴x (x ﹣3)=0,则x =0或x ﹣3=0,解得x 1=0,x 2=3,则x 的值为:0或3.故选:C .2.B 【解析】设234a b c===k ,则可利用k 分别表示a 、b 、c ,再利用a ﹣b+c =18,所以2k ﹣3k+4k =18,然后解k 的方程,从而得到a 的值.【详解】解:设234a b c===k ,∴a =2k ,b =3k ,c =4k ,∵a ﹣b+c =18,∴2k ﹣3k+4k =18,解得k =6,∴a =2×6=12故选:B .3.C 【解析】根据相似三角形的判定与性质即可得出答案.【详解】解:如图,△ABC 与△DEF 都为等腰直角三角形,且EF :AB =1:3,则△ABC ∽△EFD ,∴21(9EFD ABC S EF S AB ∆∆==,故选:C .【点睛】本题主要考查了等腰直角三角形的性质,相似三角形的判定与性质等知识,熟练掌握相似三角形的性质是解题的关键.4.A 【解析】先求出方程的解,再根据三角形的三边关系定理看看能否组成三角形,最后求出三角形的周长即可.【详解】解:解方程x2﹣12x+35=0得:x=7或5,当三角形的三边为2,4,7时,2+4<7,不符合三角形的三边关系定理,不能组成三角形;当三角形的三边为2,4,5时,符合三角形的三边关系定理,能组成三角形,此时三角形的周长是2+4+5=11;综合上述:三角形的周长是11,故选:A.【点睛】本题考查了解一元二次方程和三角形的三边关系定理,能求出符合的所有情况是解此题的关键.5.B【解析】根据已知及相似三角形的判定方法(或平行线截线段成比例)进行分析,从而得到最后答案.【详解】解:如图,过点P可作PE∥BC或PE″∥AC,∴△APE∽△ABC、△PBE″∽△ABC;过点P还可作PE′⊥AB,可得:∠EPA=∠C=90°,∠A=∠A∴△APE∽△ACB;∴满足这样条件的直线的作法共有3种.故选:B6.A【解析】根据正方形的四条边都相等可得BC=DC,每一个角都是直角可得∠B=∠DCF=90°,然后利用“边角边”证明△CBE≌△DCF,得∠BCE=∠CDF,进一步得∠DHC=∠DHE=90°,从而知GH =12DE ,利用勾股定理求出DE 的长即可得出答案.【详解】解:∵四边形ABCD 为正方形,∴∠B =∠DCF =90°,BC =DC ,在△CBE 和△DCF 中,BC CC B DCF BE CF =⎧⎪∠=∠⎨⎪=⎩,∴△CBE ≌△DCF (SAS ),∴∠BCE =∠CDF ,∵∠BCE+∠DCH =90°,∴∠CDF+∠DCH =90°,∴∠DHC =∠DHE =90°,∵点G 为DE 的中点,∴GH =12DE ,∵AD =AB =6,AE =AB ﹣BE =6﹣2=4,∴DE ===∴GH故选A .【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解.7.D 【解析】【分析】过O 作OM ∥BC 交CD 于M ,根据平行四边形的性质得到BO =DO ,CD =AB =4,AD =BC =6,根据三角形的中位线的性质得到CM =12CD =2,OM =12BC =3,通过△CFE ∽△MOE ,根据相似三角形的性质得到CF CE OM EM=,代入数据即可得到结论.【详解】解:过O作OM∥BC交CD于M,在▱ABCD中,BO=DO,CD=AB=4,AD=BC=6,∴CM=12CD=2,OM=12BC=3,∵OM∥CF,∴△CFE∽△MOE,∴CFOM=CEEM,即1 33 CF,∴CF=1.故选:D.【点睛】本题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理应用数形结合思想解题.8.D【解析】【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【详解】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°,∴∠ABE=∠DCF=30°,∴BE=2AE,∵AD∥BC,∴∠FEP=∠PBC,∠EFP=∠PCB,∵∠EPF=∠BPC,∴∠FEP=∠EFP=∠EPF=60°,∴△EFP是等边三角形,∴BE=CF,∴CF=2AE,故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH,故②正确;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴DP PH PC DP,∴DP2=PH•PC,故③正确;∵∠ABE=30°,∠A=90°,∴AE,∵∠DCF=30°,∴DF,∴EF=AE+DF﹣BC﹣BC,∴FE:BC=(3):3,∵EF=PE,∴PE:BC=(3):3,故④正确,综上,四个选项都正确,故选:D.【点睛】本题考查了相似三角形的判定和性质,正方形的性质,等边三角形的性质,解答此题的关键是熟练掌握性质和定理.9.20【解析】【分析】先由频率=频数÷数据总数计算出频率,再由题意列出方程求解即可.【详解】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是50150=13,设口袋中大约有x个白球,则1010x+=13,解得x=20,经检验x=20是原方程的解,估计口袋中白球的个数约为20个.故答案为:20.【点睛】本题考查了用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.10.2##2-+【解析】【分析】根据黄金分割点的定义,知AC是较长线段;所以AC AB,代入数据即可得出AC 的长度.【详解】解:由于C为线段AB=4的黄金分割点,且AC >BC ,则AC =12AB =12-×4=2.故答案为:.【点睛】本题考查了黄金分割问题,理解黄金分割点的概念.要求熟记黄金比的值.11.74k ≥-且0k ≠【解析】【分析】先将方程化为一般形式2770--=ky y ,根据方程有实数根得到.【详解】∵24334ky y y --=+,∴2770--=ky y ∵一元二次方程有实根,∴∆0≥,且0k ≠,∴49+28k 0≥,解得74k ≥-,故答案为:74k ≥-且0k ≠.12.6+6+【解析】根据矩形性质得出AD =BC ,AB =CD ,∠BAD =90°,OA =OC =12AC ,BO =OD =12BD ,AC =BD ,推出OA =OB =OC =OD ,得出等边三角形AOB ,求出BD ,根据勾股定理求出AD 即可.【详解】解:∵四边形ABCD 是矩形,∴∠BAD =90°,OA =OC =12AC ,BO =OD =12BD ,AC =BD ,∴OA =OB =OC =OD ,∵∠AOB=60°,OB=OA,∴△AOB是等边三角形,∵AB=3,∴OA=OB=AB=3,∴BD=2OB=6,在Rt△BAD中,AB=3,BD=6,由勾股定理得:AD=∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=∴矩形ABCD的周长是AB+BC+CD+AD=故答案为:13.【详解】试题分析:连接AC,∵菱形ABCD的周长为16cm,∴AB=4cm,AC⊥BD,∵BC的垂直平分线EF经过点A,∴AC=AB=4cm,∴OA=12AC=2cm,∴,∴.故答案为考点:菱形的性质;线段垂直平分线的性质.14.20%【解析】先设增长率为x,那么第四季度的营业额可表示为200(1+x)2,已知第四季度营业额为288万元,即可列出方程,从而求解.【详解】解:设每季度的平均增长率为x,根据题意得:200(1+x )2=288,解得:x =﹣2.2(不合题意舍去),x =0.2,则每季度的平均增长率是20%.故答案为:20%15.【解析】由正方形的对称性可知,PB =PD ,当B 、P 、E 共线时PD+PE 最小,求出BE 即可.【详解】解:∵正方形中B 与D 关于AC 对称,∴PB =PD ,∴PD+PE =PB+PE =BE ,此时PD+PE 最小,∵正方形ABCD 的面积为18,△ABE 是等边三角形,∴BE =,∴PD+PE 最小值是故答案为:.【点睛】本题考查轴对称求最短距离,熟练掌握正方形的性质是解题的关键.16.(14)n-1【解析】【详解】试题分析:已知第一个矩形的面积为1;第二个矩形的面积为原来的(14)2-1=14;第三个矩形的面积是(14)3-1=116;…故第n 个矩形的面积为:11()4n -.考点:1.矩形的性质;2.菱形的性质.17.(1)1x =2x =;(2)13y =,235y =【解析】【分析】(1)先移项,再方程两边都除以3,再根据完全平方公式配方,开方,即可得出两个一元一次方程,再求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,再求出方程的解即可.【详解】解:(1)3x 2+3=7x ,移项,得3x 2﹣7x =﹣3,除以3,得x 2﹣73x =﹣1,配方,得x 2﹣73x+(76)2=﹣1+(76)2,即(x ﹣76)2=1336,开方,得x ﹣76=,解得:x 1,x 2=76;(2)4y (3﹣y )=(y ﹣3)2,移项,得﹣4y (y ﹣3)﹣(y ﹣3)2=0,(y ﹣3)(﹣4y ﹣y+3)=0,y ﹣3=0或﹣4y ﹣y+3=0,解得:y 1=3,235y =.【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并根据方程的特征选用合适的方法是解题的关键.18.(1)见解析;(2)见解析;(3)(,)x y 【解析】【分析】(1)利用轴对称的性质分别作出A ,B ,C 的对应点A 1,B 1,C 1即可;(2)利用位似变换的性质分别作出A ,B ,C 的对应点A 2,B 2,C 2即可;(3)利用轴对称的性质求解即可.【详解】解:(1)如图,△A 1B 1C 1即为所求;(2)如图,△A 2B 2C 2即为所求;(3)若M (x ,y )是线段AB 上一点,则点M 关于y 轴对称的对应点M 1的坐标为(﹣x ,y )..【点睛】本题考查作图-位似变换,作图-轴对称变换,作图-相似变换等知识,解题的关键是掌握轴对称变换,位似变换的性质,属于中考常考题型.19.(1)13;(2)23【解析】【分析】(1)由一共有3种等可能性的结果,其中恰好选中女生乙的有1种,即可求得答案;(2)先求出全部情况的总数,再求出符合条件的情况数目,二者的比值就是其发生的概率.【详解】解:(1)∵已确定女生甲参加比赛,再从其余3名同学中随机选取1名有3种结果,其中恰好选中女生乙的只有1种,∴恰好选中乙的概率为13;故答案为:13;(2)分别用字母A ,B 表示女生,C ,D 表示男生画树状如下:4人任选2人共有12种等可能结果,其中1名女生和1名男生有8种,∴P (1女1男)82123==.答:所选代表恰好为1名女生和1名男生的概率是23.【点睛】本题考查的是用列表法或画树状图法求概率与古典概率的求解方法.列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.【解析】【分析】设要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价x 元,由销售问题的数量关系建立方程求出其解即可.【详解】解:设要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价x 元,由题意,得(360280)(560)7200x x --+=,解得:18x =,260x =.有利于减少库存,x∴=.60答:要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.【点睛】本题考查了销售问题的数量关系利润=售价-进价的运用,列一元二次方程解实际问题的运用,解题的关键是根据销售问题的数量关系建立方程.21.(1)见解析;(2)∠BAC=90°,理由见解析【解析】【分析】(1)利用平行四边形的判定首先得出四边形AECD是平行四边形,进而理由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.【详解】(1)证明:∵D、F分别为BC、AC的中点,使DF=FE,∴CF=FA,∴四边形AECD是平行四边形,∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∴∠ADC=90°,∴平行四边形AECD是矩形;(2)解:当∠BAC=90°时,四边形AECD是正方形,理由如下:∵∠BAC=90°,AB=AC,AD是△ABC的中线,∴AD=BD=CD,∵四边形AECD是矩形,∴矩形AECD是正方形.【点睛】此题主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性质等知识,熟练掌握正方形和矩形的判定是解题关键.22.(1)见解析;(2)正方形ABCD的面积为2a【解析】【分析】(1)由等边三角形的性质得EO ⊥AC ,即BD ⊥AC ,再根据对角线互相垂直的平行四边形是菱形,即可得出结论;(2)证明菱形ABCD 是正方形,即可得出答案.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AO =OC ,∵△ACE 是等边三角形,∴EO ⊥AC (三线合一),即BD ⊥AC ,∴▱ABCD 是菱形;(2)解:∵△ACE 是等边三角形,∴∠EAC =60°由(1)知,EO ⊥AC ,AO =OC∴∠AEO =∠OEC =30°,△AOE 是直角三角形,∵∠AED =2∠EAD ,∴∠EAD =15°,∴∠DAO =∠EAO ﹣∠EAD =45°,∵▱ABCD 是菱形,∴∠BAD =2∠DAO =90°,∴菱形ABCD 是正方形,∴正方形ABCD 的面积=AB 2=a 2.【点睛】本题考查了菱形的判定与性质、正方形的判定与性质、平行四边形的性质、等边三角形的性质等知识,证明四边形ABCD 为菱形是解题的关键.23.(1)14t =,22t =;(2)t =3或245【解析】【分析】(1)由题意得DN=2t(cm),AN=(12﹣2t)cm,AM=tcm,根据三角形的面积公式列出方程可求出答案;(2)分两种情况,由相似三角形的判定列出方程可求出t的值.【详解】解:(1)由题意得DN=2t(cm),AN=(12﹣2t)cm,AM=tcm,∴△AMN的面积=12AN•AM=12×(12﹣2t)×t=6t﹣t2,∵∠A=90°,AB=6cm,AD=12cm∴△ABD的面积为12AB•AD=12×6×12=36,∵△AMN的面积是△ABD面积的2 9,∴6t﹣t2=236 9⨯,∴t2﹣6t+8=0,解得t1=4,t2=2,答:经过4秒或2秒,△AMN的面积是△ABD面积的2 9;(2)由题意得DN=2t(cm),AN=(12﹣2t)cm,AM=tcm,若△AMN∽△ABD,则有AM ANAB AD=,即122612t t-=,解得t=3,若△AMN∽△ADB,则有AM ANAD AB=,即122126t t-=,解得t=24 5,答:当t=3或245时,以A、M、N为顶点的三角形与△ABD相似.【点睛】本题考查了相似三角形的判定,直角三角形的性质和一元二次方程的应用,正确进行分类讨论是解题的关键.24.(1)四边形AFCE是菱形,见解析;(2)见解析【解析】【分析】(1)由过矩形ABCD (AD >AB )的对角线AC 的中点O 作AC 的垂直平分线EF ,易证得△AOE ≌△COF ,即可得EO =FO ,则可证得四边形AFCE 是平行四边形,又由EF ⊥AC ,可得四边形AFCE 是菱形;(2)由∠AEP =∠AOE =90°,∠EAP =∠OAE ,可证得△AOE ∽△AEP ,又由相似三角形的对应边成比例,即可证得2AE 2=AC•AP .【详解】证明:(1)四边形AFCE 是菱形.理由:由已知可知:AO =CO ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠EAO =∠FCO ,∠AEO =∠CFO ,在△AOE 和△COF 中,EAO FCO AEO CFO AO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△COF (AAS ),∴EO =FO ,∴四边形AFCE 是平行四边形,∵AC ⊥EF ,∴四边形AFCE 是菱形;(2)∵∠AEP =∠AOE =90°,∠EAP =∠OAE ,∴△AOE ∽△AEP ,∴AO AE =AE AP,∴AE 2=AO•AP ,又AC =2AO ,∴2AE 2=AC•AP .【点睛】本题考查了相似三角形的判定与性质、平行四边形的判定与性质、矩形的性质、菱形的判定与性质以及全等三角形的判定与性质.注意掌握数形结合思想的应用.25.(1)①见解析;②AC 1⊥BD 1;(2)AC 1⊥BD 1,见解析,35k =;(3)12k =,2211()36AC kDD +=【解析】【分析】(1)①由“SAS”可证△AOC 1≌△BOD 1;②由全等三角形的性质可得∠OBD 1=∠OAC 1,可证点A ,点B ,点O ,点P 四点共圆,可得结论;(2)由菱形的性质可得OC =OA =12AC ,OD =OB =12BD ,AC ⊥BD ,由旋转的性质可得OC 1=OC ,OD 1=OD ,∠COC 1=∠DOD 1,通过证明△AOC 1∽△BOD 1,可得∠OAC 1=∠OBD 1,由余角的性质可证AC 1⊥BD 1,由比例式可求k 的值;(3)与(2)一样可证明△AOC 1∽△BOD 1,可得11112122AC AC OA AC BD OB BD BD ====,可求k 的值,由旋转的性质可得OD 1=OD =OB ,可证△BDD 1为直角三角形,由勾股定理可求解.【详解】证明:(1)①如图1,∵四边形ABCD 是正方形,∴OC =OA =OD =OB ,AC ⊥BD ,∴∠AOB =∠COD =90°,∵△COD 绕点O 按逆时针方向旋转得到△C 1OD 1,∴OC 1=OC ,OD 1=OD ,∠COC 1=∠DOD 1,∴OC 1=OD 1,∠AOC 1=∠BOD 1=90°+∠AOD 1,在△AOC 1和△BOD 1中,1111OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC 1≌△BOD 1(SAS );②AC 1⊥BD 1;理由如下:∵△AOC 1≌△BOD 1,∴∠OBD 1=∠OAC 1,∴点A ,点B ,点O ,点P 四点共圆,∴∠APB =∠AOB =90°,∴AC 1⊥BD 1;(2)AC 1⊥BD 1,理由如下:如图2,∵四边形ABCD 是菱形,∴OC =OA =12AC ,OD =OB =12BD ,AC ⊥BD ,∴∠AOB =∠COD =90°,∵△COD 绕点O 按逆时针方向旋转得到△C 1OD 1,∴OC 1=OC ,OD 1=OD ,∠COC 1=∠DOD 1,∴OC 1=OA ,OD 1=OB ,∠AOC 1=∠BOD 1,∴11OCOA OD OB=,∴△AOC 1∽△BOD 1,∴∠OAC 1=∠OBD 1,又∵∠AOB =90°,∴∠OAB+∠ABP+∠OBD 1=90°,∴∠OAB+∠ABP+∠OAC1=90°,∴∠APB =90°∴AC 1⊥BD 1;∵△AOC 1∽△BOD 1,∴11132152AC AC OA AC BD OB BD BD ====,∴k =35;(3)如图3,与(2)一样可证明△AOC 1∽△BOD 1,∴11112122AC AC OA AC BD OB BD BD ====,∴k =12;∵△COD 绕点O 按逆时针方向旋转得到△C 1OD 1,∴OD 1=OD ,而OD =OB ,∴OD 1=OB =OD ,1111,BD O OBD DD O ODD ∠=∠∠=∠,∴1111BD O DD O OBD ODD ∠+∠=∠+∠,∴190BD D ∠=︒,∴△BDD 1为直角三角形,在Rt △BDD 1中,BD 12+DD 12=BD 2=144,∴(2AC 1)2+DD 12=144,∴AC 12+(kDD 1)2=36.【点睛】本题主要考查了菱形的性质,相似三角形的判定和性质,图形的旋转,圆周角定理等知识,熟练掌握相关知识点是解题的关键.。
初三北师大数学试题及答案
初三北师大数学试题及答案一、选择题(每题3分,共15分)1. 下列各数中,最小的数是()A. -3B. -2C. -1D. 02. 若a < b < 0,且c > 0,那么ac + bc的值()A. 一定大于0B. 一定小于0C. 可能为正,也可能为负D. 无法确定3. 一个圆的半径是5,那么这个圆的面积是()A. 25πB. 50πC. 75πD. 100π4. 一个长方体的长、宽、高分别是a、b、c,若长方体的体积是120,那么a×b×c等于()A. 120B. 60C. 30D. 155. 一个数的平方根是4,那么这个数是()A. 16B. -16C. 8D. -8二、填空题(每题2分,共10分)6. 一个数的绝对值是3,这个数可能是_______。
7. 一个数的倒数是1/2,那么这个数是_______。
8. 一个直角三角形的两条直角边分别是3和4,那么斜边的长度是_______。
9. 若x² - 5x + 6 = 0,那么x的值是_______。
10. 一个数的立方是-27,那么这个数是_______。
三、解答题(共75分)11. 解方程:2x + 5 = 13。
(5分)12. 已知一个直角三角形的两条直角边长分别为6和8,求斜边的长度。
(5分)13. 一个长方体的长、宽、高分别是3米、4米和5米,求这个长方体的表面积和体积。
(10分)14. 某工厂生产一批零件,每件零件的成本是5元,售价是10元,如果工厂要获得10000元的利润,需要生产多少件零件?(10分)15. 一个圆的半径是7厘米,求这个圆的周长和面积。
(10分)16. 某班有40名学生,其中20名男生和20名女生。
如果随机挑选一名学生,求选出男生的概率。
(10分)17. 已知a + b = 10,a - b = 2,求a² - b²的值。
(10分)18. 某班有40名学生,其中20名男生和20名女生。
2023-2024学年度北师版九上数学期末考试卷(含详细解析)
E1C 的中点,D3、E3 分别是 D2B、E2C 的中点,…,Dn、En 分别是 Dn-1B、En-1C 的中点,
则 D1E1=
,进一步计算 D2E2,D3E3,…,猜想 DnEn= 试卷第 2页,共 5页
(n≥1,且 n 为整
数).
14.如图,已知矩形 ABCD 中 ( AD AB) , EF 经过对角线的交点 O ,且分别交 AD、
A.12% 7% x%
B. 112% 1 7% 2 1 x%
C.12% 7% 2x %
D. 112% 1 7% 1 x% 2
10.函数
y
3 x
是(
)
A.一次函数 二、填空题
B.二次函数
C.反比例函数
第 II 卷(非选择题)
D.正比例函数
11.如图,在平行四边形 ABCD 中,点 E 在边 DC 上,DE:EC=4:1,连接 AE、BE,
x 轴于点 B,且△AOB 的面积为 1. (1)求 m,k 的值; (2)若一次函数 y=nx+2(n≠0)的图象与反比例函数 y= k 的图象有两个不同的公共点,
x 求实数 n 的取值范围.
21.如图,在平面直角坐标系中,点 A、B 分别在 x 轴、y 轴的正半轴上,OA=4,AB=5, 点 D 在反比例函数 y k (k>0)的图象上, DA OA ,点 P 在 y 轴负半轴上,OP=7.
3.C
【分析】构建方程组,利用一元二次方程的根的判别式进行求解.
y
4
【详解】解:由 x
,消去 y 得到: x2 bx 4 0 ,
y x b
一次函数 y x b 与反比例函数 y 4 的图象有 2 个公共点, x
△ 0 ,
北师大版初中数学九上试卷
1. 已知一个长方形的长为6cm,宽为4cm,那么它的面积是()A. 24cm²B. 36cm²C. 48cm²D. 60cm²2. 下列各数中,属于有理数的是()A. √3B. πC. 1/2D. √-13. 若x²-5x+6=0,则x的值为()A. 2,3B. 1,4C. 2,2D. 1,14. 在直角坐标系中,点A(2,3)关于y轴的对称点是()A. (-2,3)B. (2,-3)C. (-2,-3)D. (2,3)5. 若sinθ=1/2,且θ在第二象限,则cosθ的值为()A. -√3/2B. √3/2C. 1/2D. -1/2二、填空题6. 若a、b是方程x²-5x+6=0的两个根,则a+b的值为______。
7. 在直角三角形ABC中,∠C=90°,∠A=30°,那么∠B的度数是______。
8. 已知函数y=2x+1,当x=3时,y的值为______。
9. 在等腰三角形ABC中,AB=AC,∠B=50°,那么∠A的度数是______。
10. 若sinα=√3/2,且α在第四象限,则c osα的值为______。
三、解答题11. 解方程:2x²-5x+3=0。
12. 已知等腰三角形ABC中,AB=AC,AD⊥BC于点D,若BC=10cm,求AD的长度。
13. 已知函数y=3x-2,当x=4时,求y的值。
14. 在直角坐标系中,点P(3,4)关于x轴的对称点P'的坐标是______。
15. 已知等边三角形ABC的边长为6cm,求三角形ABC的面积。
答案:一、选择题1. B2. C3. A4. A5. A二、填空题6. 57. 40°8. 119. 80° 10. -√3/2三、解答题11. 解:2x²-5x+3=0,因式分解得:(2x-3)(x-1)=0,解得:x₁=3/2,x₂=1。
北师大九年级数学单元测试题
北师大九年级数学单元测试题一、选择题(每题3分,共30分)1. 一元二次方程x^2-6x 5 = 0配方后可变形为()A. (x 3)^2=14B. (x 3)^2=4C. (x + 3)^2=14D. (x + 3)^2=4解析:对于一元二次方程x^2-6x 5 = 0,配方时,首先将方程变形为x^2-6x=5,然后在等式两边加上一次项系数一半的平方,即((-6)/(2))^2=9,得到x^2-6x + 9=5 + 9,即(x 3)^2=14,所以答案是A。
2. 方程x^2=x的解是()A. x = 1B. x = 0C. x_1=1,x_2=0D. x_1=-1,x_2=0解析:移项得到x^2-x = 0,因式分解为x(x 1)=0,则x = 0或者x 1 = 0,解得x_1=1,x_2=0,所以答案是C。
二、填空题(每题4分,共20分)1. 一元二次方程2x^2-3x + 1 = 0的二次项系数是______,一次项系数是______,常数项是______。
答案:2, 3,1。
解析:对于一元二次方程ax^2+bx + c = 0(a≠0),a是二次项系数,b是一次项系数,c是常数项。
2. 若关于x的一元二次方程(m 1)x^2+5x + m^2-3m + 2 = 0的常数项为0,则m=______。
答案:2。
解析:因为常数项m^2-3m + 2 = 0,因式分解得(m 1)(m 2)=0,解得m = 1或m = 2,又因为方程是一元二次方程,所以二次项系数m 1≠0,即m≠1,所以m = 2。
三、解答题(每题10分,共50分)1. 用配方法解方程x^2+4x 1 = 0。
解:x^2+4x 1 = 0移项得x^2+4x=1配方:在等式两边加上((4)/(2))^2=4得到x^2+4x + 4=1+4即(x + 2)^2=5x+2=±√(5)解得x_1=-2 + √(5),x_2=-2-√(5)2. 已知关于x的一元二次方程x^2-2kx + k^2-2 = 0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 一元二次方程周测试卷一一、选择题(每题3分,共24分)1.方程(x-2)(x+3)=-4的根为 ( ) A .2,3 B .-2,3 C .-2,1 D .2,-12.下列方程是一元二次方程的是 ( )A .231x x y --= B .21x = C .2110x x+-= D .22434(1)x x -=+3.用配方法将二次三项式2a -4a+5变形,结果是 ( )A .2(2)a -+1 B. 2(2)a ++1 C. 2(2)a ++1 D. 2(2)a --1 4.方程2x -x —6=0的根是 ( ) A .3 B .-2 C. 3或-2 D.2或-35.方程3210x -+=的根的情况为 ( ) A.有一个实根 B.有两个不相等的实数根C.没有实数根D.有两个相等的实数根6.已知方程(m-1)21x =是关于x 的一元二次方程,则m 的取值范围是( ) A .m ≠1 B.m 0≥ C. m 0≥且m ≠1 D.m 为任何实数7.用换元法解方程2133x x x x ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=—2时,如果y=x-1x 那么原方程可化为( )A .2320y y ++= B .2320y y --= C .2320y y +-= D .2320y y -+=8.已知m 、n 是方程2210x x --=的两个实数根,则代数式22381m n m --+的值等于A.9B.7C.1D.-1 ( ) 二、填空题(每题3分,共24分)9.方程42X =0是 元 次方程,二次项系数是 ,一次项系数是 ,常数项是 。
10.一元二次方程5x(x-1)=2化成一般形式为 ,其中二次项系数为 ,一次项系数为 ,常数项为 。
11.关于x 的方程(k -3) 2X + 2x -1=0,当k ___时,是一元二次方程. 12.关于x 的方程(2k-1) 2X + 2 (k -1) x + 2k + 2=0,当k 时,是一元二次方程,当k 时,是一元一次方程.13.如果分式293x x --的值为零,则x= 。
14.若关于x 的一元二次方程2(3)0x k x k +++=的一个根是-2,则另一个根是 。
15.用配方法解方程221x x -- =0,则方程可变形为 。
16.已知关于x 的方程210x kx +-=,那么根的情况是 。
三、解答题(共52分)17. (8分)如图,在一块长35m,宽26m 矩形地面上,修建同样宽的两条互相垂直的道路,剩余部分栽种花草,在使剩余部分的面积为8502m ,道路的宽应是多少?学校: 班级: 姓名: 学号:18.(12分) 解下列方程:(1) 2X +12x+ 25 = 0 (2) 2X +4x -1= 0;(3) 2X –6x =11 (4). 2X –2x-4 = 019. (8分)一小球以15m/s 的初速度竖直向上弹出,它在空中的高度h(m)与时间t(s)满足关系:h=15t-52t小球何时能达到10m 的高度?20、(8分)如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方厘米.求截去正方形的边长.21、(8分)如图,在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,点Q 从点B 开始沿BC 向点C 以2cm/s 的速度移动,如果P 、Q 分别从A 、B 同时出发,那么几秒后五边形APQCD 的面积为642cm ?22、(8分)已知关于X的一元二次方程2X +2X+2-m=0①。
⑴若方程有两个不相等的实数根,求实数m 的取值范围;⑵请你利用⑴所得的结论,任取m 的一个数值代入方程①,并用配方法求出此方程的两个根。
第二章 一元二次方程周测试卷二一、选择题(每题3分,共24分)1.方程(x+1)(x+3)=-1的根是 ( ) A .2和2 B .1和3 C .-2和-2 D .-1和-3 2.若方程2310x x --=的两根为1x 、2x ,则1211x x +的值为 ( ) A .-3 B .3 C .13- D .133.若关于x 的一元二次方程22(1)5320m x x m m -++-+=的常数项为0,则m 的值等于( )A .2B .2或1C .1D .04.某地2004年外贸收入为2.5亿元,2006年外贸收入达到了4亿元,若平均每年的增长率为x ,则可以列出方程为 ( ) A .22.5(1)4x += B .2.5(1)(12)4x x ++= C .2(2.5%)4x += D .22.5(1%)4x += 5.已知x 、y 是实数,且()22x y +()221xy +-=12,则22x y +的值是 ( )A .-3或4B .4C .-3D .以上答案均不对 6.已知2是关于x 的方程23202x a -=的一个解,则2a-1的值是 ( ) A .3 B .4 C .5 D .67.方程2(1)2(1)0m x mx m +-++=有两个不相等的实根,则m 的取值范围是 ( ) A .12m- B .12m -且m ≠-1 C .12m - D .12m -且1m ≠- 8.下列命题中正确的是 ( ) A .方程25x x =只有一个实数根 B .方程22320x x -+=没有实数根C .方程280x -=有两个相等的实数根 D .方程2(2)4x -=-有两个不相等的实数根二、填空题(每题3分,共24分)9.方程23x x =的解是 。
10.方程(x-2)(2x+3)=0的根为 。
11.5x(x+4)-5(x+4)因式分解为 。
12.已知260x kx --=的一个根是2,则它的另一个根为 。
13..若方程236230m xx -+-=是一元二次方程,则m= 。
14.在一次同学聚会中,见面时再两两握一次手,共握手45次,则有 名同学参加聚会。
15.已知等腰△ABC 的两边长是方程2680x x -+=的根,则△ABC 的周长是 。
16.小明按照某种规律写出4个方程:①220x x +-=;②2230x x +-=; ③2340x x +-=;④2450x x +-=;……按照此规律,请你写出第100个方程 ,它的第n 个方程是 。
三、解答题(共52分)17、(8分) m 取什么值时,方程2X +(2m+1)x+2m -4=0有两个相等的实数解18、(10分)已知关于x 的方程222(1)0x m x m -++=学校 班级 姓名: 学号(1)当m 取什么值时,原方程没有实数根?(2)对m 选取一个合适的非零整数,使原方程有两个实数根,并求出这两根。
19.(8分)某药品经过两次降价,每瓶零售价由100元降为81元。
已知两次降价的百分率相同,求两次降价的百分率。
20. (8分)a 、b 、c 是△ABC 的三边,关于x 的方程2Xx+2c-a=0有两个相等的实数根,方程3cx+2b=2a 的根是x=0,试判断△ABC 的形状。
21.(9分)某水果批发商场经营一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?22.(9分)生产某种产品时,原来的成本价是500元,售价为625元,经市场预测,该产品的售价第一个月将降低20%,第二个月比第一个月提高6%,为了使两个月后的销售利润不变,该产品的成本价每月应降价百分之几?8.已知关于X的方程2X -2X+K=0有实根,则K的取值范围为 ( )学校: 班级: 姓名: 学号:18、(8分)已知关于x的方程(k+3)(k-1)2x+(k-1)x+5=0.(1)当k为何值时,方程为一元一次方程?(2)当k为何值时,方程为一元二次方程?19、(8分)某城市按该市的“九五”国民经济发展规划要求,2007年的社会总产值要比2005年增长21%,求平均每年增长的百分率。
20、(8分)某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),另外三边用木栏围成,木栏长40m.(1)鸡场的面积能达到1802m吗?(2)鸡场的面积能达到2002m吗?(3)鸡场的面积能达到2502m吗?如果能,请给出设计方案;如果不能,请说明理由. 21、(8分)在直角三角形空地上两直角边BC和BA长分别为40m和60m,D为AC的中点,如图所示,在三角形空地上修两条宽度相同且互相垂直的道路,其余部分均为绿化,已知绿化面积为8002m,问道路的宽为多少?22.(8分)阅读材料:为解方程222(1)5(1)40x x---+=,我们可以将21x-看作一个整体,然后设21x-=y……①,那么原方程可化为2540y y-+=,解得121,4y y==。
当y=1时,21x-=1,∴2x=2,∴x=±2;当y=4时,21x-=4,∴2x=5,∴x=±5,故原方程的解为12342,2,5,5x x x x==-==-。
解答问题:⑴上述解题过程,在由原方程得到方程①的过程中,利用法达到了解方程的目的,体现了转化的数学思想;⑵请利用以上知识解方程42120x x--=第四章 视图与投影能力测试题题号 一 二 三 总分 得分一、选择题(每题3分,共24分)1.下列哪种光线形成的投影不是中心投影 ( ) A .太阳 B .探照灯 C .路灯 D .手电筒2.小明在漆黑的道路上行走,一辆汽车开着前后车灯从他身边驶过,她在车灯下的影子变化情况是 ( ) A .影子的长度不变 B .影子则短变长,再由长变短 C .影子由长变短,再由短变长 D .影子的长短变化没有规律3.太阳光照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是 ( ) A .平行四边形B .与窗户全等的矩形C .比窗户略大的矩形D .比窗户略小的矩形 4.夜晚在有路灯的路上,若想没有影子,你应站的位置是 ( ) A .路灯的下方 B .路灯的左侧 C .路灯的右侧 D .以上都不对 5.如下图所示的水杯的俯视图是 ( )6.下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是 ( ) A .球 B .圆柱 C .三棱柱 D .圆锥7.一个物体的三视图如图2所示,该物体是 ( )A .圆柱B .圆锥C .棱锥D .棱柱8.一张桌子上重叠摆放了若干枚面值为1元的硬币,它的三种视图如图3所示,则这张桌子上共有1元硬币 ( )A .7枚B .9枚C .10枚D .11.枚图3二、填空题(每题3分,共24分)9.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为 。