新2019年上海闸北区中考数学二模卷(含答案)

合集下载

上海市闸北区2019-2020学年中考第二次模拟数学试题含解析

上海市闸北区2019-2020学年中考第二次模拟数学试题含解析

上海市闸北区2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()A.73 B.81 C.91 D.1092.若ab<0,则正比例函数y=ax与反比例函数y=bx在同一坐标系中的大致图象可能是()A.B.C.D.3.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为()A.﹣1 B.0 C.1 D.3 4.用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于()A.4 B.6 C.16πD.85.不等式组1040xx+>⎧⎨-≥⎩的解集是()A.﹣1≤x≤4B.x<﹣1或x≥4C.﹣1<x<4 D.﹣1<x≤46.如图,l1、l2、l3两两相交于A、B、C三点,它们与y轴正半轴分别交于点D、E、F,若A、B、C三点的横坐标分别为1、2、3,且OD=DE=1,则下列结论正确的个数是()①13EAEC=,②S△ABC=1,③OF=5,④点B的坐标为(2,2.5)A.1个B.2个C.3个D.4个7.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种正五边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相垂直.其中假命题的个数有()A.1个B.2个C.3个D.4个8.如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B 的大小是()A.27°B.34°C.36°D.54°9.若31x与4x互为相反数,则x的值是()A.1 B.2 C.3 D.410.下列图形中,线段MN的长度表示点M到直线l的距离的是()A.B.C. D.11.“a是实数,|a|≥0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件12.1.桌面上放置的几何体中,主视图与左视图可能不同的是( )A.圆柱B.正方体C.球D.直立圆锥二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个不透明的袋子中装有5个球,其中3个红球、2个黑球,这些球除颜色外无其它差别,现从袋子中随机摸出一个球,则它是黑球的概率是_____.14.点P的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是.15.分解因式:m2n﹣2mn+n= .16.如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为.17.不等式组的解是________.18.分解因式:mx 2﹣6mx+9m=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简代数式:222111a a a a a +⎛⎫-÷ ⎪---⎝⎭,再代入一个你喜欢的数求值. 20.(6分)将如图所示的牌面数字分别是1,2,3,4 的四张扑克牌背面朝上,洗匀后放在桌面上.从中随机抽出一张牌,牌面数字是偶数的概率是_____;先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是 4 的倍数的概率.21.(6分) “六一”期间,小张购述100只两种型号的文具进行销售,其中A 种型号的文具进价为10元/只,售价为12元,B 种型号的文具进价为15元1只,售价为23元/只.(1)小张如何进货,使进货款恰好为1300元?(2)如果购进A 型文具的数量不少于B 型文具数量的910倍,且要使销售文具所获利润不低于500元,则小张共有几种不同的购买方案?哪一种购买方案使销售文具所获利润最大?22.(8分)解方程311(1)(2)x x x x -=--+. 23.(8分)如图,∠AOB=90°,反比例函数y=﹣2x (x <0)的图象过点A (﹣1,a ),反比例函数y=k x (k >0,x >0)的图象过点B ,且AB ∥x 轴.(1)求a 和k 的值;(2)过点B 作MN ∥OA ,交x 轴于点M ,交y 轴于点N ,交双曲线y=k x于另一点C ,求△OBC 的面积.24.(10分)某校为了创建书香校远,计划进一批图书,经了解.文学书的单价比科普书的单价少20元,用800元购进的文学书本数与用1200元购进的科普书本数相等.文学书和科普书的单价分别是多少元?该校计划用不超过5000元的费用购进一批文学书和科普书,问购进60本文学书后最多还能购进多少本科25.(10分)对于平面上两点A,B,给出如下定义:以点A或B为圆心,AB长为半径的圆称为点A,B 的“确定圆”.如图为点A,B的“确定圆”的示意图.(1)已知点A的坐标为(-1,0),点B的坐标为(3,3),则点A,B的“确定圆”的面积为______;(2)已知点A的坐标为(0,0),若直线y=x+b上只存在一个点B,使得点A,B的“确定圆”的面积为9π,求点B的坐标;(3)已知点A在以P(m,0)为圆心,以1为半径的圆上,点B在直线33=-+y x上,若要使所有点A,B的“确定圆”的面积都不小于9π,直接写出m的取值范围.26.(12分)如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A到达点B时,它经过了200m,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面夹角∠β=42°,求缆车从点A到点D垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)27.(12分)(1)解方程:+=4(2)解不等式组并把解集表示在数轴上:.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C试题解析:第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n个图形中菱形的个数为:n2+n+1;第⑨个图形中菱形的个数92+9+1=1.故选C.考点:图形的变化规律.2.D【解析】【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【详解】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D符合.故选D【点睛】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.3.D【解析】分析:由于方程x2﹣4x+c+1=0有两个相等的实数根,所以∆ =b2﹣4ac=0,可得关于c的一元一次方程,然后解方程求出c的值.详解:由题意得,(-4)2-4(c+1)=0,c=3.故选D.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆ =b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.4.A【解析】【分析】由于半圆的弧长=圆锥的底面周长,那么圆锥的底面周长为8π,底面半径=8π÷2π.【详解】解:由题意知:底面周长=8π,∴底面半径=8π÷2π=1.故选A.【点睛】此题主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长,解决本题的关键是应用半圆的弧长=圆锥的底面周长.5.D【解析】试题分析:解不等式①可得:x>-1,解不等式②可得:x≤4,则不等式组的解为-1<x≤4,故选D.6.C【解析】【分析】①如图,由平行线等分线段定理(或分线段成比例定理)易得:13 EA OAEC OC'='=;②设过点B且与y轴平行的直线交AC于点G,则S△ABC=S△AGB+S△BCG,易得:S△AED=12,△AED∽△AGB且相似比=1,所以,△AED≌△AGB,所以,S△AGB=12,又易得G为AC中点,所以,S△AGB=S△BGC=12,从而得结论;③易知,BG=DE=1,又△BGC∽△FEC,列比例式可得结论;④易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,所以④错误.【详解】解:①如图,∵OE∥AA'∥CC',且OA'=1,OC'=1,∴13 EA OAEC OC'='=,故①正确;②设过点B且与y轴平行的直线交AC于点G(如图),则S△ABC=S△AGB+S△BCG,∵DE=1,OA'=1,∴S△AED=12×1×1=12,∵OE∥AA'∥GB',OA'=A'B',∴AE=AG,∴△AED∽△AGB且相似比=1,∴△AED≌△AGB,∴S△ABG=12,同理得:G为AC中点,∴S△ABG=S△BCG=12,∴S△ABC=1,故②正确;③由②知:△AED≌△AGB,∴BG=DE=1,∵BG∥EF,∴△BGC∽△FEC,∴13 BG CGEF CE==,∴EF=1.即OF=5,故③正确;④易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,故④错误;故选C.【点睛】本题考查了图形与坐标的性质、三角形的面积求法、相似三角形的性质和判定、平行线等分线段定理、函数图象交点等知识及综合应用知识、解决问题的能力.考查学生数形结合的数学思想方法.7.D【解析】根据对顶角的定义,平行线的性质以及正五边形的内角及镶嵌的知识,逐一判断.【详解】解:①对顶角有位置及大小关系的要求,相等的角不一定是对顶角,故为假命题;②只有当两条平行直线被第三条直线所截,同位角相等,故为假命题;③正五边形的内角和为540°,则其内角为108°,而360°并不是108°的整数倍,不能进行平面镶嵌,故为假命题;④在同一平面内,垂直于同一条直线的两条直线平行,故为假命题.故选:D.【点睛】本题考查了命题与证明.对顶角,垂线,同位角,镶嵌的相关概念.关键是熟悉这些概念,正确判断.8.C【解析】【分析】由切线的性质可知∠OAB=90°,由圆周角定理可知∠BOA=54°,根据直角三角形两锐角互余可知∠B=36°.【详解】解:∵AB与⊙O相切于点A,∴OA⊥BA.∴∠OAB=90°.∵∠CDA=27°,∴∠BOA=54°.∴∠B=90°-54°=36°.故选C.考点:切线的性质.9.D【解析】由题意得31x+4x=0,去分母3x+4(1-x)=0,解得x=4.故选D.10.A【解析】解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离.故选A.【解析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,由a是实数,得|a|≥0恒成立,因此,这一事件是必然事件.故选A.12.B【解析】试题分析:根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,正方体主视图与左视图可能不同,故选B.考点:简单几何体的三视图.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2 5【解析】【分析】用黑球的个数除以总球的个数即可得出黑球的概率.【详解】解:∵袋子中共有5个球,有2个黑球,∴从袋子中随机摸出一个球,它是黑球的概率为25;故答案为25.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.14.【解析】画树状图为:共有20种等可能的结果数,其中点P(a,b)在平面直角坐标系中第二象限内的结果数为4,所以点P(a,b)在平面直角坐标系中第二象限内的概率=420=15.故答案为1 5 .15.n(m﹣1)1.【解析】【分析】先提取公因式n后,再利用完全平方公式分解即可【详解】m1n﹣1mn+n=n(m1﹣1m+1)=n(m﹣1)1.故答案为n(m﹣1)1.16.300π【解析】试题分析:首先根据底面圆的面积求得底面的半径,然后结合弧长公式求得扇形的半径,然后利用扇形的面积公式求得侧面积即可.∵底面圆的面积为100π,∴底面圆的半径为10,∴扇形的弧长等于圆的周长为20π,设扇形的母线长为r,则120180r=20π,解得:母线长为30,∴扇形的面积为πrl=π×10×30=300π考点:(1)、圆锥的计算;(2)、扇形面积的计算17.x>4【解析】【分析】分别解出不等式组中的每一个不等式,然后根据同大取大得出不等式组的解集.【详解】由①得:x>2;由②得:x>4;∴此不等式组的解集为x>4;故答案为x>4.【点睛】考查了解一元一次不等式组,一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.m(x﹣3)1.【解析】【分析】先把提出来,然后对括号里面的多项式用公式法分解即可。

【附5套中考模拟试卷】上海市闸北区2019-2020学年中考数学二模考试卷含解析

【附5套中考模拟试卷】上海市闸北区2019-2020学年中考数学二模考试卷含解析

上海市闸北区2019-2020学年中考数学二模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某市2017年国内生产总值(GDP )比2016年增长了12%,由于受到国际金融危机的影响,预计2018比2017年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是( )A .12%7%%x +=B .(112%)(17%)2(1%)x ++=+C .12%7%2%x +=D .2(112%)(17%)(1%)x ++=+2.为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一(160个),周二(160个),周三(180个),周四(200个),周五(170个).则小丽这周跳绳个数的中位数和众数分别是( )A .180个,160个B .170个,160个C .170个,180个D .160个,200个3.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P,使PD+PE 的和最小,则这个最小值为 ( )A .23B .2C .3D .64.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .5.如图,已知射线OM ,以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,那么∠AOB 的度数是( )A .90°B .60°C .45°D .30°6.如图,在正方形ABCD 中,AB=9,点E 在CD 边上,且DE=2CE ,点P 是对角线AC 上的一个动点,则PE+PD 的最小值是( )A.310B.103C.9 D.927.如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2017次,点B的落点依次为B1,B2,B3,…,则B2017的坐标为()A.(1345,0)B.(1345.5,3)C.(1345,3)D.(1345.5,0)8.如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()A.﹣5 B.32C.52D.79.如果y=2x-2x-,那么y x的算术平方根是()A.2 B.3 C.9 D.±310.在数轴上到原点距离等于3的数是( )A.3 B.﹣3 C.3或﹣3 D.不知道11.二次函数y=ax²+bx+c(a,b,c为常数)中的x与y的部分对应值如表所示:x -1 0 1 3y135- 32953下列结论:(1)abc<0(2)当x>1时,y的值随x值的增大而减小;(3)16a+4b+c<0(4)x=3是方程ax²+(b-1)x+c=0的一个根;其中正确的个数为( ) A .4个 B .3个 C .2个 D .1个12.一个圆锥的底面半径为52,母线长为6,则此圆锥的侧面展开图的圆心角是( ) A .180° B .150°C .120°D .90° 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知一组数据﹣3、3,﹣2、1、3、0、4、x 的平均数是1,则众数是_____.14.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为 kg15.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是 .16.若一个多边形的每一个外角都等于 40°,则这个多边形的内角和是_____.17.分解因式:x 2y ﹣2xy 2+y 3=_____.18.点 C 在射线 AB 上,若 AB=3,BC=2,则AC 为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)今年 3 月 12 日植树节期间, 学校预购进 A 、B 两种树苗,若购进 A 种树苗 3 棵,B 种树苗 5 棵,需 2100 元,若购进 A 种树苗 4 棵,B 种树苗 10棵,需 3800 元.(1)求购进 A 、B 两种树苗的单价;(2)若该单位准备用不多于 8000 元的钱购进这两种树苗共 30 棵,求 A 种树苗至少需购进多少棵? 20.(6分)如图,C 是⊙O 上一点,点P 在直径AB 的延长线上,⊙O 的半径为3,PB=2,PC=1. (1)求证:PC 是⊙O 的切线.(2)求tan ∠CAB 的值.21.(6分)抛物线23y ax bx a =+-经过A (-1,0)、C (0,-3)两点,与x 轴交于另一点B .求此抛物线的解析式;已知点D (m,-m-1) 在第四象限的抛物线上,求点D 关于直线BC 对称的点D’的坐标;在(2)的条件下,连结BD ,问在x 轴上是否存在点P ,使PCB CBD ∠=∠,若存在,请求出P 点的坐标;若不存在,请说明理由.22.(8分)如图,MN 是一条东西方向的海岸线,在海岸线上的A 处测得一海岛在南偏西32°的方向上,向东走过780米后到达B 处,测得海岛在南偏西37°的方向,求小岛到海岸线的距离.(参考数据:tan37°=cot53°≈0.755,cot37°=tan53°≈1.327,tan32°=cot58°≈0.625,cot32°=tan58°≈1.1.)23.(8分)如图,一个长方形运动场被分隔成A 、B 、A 、B 、C 共5个区,A 区是边长为am 的正方形,C 区是边长为bm 的正方形.列式表示每个B 区长方形场地的周长,并将式子化简;列式表示整个长方形运动场的周长,并将式子化简;如果a =20,b =10,求整个长方形运动场的面积.24.(10分)已知P 是O e 的直径BA 延长线上的一个动点,∠P 的另一边交O e 于点C 、D ,两点位于AB 的上方,AB =6,OP=m ,1sin 3P =,如图所示.另一个半径为6的1O e 经过点C 、D ,圆心距1OO n =.(1)当m=6时,求线段CD 的长;(2)设圆心O 1在直线AB 上方,试用n 的代数式表示m ;(3)△POO 1在点P 的运动过程中,是否能成为以OO 1为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.25.(10分)先化简,再求值:(m+2﹣52m -)•243m m --,其中m=﹣12.26.(12分)在△ABC 中,AB=AC ,∠BAC=α,点P 是△ABC 内一点,且∠PAC+∠PCA=2α,连接PB ,试探究PA 、PB 、PC 满足的等量关系. (1)当α=60°时,将△ABP 绕点A 逆时针旋转60°得到△ACP′,连接PP′,如图1所示.由△ABP ≌△ACP′可以证得△A PP′是等边三角形,再由∠PAC+∠PCA=30°可得∠APC 的大小为 度,进而得到△CPP′是直角三角形,这样可以得到PA 、PB 、PC 满足的等量关系为 ;(2)如图2,当α=120°时,参考(1)中的方法,探究PA 、PB 、PC 满足的等量关系,并给出证明; (3)PA 、PB 、PC 满足的等量关系为 .27.(12分)如图,Rt △ABC 中,∠C=90°,AB=14,AC=7,D 是BC 上一点,BD=8,DE ⊥AB ,垂足为E ,求线段DE 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】分析:根据增长率为12%,7%,可表示出2017年的国内生产总值,2018年的国内生产总值;求2年的增长率,可用2016年的国内生产总值表示出2018年的国内生产总值,让2018年的国内生产总值相等即可求得所列方程.详解:设2016年的国内生产总值为1,∵2017年国内生产总值(GDP )比2016年增长了12%,∴2017年的国内生产总值为1+12%; ∵2018年比2017年增长7%, ∴2018年的国内生产总值为(1+12%)(1+7%),∵这两年GDP 年平均增长率为x%, ∴2018年的国内生产总值也可表示为:()21%x +,∴可列方程为:(1+12%)(1+7%)=()21%x +.故选D .点睛:考查了由实际问题列一元二次方程的知识,当必须的量没有时,应设其为1;注意2018年的国内生产总值是在2017年的国内生产总值的基础上增加的,需先算出2016年的国内生产总值.2.B【解析】【分析】根据中位数和众数的定义分别进行解答即可.【详解】解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170; 160出现了2次,出现的次数最多,则众数是160;故选B .【点睛】此题考查了中位数和众数,掌握中位数和众数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.3.A【解析】连接BD ,交AC 于O ,∵正方形ABCD ,∴OD=OB ,AC ⊥BD ,∴D 和B 关于AC 对称,则BE 交于AC 的点是P 点,此时PD+PE 最小,∵在AC 上取任何一点(如Q 点),QD+QE 都大于PD+PE (BE ),∴此时PD+PE 最小,此时PD+PE=BE ,∵正方形的面积是12,等边三角形ABE ,∴=,即最小值是故选A.【点睛】本题考查了正方形的性质,等边三角形的性质,轴对称-最短路线问题等知识点的应用,关键是找出PD+PE最小时P点的位置.4.A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.5.B【解析】【分析】首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.【详解】连接AB,根据题意得:OB=OA=AB,∴△AOB是等边三角形,∴∠AOB=60°.故答案选:B.【点睛】本题考查了等边三角形的判定与性质,解题的关键是熟练的掌握等边三角形的判定与性质.6.A【解析】解:如图,连接BE,设BE与AC交于点P′,∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度.∵直角△CBE中,∠BCE=90°,BC=9,CE=13CD=3,∴BE=2293=310.故选A.点睛:此题考查了轴对称﹣﹣最短路线问题,正方形的性质,要灵活运用对称性解决此类问题.找出P点位置是解题的关键.7.B【解析】连接AC,如图所示.∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移2.∵3=336×6+1,∴点B1向右平移1322(即336×2)到点B3.∵B1的坐标为(1.5,32),∴B3的坐标为(1.5+1322,32),故选B.点睛:本题是规律题,能正确地寻找规律 “每翻转6次,图形向右平移2”是解题的关键. 8.C【解析】【分析】把(-2,0)和(0,1)代入y=kx+b ,求出解析式,再将A (3,m )代入,可求得m.【详解】把(-2,0)和(0,1)代入y=kx+b ,得201k b b -+=⎧⎨=⎩, 解得121k b ⎧=⎪⎨⎪=⎩所以,一次函数解析式y=12x+1, 再将A (3,m )代入,得 m=12×3+1=52. 故选C.【点睛】本题考核知识点:考查了待定系数法求一次函数的解析式,根据解析式再求函数值.9.B【解析】解:由题意得:x ﹣2≥0,2﹣x≥0,解得:x=2,∴y=1,则y x =9,9的算术平方根是1.故选B . 10.C【解析】【分析】根据数轴上到原点距离等于3的数为绝对值是3的数即可求解.【详解】绝对值为3的数有3,-3.故答案为C.【点睛】本题考查数轴上距离的意义,解题的关键是知道数轴上的点到原点的距离为绝对值.11.B 【解析】【分析】(1)利用待定系数法求出二次函数解析式为y=-75x2+215x+3,即可判定正确;(2)求得对称轴,即可判定此结论错误;(3)由当x=4和x=-1时对应的函数值相同,即可判定结论正确;(4)当x=3时,二次函数y=ax2+bx+c=3,即可判定正确.【详解】(1)∵x=-1时y=-135,x=0时,y=3,x=1时,y=295,∴1352953a b ca b cc⎧-+-⎪⎪⎪++⎨⎪=⎪⎪⎩==,解得7 =52153 abc⎧-⎪⎪⎪⎨⎪=⎪⎪⎩=∴abc<0,故正确;(2)∵y=-75x2+215x+3,∴对称轴为直线x=-21572()5⨯-=32,所以,当x>32时,y的值随x值的增大而减小,故错误;(3)∵对称轴为直线x=32,∴当x=4和x=-1时对应的函数值相同,∴16a+4b+c<0,故正确;(4)当x=3时,二次函数y=ax2+bx+c=3,∴x=3是方程ax2+(b-1)x+c=0的一个根,故正确;综上所述,结论正确的是(1)(3)(4).故选:B.【点睛】本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,二次函数的增减性,二次函数与不等式,根据表中数据求出二次函数解析式是解题的关键.12.B【解析】【分析】【详解】解:5622180nππ⨯=,解得n=150°.故选B.考点:弧长的计算.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3【解析】∵-3、3, -2、1、3、0、4、x的平均数是1,∴-3+3-2+1+3+0+4+x=8∴x=2,∴一组数据-3、3, -2、1、3、0、4、2,∴众数是3.故答案是:3.14.20【解析】设函数表达式为y=kx+b把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行李的最大质量为20kg15.1.【解析】试题分析:因为2+2<4,所以等腰三角形的腰的长度是4,底边长2,周长:4+4+2=1,答:它的周长是1,故答案为1.考点:等腰三角形的性质;三角形三边关系.16.1260︒【解析】【分析】根据任何多边形的外角和都是360度,先利用360°÷40°求出多边形的边数,再根据多边形的内角和公式(n-2)•180°计算即可求解.【详解】解:多边形的边数是:360°÷40°=9,则内角和是:(9-2)•180°=1260°.故答案为1260°.【点睛】本题考查正多边形的外角与边数的关系,求出多边形的边数是解题的关键.17.y(x﹣y)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可【详解】x2y﹣2xy2+y3=y(x2-2xy+y2)=y(x-y)2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.18.2或2.【解析】解:本题有两种情形:(2)当点C在线段AB上时,如图,∵AB=3,BC=2,∴AC=AB﹣BC=3-2=2;(2)当点C在线段AB的延长线上时,如图,∵AB=3,BC=2,∴AC=AB+BC=3+2=2.故答案为2或2.点睛:在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)购进A 种树苗的单价为200 元/棵,购进B 种树苗的单价为300 元/棵(2)A 种树苗至少需购进 1 棵【解析】【分析】(1)设购进A种树苗的单价为x元/棵,购进B种树苗的单价为y元/棵,根据“若购进A种树苗3棵,B 种树苗5棵,需210元,若购进A种树苗4棵,B种树苗1棵,需3800元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设需购进A种树苗a棵,则购进B种树苗(30-a)棵,根据总价=单价×购买数量结合购买两种树苗的总费用不多于8000元,即可得出关于a的一元一次不等式,解之取其中的最小值即可得出结论.【详解】设购进 A 种树苗的单价为x 元/棵,购进 B 种树苗的单价为y 元/棵,根据题意得:,解得:.答:购进A 种树苗的单价为200 元/棵,购进 B 种树苗的单价为300 元/棵.(2)设需购进A 种树苗 a 棵,则购进 B 种树苗(30﹣a)棵,根据题意得:200a+300(30﹣a)≤8000,解得:a≥1.∴A种树苗至少需购进1 棵.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量间的关系,正确列出一元一次不等式.20.(1)见解析;(2).【解析】【分析】(1)连接OC、BC,根据题意可得OC2+PC2=OP2,即可证得OC⊥PC,由此可得出结论.(2)先根据题意证明出△PBC∽△PCA,再根据相似三角形的性质得出边的比值,由此可得出结论.【详解】(1)如图,连接OC、BC∵⊙O的半径为3,PB=2∴OC=OB=3,OP=OB+PB=5∵PC=1∴OC2+PC2=OP2∴△OCP是直角三角形,∴OC⊥PC∴PC 是⊙O 的切线.(2)∵AB 是直径∴∠ACB=90°∴∠ACO+∠OCB=90°∵OC ⊥PC∴∠BCP+∠OCB=90°∴∠BCP=∠ACO∵OA=OC∴∠A=∠ACO∴∠A=∠BCP在△PBC 和△PCA 中:∠BCP=∠A ,∠P=∠P∴△PBC ∽△PCA , ∴∴tan ∠CAB=【点睛】本题考查了切线与相似三角形的判定与性质,解题的关键是熟练的掌握切线的判定与相似三角形的判定与性质.21.(1)2y x 2x 3=-- (2)(0,-1)(3)(1,0)(9,0)【解析】【分析】(1)将A (−1,0)、C (0,−3)两点坐标代入抛物线y =ax 2+bx−3a 中,列方程组求a 、b 的值即可; (2)将点D (m ,−m−1)代入(1)中的抛物线解析式,求m 的值,再根据对称性求点D 关于直线BC 对称的点D'的坐标;(3)分两种情形①过点C 作CP ∥BD ,交x 轴于P ,则∠PCB =∠CBD ,②连接BD′,过点C 作CP′∥BD′,交x 轴于P′,分别求出直线CP 和直线CP′的解析式即可解决问题.【详解】解:(1)将A (−1,0)、C (0,−3)代入抛物线y =ax 2+bx−3a 中,得3033a b a a --=⎧⎨-=-⎩ ,解得12 ab=⎧⎨=-⎩∴y=x2−2x−3;(2)将点D(m,−m−1)代入y=x2−2x−3中,得m2−2m−3=−m−1,解得m=2或−1,∵点D(m,−m−1)在第四象限,∴D(2,−3),∵直线BC解析式为y=x−3,∴∠BCD=∠BCO=45°,CD′=CD=2,OD′=3−2=1,∴点D关于直线BC对称的点D'(0,−1);(3)存在.满足条件的点P有两个.①过点C作CP∥BD,交x轴于P,则∠PCB=∠CBD,∵直线BD解析式为y=3x−9,∵直线CP过点C,∴直线CP的解析式为y=3x−3,∴点P坐标(1,0),②连接BD′,过点C作CP′∥BD′,交x轴于P′,∴∠P′CB=∠D′BC,根据对称性可知∠D′BC=∠CBD,∴∠P′CB=∠CBD,∵直线BD′的解析式为113y x=-∵直线CP′过点C,∴直线CP′解析式为133y x=-,∴P′坐标为(9,0),综上所述,满足条件的点P坐标为(1,0)或(9,0).【点睛】本题考查了二次函数的综合运用.关键是由已知条件求抛物线解析式,根据抛物线的对称性,直线BC 的特殊性求点的坐标,学会分类讨论,不能漏解.22.10【解析】试题分析:如图:过点C 作CD ⊥AB 于点D ,在Rt △ACD 中,利用∠ACD 的正切可得AD=0.625CD ,同样在Rt △BCD 中,可得BD= 0.755CD ,再根据AB=BD-CD=780,代入进行求解即可得.试题解析:如图:过点C 作CD ⊥AB 于点D ,由已知可得:∠ACD=32°,∠BCD =37°,在Rt △ACD 中,∠ADC=90°,∴AD=CD·tan ∠ACD=CD·tan32°=0.625CD , 在Rt △BCD 中,∠BDC=90°,∴BD=CD·tan ∠BCD=CD·tan37°=0.755CD , ∵AB=BD-CD=780,∴0.755CD-0.625CD=780,∴CD=10,答:小岛到海岸线的距离是10米.【点睛】本题考查了解直角三角形的应用,正确添加辅助线构造直角三角形、根据图形灵活选用三角函数进行求解是关键.23.(1)4a (2)8a (3)1500S =【解析】试题分析:(1)结合图形可得矩形B 的长可表示为:a+b ,宽可表示为:a-b ,继而可表示出周长;(2)根据题意表示出整个矩形的长和宽,再求周长即可;(3)先表示出整个矩形的面积,然后代入计算即可. 试题解析:(1)矩形B 的长可表示为:a+b ,宽可表示为:a-b ,∴每个B 区矩形场地的周长为:2(a+b+a-b )=4a ;(2)整个矩形的长为a+a+b=2a+b ,宽为:a+a-b=2a-b ,∴整个矩形的周长为:2(2a+b+2a-b )=8a ;(3)矩形的面积为:S=(2a+b )(2a-b )=224a b - ,把20a =,10b =代入得,S=4×202-102=4×400-100=1500. 点睛:本题考查了列代数式的知识,属于基础题,解答本题的关键是结合图形表示出各矩形的长和宽.24. (1)CD=25;(2)m=23812n n - ;(3) n 的值为955或9155 【解析】分析:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .解Rt △POH ,得到OH 的长.由勾股定理得CH 的长,再由垂径定理即可得到结论;(2)解Rt △POH ,得到Rt 3m OH OCH V =.在和Rt △1O CH 中,由勾股定理即可得到结论; (3)△1POO 成为等腰三角形可分以下几种情况讨论:① 当圆心1O 、O 在弦CD 异侧时,分1OP OO =和11O P OO =.②当圆心1O 、O 在弦CD 同侧时,同理可得结论.详解:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .在Rt △1sin 63POH P PO =Q 中,=,,∴2OH =. ∵AB =6,∴3OC =.由勾股定理得: 5CH =∵OH ⊥DC ,∴225CD CH == (2)在Rt △1sin 3POH P PO m Q 中,=,=,∴3m OH =. 在Rt △OCH 中,2293m CH ⎛⎫- ⎪⎝⎭=. 在Rt △1O CH 中,22363m CH n ⎛⎫-- ⎪⎝⎭=. 可得: 2236933m m n ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=,解得23812n m n -:=. (3)△1POO 成为等腰三角形可分以下几种情况:① 当圆心1O 、O 在弦CD 异侧时i )1OP OO =,即m n =,由23812n n n -=,解得9n :=. 即圆心距等于O e 、1O e 的半径的和,就有O e 、1O e 外切不合题意舍去.ii )11O P OO = n =,解得:23m n =,即23n 23812n n-=,解得n : ②当圆心1O 、O 在弦CD 同侧时,同理可得: 28132n m n-=.∵1POO ∠是钝角,∴只能是m n =,即28132n n n-=,解得n :综上所述:n 点睛:本题是圆的综合题.考查了圆的有关性质和两圆的位置关系以及解直径三角形.解答(3)的关键是要分类讨论.25.-2(m+3),-1.【解析】【分析】此题的运算顺序:先括号里,经过通分,再约分化为最简,最后代值计算.【详解】解:(m+2-5m-2)•243m m --, =()22245•23m m m m-----, =-()22(3)(3)•23m m m m m -+---, =-2(m+3).把m=-12代入,得, 原式=-2×(-12+3)=-1. 26.(1)150,222PA PC PB +=(1)证明见解析(3)22224sin2PA PC PB α+=【解析】【分析】(1)根据旋转变换的性质得到△PAP′为等边三角形,得到∠P′PC =90°,根据勾股定理解答即可;(1)如图1,作将△ABP 绕点A 逆时针旋转110°得到△ACP′,连接PP′,作AD ⊥PP′于D ,根据余弦的定义得到PP′,根据勾股定理解答即可;(3)与(1)类似,根据旋转变换的性质、勾股定理和余弦、正弦的关系计算即可.试题解析:【详解】解:(1)∵△ABP ≌△ACP′,∴AP =AP′,由旋转变换的性质可知,∠PAP′=60°,P′C =PB ,∴△PAP′为等边三角形,∴∠APP′=60°,∵∠PAC +∠PCA =12×60° =30°, ∴∠APC =150°,∴∠P′PC =90°,∴PP′1+PC 1=P′C 1,∴PA 1+PC 1=PB 1,故答案为150,PA 1+PC 1=PB 1;(1)如图,作120PAP =∠'°,使AP AP '=,连接PP ',CP '.过点A 作AD ⊥PP '于D 点. ∵120BAC PAP '∠∠==°, 即BAP PAC PAC CAP ∠∠∠∠'+=+,∴BAP CAP =∠∠'.∵AB =AC ,AP AP '=,∴BAP CAP 'V V ≌.∴P C PB '=,180302PAP APD AP D -∠∠''∠o ===°. ∵AD ⊥PP ',∴90ADP ∠=°. ∴在Rt APD △中,3cos 2PD AP APD AP ⋅∠==. ∴23PP PD AP '==.∵60PAC PCA ∠∠+=°, ∴180120APC PAC PCA ∠-∠-∠o ==°.∴90P PC APC APD ==∠∠-∠'°. ∴在Rt P PC V '中,222P P PC P C ''+=.∴2223PA PC PB +=;(3)如图1,与(1)的方法类似,作将△ABP 绕点A 逆时针旋转α得到△ACP′,连接PP′,作AD ⊥PP′于D ,由旋转变换的性质可知,∠PAP′=α,P′C =PB ,∴∠APP′=90°-2α, ∵∠PAC +∠PCA =2α, ∴∠APC =180°-2α, ∴∠P′PC =(180°-2α)-(90°-2α)=90°, ∴PP′1+PC 1=P′C 1,∵∠APP′=90°-2α, ∴PD =PA•cos (90°-2α)=PA•sin 2α, ∴PP′=1PA•sin 2α, ∴4PA 1sin 12α+PC 1=PB 1, 故答案为4PA 1sin 12α+PC 1=PB 1. 【点睛】本题考查的是旋转变换的性质、等边三角形的性质、勾股定理的应用,掌握等边三角形的性质、旋转变换的性质、灵活运用类比思想是解题的关键.27.1.【解析】试题分析:根据相似三角形的判定与性质,可得答案.试题解析:∵DE ⊥AB ,∴∠BED=90°,又∠C=90°,∴∠BED=∠C .又∠B=∠B ,∴△BED ∽△BCA ,∴,∴DE===1.考点:相似三角形的判定与性质.2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图案是轴对称图形的是( )A .B .C .D .2.如图,线段AB 两个端点的坐标分别为A (2,2)、B (3,1),以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标分别为( )A .(4,4)B .(3,3)C .(3,1)D .(4,1)3.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3π-C .23π-D .223π-4.如图,若△ABC 内接于半径为R 的⊙O ,且∠A =60°,连接OB 、OC ,则边BC 的长为( )A 2RB .32RC 2D 3R5.一辆慢车和一辆快车沿相同的路线从A 地到B 地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有( )①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时A.2个B.3个C.4个D.5个6.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°7.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为()A.B.C.D.8.如图,点A是反比例函数y=kx的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则k的值是()A.3 B.﹣3 C.6 D.﹣69.如图所示,在平面直角坐标系中,抛物线y=-x2+3的顶点为A点,且与x轴的正半轴交于点B,P 点为该抛物线对称轴上一点,则OP +12AP 的最小值为( ).A .3B .23C .32214+D .3232+ 10.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:型号(厘米)38 39 40 41 42 43 数量(件) 25 30 36 50 28 8 商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数 B .中位数 C .众数 D .方差11.如果解关于x 的分式方程2122m x x x -=--时出现增根,那么m 的值为 A .-2B .2C .4D .-412.一、单选题 如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,直线a 经过正方形ABCD 的顶点A ,分别过此正方形的顶点B 、D 作BF a ⊥于点F 、DE a ⊥ 于点E .若85DE BF ==,,则EF 的长为________.14.如图,在△ABC 中,∠C =90°,BC =16 cm ,AC =12 cm ,点P 从点B 出发,沿BC 以2 cm/s 的速度向点C 移动,点Q 从点C 出发,以1 cm/s 的速度向点A 移动,若点P 、Q 分别从点B 、C 同时出发,设运动时间为ts ,当t =__________时,△CPQ 与△CBA 相似.15.如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD=9,则S△EFC等于_____.16.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=_____.17.如图,点A,B在反比例函数kyx(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是______.18.如图,在△ABC中,点D、E分别在AB、AC上,且DE∥BC,已知AD=2,DB=4,DE=1,则BC=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C 处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.求坡底C点到大楼距离AC的值;求斜坡CD的长度.20.(6分)先化简,再求值:22211·1441x x x x x x -++--+-,其中x 是从-1、0、1、2中选取一个合适的数. 21.(6分)山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元.求二月份每辆车售价是多少元?为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?22.(8分)九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:m = ,n = ;扇形统计图中机器人项目所对应扇形的圆心角度数为 °;从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.23.(8分)探究:在一次聚会上,规定每两个人见面必须握手,且只握手1次若参加聚会的人数为3,则共握手 次:;若参加聚会的人数为5,则共握手 次;若参加聚会的人数为n (n 为正整数),则共握手 次;若参加聚会的人共握手28次,请求出参加聚会的人数.拓展:嘉嘉给琪琪出题:“若线段AB 上共有m 个点(含端点A ,B ),线段总数为30,求m 的值.”琪琪的思考:“在这个问题上,线段总数不可能为30”琪琪的思考对吗?为什么?24.(10分)已知平行四边形.尺规作图:作的平分线交直线于点,交延长线于点(要求:尺规作图,保留作图痕迹,不写作法);在(1)的条件下,求证:. 25.(10分)已知:如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,过点D 作AE 的垂线交AE 于点G ,交AB 延长线于点F ,连接EF ,ED .求证:EF ED =; 若60ABC ∠=︒,6AD =, 2CE =,求EF 的长.26.(12分)已知:如图,AB=AE ,∠1=∠2,∠B=∠E .求证:BC=ED .27.(12分)如图,在65⨯的矩形方格纸中,每个小正方形的边长均为1,线段AB 的两个端点均在小正方形的顶点上.在图中画出以线段AB 为底边的等腰CAB ∆,其面积为5,点C 在小正方形的顶点上;在图中面出以线段AB 为一边的ABDE W ,其面积为16,点D 和点E 均在小正方形的顶点上;连接CE ,并直接写出线段CE 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】解:A.此图形不是轴对称图形,不合题意;B.此图形不是轴对称图形,不合题意;C.此图形是轴对称图形,符合题意;D.此图形不是轴对称图形,不合题意.故选C.2.A【解析】【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标.【详解】∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为1:2,∴点C的坐标为:(4,4)故选A.【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.3.D【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,33。

上海市闸北区2019年中考数学二模试卷含答案解析

上海市闸北区2019年中考数学二模试卷含答案解析

2019年上海市闸北区中考数学二模试卷一.选择题:(本大题共6题,每题4分,满分24分)1.下列代数式中,属于分式的是()A.﹣3 B.C.D.﹣4a3b2.的值为()A.2 B.﹣2 C.土2 D.不存在3.下列方程中,没有实数根的方程是()A.x2+2x﹣1=0 B.x2+2x+1=0 C.x2﹣x+2=0 D.x2﹣x﹣2=04.方程组的解是()A.B.C.D.5.如图,已知∠BDA=∠CDA,则不一定能使△ABD≌△ACD的条件是()A.BD=DC B.AB=AC C.∠B=∠C D.∠BAD=∠CAD6.若⊙O1与⊙O2相交于两点,且圆心距O1O2=5cm,则下列哪一选项中的长度可能为此两圆的半径?()A.1cm、2cm B.2cm、3cm C.10cm、15cm D.2cm、5cm二.填空题:(本大题共12题,每题4分,满分48分)7.计算:a5÷a2=.8.分解因式:3x2﹣6x=.9.不等式组的解集是.10.函数y=的定义域是.11.二次函数y=x2﹣2x+b的对称轴是直线x=.12.袋子里有4个黑球,m个白球,它们除颜色外都相同.经过大量实验,从中任取一个球恰好是黑球的概率是,则m的值是.13.某中学九(1)班5个同学在体育测试“1分钟跳绳”项目中,跳绳个数如下:126,134,118,152,148.这组数据中,中位数是.14.某企业2019年的年利润为100万元,2019年和2019年连续增长,且这两年的增长率相同,据统计2019年的年利润为125万元.若设这个相同的增长率为x,那么可列出的方程是.15.如图,AB∥DE,△ACB是等腰直角三角形,且∠C=90°,CB的延长线交DE于点G,则∠CGE=度.16.如图,在△ABC中,点D在AC边上且AD:DC=1:2,若,,那么=(用向量、表示).17.在平面直角坐标系xOy中,⊙C的半径为r,点P是与圆心C不重合的点,给出如下定义:若点P′为射线CP上一点,满足CP•CP′=r2,则称点P′为点P关于⊙C的反演点.如图为点P及其关于⊙C的反演点P′的示意图.写出点M (,0)关于以原点O为圆心,1为半径的⊙O的反演点M′的坐标.18.如图,底角为α的等腰△ABC绕着点B顺时针旋转,使得点A与边BC上的点D重合,点C与点E重合,联结AD、CE.已知tanα=,AB=5,则CE=.三.解答题:(本大题共7题,满分78分)19.计算:cos30°+|1﹣|﹣()﹣1.20.解方程:.21.已知:如图,在△ABC 中,∠ABC=45°,AD 是BC 边上的中线,过点D 作DE ⊥AB于点E ,且sin ∠DAB=,DB=3.求:(1)AB 的长;(2)∠CAB 的余切值.22.甲骑自行车从A 地出发前往B 地,同时乙步行从B 地出发前往A 地,如图所示,y 甲、y 乙分别表示甲、乙离开A 地y (km )与已用时间x (h )之间的关系,且直线y 甲与直线y 乙相交于点M .(1)求y 甲与x 的函数关系式(不必注明自变量x 的取值范围);(2)求A 、B 两地之间距离.23.如图,直角梯形ABCD 中,∠B=90°,AD ∥BC ,BC=2AD ,点E 为边BC 的中点. (1)求证:四边形AECD 为平行四边形;(2)在CD 边上取一点F ,联结AF 、AC 、EF ,设AC 与EF 交于点G ,且∠EAF=∠CAD .求证:△AEC ∽△ADF ;(3)在(2)的条件下,当∠ECA=45°时.求:FG :EG 的比值.24.如图,矩形OMPN 的顶点O 在原点,M 、N 分别在x 轴和y 轴的正半轴上,OM=6,ON=3,反比例函数y=的图象与PN 交于C ,与PM 交于D ,过点C 作CA ⊥x 轴于点A ,过点D 作DB ⊥y 轴于点B ,AC 与BD 交于点G .(1)求证:AB ∥CD ;(2)在直角坐标平面内是否若存在点E ,使以B 、C 、D 、E 为顶点,BC 为腰的梯形是等腰梯形?若存在,求点E 的坐标;若不存在请说明理由.25.如图,在△ABC中,AB=AC=6,BC=4,⊙B与边AB相交于点D,与边BC相交于点E,设⊙B的半径为x.(1)当⊙B与直线AC相切时,求x的值;(2)设DC的长为y,求y关于x的函数解析式,并写出定义域;(3)若以AC为直径的⊙P经过点E,求⊙P与⊙B公共弦的长.2019年上海市闸北区中考数学二模试卷参考答案与试题解析一.选择题:(本大题共6题,每题4分,满分24分)1.下列代数式中,属于分式的是()A.﹣3 B.C.D.﹣4a3b【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:A、3是整式,故A错误;B、a﹣b是整式,故B错误;C、是分式不是整式,故C正确;D、﹣4a3b是整式,故D错误;故选:C.2.的值为()A.2 B.﹣2 C.土2 D.不存在【考点】算术平方根.【分析】直接根据算术平方根的定义求解.【解答】解:因为4的算术平方根是2,所以=2.故选A.3.下列方程中,没有实数根的方程是()A.x2+2x﹣1=0 B.x2+2x+1=0 C.x2﹣x+2=0 D.x2﹣x﹣2=0【考点】根的判别式.【分析】分别求出每一个方程中判别式△的值,如果△<0,那么一元二次方程没有实数根.【解答】解:A、∵△=4+4=8>0,∴方程有两个不相等的两个实数根;B、∵△=4﹣4=0,∴方程有两个相等的两个实数根;C、∵△=1﹣8=﹣7<0,∴方程没有实数根;D、∵△=1+8=9>0,∴方程有两个不相等的两个实数根;故选C.4.方程组的解是()A.B.C.D.【考点】解二元一次方程组.【分析】本题解法有多种.可用加减消元法或代入消元法解方程组,解得x、y的值;也可以将A、B、C、D四个选项的数值代入原方程检验,能使每个方程的左右两边相等的x、y的值即是方程的解.【解答】解:将方程组中4x﹣y=13乘以2,得8x﹣2y=26①,将方程①与方程3x+2y=7相加,得x=3.再将x=3代入4x﹣y=13中,得y=﹣1.故选B.5.如图,已知∠BDA=∠CDA,则不一定能使△ABD≌△ACD的条件是()A.BD=DC B.AB=AC C.∠B=∠C D.∠BAD=∠CAD【考点】全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据以上定理逐个判断即可.【解答】解:A、BD=DC,∠BDA=∠CDA,AD=AD,符合全等三角形的判定定理SAS,能推出△ABD≌△ACD,故本选项错误;B、AB=AC,∠BDA=∠CDA,AD=AD,不符合全等三角形的判定定理,不能推出△ABD ≌△ACD,故本选项正确;C、∠B=∠C,∠BDA=∠CDA,AD=AD,符合全等三角形的判定定理AAS,能推出△ABD ≌△ACD,故本选项错误;D、∠BDA=∠CDA,AD=AD,∠BAD=∠CAD,符合全等三角形的判定定理ASA,能推出△ABD≌△ACD,故本选项错误;故选B.6.若⊙O1与⊙O2相交于两点,且圆心距O1O2=5cm,则下列哪一选项中的长度可能为此两圆的半径?()A.1cm、2cm B.2cm、3cm C.10cm、15cm D.2cm、5cm【考点】圆与圆的位置关系.【分析】由各选项中⊙O1与⊙O2的半径以及圆心距O1O2=5cm,根据圆和圆的位置与两圆的圆心距、半径的数量之间的关系,得出⊙O1与⊙O2的位置关系即可求解.【解答】解:A、∵5>2+1,∴d>R+r,∴两圆外离,故本选项错误;B、∵5=2+3,∴d=R+r,∴两圆外切,故本选项错误;C、∵5=15﹣10,∴d=R﹣r,∴两圆内切,故本选项错误;D、∵5﹣2<5<5+2,∴R﹣r<d<R+r,∴两圆相交,故本选项正确;故选D.二.填空题:(本大题共12题,每题4分,满分48分)7.计算:a5÷a2=a3.【考点】同底数幂的除法.【分析】根据同底数幂相除,底数不变指数相减计算即可.【解答】解:a5÷a2=a5﹣2=a3.8.分解因式:3x2﹣6x=3x(x﹣2).【考点】因式分解-运用公式法.【分析】首先确定公因式为3x,然后提取公因式3x,进行分解.【解答】解:3x2﹣6x=3x(x﹣2).故答案为:3x(x﹣2).9.不等式组的解集是1<x<3.【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+1>2,得:x>1,解不等式2x<6,得:x<3,∴不等式组的解集为:1<x<3,故答案为:1<x<3.10.函数y=的定义域是x≤1.【考点】函数自变量的取值范围;二次根式有意义的条件.【分析】本题主要考查自变量的取值范围,函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.【解答】解:根据题意得:1﹣x≥0,解得x≤1.11.二次函数y=x2﹣2x+b的对称轴是直线x=1.【考点】二次函数的性质.【分析】将二次函数配方成顶点式即可确定对称轴方程.【解答】解:∵y=x2﹣2x+b=x2﹣2x+1+b﹣1=(x+1)2+b﹣1故对称轴是直线x=1.故答案为:1.12.袋子里有4个黑球,m个白球,它们除颜色外都相同.经过大量实验,从中任取一个球恰好是黑球的概率是,则m的值是4.【考点】概率公式.【分析】根据概率公式列出从中任取一个球恰好是黑球的概率公式,求出m的值即可.【解答】解:袋子里有4个黑球,m个白球,若从中任取一个球恰好是黑球的概率是,根据题意可得:=,解得m=4.故答案为:4.13.某中学九(1)班5个同学在体育测试“1分钟跳绳”项目中,跳绳个数如下:126,134,118,152,148.这组数据中,中位数是134.【考点】中位数.【分析】把这组数按从大到小(或从小到大)的顺序排列,因为数的个数是奇数个,所以中间哪个数就是中位数.【解答】解:按照从小到大的顺序排列为:118,126,134,148,152,中位数为:134.故答案为:134;14.某企业2019年的年利润为100万元,2019年和2019年连续增长,且这两年的增长率相同,据统计2019年的年利润为125万元.若设这个相同的增长率为x,那么可列出的方程是100(1+x)2=125.【考点】由实际问题抽象出一元二次方程.【分析】一般用增长后的量=增长前的量×(1+增长率),2019年年利润是100(1+x)万元,在2019年的基础上再增长x,就是2019年的年利润,即可列出方程.【解答】解:设增长率为x,根据题意2019年为100(1+x)万元,2019年为100(1+x)2万元.则100(1+x)2=125;故答案为:100(1+x)2=125.15.如图,AB∥DE,△ACB是等腰直角三角形,且∠C=90°,CB的延长线交DE于点G,则∠CGE=135度.【考点】平行线的性质;等腰直角三角形.【分析】先根据等腰直角三角形的性质求出∠ABC的度数,再由平行线的性质求出∠DGB 的度数,根据补角的定义即可得出结论.【解答】解:∵△ACB是等腰直角三角形,且∠C=90°,∴∠ABC=45°.∵AB∥DE,∴∠DGB=∠ABC=45°,∴∠CGE=180°﹣45°=135°.故答案为:135.16.如图,在△ABC中,点D在AC边上且AD:DC=1:2,若,,那么=2+2(用向量、表示).【考点】*平面向量.【分析】由,,直接利用三角形法则求解,即可求得,又由点D在AC边上且AD:DC=1:2,即可求得答案.【解答】解:∵,,∴=+=+,∵点D在AC边上且AD:DC=1:2,∴=2=2+2.故答案为:2+2.17.在平面直角坐标系xOy中,⊙C的半径为r,点P是与圆心C不重合的点,给出如下定义:若点P′为射线CP上一点,满足CP•CP′=r2,则称点P′为点P关于⊙C的反演点.如图为点P及其关于⊙C的反演点P′的示意图.写出点M (,0)关于以原点O为圆心,1为半径的⊙O的反演点M′的坐标(2,0).【考点】相似三角形的判定与性质;坐标与图形性质;点与圆的位置关系.【分析】根据点P′为射线CP上一点,满足CP•CP′=r2,点P′为点P关于⊙C的反演点列式计算即可.【解答】解:设点M′的坐标为(a,0),由题意得,a=12,解得,a=2,则设点M′的坐标为(2,0),故答案为:(2,0).18.如图,底角为α的等腰△ABC绕着点B顺时针旋转,使得点A与边BC上的点D重合,点C与点E重合,联结AD、CE.已知tanα=,AB=5,则CE=.【考点】旋转的性质;等腰三角形的性质.【分析】如图,作AH⊥BC于H,EF⊥BC于F,则BH=CH,先利用三角形函数的定义和勾股定理可计算出BH=4,则BC=2BH=8,再根据旋转的性质得∠CBE=α,BE=BC=8,接着在Rt△BEF中利用三角函数的定义可计算出EF和BF,然后在Rt△CEF中利用勾股定理计算CE.【解答】解:如图,作AH⊥BC于H,EF⊥BC于F,则BH=CH,在Rt△ABH中,tan∠ABH=tanα==,设AH=3t,则BH=4t,∴AB==5t,∴5t=5,解得t=1,∴BC=2BH=8,∵等腰△ABC绕着点B顺时针旋转,使得点A与边BC上的点D重合,∴∠CBE=α,BE=BC=8,在Rt△BEF中,tan∠EAF=tanα==,设AH=3x,则BH=4x,BE=5x,∴5x=8,解得x=,∴EF=,BF=,∴CF=8﹣=,在Rt△CEF中,CE==.故答案为.三.解答题:(本大题共7题,满分78分)19.计算:cos30°+|1﹣|﹣()﹣1.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用特殊角的三角函数值计算,第二项分母有理化,第三项利用绝对值的代数意义化简,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=++﹣1﹣3=2﹣.20.解方程:.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣5+x2﹣1=3x﹣3,整理得:(x﹣3)(x+1)=0,解得:x1=3,x2=﹣1,经检验x=﹣1是增根,分式方程的解为x=3.21.已知:如图,在△ABC中,∠ABC=45°,AD是BC边上的中线,过点D作DE⊥AB于点E,且sin∠DAB=,DB=3.求:(1)AB的长;(2)∠CAB的余切值.【考点】解直角三角形.【分析】(1)在Rt△BDE中,求得BE=DE=3,在Rt△ADE中,得到AE=4,根据线段的和差即可得到结论;(2)作CH⊥AB于H,根据已知条件得到BC=6,由等腰直角三角形的性质得到BH=CH=6,根据三角函数的定义即可得到结论.【解答】解:(1)在Rt△BDE中,DE⊥AB,BD=3∠ABC=45°,∴BE=DE=3,在Rt△ADE中,sin∠DAB=,DE=3,∴AE=4,AB=AE+BE=4+3=7;(2)作CH⊥AB于H,∵AD是BC边上是中线,BD=3,∴BC=6,∵∠ABC=45°,∴BH=CH=6,∴AH=7﹣6=1,在Rt △CHA 中,cot ∠CAB==.22.甲骑自行车从A 地出发前往B 地,同时乙步行从B 地出发前往A 地,如图所示,y 甲、y 乙分别表示甲、乙离开A 地y (km )与已用时间x (h )之间的关系,且直线y 甲与直线y 乙相交于点M .(1)求y 甲与x 的函数关系式(不必注明自变量x 的取值范围);(2)求A 、B 两地之间距离.【考点】一次函数的应用.【分析】(1)设y 甲=kx (k ≠0),由点M 的坐标利用待定系数法即可求出y 甲关于x 的函数关系式;(2)设y 乙=mx +n ,由函数图象得出点的坐标,结合点的坐标利用待定系数法即可求出y 乙关于x 的函数关系式,再令x=0求出y 值即可得出结论.【解答】解:(1)设y 甲=kx (k ≠0),∵点M (0.5,7.5)在直线y 甲的图象上,∴0.5k=7.5,解得:k=15.∴y 甲关于x 的函数关系式为y 甲=15x .(2)设y 乙=mx +n ,将点(0.5,7.5),点(2,0)代入函数关系式得:,解得:.∴y 乙关于x 的函数关系式为y 乙=﹣5x +10.令y 乙=﹣5x +10中x=0,则y=10.∴A 、B 两地之间距离为10千米.23.如图,直角梯形ABCD 中,∠B=90°,AD ∥BC ,BC=2AD ,点E 为边BC 的中点. (1)求证:四边形AECD 为平行四边形;(2)在CD 边上取一点F ,联结AF 、AC 、EF ,设AC 与EF 交于点G ,且∠EAF=∠CAD .求证:△AEC ∽△ADF ;(3)在(2)的条件下,当∠ECA=45°时.求:FG :EG 的比值.【考点】相似形综合题.【分析】(1)由E为BC中点,得到BC=2CE,再由BC=2AD,得到CE=AD,再由AD与CE平行,利用一组对边平行且相等的四边形为平行四边形即可得证;(2)由四边形AECD为平行四边形,得到对角相等,再由已知角相等,利用两对角相等的三角形相似即可得证;(3)设AD=BE=CE=a,由∠ECA=45°,得到△ABC为等腰直角三角形,即AB=BC=2a,在Rt△ABE中,根据勾股定理表示出AE,由三角形AEC与三角形ADF相似得比例,表示出DF.由CD﹣DF表示出CF,再由AE与DC平行得比例,即可求出所求式子之比.【解答】解:(1)∵BC=2AD,点E为BC中点,∴BC=2CE,∴AD=CE,∵AD∥CE,∴四边形AECD为平行四边形;(2)∵四边形AECD为平行四边形,∴∠D=∠AEC,∵∠EAF=∠CAD,∴∠EAC=∠DAF,∴△AEC∽△ADF,(3)设AD=BE=CE=a,由∠ECA=45°,得到△ABC为等腰直角三角形,即AB=BC=2a,∴在Rt△ABE中,根据勾股定理得:AE==a,∵△AEC∽△ADF,∴=,即=,∴DF=a,∴CF=CD﹣DF=a﹣a=a,∵AE∥DC,∴===.24.如图,矩形OMPN的顶点O在原点,M、N分别在x轴和y轴的正半轴上,OM=6,ON=3,反比例函数y=的图象与PN交于C,与PM交于D,过点C作CA⊥x轴于点A,过点D作DB⊥y轴于点B,AC与BD交于点G.(1)求证:AB∥CD;(2)在直角坐标平面内是否若存在点E,使以B、C、D、E为顶点,BC为腰的梯形是等腰梯形?若存在,求点E的坐标;若不存在请说明理由.【考点】反比例函数综合题.【分析】(1)首先求得C和D的坐标,证明=即可证得;(2)分成PN∥DB和CD∥AB两种情况进行讨论,即可求解.【解答】(1)证明:∵四边形OMPN是矩形,OM=6,ON=3,∴P的坐标是(6,3).∵点C和D都在反比例函数y=的图象上,且点C在PN上,点D在PM上,∴点C(2,3),点D(6,1).又∵DB⊥y轴,CA⊥x轴,∴A的坐标是(2,0),B的坐标是(0,1).∵BG=2,GD=4,CG=2,AG=1.∴=,==,∴=,∴AB∥CD;(2)解:①∵PN∥DB,∴当DE1=BC时,四边形BCE1D是等腰梯形,此时直角△CNB≌直角△E1PD,∴PE1=CN=2,∴点E1的坐标是(4,3);②∵CD∥AB,当E2在直线AB上,DE2=BC=2,四边形BCDE2为等腰梯形,直线AB的解析式是y=﹣x+1,∴设点E2(x,﹣x+1),DE2=BC=2,∴(x﹣6)2+(x)2=8,解得:x1=,x2=4(舍去).∴E2的坐标是(,﹣).25.如图,在△ABC中,AB=AC=6,BC=4,⊙B与边AB相交于点D,与边BC相交于点E,设⊙B的半径为x.(1)当⊙B与直线AC相切时,求x的值;(2)设DC的长为y,求y关于x的函数解析式,并写出定义域;(3)若以AC为直径的⊙P经过点E,求⊙P与⊙B公共弦的长.【考点】圆的综合题.【分析】(1)根据勾股定理,求出AG,再由割线定理,求出BH即可;(2)由相似得出比例式,表示出DF,CF,由勾股定理建立函数关系式;(3)根据圆的性质求出BE,CE,再用△BQP∽△BGE,求出EG即可,【解答】解:(1)作AG⊥BC,BH⊥AC,∵AB=AC,AG⊥BC,∴BG=CG=2,∴AG==4,∵AG×BC=BH×AC,∴BH==,∴当⊙B与直线AC相切时,x=;(2)作DF⊥BC,∴DF∥AG,∴,∴,∴DF=x,∴CF=4﹣x,在Rt△CFD中,CD2=DE2+CF2,∴y==(<x≤4),(3)①作PQ⊥BC,∵EF是⊙B,⊙P的公共弦,∵⊙P经过点E,∴PA=PE=PC,∴AE⊥BC,∵AC=AB,∴BE=CE=2,∵PQ∥AE,且P是AC中点,∴PQ=AE=2,CP=3,∴CQ=1,BQ=3,∴BP=,∵△BQP∽△BGE,∴,∴,∴EG=,∴EF=;②当点E,与点C重合时,EF=.2019年10月31日。

上海市闸北区2019-2020学年中考数学第二次调研试卷含解析

上海市闸北区2019-2020学年中考数学第二次调研试卷含解析

上海市闸北区2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.2014 年底,国务院召开了全国青少年校园足球工作会议,明确由教育部正式牵头负责校园足球工作.2018 年2 月 1 日,教育部第三场新春系列发布会上,王登峰司长总结前三年的工作时提到:校园足球场地,目前全国校园里面有 5 万多块,到2020 年要达到85000 块.其中85000 用科学记数法可表示为()A.0.85 ⨯ 105B.8.5 ⨯ 104C.85 ⨯ 10-3D.8.5 ⨯ 10-42.如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x 的变化而变化,那么表示y与x之间的函数关系的图象大致为()A.B.C.D.3.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.613B.513C.413D.3134.直线AB、CD相交于点O,射线OM平分∠AOD,点P在射线OM上(点P与点O不重合),如果以点P为圆心的圆与直线AB相离,那么圆P与直线CD的位置关系是()A.相离B.相切C.相交D.不确定5.四根长度分别为3,4,6,(为正整数)的木棒,从中任取三根.首尾顺次相接都能组成一个三角形,则().A.组成的三角形中周长最小为9 B.组成的三角形中周长最小为10C.组成的三角形中周长最大为19 D.组成的三角形中周长最大为166.如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A .B .C .D .7.一、单选题如图中的小正方形边长都相等,若△MNP ≌△MEQ ,则点Q 可能是图中的( )A .点AB .点BC .点CD .点D8.在平面直角坐标系中,将点 P (﹣4,2)绕原点O 顺时针旋转 90°,则其对应点Q 的坐标为( ) A .(2,4)B .(2,﹣4)C .(﹣2,4)D .(﹣2,﹣4)9.将抛物线2 21y x =-+向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为( ) A .()2212y x =--- B .()2212y x =-+- C .()2214y x =--+D .()2214y x =-++10.如图是二次函数y =ax 2+bx +c(a≠0)图象的一部分,对称轴为直线x =12,且经过点(2,0),下列说法:①abc <0;②a +b =0;③4a +2b +c <0;④若(-2,y 1),(52,y 2)是抛物线上的两点,则y 1<y 2.其中说法正确的有( )A.②③④B.①②③C.①④D.①②④11.如图,在△ABC中,分别以点A和点C为圆心,大于12AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E,若AE=3cm,△ABD的周长为13cm,则△ABC的周长为()A.16cm B.19cm C.22cm D.25cm12.将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.我们知道方程组345456x yx y+=⎧⎨+=⎩的解是12xy=-⎧⎨=⎩,现给出另一个方程组3(23)4(2)54(23)5(2)6x yx y++-=⎧⎨++-=⎩,它的解是____.14.关于x的方程(m﹣5)x2﹣3x﹣1=0有两个实数根,则m满足_____.15.如图,已知点A是一次函数y=23x(x≥0)图象上一点,过点A作x轴的垂线l,B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数y=kx(x>0)的图象过点B,C,若△OAB的面积为5,则△ABC的面积是________.16.若关于x 的一元二次方程240x x m +﹣=有两个不相等的实数根,则m 的取值范围为__________. 17.如图,直线y=3x ,点A 1坐标为(1,0),过点A 1作x 轴的垂线交直线于点B 1,以原点O 为圆心,OB 1长为半径画弧交x 轴于点A 2;再过点A 2作x 轴的垂线交直线于点B 2,以原点O 为圆心,OB 2长为半径画弧交x 轴于点A 3,…,按照此做法进行下去,点A 8的坐标为__________.18.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x 元(x 为偶数),每周销售为y 个.(1)直接写出销售量y 个与降价x 元之间的函数关系式;(2)设商户每周获得的利润为W 元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元? (3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?20.(6分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A 处时,测得小岛C 位于它的北偏东70︒方向,且与航母相距80海里,再航行一段时间后到达B 处,测得小岛C 位于它的北偏东37︒方向.如果航母继续航行至小岛C 的正南方向的D 处,求还需航行的距离BD 的长.21.(6分)如图,△ABC 中,∠C =90°,AC =BC ,∠ABC 的平分线BD 交AC 于点D ,DE ⊥AB 于点E .(1)依题意补全图形;(2)猜想AE 与CD 的数量关系,并证明.22.(8分)如图,点E 、F 在BC 上,BE=CF ,AB=DC ,∠B=∠C ,AF 与DE 交于点G ,求证:GE=GF .23.(8分)如图①,在正方形ABCD 的外侧,作两个等边三角形ABE 和ADF ,连结ED 与FC 交于点M ,则图中ADE V ≌DFC △,可知ED FC =,求得DMC ∠=______.如图②,在矩形()ABCD AB BC >的外侧,作两个等边三角形ABE 和ADF ,连结ED 与FC 交于点M .()1求证:ED FC =.()2若20ADE ∠=o ,求DMC ∠的度数.24.(10分)如图,某地方政府决定在相距50km 的A 、B 两站之间的公路旁E 点,修建一个土特产加工基地,且使C 、D 两村到E 点的距离相等,已知DA ⊥AB 于A ,CB ⊥AB 于B ,DA=30km ,CB=20km ,那么基地E 应建在离A 站多少千米的地方?25.(10分)在“一带一路”战略的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10kgA 级别和20kgB 级别茶叶的利润为4000元,销售20kgA 级别和10kgB 级别茶叶的利润为3500元.(1)求每千克A级别茶叶和B级别茶叶的销售利润;(2)若该经销商一次购进两种级别的茶叶共200kg用于出口,其中B级别茶叶的进货量不超过A级别茶叶的2倍,请你帮该经销商设计一种进货方案使销售总利润最大,并求出总利润的最大值.26.(12分)如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0),B(0,1).(1)求点C的坐标;(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B'、C'正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B'C'的解析式.(3)若把上一问中的反比例函数记为y1,点B′,C′所在的直线记为y2,请直接写出在第一象限内当y1<y2时x的取值范围.27.(12分)已知:a是﹣2的相反数,b是﹣2的倒数,则(1)a=_____,b=_____;(2)求代数式a2b+ab的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据科学记数法的定义,科学记数法的表示形式为a×10 n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,等于这个数的整数位数减1.【详解】解:85000用科学记数法可表示为8.5×104,故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 2.A 【解析】设身高GE=h ,CF=l ,AF=a , 当x≤a 时,在△OEG 和△OFC 中,∠GOE=∠COF (公共角),∠AEG=∠AFC=90°, ∴△OEG ∽△OFC ,OE/OF GE/CF =, ∴()y h h ahy x a x y l l h l h=∴=-+----,,∵a 、h 、l 都是固定的常数, ∴自变量x 的系数是固定值,∴这个函数图象肯定是一次函数图象,即是直线;∵影长将随着离灯光越来越近而越来越短,到灯下的时候,将是一个点,进而随着离灯光的越来越远而影长将变大. 故选A . 3.B 【解析】解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:513.故选B .4.A 【解析】 【分析】根据角平分线的性质和点与直线的位置关系解答即可. 【详解】 解:如图所示;∵OM 平分∠AOD ,以点P 为圆心的圆与直线AB 相离, ∴以点P 为圆心的圆与直线CD 相离, 故选:A . 【点睛】此题考查直线与圆的位置关系,关键是根据角平分线的性质解答. 5.D 【解析】 【分析】首先写出所有的组合情况,再进一步根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析. 【详解】解:其中的任意三根的组合有3、4、1;3、4、x ;3、1、x ;4、1、x 共四种情况,由题意:从中任取三根,首尾顺次相接都能组成一个三角形,可得3<x <7,即x=4或5或1. ①当三边为3、4、1时,其周长为3+4+1=13;②当x=4时,周长最小为3+4+4=11,周长最大为4+1+4=14; ③当x=5时,周长最小为3+4+5=12,周长最大为4+1+5=15; ④若x=1时,周长最小为3+4+1=13,周长最大为4+1+1=11; 综上所述,三角形周长最小为11,最大为11, 故选:D . 【点睛】本题考查的是三角形三边关系,利用了分类讨论的思想.掌握三角形任意两边之和大于第三边,任意两边之差小于第三边是解答本题的关键. 6.B 【解析】 【详解】 由题意可知, 当03x ≤≤时,11222y AP AB x x =⋅=⨯=; 当35x <≤时,ABE ADP EPC ABCD y S S S S ∆∆∆=---矩形()()11123123325222x x =⨯-⨯⨯-⨯--⨯-1922x =-+; 当57x <≤时,()1127722y AB EP x x =⋅=⨯⨯-=-.∵3x =时,3y =;5x =时,2y =.∴结合函数解析式, 可知选项B 正确. 【点睛】考点:1.动点问题的函数图象;2.三角形的面积. 7.D 【解析】 【分析】根据全等三角形的性质和已知图形得出即可. 【详解】解:∵△MNP ≌△MEQ , ∴点Q 应是图中的D 点,如图,故选:D . 【点睛】本题考查了全等三角形的性质,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应角相等,对应边相等. 8.A 【解析】 【分析】首先求出∠MPO=∠QON ,利用AAS 证明△PMO ≌△ONQ ,即可得到PM=ON ,OM=QN ,进而求出Q 点坐标. 【详解】 作图如下,∵∠MPO+∠POM=90°,∠QON+∠POM=90°, ∴∠MPO=∠QON , 在△PMO 和△ONQ 中,∵{PMO ONQ MPO NOQ PO OQ∠=∠∠=∠= ,∴△PMO ≌△ONQ , ∴PM=ON ,OM=QN , ∵P 点坐标为(﹣4,2), ∴Q 点坐标为(2,4), 故选A . 【点睛】此题主要考查了旋转的性质,以及全等三角形的判定和性质,关键是掌握旋转后对应线段相等. 9.A 【解析】 【分析】根据二次函数的平移规律即可得出. 【详解】解:221y x =-+向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为()2212y x =---故答案为:A . 【点睛】本题考查了二次函数的平移,解题的关键是熟知二次函数的平移规律. 10.D 【解析】 【分析】根据图象得出a<0, a+b=0,c>0,即可判断①②;把x=2代入抛物线的解析式即可判断③,根据(-2,y 1),(52,y 2)到对称轴的距离即可判断④.∵二次函数的图象的开口向下,∴a<0,∵二次函数的图象y 轴的交点在y 轴的正半轴上,∴c>0,∵二次函数图象的对称轴是直线x=12, ∴a=-b,∴b>0,∴abc<0,故①正确;∵a=-b, ∴a+b=0,故②正确;把x=2代入抛物线的解析式得,4a+2b+c=0,故③错误; ∵()151-2222->- , 12,y y <∴故④正确;故选D..【点睛】本题考查了二次函数的图象与系数的关系的应用,题目比较典型,主要考查学生的理解能力和辨析能力. 11.B【解析】【分析】根据作法可知MN 是AC 的垂直平分线,利用垂直平分线的性质进行求解即可得答案.【详解】解:根据作法可知MN 是AC 的垂直平分线,∴DE 垂直平分线段AC ,∴DA=DC ,AE=EC=6cm ,∵AB+AD+BD=13cm ,∴AB+BD+DC=13cm ,∴△ABC 的周长=AB+BD+BC+AC=13+6=19cm ,故选B .【点睛】本题考查作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的12.C【解析】【分析】严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.【详解】根据题意知,剪去的纸片一定是一个四边形,且对角线互相垂直.故选C .【点睛】本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.24x y =-⎧⎨=⎩【解析】【分析】观察两个方程组的形式与联系,可得第二个方程组中23122x y +=-⎧⎨-=⎩,解之即可. 【详解】解:由题意得23122x y +=-⎧⎨-=⎩, 解得24x y =-⎧⎨=⎩. 故答案为:24x y =-⎧⎨=⎩. 【点睛】本题考查了二元一次方程组的解,用整体代入法解决这种问题比较方便.14.m≥114且m≠1. 【解析】【分析】根据一元二次方程的定义和判别式的意义得到m ﹣1≠0且()()()234510m =---⨯-≥V ,然后求出两个不等式的公共部分即可.【详解】解:根据题意得m ﹣1≠0且()()()234510m =---⨯-≥V , 解得114m ≥且m≠1. 故答案为: 114m ≥且m≠1. 【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根. 15.53【解析】【分析】如图,过C 作CD ⊥y 轴于D ,交AB 于E .设AB=2a ,则BE=AE=CE=a ,再设A (x ,23x ),则B (x ,23x+2a )、C (x+a ,23x+a ),再由B 、C 在反比例函数的图象上可得x (23x+2a )=(x+a )(23x+a ),解得x=3a ,由△OAB 的面积为5求得ax=5,即可得a 2=53,根据S △ABC =12AB•CE 即可求解. 【详解】如图,过C 作CD ⊥y 轴于D ,交AB 于E .∵AB ⊥x 轴,∴CD ⊥AB ,∵△ABC 是等腰直角三角形,∴BE=AE=CE ,设AB=2a ,则BE=AE=CE=a ,设A (x ,23x ),则B (x ,23x+2a ),C (x+a ,23x+a ), ∵B 、C 在反比例函数的图象上,∴x (23x+2a )=(x+a )(23x+a ), 解得x=3a ,∵S △OAB =12AB•DE=12•2a•x=5,∴ax=5,∴3a 2=5,∴a 2=53, ∴S △ABC =12AB•CE=12•2a•a=a 2=53. 故答案为:53. 【点睛】本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质、三角形面积,熟练掌握反比例函数上的点符合反比例函数的关系式是关键.16.4m <.【解析】【分析】根据判别式的意义得到2440m V =(﹣)﹣>,然后解不等式即可.【详解】解:Q 关于x 的一元二次方程240x x m +﹣=有两个不相等的实数根,2440m ∴V =(﹣)﹣>,解得:4m <,故答案为:4m <.【点睛】此题考查了一元二次方程200ax bx c a ++≠=()的根的判别式24b ac V =﹣:当0V>,方程有两个不相等的实数根;当0V =,方程有两个相等的实数根;当0V <,方程没有实数根.17.(128,0)【解析】【分析】∵点A 1坐标为(1,0),且B 1A 1⊥x 轴,∴B 1的横坐标为1,将其横坐标代入直线解析式就可以求出B 1的坐标,就可以求出A 1B 1的值,OA 1的值,根据锐角三角函数值就可以求出∠xOB 3的度数,从而求出OB 1的值,就可以求出OA 2值,同理可以求出OB 2、OB 3…,从而寻找出点A 2、A 3…的坐标规律,最后求出A 8的坐标.【详解】Q 点1A 坐标为(1,0),11OA ∴=11B A X ⊥Q 轴∴点1B 的横坐标为1,且点1B 在直线上y ∴=1(1B ∴11A B ∴=在11Rt A B O ∆中由勾股定理,得12OB =111sin 2OB A ∴∠= ∴1130OB A ︒∠=112233...30n n OB A OB A OB A OB A ︒∴∠=∠=∠==∠=2122,(2,0)OA OB A ==Q ,在22Rt A B O ∆中, 2224OB OA ==334,(4,0)OA A ∴=.1148,?··,2,(2,0)n n n n OA OA A --∴==.8182128OA -∴==.8(128,0)A ∴=.故答案为 (128,0).【点睛】本题是一道一次函数的综合试题,也是一道规律试题,考查了直角三角形的性质,特别是30︒所对的直角边等于斜边的一半的运用,点的坐标与函数图象的关系.18.1【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程,通过解关于m 的方程求得m 的值即可.【详解】∵关于x 的一元二次方程mx 1+5x+m 1﹣1m=0有一个根为0,∴m 1﹣1m=0且m≠0,解得,m=1,故答案是:1.【点睛】本题考查了一元二次方程ax 1+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=10x+160;(2)5280元;(3)10000元.【解析】试题分析:(1)根据题意,由售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个,可得销售量y 个与降价x 元之间的函数关系式;(2)根据题意结合每周获得的利润W=销量×每个的利润,进而利用二次函数增减性求出答案; (3)根据题意,由利润不低于5200元列出不等式,进一步得到销售量的取值范围,从而求出答案. 试题解析:(1)依题意有:y=10x+160;(2)依题意有:W=(80﹣50﹣x )(10x+160)=﹣10(x ﹣7)2+5290,∵-10<0且x 为偶数,故当x=6或x=8时,即故当销售单价定为74或72元时,每周销售利润最大,最大利润是5280元;(3)依题意有:﹣10(x ﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).答:他至少要准备10000元进货成本.点睛:此题主要考查了二次函数的应用以及一元二次方程的应用等知识,正确利用销量×每个的利润=W 得出函数关系式是解题关键.20.还需要航行的距离BD 的长为20.4海里.【解析】分析:根据题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD 中,由三角函数得出CD=27.2海里,在直角三角形BCD 中,得出BD ,即可得出答案.详解:由题知:70ACD ∠=︒,37BCD ∠=︒,80AC =.在Rt ACD ∆中,cos CD ACD AC ∠=,0.3480CD ∴=,27.2CD ∴=(海里). 在Rt BCD ∆中,tan BD BCD CD ∠=,0.7527.2BD ∴=,20.4BD ∴=(海里). 答:还需要航行的距离BD 的长为20.4海里.点睛:此题考查了解直角三角形的应用-方向角问题,三角函数的应用;求出CD 的长度是解决问题的关键.21. (1)见解析;(2)见解析.【解析】【分析】(1)根据题意画出图形即可;(2)利用等腰三角形的性质得∠A =45∘.则∠ADE =∠A =45°,所以AE =DE ,再根据角平分线性质得CD =DE ,从而得到AE =CD .【详解】解:(1)如图:(2)AE 与 CD 的数量关系为AE =CD .证明:∵∠C =90°,AC =BC ,∴∠A =45°.∵DE ⊥AB ,∴∠ADE =∠A =45°.∴AE =DE ,∵BD 平分∠ABC ,∴CD =DE ,∴AE =CD .【点睛】此题考查等腰三角形的性质,角平分线的性质,解题关键在于根据题意作辅助线.22.证明见解析.【解析】【分析】求出BF=CE ,根据SAS 推出△ABF ≌△DCE ,得对应角相等,由等腰三角形的判定可得结论.【详解】∵BE=CF ,∴BE+EF=CF+EF ,∴BF=CE ,在△ABF 和△DCE 中AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△DCE (SAS ),∴∠GEF=∠GFE ,∴EG=FG .【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.23.阅读发现:90°;(1)证明见解析;(2)100°【解析】【分析】阅读发现:只要证明15DFC DCF ADE AED ∠=∠=∠=∠=o ,即可证明.拓展应用:()1欲证明ED FC =,只要证明ADE V ≌DFC △即可.()2根据DMC FDM DFC FDA ADE DFC ∠=∠+∠=∠+∠+∠即可计算.【详解】解:如图①中,Q 四边形ABCD 是正方形,AD AB CD ∴==,90ADC ∠=o ,ADE QV ≌DFC △,DF CD AE AD ∴===,6090150FDC ∠=+=o o o Q ,15DFC DCF ADE AED ∴∠=∠=∠=∠=o ,601575FDE ∴∠=+=o o o ,90MFD FDM ∴∠+∠=o ,90FMD ∴∠=o ,故答案为90o()1ABE QV 为等边三角形,60EAB ∴∠=o ,EA AB =.ADF QV 为等边三角形,60FDA ∴∠=o ,AD FD =.Q 四边形ABCD 为矩形,90BAD ADC ∴∠=∠=o ,DC AB =.EA DC ∴=.150EAD EAB BAD ∠=∠+∠=o Q ,150CDF FDA ADC ∠=∠+∠=o ,EAD CDF ∴∠=∠.在EAD V 和CDF V中, AE CD EAD FDC AD DF =⎧⎪∠=∠⎨⎪=⎩,EAD ∴V ≌CDF V.ED FC∴=;()2EADQV≌CDFV,20∴∠=∠=o,ADE DFCo o o o.∴∠=∠+∠=∠+∠+∠=++=DMC FDM DFC FDA ADE DFC602020100【点睛】本题考查全等三角形的判定和性质、正方形的性质、矩形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的寻找解决问题,属于中考常考题型.24.20千米【解析】【分析】由勾股定理两直角边的平方和等于斜边的平方即可求,即在直角三角形DAE和直角三角形CBE中利用斜边相等两次利用勾股定理得到AD2+AE2=BE2+BC2,设AE为x,则BE=10﹣x,将DA=8,CB=2代入关系式即可求得.【详解】解:设基地E应建在离A站x千米的地方.则BE=(50﹣x)千米在Rt△ADE中,根据勾股定理得:AD2+AE2=DE2∴302+x2=DE2在Rt△CBE中,根据勾股定理得:CB2+BE2=CE2∴202+(50﹣x)2=CE2又∵C、D两村到E点的距离相等.∴DE=CE∴DE2=CE2∴302+x2=202+(50﹣x)2解得x=20∴基地E应建在离A站20千米的地方.考点:勾股定理的应用.25.(1)100元和150元;(2)购进A种级别的茶叶67kg,购进B种级别的茶叶133kg.销售总利润最大为26650元.【解析】试题分析:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元;(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200-a)kg.销售总利润为w元.构建一次函数,利用一次函数的性质即可解决问题.试题解析:解:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元.由题意,解得,答:每千克A级别茶叶和B级别茶叶的销售利润分别为100元和150元.(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200﹣a)kg.销售总利润为w元.由题意w=100a+150(200﹣a)=﹣50a+30000,∵﹣50<0,∴w随x的增大而减小,∴当a取最小值,w有最大值,∵200﹣a≤2a,∴a≥,∴当a=67时,w最小=﹣50×67+30000=26650(元),此时200﹣67=133kg,答:购进A种级别的茶叶67kg,购进B种级别的茶叶133kg.销售总利润最大为26650元.点睛:本题考查一次函数的应用、二元一次方程组、不等式等知识,解题的关键是理解题意,学会利用参数构建一次函数或方程解决问题.26.(1)C(﹣3,2);(2)y1=6x,y2=﹣13x+3;(3)3<x<1.【解析】分析:(1)过点C作CN⊥x轴于点N,由已知条件证Rt△CAN≌Rt△AOB即可得到AN=BO=1,CN=AO=2,NO=NA+AO=3结合点C在第二象限即可得到点C的坐标;(2)设△ABC向右平移了c个单位,则结合(1)可得点C′,B′的坐标分别为(﹣3+c,2)、(c,1),再设反比例函数的解析式为y1=kx,将点C′,B′的坐标代入所设解析式即可求得c的值,由此即可得到点C′,B′的坐标,这样用待定系数法即可求得两个函数的解析式了;(3)结合(2)中所得点C′,B′的坐标和图象即可得到本题所求答案. 详解:(1)作CN⊥x轴于点N,∴∠CAN=∠CAB=∠AOB=90°,∴∠CAN+∠CAN=90°,∠CAN+∠OAB=90°,∴∠CAN=∠OAB,∵A(﹣2,0)B(0,1),∴OB=1,AO=2,在Rt△CAN和Rt△AOB,∵ACN OABANC AOBAC AB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴Rt△CAN≌Rt△AOB(AAS),∴AN=BO=1,CN=AO=2,NO=NA+AO=3,又∵点C在第二象限,∴C(﹣3,2);(2)设△ABC沿x轴的正方向平移c个单位,则C′(﹣3+c,2),则B′(c,1),设这个反比例函数的解析式为:y1=kx,又点C′和B′在该比例函数图象上,把点C′和B′的坐标分别代入y1=kx,得﹣1+2c=c,解得c=1,即反比例函数解析式为y1=6x,此时C′(3,2),B′(1,1),设直线B′C′的解析式y2=mx+n,∵3261m nm n+=⎧⎨+=⎩,∴133mn⎧=-⎪⎨⎪=⎩,∴直线C′B′的解析式为y2=﹣13x+3;(3)由图象可知反比例函数y1和此时的直线B′C′的交点为C′(3,2),B′(1,1),∴若y1<y2时,则3<x<1.点睛:本题是一道综合考查“全等三角形”、“一次函数”、“反比例函数”和“平移的性质”的综合题,解题的关键是:(1)通过作如图所示的辅助线,构造出全等三角形Rt△CAN和Rt△AOB;(2)利用平移的性质结合点B、C的坐标表达出点C′和B′的坐标,由点C′和B′都在反比例函数的图象上列出方程,解方程可得点C′和B′的坐标,从而使问题得到解决.27.2 ﹣12【解析】 试题分析:()1利用相反数和倒数的定义即可得出. ()2先因式分解,再代入求出即可.试题解析:()1a Q 是2-的相反数,b 是2-的倒数,12,.2a b ∴== ()2当12,2a b ==时,21(1)2(21)32a b ab ab a ⎛⎫+=+=⨯-⨯+=- ⎪⎝⎭. 点睛:只有符号不同的两个数互为相反数. 乘积为1的两个数互为倒数.。

上海市各区2019届中考数学二模试卷精选汇编:综合计算

上海市各区2019届中考数学二模试卷精选汇编:综合计算

综合计算宝山区、嘉定区21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图4,在梯形ABCD 中,AD ∥BC ,︒=∠90BAD ,AD AC =. (1)如果BAC ∠︒=∠-10BCA ,求D ∠的度数; (2)若10=AC ,31cot =∠D ,求梯形ABCD 的面积.21.解:(1)∵AD ∥BC∴CAD BCA ∠=∠ …………………1分 ∵BAC ∠︒=∠-10BCA∴BAC ∠︒=∠-10CAD …………………1分 ∵︒=∠90BAD∴BAC ∠︒=∠+90CAD∴︒=∠40CAD …………………1分 ∵AD AC =∴D ACD ∠=∠ …………………1分 ∵︒=∠+∠+∠180CAD D ACD∴︒=∠70D …………………1分(2) 过点C 作AD CH ⊥,垂足为点H ,在Rt △CHD 中,31cot =∠D ∴31cot ==∠CH HD D …………………………1分 设x HD =,则x CH 3=,∵AD AC =,10=AC ∴x AH -=10 在Rt △CHA 中,222AC CHAH =+ ∴22210)3()10(=+-x x∴2=x ,0=x (舍去)∴2=HD …………1分 ∴6=HC ,8=AH ,10=AD ………………1分 ∵︒=∠=∠90CHD BAD ∴AB ∥CH∵AD ∥BC ∴四边形ABCH 是平行四边形 ∴8==AH BC ………1分图4DCB A图4DCBAH∴梯形ABCD 的面积546)810(21)(21=⨯+=⨯+=CH BC AD S ………1分 长宁区21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,閘鑌视击應鹎浃蕷凱涞腻頎岖潇户赅闋峽营懑业众闹着轶嗳蛏鈾蒼滄臏農袅電门宮骆锇驊东餃鈍悬业恺脉炉疟匱傧詼桢阎諉榿镕鶩惡猫卢籮蔞偽钺錐缀泽銻胁动钫剀昙獲濟柵镬閌總總铛憐軛缫躯暧憤鯖喚。

上海市闸北区2019-2020学年中考数学第二次押题试卷含解析

上海市闸北区2019-2020学年中考数学第二次押题试卷含解析

上海市闸北区2019-2020学年中考数学第二次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一元二次方程x2-2x=0的解是()A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-22.实数a在数轴上对应点的位置如图所示,把a,﹣a,a2按照从小到大的顺序排列,正确的是()A.﹣a<a<a2B.a<﹣a<a2C.﹣a<a2<a D.a<a2<﹣a3.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分线C.AC2=BC•CD D.AD DC AB AC=4.2的相反数是()A.﹣2B.2C.2D.25.下列事件是必然事件的是()A.任意作一个平行四边形其对角线互相垂直B.任意作一个矩形其对角线相等C.任意作一个三角形其内角和为360︒D.任意作一个菱形其对角线相等且互相垂直平分6.如果实数a=11,且a在数轴上对应点的位置如图所示,其中正确的是()A.B.C.D.7.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A .84B .336C .510D .13268.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变,当AB 2=,B 60o ∠=时,AC 等于( )A .2B .2C .6D .229.如图,在Rt △ABC 中,∠ABC=90°,AB=6,BC=8,点E 是△ABC 的内心,过点E 作EF ∥AB 交AC 于点F ,则EF 的长为( )A .52B .154C .83D .10310.如果1∠与2∠互补,2∠与3∠互余,则1∠与3∠的关系是( )A .13∠=∠B .11803∠=-∠oC .1903∠=+∠oD .以上都不对11.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( )A .±1B .1C .-1D .012.已知a-2b=-2,则4-2a+4b 的值是( )A .0B .2C .4D .8二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,以点O 为圆心的两个圆中,大圆的弦AB 切小圆于点C ,OA 交小圆于点D ,若OD=2,tan ∠OAB=12,则AB 的长是________.14.如图,已知正六边形ABCDEF的外接圆半径为2cm,则正六边形的边心距是__________cm.15.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__________.16.写出经过点(0,0),(﹣2,0)的一个二次函数的解析式_____(写一个即可).17.在Rt△ABC中,∠C=90°,sinA=12,那么cosA=________.18.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是以点A为圆心4为半径的圆上一点,连接BD,点M为BD中点,线段CM长度的最大值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)定义:和三角形一边和另两边的延长线同时相切的圆叫做三角形这边上的旁切圆.如图所示,已知:⊙I是△ABC的BC边上的旁切圆,E、F分别是切点,AD⊥IC于点D.(1)试探究:D、E、F三点是否同在一条直线上?证明你的结论.(2)设AB=AC=5,BC=6,如果△DIE和△AEF的面积之比等于m,DEnEF,试作出分别以mn,nm为两根且二次项系数为6的一个一元二次方程.20.(6分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.现在平均每天生产多少台机器;生产3000台机器,现在比原计划提前几天完成.21.(6分)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.(1)求证:DF⊥AC;(2)求tan∠E的值.22.(8分)如图,AB是⊙O的直径,弧CD⊥AB,垂足为H,P为弧AD上一点,连接PA、PB,PB交CD于E.(1)如图(1)连接PC、CB,求证:∠BCP=∠PED;(2)如图(2)过点P作⊙O的切线交CD的延长线于点E,过点A向PF引垂线,垂足为G,求证:∠APG=12∠F;(3)如图(3)在图(2)的条件下,连接PH,若PH=PF,3PF=5PG,BE=25,求⊙O的直径AB.23.(8分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.请补全条形统计图;若该校共有志愿者600人,则该校九年级大约有多少志愿者?24.(10分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.25.(10分)计算:(﹣2)2+20180﹣36 26.(12分)已知如图,直线y=﹣3 x+43 与x 轴相交于点A ,与直线y=33x 相交于点P . (1)求点P 的坐标; (2)动点E 从原点O 出发,沿着O→P→A 的路线向点A 匀速运动(E 不与点O 、A 重合),过点E 分别作EF ⊥x 轴于F ,EB ⊥y 轴于B .设运动t 秒时, F 的坐标为(a ,0),矩形EBOF 与△OPA 重叠部分的面积为S .直接写出: S 与a 之间的函数关系式(3)若点M 在直线OP 上,在平面内是否存在一点Q,使以A ,P,M ,Q 为顶点的四边形为矩形且满足矩形两边AP:PM 之比为1:3 若存在直接写出Q 点坐标。

2019年中考数学二模试卷(含解析)

2019年中考数学二模试卷(含解析)

2019年中考数学二模试卷一、选择题(每小题4分,共48分)1.(4分)在实数﹣2,|﹣2|,(﹣2)0,0中,最大的数是()A.﹣2B.|﹣2|C.(﹣2)0D.02.(4分)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B.2.8×10﹣8m C.28×109m D.2.8×108m 3.(4分)如图,它是由5个完全相同的小正方体搭建的几何体,若将最右边的小正方体拿走,则下列结论正确的是()A.主视图不变B.左视图不变C.俯视图不变D.三视图都不变4.(4分)如图,若直线MN∥PQ,∠ACB的顶点C在直线MN与PQ之间,若∠ACB=60°,∠CFQ=35°,则∠CEN的度数为()A.35°B.25°C.30°D.45°5.(4分)下列几道题目是小明同学在黑板上完成的作业,他做错的题目有()①a3÷a﹣1=a2②(2a3)2=4a5③(ab2)3=a3b6④2﹣5=⑤(a+b)2=a2+b2A.2道B.3道C.4道D.5道6.(4分)在一次数学测试后,随机抽取九年级(3)班5名学生的成绩(单位:分)如下:80、98、98、83、91,关于这组数据的说法错误的是()A.众数是98B.平均数是90C.中位数是91D.方差是56 7.(4分)若二次函数y=x2﹣2x+m的图象与x轴有两个交点,则实数m的取值范围是()A.m≥1B.m≤1C.m>1D.m<18.(4分)如图,AC是矩形ABCD的一条对角线,E是AC中点,连接BE,再分别以A,D为圆心,大于的长为半径作弧,两弧相交于点F,连接EF交AD于点G.若AB =3,BC=4,则四边形ABEG的周长为()A.8B.8.5C.9D.9.59.(4分)点P的坐标是(m,n),从﹣5,﹣3,0,4,7这五个数中任取一个数作为m的值,再从余下的四个数中任取一个数作为n的值,则点P(m,n)在平面直角坐标系中第四象限内的概率是()A.B.C.D.10.(4分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2x,y+1),则y关于x的函数关系为()A.y=x B.y=﹣2x﹣1C.y=2x﹣1D.y=1﹣2x 11.(4分)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣12.(4分)如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1,△2,△3,△4,…,则△2019的直角顶点的坐标为()A.(8076,0)B.(8064,0)C.(8076,)D.(8064,)二、填空题(每小题4分,共24分)13.(4分)分解因式:a3b+2a2b2+ab3=.14.(4分)如图,在▱ABCD中,点E在BC边上,且AE⊥BC于点E,ED平分∠CDA,若BE:EC=1:2,则∠BCD的度数为.15.(4分)如图,等边三角形△ABC的边长为4,以BC为直径的半圆O交AB于点D,交AC于点E,阴影部分的面积是.16.(4分)新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[2,m+1]的一次函数是正比例函数,则关于x的方程+=1的解为.17.(4分)若函数y=与y=x+2图象的一个交点坐标为(a,b),则﹣的值是.18.(4分)如图①,在正方形ABCD中,点E是AB的中点,点P是对角线AC上一动点,设PC的长度为x,PE与PB的长度和为y,图②是y关于x的函数图象,则图象上最低点H的坐标为.三、解答题(7小题,共78分)19.(8分)先化简,再求值:(x﹣1﹣)÷,其中x是方程x2+2x=0的解.20.(10分)为推进“全国亿万学生阳光体育运动”的实施,组织广大同学开展健康向上的第二课堂活动.我市某中学准备组建球类社团(足球、篮球、羽毛球、乒乓球)、舞蹈社团、健美操社团、武术社团,为了解在校学生对这4个社团活动的喜爱情况,该校随机抽取部分初中生进行了“你最喜欢哪个社团”调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:(1)求样本容量及表格中m、n的值;(2)请补全统计图;(3)被调查的60个喜欢球类同学中有3人最喜欢足球,若该校有3000名学生,请估计该校最喜欢足球的人数.21.(10分)如图,AB为⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,连接AC,BF,且BF∥CD.(1)求证:AC平分∠BAD;(2)若⊙O的半径为,AF=2,求CD的长度.22.(12分)如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作⊙A,交AB于点D,交CA的延长线于点E,过点E作AB的平行线交⊙A于点F,连接AF,BF,DF.(1)求证:△ABC≌△ABF;(2)填空:①当∠CAB=°时,四边形ADFE为菱形;②在①的条件下,BC=cm时,四边形ADFE的面积是6cm2.23.(12分)数学兴趣小组几名同学到某商场调查发现,一种纯牛奶进价为每箱40元,厂家要求售价在40~70元之间,若以每箱70元销售平均每天销售30箱,价格每降低1元平均每天可多销售3箱.老师要求根据以上资料,解答下列问题,你能做到吗?(1)写出平均每天销售量y(箱)与每箱售价x(元)之间的函数关系;(2)写出平均每天销售利润W(元)与每箱售价x(元)之间的函数关系;(3)现该商场要保证每天盈利900元,同时又要使顾客得到实惠,那么每箱售价为多少元?(4)你认为每天赢利900元,是牛奶销售中的最大利润吗?为什么?24.(12分)定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.求证:BD是四边形ABCD的“相似对角线”;(3)如图3,已知FH是四边形EFGH的“相似对角线”,∠EFH=∠HFG=30°,连接EG,若△EFG的面积为2,求FH的长.25.(14分)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B 的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB 于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.2019年中考数学二模试卷参考答案与试题解析一、选择题(每小题4分,共48分)1.【解答】解:∵|﹣2|=2,(﹣2)0=1,∵﹣2<0<1<2,∴最大的数是|﹣2|,故选:B.2.【解答】解:28nm=28×10﹣9m=2.8×10﹣8m.故选:B.3.【解答】解:根据三视图的定义,若将最右边的小正方体拿走,俯视图、主视图都发生变化,左视图不变.故选:B.4.【解答】解:如图作CK∥MN,∵MN∥PQ,MN∥CK,∴PQ∥CK,∴∠CEN=∠ACK,∠FCK=∠CFQ,∴∠ACB=∠CEN+∠CFQ,∴60°=∠CEN+35°,∴∠CEN=25°,故选:B.5.【解答】解:①a3÷a﹣1=a4,故此选项错误;②(2a3)2=4a6,故此选项错误;③(ab2)3=a3b6,故此选项错误;④2﹣5=,正确;⑤(a+b)2=a2+2ab+b2,故此选项错误;则错误的一共有4道.故选:C.6.【解答】解:98出现的次数最多,∴这组数据的众数是98,A说法正确;=(80+98+98+83+91)=90,B说法正确;这组数据的中位数是91,C说法正确;S2=[(80﹣90)2+(98﹣90)2+(98﹣90)2+(83﹣90)2+(91﹣90)2]=×278=55.6,D说法错误;故选:D.7.【解答】解:由题意可知:△=4﹣4m>0,∴m<1,故选:D.8.【解答】解:连接ED,如图,由作法得F A=FD,∵AC是矩形ABCD的一条对角线,E是AC中点,∴B、E、D共线,EA=ED,∴EF垂直平分AD,∴AG=DG=AD=BC=×4=2,∵G为AD的中,E为BD的中点,∴GE为△ABD的中位线,∴GE=AB=,在Rt△ABC中,AC==5,∴BE=,∴四边形ABEG的周长=3+++2=9.故选:C.9.【解答】解:画树状图为:共有20种等可能的结果数,其中点P(m,n)在平面直角坐标系中第四象限内的结果数为4,所以点P(m,n)在平面直角坐标系中第四象限内的概率为=,故选:B.10.【解答】解:由题意可得出:P点在第二象限的角平分线上,∵点P的坐标为(2x,y+1),∴2x=﹣(y+1),∴y=﹣2x﹣1.故选:B.11.【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=()2=,∴EC:BC=1:,∵BC=,∴EC=,∴BE=BC﹣EC=﹣.故选:D.12.【解答】解:∵点A(﹣3,0)、B(0,4),∴AB==5,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2019÷3=673,∴△2019的直角顶点是第673个循环组的最后一个三角形的直角顶点,∵673×12=8076,∴△2019的直角顶点的坐标为(8076,0).故选:A.二、填空题(每小题4分,共24分)13.【解答】解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2.故答案为:ab(a+b)2.14.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,AB∥CD,∴∠ADE=∠CED,∠B+∠BCD=180°,∵ED平分∠CDA,∴∠ADE=∠CDE,∴∠CED=∠CDE,∴CD=EC,∴AB=EC,∵BE:EC=1:2,∴BE:AB=1:2,即BE=AB,∵AE⊥BC,∴∠AEB=90°,∴∠BAE=30°,∴∠B=60°,∴∠BCD=120°;故答案为:120°.15.【解答】解:连接OD、DE、OE,∵△ABC为等边三角形,∴∠B=∠C=60°,∴∠BOD=60°,∠COE=60°,∴∠DOE=60°,即△DOE为等边三角形,∵∠A=∠ODB=60°,∴OD∥AE,同理,OE∥OD,∴四边形ADOE为菱形,∴阴影部分的面积=2×﹣=2,故答案为:2,16.【解答】解:根据关联数”[2,m+1]的一次函数是正比例函数,得到m+1=0,即m=﹣1,则方程为﹣1=1,即x﹣1=,解得:x=,经检验是分式方程的解.故答案为:17.【解答】解:∵函数y=与y=x+2图象的一个交点坐标为(a,b),∴b=,b=a+2,∴ab=3,b﹣a=2,∴﹣==.故答案为:.18.【解答】解:如图,连接PD.∵B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE,∴当D、P、E共线时,PE+PB的值最小,观察图象可知,当点P与A重合时,PE+PB=9,∴AE=EB=3,AD=AB=6,在Rt△AED中,DE==3,∴PB+PE的最小值为3,∴点H的纵坐标为3,∵AE∥CD,∴==2,∵AC=6,∴PC=×=4,∴点H的横坐标为4,∴H(4,3).故答案为(4,3).三、解答题(7小题,共78分)19.【解答】解:原式=•=•=,解方程x2+2x=0得:x1=﹣2,x2=0,由题意得:x≠﹣2,所以x=0.把x=0代入=,原式==﹣1.20.【解答】解:(1)样本容量为:12÷0.1=120,m=60÷120=0.5,n=120×0.15=18;(2)如图所示:;(3)学校喜欢球类人有:3000×0.5×=75(人).答:估计该校最喜欢足球的人数为75.21.【解答】解:(1)如图,连接OC,交BF于点H,∵ED切⊙O于点C,∴OC⊥DE,∵AB为⊙O的直径,∴BF⊥AD,∵BF∥CD,∴ED⊥AD,∴OC∥AD,∴∠OCA=∠CAD,∵OC=OA,∴∠OCA=∠OAC,∴∠OAC=∠CAD,∴AC平分∠BAD;(2)∵⊙O的半径为,AF=2,∠AFB=90°,∴BF=,由(1)知,∠D=∠HFD=∠OCD=90°,∴四边形HFDC为矩形,∴OC⊥BF,∴CD=HF=BF=4.22.【解答】(1)证明:∵EF∥AB,∴∠E=∠CAB,∠EF A=∠F AB,∵∠E=∠EF A,∴∠F AB=∠CAB,在△ABC和△ABF中,,∴△ABC≌△ABF;(2)当∠CAB=60°时,四边形ADFE为菱形.证明:∵∠CAB=60°,∴∠F AB=∠CAB=∠CAB=60°,∴EF=AD=AE,∴四边形ADFE是菱形.故答案为60.(3)解:∵四边形AEFD是菱形,设边长为a,∠AEF=∠CAB=60°,∴△AEF、△AFD都是等边三角形,由题意:2×a2=6,∴a2=12,∵a>0,∴a=2,∴AC=AE=2,在RT△ACB中,∠ACB=90°,AC=2,∠CAB=60°,∴∠ABC=30°,∴AB=2AC=4,BC==6.故答案为6.23.【解答】接:(1)y=30+3(70﹣x)=﹣3x+240;(2)w=(x﹣40)(﹣3x+240)=﹣3x2+360﹣9600;(3)当w=900时,(x﹣40)(﹣3x+240)=900整理得:x2﹣120x+3500=0∴x1=50,x2=70,∵要使顾客得到实惠,∴x=70舍去∴每箱价格定为50元;(4)由w=(x﹣40)(﹣3x+240)=﹣3x2+360﹣9600得w=﹣3(x﹣60)2+1200w最大=1200(元)∴赢利900元不是销售的最大利润.24.【解答】解:(1)由图1知,AB=,BC=2,∠ABC=90°,AC=5,∵四边形ABCD是以AC为“相似对角线”的四边形,①当∠ACD=90°时,△ACD∽△ABC或△ACD∽△CBA,∴=或=2,∴CD=10或CD=2.5同理:当∠CAD=90°时,AD=2.5或AD=10,(2)证明:∵∠ABC=80°,BD平分∠ABC,∴∠ABD=∠DBC=40°,∴∠A+∠ADB=140°∵∠ADC=140°,∴∠BDC+∠ADB=140°,∴∠A=∠BDC,∴△ABD∽△DBC,∴BD是四边形ABCD的“相似对角线”;(3)如图3,∵FH是四边形EFGH的“相似对角线”,∴△EFH与△HFG相似,∵∠EFH=∠HFG,∴△FEH∽△FHG,∴,∴FH2=FE•FG,过点E作EQ⊥FG于Q,∴EQ=FE•sin60°=FE,∵FG×EQ=2,∴FG×FE=2,∴FG•FE=8,∴FH2=FE•FG=8,∴FH=2.25.【解答】解:(1)∵B(1,0),∴OB=1,∵OC=2OB=2,∴C(﹣2,0),Rt△ABC中,tan∠ABC=2,∴,∴,∴AC=6,∴A(﹣2,6),把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:,解得:,∴抛物线的解析式为:y=﹣x2﹣3x+4;(2)①∵A(﹣2,6),B(1,0),易得AB的解析式为:y=﹣2x+2,设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),∵PE=DE,∴﹣x2﹣3x+4﹣(﹣2x+2)=(﹣2x+2),x=1(舍)或﹣1,∴P(﹣1,6);②∵M在直线PD上,且P(﹣1,6),设M(﹣1,y),∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,BM2=(1+1)2+y2=4+y2,AB2=(1+2)2+62=45,分三种情况:i)当∠AMB=90°时,有AM2+BM2=AB2,∴1+(y﹣6)2+4+y2=45,解得:y=3,∴M(﹣1,3+)或(﹣1,3﹣);ii)当∠ABM=90°时,有AB2+BM2=AM2,∴45+4+y2=1+(y﹣6)2,y=﹣1,∴M(﹣1,﹣1),iii)当∠BAM=90°时,有AM2+AB2=BM2,∴1+(y﹣6)2+45=4+y2,y=,∴M(﹣1,);综上所述,点M的坐标为:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).。

上海市各区2019中考数学二模试卷精选汇编:选择题

上海市各区2019中考数学二模试卷精选汇编:选择题

选择题专题一、选择题:(本大题共6题,每题4分,满分24分) 1.下列说法中,正确的是(▲)(A )0是正整数; (B )1是素数; (C )22是分数; (D )722是有理数.2.关于x 的方程022=--mx x 根的情况是(▲)(A )有两个不相等的实数根; (B )有两个相等的实数根; (C )没有实数根; (D )无法确定.3. 将直线x y 2=向下平移2个单位,平移后的新直线一定不经过的象限是(▲) (A )第一象限; (B )第二象限; (C )第三象限; (D )第四象限.4. 下列说法正确的是(▲)(A )一组数据的中位数一定等于该组数据中的某个数据; (B )一组数据的平均数和中位数一定不相等; (C )一组数据的众数可以有几个;(D )一组数据的方差一定大于这组数据的标准差. 5.对角线互相平分且相等的四边形一定是(▲)(A )等腰梯形; (B )矩形; (C )菱形; (D )正方形.6.已知圆1O 的半径长为cm 6,圆2O 的半径长为cm 4,圆心距cm O O 321=,那么圆1O 与圆2O 的位置关系是(▲)(A )外离; (B )外切; (C )相交; (D )内切.1. D2. A3. B4. C5. B6. C 长宁区一、选择题(本大题共6题, 每题4分, 满分24分)【每题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.函数12-=x y 的图像不经过( ▲ )(A ) 第一象限; (B ) 第二象限; (C ) 第三象限; (D ) 第四象限.2.下列式子一定成立的是( ▲ )(A ) a a a 632=+; (B )428x x x =÷;(C ) aa 121=; (D )6321)(aa-=--. 3.下列二次根式中,2的同类二次根式是( ▲ ) (A )4; (B )x 2; (C )92; (D )12. 4.已知一组数据2、x 、8、5、5、2的众数是2,那么这组数据的中位数是( ▲ ) (A ) 3.5; (B ) 4; (C ) 2; (D )6.5.5.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点, 那么d 的值可以取( ▲ )(A ) 11; (B ) 6; (C ) 3; (D )2.6.已知在四边形ABCD 中,AD //BC ,对角线AC 、BD 交于点O ,且AC =BD , 下列四个命题中真命题是( ▲ )(A ) 若AB =CD ,则四边形ABCD 一定是等腰梯形; (B ) 若∠DBC =∠ACB ,则四边形ABCD 一定是等腰梯形; (C ) 若ODCOOB AO =,则四边形ABCD 一定是矩形; (D ) 若AC ⊥BD 且AO =OD ,则四边形ABCD 一定是正方形. 一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.D ; 3.C ; 4.A ; 5.D ; 6.C . 崇明区一、选择题(本大题共6题,每题4分,满分24分)1.8的相反数是…………………………………………………………………………………( ▲ )(A)18; (B)8;(C)18-;(D)8-.2.下列计算正确的是 …………………………………………………………………………( ▲ )(A)=; (B)23a a a +=;(C)33(2)2a a =;(D)632a a a ÷=.3.今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:那么这20名同学年龄的众数和中位数分别是……………………………………………( ▲ )(A)15,14;(B)15,15;(C)16,14;(D)16,15.4.某美术社团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本画册?设第一次买了x 本画册,列方程正确的是 ………………………( ▲ ) (A)120240420x x -=+; (B)240120420x x -=+;(C)120240420x x -=-;(D)240120420x x-=-. 5.下列所述图形中,既是轴对称图形又是中心对称图形的是 ……………………………( ▲ )(A) 等边三角形;(B) 平行四边形;(C) 菱形;(D) 正五边形.6.已知ABC △中,D 、E 分别是AB 、AC 边上的点,DE BC ∥,点F 是BC 边上一点,联结AF 交DE 于点G ,那么下列结论中一定正确的是 ………………………………………( ▲ )(A)EG FGGD AG=; (B)EG AEGD AD=; (C)EG AGGD GF=; (D)EG CFGD BF=. 一、选择题:(本大题共6题,每题4分,满分24分)1.D ; 2.B ; 3.B ; 4.A ; 5.C ; 6.D. 奉贤区1.下列二次根式中,与a 是同类二次根式的是()(A )2a ; (B )a 2; (C )a 4; (D )a +4.2.某班要推选学生参加学校的“诗词达人”比赛,有7名学生报名参加班级选拔赛,他们的选拔赛成绩各不相同,现取其中前3名参加学校比赛.小红要判断自己能否参加学校比赛,在知道自己成绩的情况下,还需要知道这7名学生成绩的()(A )众数; (B )中位数; (C )平均数; (D )方差.3.下列四个不等式组中,其中一个不等式组的解集在数轴上的正确表示如图1所示,这个不等式组是()(A )⎩⎨⎧->≥;,32x x (B )⎩⎨⎧-<≤;,32x x (C )⎩⎨⎧-<≥;,32x x (D )⎩⎨⎧->≤.32x x ,4.如果将直线l 1:22-=x y 平移后得到直线l 2:x y 2=,那么下列平移过程正确的是() (A )将l 1向左平移2个单位; (B )将l 1向右平移2个单位; (C )将l 1向上平移2个单位; (D )将l 1向下平移2个单位.图15.将一把直尺和一块含30°和60°角的三角板ABC 按如图2所 示的位置放置,如果∠CDE =40°,那么∠BAF 的大小为() (A )10°; (B )15°; (C )20°; (D )25°.6.直线AB 、CD 相交于点O ,射线 OM 平分∠AOD ,点P 在射线OM 上(点P 与点O 不重 合),如果以点P 为圆心的圆与直线AB 相离,那么圆P 与直线CD 的位置关系是() (A )相离; (B )相切; (C )相交; (D )不确定. 一、选择题:1、C ;2、B ;3、D ;4、C ;5、A ;6、A ; 黄浦区一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.下列实数中,介于23与32之间的是( ) (A(B(C )227; (D )π.2.下列方程中没有实数根的是( )(A )210x x +-=;(B )210x x ++=;(C )210x -=;(D )20x x +=.3.一个反比例函数与一个一次函数在同一坐标平面内的图像如图示,如果其中的反比例函数解析式为ky x=,那么该一次函数可能的解析式是( ) (A )y kx k =+; (B )y kx k =-; (C )y kx k =-+;(D )y kx k =--.图24.一个民营企业10名员工的月平均工资如下表,则能较好反映这些员工月平均工资水平的是( )(工资单位:万元) (A )平均数;(B )中位数;(C )众数;(D )标准差.5.计算:AB BA +=( ) (A )AB ;(B )BA ; (C )0;(D )0.6.下列命题中,假命题是( )(A )如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心,并且垂直于这条弦; (B )如果一条直线平分弦所对的两条弧,那么这条直线经过圆心,并且垂直于这条弦; (C )如果一条直线经过圆心,并且平分弦,那么该直线平分这条弦所对的弧,并且垂直于这条弦; (D )如果一条直线经过圆心,并且垂直弦,那么该直线平分这条弦和弦所对的弧.一、选择题(本大题6小题,每小题4分,满分24分)1.A ;2.B ;3.B ;4.B ;5.C ;6.C . 金山区1.下列各数中,相反数等于本身的数是(▲) (A )1-; (B )0; (C )1; (D )2. 2.单项式32a b 的次数是(▲)(A )2; (B )3 (C )4; (D )5.3.如果将抛物线22y x =-向上平移1个单位,那么所得新抛物线的表达式是(▲)(A )()221y x =-+; (B )()221y x =--; (C )221y x =--; (D )221y x =-+.4.如果一组数据1,2,x ,5,6的众数为6,则这组数据的中位数为(▲) (A )1; (B )2 (C )5; (D )6.5.如图1,□ABCD 中,E 是BC 的中点,设AB a =,AD b =, 那么向量AE 用向量a 、b 表示为(▲)(A )12a b + ;(B )12a b - ;(C )12a b -+;(D )12a b --.6.如图2,∠AOB=45°,OC 是∠AOB 的角平分线,PM ⊥OB , 垂足为点M ,PN ∥OB ,PN 与OA 相交于点N ,那么PMPN的值等于( ▲ )(A )12; (B)2; (C)2; (D)3.一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.C ; 3.D ; 4.C ; 5.A ; 6.B . 静安区一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1.下列实数中,有理数是 (A )2; (B )21; (C )34; (D )4. 2.下列方程中,有实数根的是(A )x x -=-1;(B )01)2(2=-+x ; (C )012=+x ;(D )034=-+-x x .3.如果b a >,0<m ,那么下列不等式中成立的是 (A) bm am >; (B) mbm a >; (C) m b m a +>+; (D) m b m a +->+-.4.如图,AB //CD ,直线EF 分别交AB 、CD 于点E 、F ,EG 平分∠BEF , 如果∠EFG =64°,那么∠EGD 的大小是(A) 122°; (B) 124°; (C) 120°; (D) 126°.图1N A BC图2PABEDC G 第4题图F5.已知两组数据:a 1,a 2,a 3,a 4,a 5和a 1-1,a 2-1,a 3-1,a 4-1,a 5-1, 下列判断中错误的是(A) 平均数不相等,方差相等; (B) 中位数不相等,标准差相等; (C) 平均数相等,标准差不相等; (D) 中位数不相等,方差相等. 6.下列命题中,假命题是(A )两组对角分别相等的四边形是平行四边形;(B )有一条对角线与一组邻边构成等腰三角形的平行四边形是菱形; (C )一组邻边互相垂直,两组对边分别平行的四边形是矩形; (D )有一组邻边相等且互相垂直的平行四边形是正方形.闵行区一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.在下列各式中,二次单项式是 (A )21x +;(B )213xy ;(C )2xy ;(D )21()2-.2.下列运算结果正确的是 (A )222()a b a b +=+; (B )2323a a a +=;(C )325a a a ⋅=; (D )112(0)2a a a-=≠. 3.在平面直角坐标系中,反比例函数(0)ky k x=≠图像在每个象限内y 随着x 的增大而减小,那么它的图像的两个分支分别在 (A )第一、三象限; (B )第二、四象限; (C )第一、二象限;(D )第三、四象限.4.有9名学生参加校民乐决赛,最终成绩各不相同,其中一名同学想要知道自己是否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的 (A )平均数;(B )中位数;(C )众数;(D )方差.5.已知四边形ABCD 是平行四边形,下列结论中不正确的是 (A )当AB = BC 时,四边形ABCD 是菱形;(B )当AC ⊥BD 时,四边形ABCD 是菱形; (C )当∠ABC = 90o时,四边形ABCD 是矩形;(D )当AC = BD 时,四边形ABCD 是正方形.6.点A 在圆O 上,已知圆O 的半径是4,如果点A 到直线a 的距离是8,那么圆O 与直线a 的位置关系可能是(A )相交; (B )相离; (C )相切或相交; (D )相切或相离. 一、选择题:(本大题共6题,每题4分,满分24分) 1.C ;2.C ;3.A ;4.B ;5.D ;6.D . 普陀区1. 下列计算中,错误的是 ························· (▲) (A )120180=; (B )422=-; (C )2421=; (D )3131=-.2.下列二次根式中,最简二次根式是 ···················· (▲) (A )a 9; (B )35a ; (C )22b a +; (D )21+a . 3.如果关于x 的方程022=++c x x 没有实数根,那么c 在2、1、0、3-中取值是 · (▲) (A )2; (B ); (C )0; (D )3-.4.如图1,已知直线CD AB //,点E 、F 分别在AB 、CD 上,CFE ∠:EFB ∠3=:4,如果40B ∠=,那么BEF ∠= ······························· (▲) (A )20; (B )40; (C )60; (D )80.5. 自1993年起,联合国将每年的3月22日定为“世界水日”,宗旨是唤起公众的节水意识,加强水资源保护.某校在开展“节约每一滴水”的活动中,从初三年级随机选出20名学生统计出各自家庭一个月的节约用水量,有关数据整理如下表.这组数据的中位数和众数分别是 ······················ (▲) (A )1.2,1.2; (B )1.4,1.2; (C )1.3,1.4; (D )1.3,1.2.6. 如图2,已知两个全等的直角三角形纸片的直角边分别为a 、b )(b a ≠,将这两个三角形的一组等边重ABCDFE图1100.580.560.540.5图1合,拼合成一个无重叠的几何图形,其中轴对称图形有 ············ (▲) (A )3个; (B )4个; (C )5个; (D )6个.一、选择题:(本大题共6题,每题4分,满分24分)1.(B); 2.(C); 3.(A); 4.(C); 5.(D); 6.(B).青浦区一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂] 1.下列实数中,有理数是( ▲ ) (A ;(B )2.1;(C )π;(D )135.2.下列方程有实数根的是( ▲ )(A )4+2=0x ; (B 1-; (C )2+21=0x x -;(D )111x x x =--. 3.已知反比例函数1y x=,下列结论正确的是( ▲ ) (A )图像经过点(-1,1);(B )图像在第一、三象限;(C )y 随着x 的增大而减小; (D )当1x >时,1y <. 4.用配方法解方程241=0x x -+,配方后所得的方程是( ▲ )(A )2(2)=3x -; (B )2(+2)=3x ; (C )2(2)=3x --;(D )2(+2)=3x -. 5. “a 是实数,20a ≥”这一事件是( ▲ )(A )不可能事件; (B )不确定事件; (C )随机事件; (D )必然事件. 6. 某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图1所示,成绩的中位数落在( ▲ ) (A )50.5~60.5分; (B )60.5~70.5分; (C )70.5~80.5分; (D )80.5~90.5分.一、选择题:1.B ; 2.C ; 3.B ; 4.A ; 5.D ; 6.C .图2CBA(第6题图)松江区一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1(A(B(C(D 2.下列运算正确的是(▲) (A )532x x x =+;(B )532x x x =⋅; (C )235()x x =;(D )623x x x ÷=.3.下列图形中,既是中心对称又是轴对称图形的为(▲) (A )正三角形; (B )等腰梯形;(C )平行四边形; (D )菱形.4.关于反比例函数2y x=,下列说法中错误的是(▲) (A )它的图像是双曲线; (B )它的图像在第一、三象限; (C )y 的值随x 的值增大而减小;(D )若点(a ,b )在它的图像上,则点(b ,a )也在它的图像上.5.将一组数据中的每一个数都加上1得到一组新的数据,那么下列四个统计量中,值保持不变的是(▲) (A )方差;(B )平均数;(C )中位数;(D )众数.6.如图,在△ABC 中,∠C =90°,AC =3,BC =4,⊙B 的半径为1,已知⊙A 与直线BC 相交,且与⊙B 没有公共点,那么⊙A 的半径可以是(▲) (A )4; (B )5; (C )6;(D )7.一、选择题:(本大题共6题,每题4分,满分24分) 1.B; 2.B; 3. D; 4. C; 5. A; 6. D; 徐汇区 一. 选择题1. 下列算式的运算结果正确的是( )A. 326m m m ⋅=B. 532m m m ÷=(0m ≠)C. 235()m m --=D. 422m m m -=2. 直线31y x =+不经过的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 如果关于x 的方程210x +=有实数根,那么k 的取值范围是( )A. 0k >B. 0k ≥C. 4k >D. 4k ≥4. 某射击选手10次射击成绩统计结果如下表,这10次成绩的众数、中位数分别是( )A. 8、8B. 8、8.5C. 8、9D. 8、105. 如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于( )A. 45°B. 60°C. 120°D. 135°6. 下列说法中,正确的个数共有( )(1)一个三角形只有一个外接圆(2)圆既是轴对称图形,又是中心对称图形(3)在同圆中,相等的圆心角所对的弧相等(4)三角形的内心到该三角形三个顶点距离相等A. 1个B. 2个C. 3个D. 4个1. B2. D3. D4. B5. A6. C杨浦区一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个现象是正确的,选择正确项的代号并填涂在答题纸上相应位置上】1、下列各数中是无理数的是 ( )(A ) (B )1. (C )半径为1cm 的圆周长 (D )2、下列运算正确的是 ( )(A )(B ) (C ) (D ) 3、若,则下列不等式中一定成立的是 ( ) (A )x (B ) (C ) (D )4、某校120名学生某一周用于阅读课外书籍的时间的频率分布直方图如图1所示,其中阅读时间是8-10小时的组频数和组频率分别是()(A)15和0.125 (B)15和0.25 (C)30和0.125 (D)30和0.255、下列图形是中心对称图形的是()6、如图2,半径为1的圆O1和半径为3的圆O2相内切,如果半径为2的圆与圆O1和圆O2都相切,那么这样的圆的个数是()(A) 1 (B)2 (C)3 (D)4CBADBC。

上海市闸北区2019年中考数学二模试卷及答案(word解析版)

上海市闸北区2019年中考数学二模试卷及答案(word解析版)

上海市闸北区2019年中考数学二模试卷一、选择题(本大题共6题,每题4分,满分24分)2B、;=;、;3.(4分)(2019•闸北区二模)如果关于x的方程x2﹣4x+m=0有两个不相等的实数根,那4.(4分)(2019•闸北区二模)一个正多边形的中心角是45°,那么这个正多边形的边数是5.(4分)(2019•闸北区二模)某人在调查了本班同学的体重情况后,画出了频数分布图如图.下列结论中,不正确的是()千克的人数占全班总人数的,故此选6.(4分)(2019•闸北区二模)将宽为1cm的长方形纸条折叠成如图所示的形状,那么折痕PQ的长是()HPQ=,PQ==二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)(2019•闸北区二模)计算:(1﹣)0=1.﹣﹣8.(4分)(2019•闸北区二模)已知函数,那么f()=+1.)=故答案为:9.(4分)(2019•闸北区二模)用科学记数法表示:0.00036= 3.6×10﹣4.10.(4分)(2019•闸北区二模)分解因式:3x2﹣6x=3x(x﹣2).11.(4分)(2019•闸北区二模)点M(3,1)和点N(3,﹣1)关于x轴对称.12.(4分)(2019•闸北区二模)不等式x+2>2x+1的解集为x<1.13.(4分)(2019•闸北区二模)方程的解是x=0.14.(4分)(2019•闸北区二模)若1、x、2、3的平均数是3,这组数据的方差是.=.故答案为:.15.(4分)(2019•闸北区二模)甲有两张卡片,上面分别写着0、1,乙也有两张卡片,上面分别写着2、3,他们各取出一张卡片,则取出的两张卡片上写的数所得之和为素数的概率是.=故答案为:16.(4分)(2019•闸北区二模)已知点D、E分别在△ABC的边CA、BA的延长线上,DE∥BC.DE:BC=1:3,设=,试用向量表示向量,=.==..17.(4分)(2019•闸北区二模)我们假设把两边平方和等于第三边平方的两倍的三角形叫做奇异三角形.如果Rt△ABC是奇异三角形,在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,其中,a=1,那么b=.bab=故答案为:18.(4分)(2019•闸北区二模)如图,在等腰△ABC中,底边BC的中点是点D,底角的正切值是,将该等腰三角形绕其腰AC上的中点M旋转,使旋转后的点D与A重合,得到△A′B′C′,如果旋转后的底边B′C′与BC交于点N,那么∠ANB的正切值等于.ACACtanC==.三、解答题:(本大题共7题,满分78分)19.(10分)(2019•闸北区二模)解方程组:.原方程组可化为:,或20.(10分)(2019•闸北区二模)已知:如图,在⊙O中,M是弧AB的中点,过点M的弦MN交弦AB于点C,设⊙O半径为4cm,MN=cm,OH⊥MN,垂足是点H.(1)求OH的长度;(2)求∠ACM的度数.MH=MN=4cmMH=2=MO21.(10分)(2019•闸北区二模)观察方程①:x+=3,方程②:x+=5,方程③:x+=7.(1)方程①的根为:x1=1,x2=2;方程②的根为:x1=2,x2=3;方程③的根为:x1=3,x2=4;(2)按规律写出第四个方程:x+=9;此分式方程的根为:x1=4,x2=5;(3)写出第n个方程(系数用n表示):x+=2n+1;此方程解是:x1=n,x2=n+1.=9=2n+1=2n+122.(10分)(2019•闸北区二模)为迎接“五一”节的到来,某食品连锁店对某种商品进行了关系是一次函数:(1)求y与x之间的函数解析式;(不写定义域)(2)若该种商品成本价是15元/千克,为使“五一”节这天该商品的销售总利润是200元,那么这一天每千克的销售价应定为多少元?,23.(12分)(2019•闸北区二模)已知:如图,△ABC中,点D、E、F分别在边BC、CA、AB上,==:(1)若BE平分∠ABC,试说明四边形DBFE的形状,并加以证明;(2)若点G为△ABC的重心,且△BCG与△EFG的面积之和为20,求△BCG的面积.中,===)中,==)=)24.(12分)(2019•闸北区二模)已知:如图,抛物线y=x2﹣2x+3与y轴交于点A,顶点是点P,过点P作PB⊥x轴于点B.平移该抛物线,使其经过A、B两点.(1)求平移后抛物线的解析式及其与x轴另一交点C的坐标;(2)设点D是直线OP上的一个点,如果∠CDP=∠AOP,求出点D的坐标.)的坐标代入得,,,﹣(﹣,﹣25.(14分)(2019•闸北区二模)已知:如图1,在梯形ABCD中,AD∥BC,∠A=90°,AD=6,AB=8,sinC=,点P在射线DC上,点Q在射线AB上,且PQ⊥CD,设DP=x,BQ=y.(1)求证:点D在线段BC的垂直平分线上;(2)如图2,当点P在线段DC上,且点Q在线段AB上时,求y关于x的函数解析式,并写出定义域;(3)若以点B为圆心、BQ为半径的⊙B与以点C为圆心、CP为半径的⊙C相切,求线段DP的长.得出==(,﹣+10BQ=﹣x+x|﹣,设=6BC==,==SQ=(﹣﹣,定义域是.,﹣+10x=BQ=﹣,即+xx=|﹣(﹣x﹣的长为或或。

上海市闸北区2019届高考数学二模试卷(理科)含答案解析

上海市闸北区2019届高考数学二模试卷(理科)含答案解析

2019年上海市闸北区高考数学二模试卷(理科)一、填空题本大题共有10题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得6分,否则一律得零分.1.已知函数f(x)=a x+a﹣x(a>0,a≠1),且f(1)=3,则f(0)+f(1)+f(2)的值是.2.已知集合A={x||x﹣2|<a},B={x|x2﹣2x﹣3<0},若B⊆A,则实数a的取值范围是.3.如果复数z满足|z|=1且z2=a+bi,其中a,b∈R,则a+b的最大值是.4.在直角坐标系xOy中,已知三点A(a,1),B(2,b),C(3,4),若向量,在向量方向上的投影相同,则3a﹣4b的值是.5.某科技创新大赛设有一、二、三等奖(参与活动的都有奖)且相应奖项获奖的概率是以a为首项,2为公比的等比数列,相应的奖金分别是以7000元、5600元、4200元,则参加此次大赛获得奖金的期望是元.6.已知F1、F2是椭圆C:(a>b>0)的两个焦点,P为椭圆C上一点,且.若△PF1F2的面积为9,则b=.7.△ABC中,a,b,c分别是∠A,∠B,∠C的对边且ac+c2=b2﹣a2,若△ABC最大边长是且sinC=2sinA,则△ABC最小边的边长为.8.在极坐标系中,曲线ρ=sinθ+2与ρsinθ=2的公共点到极点的距离为.9.如图,A,B是直线l上的两点,且AB=2.两个半径相等的动圆分别与l相切于A,B点,C是这两个圆的公共点,则圆弧,与线段AB围成图形面积S的取值范围是.10.设函数f(x)=x2﹣1,对任意x∈[,+∞),f()﹣4m2f(x)≤f(x﹣1)+4f(m)恒成立,则实数m的取值范围是.二、选择题本大题共有3题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得5分,否则一律得零分.11.向量,均为单位向量,其夹角为θ,则命题“p:|﹣|>1”是命题q:θ∈[,)的()条件()A.充分非必要条件B.必要非充分条件C.充分必要条件 D.非充分非必要条件12.已知S,A,B,C是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,,则球O的表面积等于()A.4πB.3πC.2πD.π13.已知数列{a n}中,a n+1=3S n,则下列关于{a n}的说法正确的是()A.一定为等差数列B.一定为等比数列C.可能为等差数列,但不会为等比数列D.可能为等比数列,但不会为等差数列三、解答题(本题满分75分)本大题共有5题,解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤.14.(理)在长方体ABCD﹣A1B1C1D1中,AB=2,AD=1,AA1=1,点E在棱AB上移动.(1)探求AE等于何值时,直线D1E与平面AA1D1D成45°角;(2)点E移动为棱AB中点时,求点E到平面A1DC1的距离.15.某公司生产的某批产品的销售量P万件(生产量与销售量相等)与促销费用x万元满足P=(其中0≤x≤a,a为正常数).已知生产该产品还需投入成本6(P+)万元(不含促销费用),产品的销售价格定为(4+)元/件.(1)将该产品的利润y万元表示为促销费用x万元的函数;(2)促销费用投入多少万元时,该公司的利润最大?16.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期为π,图象的一个对称中心为(,0),将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得到的图象向右平移个单位长度后得到函数g(x)的图象.(1)求函数f(x)与g(x)的解析式;(2)求证:存在x0∈(,),使得f(x0),g(x0),f(x0)•g(x0)能按照某种顺序成等差数列.17.若动点M到定点A(0,1)与定直线l:y=3的距离之和为4.(1)求点M的轨迹方程,并画出方程的曲线草图;(2)记(1)得到的轨迹为曲线C,问曲线C上关于点B(0,t)(t∈R)对称的不同点有几对?请说明理由.18.已知数列{a n},S n为其前n项的和,满足S n=.(1)求数列{a n}的通项公式;=n(T n (2)设数列{}的前n项和为T n,数列{T n}的前n项和为R n,求证:当n≥2,n∈N*时R n﹣1﹣1);(3)已知当n∈N*,且n≥6时有(1﹣)n<()m,其中m=1,2,…,n,求满足3n+4n+…+(n+2)an的所有n的值.n=(an+3)2019年上海市闸北区高考数学二模试卷(理科)参考答案与试题解析一、填空题本大题共有10题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得6分,否则一律得零分.1.已知函数f(x)=a x+a﹣x(a>0,a≠1),且f(1)=3,则f(0)+f(1)+f(2)的值是12.【考点】指数函数的单调性与特殊点;函数的值.【专题】计算题.【分析】由f(1)=3可得到关于a的式子,由f(0)+f(1)+f(2)得到关于a的式子,寻找与已知表达式的联系即可求解.【解答】解:∵f(1)=a+a﹣1=3,f(0)=2,f(2)=a2+a﹣2=(a+a﹣1)2﹣2=7,∴f(1)+f(0)+f(2)=12.故答案为:12【点评】本题考查指数幂的运算和运算法则,属基本运算的考查.2.已知集合A={x||x﹣2|<a},B={x|x2﹣2x﹣3<0},若B⊆A,则实数a的取值范围是a≥3.【考点】集合的包含关系判断及应用.【专题】数形结合;转化思想;不等式的解法及应用;集合.【分析】利用绝对值不等式的解法、一元二次不等式的解法分别解出A,B,再利用B⊆A即可得出.【解答】解:由|x﹣2|<a,可得2﹣a<x<2+a(a>0),∴A=(2﹣a,2+a)(a>0).由x2﹣2x﹣3<0,解得﹣1<x<3.B=(﹣1,3).∵B⊆A,则,解得a≥3.故答案为:a≥3.【点评】本题考查了不等式的解法、集合的运算性质,考查了推理能力与计算能力,属于基础题.3.如果复数z满足|z|=1且z2=a+bi,其中a,b∈R,则a+b的最大值是.【考点】复数代数形式的乘除运算.【专题】计算题;转化思想;综合法;数系的扩充和复数.【分析】由|z|=1,得|z2|=1,结合z2=a+bi,得a2+b2=1,然后利用基本不等式求得a+b的最大值.【解答】解:∵|z|=1,∴|z2|=1,由z2=a+bi,得a2+b2=1,∴(a+b)2≤2(a2+b2)=2,故当时,a+b的最大值是.故答案为:.【点评】本题考查复数模的求法,训练了利用基本不等式求最值,是基础题.4.在直角坐标系xOy中,已知三点A(a,1),B(2,b),C(3,4),若向量,在向量方向上的投影相同,则3a﹣4b的值是2.【考点】平面向量数量积的运算.【专题】计算题;对应思想;向量法;平面向量及应用.【分析】构造三个向量,起点是原点,那么三个向量的坐标和点的坐标相同,根据投影的概念,列出等式,用坐标表示,移项整理得到结果.【解答】解:向量,在向量方向上的投影相同,∴=•,∵A(a,1),B(2,b),C(3,4),∴3a+4=6+4b,∴3a﹣4b=2,故答案为:2.【点评】本题考查了向量的数量积运算、投影,考查了推理能力,属于基础题.5.某科技创新大赛设有一、二、三等奖(参与活动的都有奖)且相应奖项获奖的概率是以a为首项,2为公比的等比数列,相应的奖金分别是以7000元、5600元、4200元,则参加此次大赛获得奖金的期望是5000元.【考点】离散型随机变量的期望与方差.【专题】计算题;转化思想;综合法;概率与统计.【分析】由已知求出获得一、二、三等奖的概率分别为,由此利用一、三、三等奖相应的奖金分别是以7000元、5600元、4200元,能求出参加此次大赛获得奖金的期望.【解答】解:∵某科技创新大赛设有一、二、三等奖(参与活动的都有奖)且相应奖项获奖的概率是以a为首项,2为公比的等比数列,∴获得一、二、三等奖的概率分别为a,2a,4a,且a+2a+4a=1,解得a=,∴获得一、二、三等奖的概率分别为,∵一、三、三等奖相应的奖金分别是以7000元、5600元、4200元,∴参加此次大赛获得奖金的期望E(X)==5000元.故答案为:5000.【点评】本题考查离散型随机变量的分布列的数学期望的求法,是中档题,解题时要认真审题,注意等比数列的性质的合理运用.6.已知F1、F2是椭圆C:(a>b>0)的两个焦点,P为椭圆C上一点,且.若△PF1F2的面积为9,则b=3.【考点】椭圆的应用;椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】由已知得|PF1|+|PF2|=2a,=4c2,,由此能得到b的值.【解答】解:∵F1、F2是椭圆C:(a>b>0)的两个焦点,P为椭圆C上一点,且.∴|PF1|+|PF2|=2a,=4c2,,∴(|PF1|+|PF2|)2=4c2+2|PF1||PF2|=4a2,∴36=4(a2﹣c2)=4b2,∴b=3.故答案为3.【点评】主要考查椭圆的定义、基本性质和平面向量的知识.7.△ABC中,a,b,c分别是∠A,∠B,∠C的对边且ac+c2=b2﹣a2,若△ABC最大边长是且sinC=2sinA,则△ABC最小边的边长为1.【考点】正弦定理.【专题】方程思想;综合法;解三角形.【分析】根据余弦定理求出cosB=﹣,故b=,由sinC=2sinA得c=2a,代入余弦定理计算a.【解答】解:∵ac+c2=b2﹣a2,∴cosB==﹣,∴B=,∴b=.∵sinC=2sinA,∴c=2a,∴三角形的最短边为a.由余弦定理得cosB=,解得a=1.故答案为1.【点评】本题考查了余弦定理,正弦定理,判断三角形的最长边和最短边是关键,属于中档题.8.在极坐标系中,曲线ρ=sinθ+2与ρsinθ=2的公共点到极点的距离为1+.【考点】简单曲线的极坐标方程.【专题】计算题;规律型;转化思想;坐标系和参数方程.【分析】联立方程组消去sinθ求解即可.【解答】解:ρ=sinθ+2与ρsinθ=2消去sinθ,可得ρ(ρ﹣2)=2,由于ρ>0,解得ρ=1+.故答案为:.【点评】本题考查极坐标方程的应用,利用ρ的几何意义是解题的关键.9.如图,A,B是直线l上的两点,且AB=2.两个半径相等的动圆分别与l相切于A,B点,C是这两个圆的公共点,则圆弧,与线段AB围成图形面积S的取值范围是.【考点】圆与圆的位置关系及其判定.【专题】计算题;压轴题;数形结合.【分析】结合图形,可见当⊙O1与⊙O2外切于点C时,S最大,圆弧AC,CB与线段AB围成图形面积S就是矩形ABO2O1的面积减去两扇形面积,解答即可.【解答】解:如图,当⊙O1与⊙O2外切于点C时,S最大,此时,两圆半径为1,S等于矩形ABO2O1的面积减去两扇形面积,∴,随着圆半径的变化,C可以向直线l靠近,当C到直线l的距离d→0时,S→0,∴S∈.【点评】本题考查圆与圆的位置关系,数形结合的思想,是中档题.10.设函数f(x)=x2﹣1,对任意x∈[,+∞),f()﹣4m2f(x)≤f(x﹣1)+4f(m)恒成立,则实数m的取值范围是.【考点】函数的值;函数恒成立问题.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】由已知得﹣4m2≤﹣﹣+1在x∈[,+∞)上恒成立,上由此能求出实数m的取值范围.【解答】解:依据题意得﹣1﹣4m2(x2﹣1)≤(x﹣1)2﹣1+4(m2﹣1)在x∈[,+∞)上恒定成立,即﹣4m2≤﹣﹣+1在x∈[,+∞)上恒成立.当x=时,函数y=﹣﹣+1取得最小值﹣,∴﹣4m2≤﹣,即(3m2+1)(4m2﹣3)≥0,解得m≤﹣或m≥,故答案为:.【点评】本题考查实数的取值范围的求法,是中档题,解题时要注意函数性质和等价转化思想的合理运用.二、选择题本大题共有3题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得5分,否则一律得零分.11.向量,均为单位向量,其夹角为θ,则命题“p:|﹣|>1”是命题q:θ∈[,)的()条件()A.充分非必要条件B.必要非充分条件C.充分必要条件 D.非充分非必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】平面向量及应用;简易逻辑.【分析】根据向量数量积的运算公式,以及充分条件和必要条件的定义即可得到结论.【解答】解:若|﹣|>1,则平方得:2﹣2•+2=2﹣2•>1,即•<,则cosθ==•<,∴θ∈(,π],即p:θ∈(,π],∵命题q:θ∈[,),∴p是q的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,根据向量数量积的应用求出向量夹角是解决本题的关键.12.已知S,A,B,C是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,,则球O的表面积等于()A.4πB.3πC.2πD.π【考点】直线与平面垂直的性质;球的体积和表面积.【专题】压轴题.【分析】先寻找球心,根据S,A,B,C是球O表面上的点,则OA=OB=OC=OS,根据直角三角形的性质可知O为SC的中点,则SC即为直径,根据球的面积公式求解即可.【解答】解:∵已知S,A,B,C是球O表面上的点∴OA=OB=OC=OS=1又SA⊥平面ABC,AB⊥BC,SA=AB=1,,∴球O的直径为2R=SC=2,R=1,∴表面积为4πR2=4π.故选A.【点评】本题主要考查了直线与平面垂直的性质,以及球的表面积等有关知识,考查空间想象能力、运算能力和推理论证能力,属于基础题.13.已知数列{a n}中,a n+1=3S n,则下列关于{a n}的说法正确的是()A.一定为等差数列B.一定为等比数列C.可能为等差数列,但不会为等比数列D.可能为等比数列,但不会为等差数列【考点】等差关系的确定;等比关系的确定.【专题】等差数列与等比数列.【分析】由条件可得S n+1=4S n,对S1分类讨论,即可得出结论.【解答】解:∵a n+1=3S n,∴S n+1﹣S n=3S n,∴S n+1=4S n,若S1=0,则数列{a n}为等差数列;若S1≠0,则数列{S n}为首项为S1,公比为4的等比数列,∴S n=S1•4n﹣1,=3S1•4n﹣2(n≥2),即数列从第二项起,后面的项组成等比数列.此时a n=S n﹣S n﹣1综上,数列{a n}可能为等差数列,但不会为等比数列.故选C.【点评】本题考查等差数列、等比数列的判断,考查学生分析解决问题的能力,正确分类讨论是关键.三、解答题(本题满分75分)本大题共有5题,解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤.14.(理)在长方体ABCD﹣A1B1C1D1中,AB=2,AD=1,AA1=1,点E在棱AB上移动.(1)探求AE等于何值时,直线D1E与平面AA1D1D成45°角;(2)点E移动为棱AB中点时,求点E到平面A1DC1的距离.【考点】直线与平面所成的角;点、线、面间的距离计算.【专题】计算题.【分析】(1)解法一:先找到直线D1E与平面AA1D1D所成的平面角,放入直角三角形中,根据角的大小为45°,来求三角形中边之间的关系,即可求出AE长度.解法二:利用空间向量来解,先建立空间直角坐标系,求出坐标,以及平面AA1D1D的法向量的坐标,因为直线D1E与平面AA1D1D成45°角,所以与平面AA1D1D的法向量成45°角,再用向量的数量积公式即可求出坐标,进而判断E点位置.(2)利用空间向量的知识,点到平面的距离可用公式来求,其中为平面的法向量,为E点到平面上任意一点的向量.【解答】解:(1)解法一:长方体ABCD﹣A1B1C1D1中,因为点E在棱AB上移动,所以EA⊥平面AA1D1D,从而∠ED1A为直线D1E与平面AA1D1D所成的平面角,Rt△ED1A中,∠ED1A=45°.解法二:以D为坐标原点,射线DA、DC、DD1依次为x、y、z轴,建立空间直角坐标系,则点D1(0,0,1),平面AA1D1D的法向量为,设E(1,y,0),得,由,得,故(2)以D为坐标原点,射线DA、DC、DD1依次为x、y、z轴,建立空间直角坐标系,则点E(1,1,0),A1(1,0,1),C1(0,2,1),从而,,设平面DA1C1的法向量为,由令,所以点E到平面A1DC1的距离为=1.【点评】本题主要考查了向量法求直线与平面所成角,以及点到平面的距离.属于立体几何的常规题.15.某公司生产的某批产品的销售量P万件(生产量与销售量相等)与促销费用x万元满足P=(其中0≤x≤a,a为正常数).已知生产该产品还需投入成本6(P+)万元(不含促销费用),产品的销售价格定为(4+)元/件.(1)将该产品的利润y万元表示为促销费用x万元的函数;(2)促销费用投入多少万元时,该公司的利润最大?【考点】函数模型的选择与应用.【专题】应用题;函数的性质及应用.【分析】(1)根据产品的利润=销售额﹣产品的成本建立函数关系;(2)利用导数基本不等式可求出该函数的最值,注意等号成立的条件.【解答】解:(Ⅰ)由题意知,y=(4+)p﹣x﹣6(p+),将p=代入化简得:y=19﹣﹣x(0≤x≤a);(Ⅱ)y=22﹣(+x+2)≤22﹣3=10,当且仅当=x+2,即x=2时,上式取等号;当a≥2时,促销费用投入2万元时,该公司的利润最大;y=19﹣﹣x,y′=﹣,∴a<2时,函数在[0,a]上单调递增,∴x=a时,函数有最大值.即促销费用投入a万元时,该公司的利润最大.【点评】本题主要考查了函数模型的选择与应用,以及基本不等式在最值问题中的应用,同时考查了计算能力,属于中档题.16.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期为π,图象的一个对称中心为(,0),将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得到的图象向右平移个单位长度后得到函数g(x)的图象.(1)求函数f(x)与g(x)的解析式;(2)求证:存在x0∈(,),使得f(x0),g(x0),f(x0)•g(x0)能按照某种顺序成等差数列.【考点】函数y=Asin(ωx+φ)的图象变换;函数与方程的综合运用.【专题】函数思想;转化思想;数形结合法;三角函数的图像与性质.【分析】(1)由周期公式可得ω,ω>0,再由对称中心可得φ值,可得f(x)解析式,由函数图象变换和诱导公式化简可得;(2)当x∈(,)时sinx>cos2x>sinx•cos2x,问题转化为方程2cos2x=sinx+sinx•cos2x在(,)内是否有解,由函数零点的存在性定理可得.【解答】解:(1)∵函数f (x )=sin (ωx+φ)的周期为π,ω>0,∴,又曲线y=f (x )的一个对称中心为(,0),φ∈(0,π),∴sin (2×+φ)=0,可得,∴f (x )=cos2x ,将函数f (x )图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得y=cosx 的图象,再将y=cosx 的图象向右平移个单位长度后得到函数g (x )=cos (x ﹣)的图象,由诱导公式化简可得g (x )=sinx ;(2)当x ∈(,)时,,,∴sinx >cos2x >sinx •cos2x ,问题转化为方程2cos2x=sinx+sinx •cos2x 在(,)内是否有解.设G (x )=sinx+sinx •cos2x ﹣2cos2x ,x ∈(,),∵,,且函数G (x )的图象连续不断,∴函数G (x )在(,)内存在零点x 0,即存在x 0∈(,),使得f (x 0),g (x 0),f (x 0)•g (x 0)能按照某种顺序成等差数列.【点评】本题考查三角函数图象变换,问题转化为方程2cos2x=sinx+sinx •cos2x 在(,)内是否有解是解决问题的关键,属中档题.17.若动点M 到定点A (0,1)与定直线l :y=3的距离之和为4. (1)求点M 的轨迹方程,并画出方程的曲线草图;(2)记(1)得到的轨迹为曲线C ,问曲线C 上关于点B (0,t )(t ∈R )对称的不同点有几对?请说明理由. 【考点】轨迹方程.【专题】综合题;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】(1)设M (x ,y ),由题意,分类讨论,可得点M 的轨迹方程,并画出方程的曲线草图;(2)当t≤0或t≥4显然不存在符合题意的对称点.当0<t<4时,注意到曲线C关于y轴对称,至少存在一对(关于y轴对称的)对称点,下面研究曲线C上关于B(0,t)对称但不关于y轴对称的对称点即可.【解答】解:(1)设M(x,y),由题意…①:当y≤3时,有,化简得:x2=4y②:当y>3时,有,化简得:x2=﹣12(y﹣4)(二次函数)综上所述:点M的轨迹方程为(如图)…(2)当t≤0或t≥4显然不存在符合题意的对称点当0<t<4时,注意到曲线C关于y轴对称,至少存在一对(关于y轴对称的)对称点下面研究曲线C上关于B(0,t)对称但不关于y轴对称的对称点设P(x0,y0)是轨迹x2=4y(y≤3)上任意一点,则,它关于B(0,t)的对称点为Q(﹣x0,2t﹣y0),由于点Q在轨迹x2=﹣12(y﹣4)上,所以,联立方程组(*)得4y0=﹣12(2t﹣y0﹣4),化简得①当y0∈(0,3)时,t∈(2,3),此时方程组(*)有两解,即增加有两组对称点.②当y0=0时,t=2,此时方程组(*)只有一组解,即增加一组对称点.(注:对称点为P(0,0),Q(0,4))③当y0=3时,t=3,此时方程组(*)有两解为,没有增加新的对称点.综上所述:…【点评】本题考查轨迹方程,考查分类讨论的数学思想,考查学生分析解决问题的能力,难度大.18.已知数列{a n},S n为其前n项的和,满足S n=.(1)求数列{a n}的通项公式;=n(T n (2)设数列{}的前n项和为T n,数列{T n}的前n项和为R n,求证:当n≥2,n∈N*时R n﹣1﹣1);(3)已知当n∈N*,且n≥6时有(1﹣)n<()m,其中m=1,2,…,n,求满足3n+4n+…+(n+2)an的所有n的值.n=(an+3)【考点】数列的求和;数列递推式.【专题】分类讨论;等差数列与等比数列;点列、递归数列与数学归纳法;不等式的解法及应用.【分析】(1)利用递推关系即可得出;(2)法一:直接计算化简即可证明;法二:利用数学归纳法即可证明.(3)利用“累加求和”方法、不等式的性质、分类讨论即可得出.【解答】(1)解:当n≥2时,,又∵a1=S1=1,∴a n=n.(2)证明:<法一>:∵,∴,∴==.<法二>:数学归纳法①n=2时,,,=k(T k﹣1),②假设n=k(k≥2,k∈N*)时有R k﹣1当n=k+1时,=,∴n=k+1是原式成立=n(T n﹣1).由①②可知当n≥2,n∈N*时R n﹣1(3)解:∵,m=1,2,…,n.⇒相加得,,∵,∴3n+4n+…+(n+2)n<(n+3)n,∴n≥6时,∴3n+4n+…+(n+2)n=(n+3)n无解,又当n=1时;3<4,n=2时,32+42=52;n=3时,33+43+53=63n=4时,34+44+54+64为偶数,而74为奇数,不符合n=5时,35+45+55+65+75为奇数,而85为偶数,不符合.综上所述n=2或者n=3.【点评】本题考查了递推关系、学归纳法、“累加求和”方法、不等式的性质、分类讨论方法,考查了推理能力与计算能力,属于难题.。

(完整版)上海市2019年初三中考数学二模汇编_23题几何证明

(完整版)上海市2019年初三中考数学二模汇编_23题几何证明

上海市2019年中考二模数学汇编:23题几何证明 闵行 23.(本题共2小题,每小题6分,满分12分)如图,已知四边形ABCD 是菱形,对角线AC 、BD 相交于点O ,BD = 2AC .过点A 作AE ⊥CD ,垂足为点E ,AE 与BD 相交于点F .过点C 作CG ⊥AC ,与AE 的延长线相交于点G . 求证:(1)△ACG ≌△DOA ;(2)2DF BD DE AG ⋅=⋅.宝山23.(本题满分12分,第(1)、第(2)小题满分各6分)如图,在矩形ABCD 中,E 是AB 边的中点,沿EC 对折矩形ABCD ,使B 点落在点P 处,折痕为EC ,联结AP 并延长AP 交CD 于F 点, (1)求证:四边形AECF 为平行四边形;(2)如果PA=PC ,联结BP ,求证:△APB ≅△EPC .ABCDOE GF(第23题图)A B CDOE H F第23题图23.(本题满分12分,每小题满分各6分)如图7,在直角梯形ABCD 中,90ABC ∠=︒,AD BC ∥,对角线AC 、BD 相交于点O . 过点D 作DE BC ⊥,交AC 于点F . (1)联结OE ,若BE AOEC OF=,求证:OE CD ∥; (2)若AD CD =且BD CD ⊥,求证:AF DFAC OB=. 奉贤23.(本题满分12分,每小题满分各6分)已知:如图8,正方形ABCD ,点E 在边AD 上,AF ⊥BE ,垂足为点F ,点G 在线段BF 上,BG=AF .(1)求证:CG ⊥BE ;(2)如果点E 是AD 的中点,联结CF ,求证:CF=CB . 金山22. 已知:如图,菱形ABCD 的对角线AC 与BD 相交于点O ,若DBC CAD ∠=∠.(1)求证:ABCD 是正方形.(2)E 是OB 上一点,CE DH ⊥,垂足为H ,DH 与OC 相交于点F ,求证:OF OE =.ABCDOE F图7ABCD FGE 图823.(本题满分12分)已知:如图10,在四边形ABCD 中,AD BC <,点E 在AD 的延长线上, ACE BCD ∠=∠,EC ED EA =⋅2. (1)求证:四边形ABCD 为梯形; (2)如果EC ABEA AC=,求证:AB ED BC =⋅2. 杨浦23. 已知:在ABC 中,AB=BC ,∠ABC=90°,点D 、E 分别是边AB 、BC 的中点,点F 、G 是边AC 的三等分点,DF 、EG 的延长线相交于点H ,联结HA 、HC. 求证:(1)四边形FBGH 是菱形;(2)四边形ABCH 是正方形.长宁23.(本题满分12分,第(1)小题5分,第(2)小题7分)图10A BCD E如图5,平行四边形ABCD 的对角线BD AC 、交于点O ,点E 在边CB 的延长线上,且︒=∠90EAC ,EC EB AE ⋅=2. (1)求证:四边形ABCD 是矩形;(2)延长AE DB 、交于点F ,若AC AF =,求证:BF AE =. 黄浦嘉定23.静安图5AB CDE FO松江徐汇答案 闵行23.证明:(1)在菱形ABCD 中,AD = CD ,AC ⊥BD ,OB = OD .∴ ∠DAC =∠DCA ,∠AOD = 90°.……………………………(1分) ∵ AE ⊥CD ,CG ⊥AC ,∴ ∠DCA +∠GCE = 90°,∠G +∠GCE = 90°.∴ ∠G =∠DCA .…………………………………………………(1分) ∴ ∠G =∠DAC .…………………………………………………(1分) ∵ BD = 2AC ,BD = 2OD ,∴ AC = OD . ……………………(1分) 在△ACG 和△DOA 中,∵ ∠ACG =∠AOD ,∠G =∠DAC ,AC = OD ,∴ △ACG ≌△DOA . ……………………………………………(2分) (2)∵ AE ⊥CD ,BD ⊥AC ,∴ ∠DOC =∠DEF = 90°.…………(1分) 又∵ ∠CDO =∠FDE ,∴ △CDO ∽△FDE .…………………(1分)∴ CD OD DF DE=.即得 OD DF DE CD ⋅=⋅. ……………………(2分) ∵ △ACG ≌△DOA ,∴ AG = AD = CD . ……………………(1分)又∵ 12OD BD =,∴ 2DF BD DE AG ⋅=⋅.…………………(1分)宝山23.(1)证明:由折叠得到EC 垂直平分BP , ………………1分 设EC 与BP 交于Q ,∴BQ=EQ ………………1分 ∵E 为AB 的中点, ∴AE =EB , ………………1分 ∴EQ 为△ABP 的中位线,∴AF ∥EC , ………………2分 ∵AE ∥FC , ∴四边形AECF 为平行四边形; ………………1分 (2)∵AF ∥EC ,∴∠A PB =∠EQB =90° ………………1分由翻折性质∠E PC =∠EBC =90°,∠PEC =∠BEC ………………1分 ∵E 为直角△APB 斜边AB 的中点,且AP =EP ,∴△AEP 为等边三角形 , ∠BAP =∠AEP =60°, ………………1+1分︒=︒-︒=∠=∠60260180CEB CEP ………………1分 在△ABP 和△EPC 中, ∠BAP =∠CEP ,∠APB=∠E PC ,AP =EP ∴△ABP ≌△EPC (AAS ), ………………1分 崇明23.(本题满分12分,每小题满分各6分) 证明(1)∵90ABD ∠=︒,BC DE ⊥∴//AB DE ………………………………………………………………(1分)∴AO BOOF OD=………………………………………………………………(2分) ∵BE AOEC OF =∴AO BEOF EC=……… ………………………………………………………(2分) ∴//OE CD …………………………………………………………………(1分) (2)∵BC AD //,//AB DE ,∴四边形ABED 为平行四边形 又∵90ABD ∠=︒∴四边形ABED 为矩形 ……………………………………………………(1分) ∴AD BE =,90ADE ∠=︒ 又∵CD BD ⊥∴90BDC BDE CDE ∠=∠+∠=︒︒=∠+∠=∠90BDE ADB ADE∴CDE ADB ∠=∠ …………………………………………………………(1分)AD CD =∴DCA DAC ∠=∠∴()A S A CDF ADO ..∆≅∆…………………………………………………(1分) ∴OD DF =DE AB // ∴AF BE AD AC BC BC==…………………………………………………………(1分) ∵BC AD //∴BODFBO OD BC AD ==…………………………………………………………(1分) ∴AF DFAC OB=…………………………………………………………………(1分) 奉贤22.证明:(1)∵四边形ABCD 是正方形,∴AB BC =.90ABC. ············· (1分) ∵AF ⊥BE ,∴90FAB FBA ∠+∠=︒.∵90FBA CBG ∠+∠=︒,∴FAB CBG ∠=∠. ·········································· (1分) 又∵AF BG =,∴△AFB ≅△BGC . ···························································· (2分) ∴AFB BGC ∠=∠. ····························································································· (1分) ∵90AFB ∠=︒,∴90BGC ∠=︒,即CG ⊥BE . ··········································· (1分) (2)∵ABF EBA ∠=∠,90AFB BAE ∠=∠=︒,∴△AEB ∽△FAB .∴AE AFAB BF=. ································································· (3分) ∵点E 是AD 的中点,AD AB =,∴12AE AB =.∴12AF BF =.·························· (1分) ∵AF BG =,∴12BG BF =,即FG BG =.·························································· (1分) ∵CG ⊥BE ,∴CF CB =. ···················································································· (1分)金山23.(1)证明:∵四边形ABCD 是菱形,∴BC AD //,DAC BAD ∠=∠2,DBC ABC ∠=∠2; (2分) ∴ 180=∠+∠ABC DAB ; (1分) ∵DBC CAD ∠=∠;∴ABC BAD ∠=∠, (1分) ∴ 1802=∠BAD ; ∴ 90=∠BAD ; (1分) ∴四边形ABCD 是正方形. (1分) (2)证明:∵四边形ABCD 是正方形;∴BD AC ⊥,BD AC =,AC CO 21=,BO DO 21=; (1分) ∴ 90=∠=∠DOC COB ,DO CO =; (1分) ∵CE DH ⊥,垂足为H ;∴ 90=∠DHE , 90=∠+∠DEH EDH ; (1分) 又∵ 90=∠+∠DEH ECO ; ∴EDH ECO ∠=∠; (1分)∴ECO ∆≌FDO ∆; (1分) ∴OF OE =. (1分)普陀 23.证明:(1)∵ ACE BCD ∠=∠,∴DCE BCA ∠=∠. ······················································ (1分)∵EC ED EA =⋅2,∴ED ECEC EA=. ······································································· (1分) 又∵E ∠是公共角,∴△EDC ∽△ECA . ····························································· (1分) ∴DCE CAE ∠=∠. ································································································· (1分) ∴BCA CAE ∠=∠.∴AD ∥BC . ············································································································· (1分) ∵AD BC <,∴AB 与CD 不平行.∴四边形ABCD 是梯形. ··························································································· (1分)(2)∵△EDC ∽△ECA .∴EC CDEA AC =. ∵EC AB EA AC=,∴AB DC =.·············································································· (1分) ∴四边形ABCD 是等腰梯形. ··············································································· (1分) ∴B DCB ∠=∠.··································································································· (1分) ∵AD ∥BC .∴EDC DCB ∠=∠. ∴EDC B ∠=∠.∵ECD ACB ∠=∠,∴△EDC ∽△ABC . ····················································· (1分) ∴ED DCAB BC=. ········································································································ (1分) ∴AB ED BC =⋅2. ····························································································· (1分) 杨浦23.(1)证明略 (2)证明略 长宁 23.(本题满分12分,第(1)小题5分,第(2)小题7分)证明:(1)∵EC EB AE ⋅=2 ∴AEEB EC AE =又 ∵CEA AEB ∠=∠ ∴AEB ∆∽CEA ∆ (2分) ∴EAC EBA ∠=∠∵︒=∠90EAC ∴︒=∠90EBA (1分) 又 ∵︒=∠+∠180CBA EBA ∴︒=∠90CBA (1分) ∵四边形ABCD 是平行四边形∴四边形ABCD 是矩形 (1分)(2)∵ AEB ∆∽CEA ∆ ∴ AC AB AE BE = 即 ACAE AB BE = , ECA EAB ∠=∠ (2分)∵四边形ABCD 是矩形 ∴BD AC =又 ∵BD OB 21=, AC OC 21= ∴OC OB = ∴ECA OBC ∠=∠ 又 ∵OBC EBF ∠=∠ ECA EBA ∠=∠ ∴EAB EBF ∠=∠又∵F F ∠=∠ ∴EBF ∆∽BAF ∆(3分)∴ABBEAF BF =∴ACAEAF BF =(1分)∵AC AF =∴AE BF = (1分) 黄浦嘉定静安松江徐汇。

上海市各区2019届中考数学二模试卷精选汇编:综合计算

上海市各区2019届中考数学二模试卷精选汇编:综合计算

A
F
D
E H
B
C
第 21 题图
21.(本题满分 10 分, 第( 1)小题 5 分,第( 2)小题 5 分)
解:( 1)∵正方形 ABCD,
∴ DC=BC=BA=,AD∠ BAD=∠ ADC=∠ DCB=∠ CBA=90°
AH=DH=CH=,BHAC⊥ BD,
∴∠ ADH=∠ HDC=∠ DCH=∠DAE= 45 °.
又∵ ∠ABC 30 , OB 6
∴ OP OBgtan30 2 3 ……………………………………………… 1 分
∵在 Rt△POD 中, PO2 PD 2 OD 2 …………………………… 1 分
∴ (2 3) 2 PD 2 62
∴ PD 2 6 ……………………………………………………………
1分
…………( 2 分)
又∵ DE平分∠ AD B ∴∠ ADE=∠EDH
∵∠ DAE+∠ ADE=∠ DEC, ∠ EDH+∠HDC=∠ EDC…………( 1 分)
6 / 12
A
F
D
E H
B
C
第 21 题图
∴∠ EDC=∠ DEC ∴ DC=EC ( 2)∵正方形 ABCD,∴ AD∥ BC,
∴△ AFE∽△ CBE∴ S AEF S CEB
B
C
3
A
图4
D
21. 解:( 1)∵ AD ∥ BC
∴ BCA CAD
………………… 1 分
B
C
∵ BAC BCA 10
∴ BAC CAD 10 ………………… 1 分 ∵ BAD 90
A
图4 H D
∴ BAC CAD 90

上海市各区2019届中考数学二模试卷精选汇编(8套,Word版,含答案)

上海市各区2019届中考数学二模试卷精选汇编(8套,Word版,含答案)
由△DPH与△AOB相似,易知∠AOB=∠PHD=90°,
所以 或 ,————————————(2分)
解得: 或 ,
所以点P的坐标为(5,8), .————————————————(1分)
金山区
24.(本题满分12分,每小题4分)
平面直角坐标系xOy中(如图8),已知抛物线 经过点A(1,0)和B(3,0),
(2)当CB平分∠DCO时,求 的值.
黄浦区
24.(本题满分12分)
已知抛物线 经过点A(1,0)和B(0,3),其顶点为D.
(1)求此抛物线的表达式;
(2)求△ABD的面积;
(3)设P为该抛物线上一点,且位于抛物线对称轴
右侧,作PH⊥对称轴,垂足为H,若△DPH与△AOB相
似,求点P的坐标.
24.解:(1)由题意得: ,———————————————————(2分)
奉贤区
24.(本题满分12分,每小题满分各4分)
已知平面直角坐标系 (如图8),抛物线 与 轴交于点A、B(点A在点B左侧),与 轴交于点C,顶点为D,对称轴
为直线,过点C作直线的垂线,垂足为点E,联结DC、BC.
(1)当点C(0,3)时,
①求这条抛物线的表达式和顶点坐标;
②求证:∠DCE=∠BCE;
24.解:(1)∵直线 的经过点
∴ ……………………1分
∴ ………………………………1分
∵直线 的经过点
∴ ……………………1分
∴ …………………………………………1分
(2)由可知点 的坐标为
∵抛物线 经过点 、

∴ ,
∴抛物线 的表达式为 …………………1分
∴抛物线 的顶点坐标为 ……………1分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

N M HD CFE O图12013学年第二学期九年级数学学科期中练习卷(2014. 4)(满分150分,考试时间100分钟)考生注意:1、本试卷含三个大题,共25题;2、答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3、除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、 选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.9的平方根是……………………………………………………………………( ▲ ) (A )3; (B )-3; (C )3和-3; (D )9. 2.下列实数中,是无理数的是……………………………………………………( ▲ ) (A; (B; (C )722; (D )cos 60. 3▲ )(A(B(C(D4.下列方程有实数根的是 ………………………………………………………( ▲ ) (A )210x x -+=; (B )40x =; (C )111x x x =--; (D0=. 5.某中学篮球队14名队员的年龄情况如下表,则这些队员年龄的众数和中位数分别是…………………………………………………………………………………………( ▲ ) (A )15,16; (B )16,16; (C )16,16.5; (D )17,16.5. 6.如图1,EF 是⊙O 的直径,CD 交⊙O 于M 、N ,H 为MN 的中点,EC ⊥CD于点C ,FD ⊥CD 于点D ,则下列结论错误的是……( ▲ ) (A )CM ﹦DN ; (B ) CH ﹦HD ;(C )OH ⊥CD ; (D )EC OHOH FD=. 二、填空题:(本大题共12题,每题4分,满分48分)图3图6DCB A图5【请将结果直接填入答题纸的相应位置】7.我国最长的河流长江全长约为6300千米,用科学记数法表示为 ▲ 千米. 8.计算:4nn xx ÷= ▲ .9.因式分解:2a 2-2= ▲ . 10.化简221(1)(1)x x x ---的结果是 ▲ . 112=的解是 ▲ .12.已知反比例函数y =m -1x 的图象如图2所示,则实数m 的取值范围是 ▲ .13.从等边三角形、平行四边形、矩形、菱形、圆、等腰梯形共6个图形中任选一个图形,选出的图形恰好是中心对称图形的概率为 ▲ .14.某校对初中学生开展的四项课外活动进行了一 次抽样调查(每人只参加其中的一项活动),调查结果如图3 所示.根据图示所提供的样本数据,可得学生参加科技活动 的频率是 ▲ .15.已知3,5a b ==,且b 与a 反向,则用向量b 表示向量a ,即a = ▲ b . 16.如图4,自动扶梯AB 段的长度为20米,倾斜角A 为α, 高度BC 为 ▲ 米.(结果用含α的三角比表示)17.如图5,在四边形ABCD 中,点M ,N 分别在AB 、BC 上,将△BMN 沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC ,则∠B = ▲ 度.18.如图6,等腰△ABC 的顶角A 的度数是36°,点D 是腰AB 的 黄金分割点(AD >BD ),将△BCD 绕着点C 按照顺时针方向旋转一个角 度后点D 落在点E 处,联结AE ,当AE ∥CD 时,这个旋转角是 ▲ 度.三、解答题:(本大题共7题,满分78分)图4(反面还有试题)19.(本题满分10分)计算:12021tan 6014π-⎛⎫++-+ ⎪+⎝⎭(-1).20.(本题满分10分)解不等式组:⎪⎩⎪⎨⎧≤--+<+-.1312412x x x x , ,并把解集在数轴上表示出来.21.(本题满分10分,第(1)小题5分,第(2)小题5分) 已知:如图7,在梯形ABCD 中,DF 平分∠D ,若以点D 为 圆心,DC 长为半径作弧,交边AD 于点E ,联结EF 、BE 、EC . (1)求证:四边形EDCF 是菱形;(2)若点F 是BC 的中点,请判断线段BE 和EC 的位置关系,并证明你的结论.22.(本题满分10分,第(1)小题2分,第(2)小题4分,第(3)小题4分)全面实现低碳生活已逐渐成为人们的共识.某企业为了发展低碳经济,采用技术革新,减少二氧化碳的排放.随着排放量的减少,企业相应获得的利润也有所提高,且相应获得的利润y (万元)与月份x (月)(1≤x ≤6)的函数关系如图8所示:(1) 根据图像,请判断:y 与x (1≤x ≤6)的变化规律应该符合 函数关系式;(填写序号:①反比例函数、②一次函数、③二次函数);(2) 求出y 与x (1≤x ≤6)的函数关系式(不写取值范围);(3) 经统计发现,从6月到8月每月利润的增长率相同, 且8月份的利润为151.2万元,求这个增长率.23.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)①② 图7)已知:如图9,点D 是线段BC 上的任意一点, △ABD 和△DCE 都是等边三角形,AD 与BE 交于点F .(1)求证:△BDE ≌△ADC ; (2)求证:AB 2 = BC AF ;(3)若BD =12,CD =6,求∠ABF 的正弦值.24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分) 已知:如图10,二次函数y =ax 2+4的图像与 x 轴交于点A 和点B (点A 在点B 的左侧),与y轴交于点C ,且cos ∠CAO.(1)求二次函数的解析式;(2)若以点O 为圆心的圆与直线AC 相切于点D ,求点D 的坐标;(3)在(2)的条件下,抛物线上是否存在点P 使得以P 、A 、D 、O 为顶点的四边形是直角梯形....,若存在,请求出点P 坐标;若不存在,请说明理由.25.(本题满分14分,第(1)小题6分,第(2)小题4分,第(3)小题4分)已知:如图11—①,△ABC 中,AB=AC=6,BC=4,点D 在BC 的延长线上,联结AD ,以AD 为一边作△ADE ,使点E 与点B 位于直线AD 的两侧,且AD=AE ,∠DAE=∠BAC.(1)如果AE//BC ,请判断四边形ABDE 的形状并证明;(2)如图11—②,设M 是BC 中点,N 是DE 中点,联结AM 、AN 、MN , 求证:△ABD ∽△AMN ;(3)设BD=x ,在(2)的前提下,以BC 为直径的⊙M 与以DE 为直径的⊙N 存在着哪些位置关系?并求出相应的x 的取值范围(直接写出结论).2013学年第二学期九年级质量抽测卷(2014年4月)图11—②MABCD EN图9ABCDEF10ABCDE图11—①答案及评分参考(考试时间:100分钟,满分:150分)一. 选择题(本大题共6题,每题4分,满分24分)二、填空题(本大题共12题,每题4分,满分48分)7、36.310⨯.8、3nx.9、2(1)(1)a a+-.10、11x-.11、x=3.12、1m>.13、23.14、0.2.15、35-.16、20sinα.17、95.18、72或者108.三. 解答题(本大题共7题,满分78分)19、(本题满分10分)解:原式12++…………………………………………………(5分)13………………………………………………………(3分)=2.……………………………………………………………(2分)20.(本题满分10分)解:由①得:33x-<……………………………………………………………(2分)解得1x>-…………………………………………………………(1分)由②得:32(1)6x x--≤…………………………………………………(3分)解得4x≤…………………………………………………………(1分)所以不等式组的解集是14x-<≤.………………………………………(1分)………………………………………(2分)21.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)∵DF平分∠D∴∠EDF=∠CDF……………………………(1分)∵作弧∴ED=DC …………………………………(1分)在△EDF与△CDF中,ED DCEDF CDFDF DF=⎧⎪∠=∠⎨⎪=⎩图7∴△EDF ≌△CDF ……………………………………………………………………(1分) ∴EF=CF ………………………………………………………………………………(1分) ∵梯形ABCD ∴ AD ∥BC ∴∠ EDF=∠ DFC ∴∠ DFC=∠ CDF ∴CF=CD∴ED=DC=CF=EF ………………………………………………………………………(1分) ∴四边形EDCF 是菱形.(2)线段BE 和EC 的位置关系是垂直. …………………………………………(1分) ∵点F 是BC 的中点 ∴BF=CF∴BF=ED ………………………………………………………………………………(1分) ∵ED ∥BF∴四边形BEDF 是平行四边形………………………………………………………(1分) ∴BE ∥DF ……………………………………………………………………………(1分) ∵菱形EDCF∴EC ⊥DF ……………………………………………………………………………(1分) ∴BE ⊥EC .22.(本题满分10分,第(1)小题2分,第(2)小题4分,第(3)小题4分)(1)②………………………………………………………………………………………(2分) (2)设y =kx +b (a ≠0),将(1,80)、(4,95)代入得:80495k b k b +=⎧⎨+=⎩ ………………………………………………………………………(2分) 解得: 575k b =⎧⎨=⎩………………………………………………………………………(1分)∴y =5x +75.………………………………………………………………………(1分)(3)把x=6代入y =5x +75得y=105 ……………………………………………………………………………(1分) 设这个增长率是a ,则:105(a+1)2=151.2 ……………………………………(2分) 解得a=20%答:这个增长率是20%.…………………………………………………………(1分) 23.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分) (1)证明:∵△ABD 和△DCE 都是等边三角形∴BD =AD ,DE =DC ,∠FAB =∠ABC =∠ADB =∠EDC =60°…………………(2分) ∴∠BDE =∠ADC . ……………………………………………………………………(1分)在△BDE 和△ADC 中BD AD BDE ADC DE DC =⎧⎪∠=∠⎨⎪=⎩图9ABCDEFM∴△BDE ≌△ADC .………………………………………………………………………(1分) (2)证明:∵△BDE ≌△ADC ∴∠DBE =∠DAC∵∠ABC =∠ADB =60° ∴∠ABF =∠BCA∵∠FAB =∠ABC ,∠ABF =∠BCA …………………………………………………………(2分) ∴△FAB ∽△ABC ………………………………………………………………………………(1分)∴AF ABAB BC=即AB 2 = BC ⋅AF ………………………………………………………………………………(1分)(3)∵△FAB ∽△ABC∴∠ABF=∠ACB ………………………………………………………………………………(1分) 过A 作AM ⊥BC 于点M ……………………………………………………………………(1分) ∵△ABC 是等边三角形,BD=12 ∴MD=6,AM=在Rt △AMC 中,12==………………………………(1分)∴sin ∠ACB=AM AC == 即sin∠ABF=2………………………………………………………………………………(1分) 24. (本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)解:(1)∵二次函数y =ax 2+4的图像与y 轴交于点C ∴点C 的坐标为(0,4).………………………………………………………………(1分) ∵二次函数y =ax 2+4的图像与x 轴交于点A ,cos∠CAO =2∴∠CAO =45°…………………………………………………………………………(1分) ∴OA =OC =4,∴点A 的坐标为(-4,0) ………………………………………(1分)∴0=a (-4)2+4,∴a =-41 ∴这二次函数的解析式为y =-41x 2+4. …………………………………………(1分)(2)连接OD ,作DE ∥y 轴,交x 轴于点E ,DF ∥x 轴,交y 轴于点F (如图一).∵⊙O 与直线AC 相切于点D ,∴OD ⊥AC .………(1∵OA =OC =4,∴点D 是AC 的中点………………(1∴DE =21OC =2,DF =21OA =2,∴点D 的坐标为(-2,2). ………………………(2分)(3)直线OD 的解析式为y =-x (如图二),则经过点A 且与直线OD 平行的直线的解析式为y =-x -4(图一)解方程组⎪⎩⎪⎨⎧+-=--=44142x y x y , 消去y ,得x 2-4x -32=0,即(x -8)(x +4)=0,∴x 1=8,x 2=-4(舍去),∴y =-12,∴点P 1的坐标为(8,-12).……………(1分) 直线AC 的解析式为y =x +4,则经过点O 且与直线AC 平行的直线的解析式为y =x . ……………………………(1分)解方程组⎪⎩⎪⎨⎧+-==4412x y x y , 消去y ,得x 2+4x -16=0,即x =-2+25,∴x 1=-2-25,x 2=-2+25(舍去),∴y =-2-∴点P 2的坐标为(-2-25,-2-25).………………………………………(1分) 25.(本题满分14分,第(1)小题6分,第(2)小题4分,第(3)小题4分)解:(1)四边形ABDE 是平行四边形…………(1分) 如图(1)∵ ∠ BAC=∠ DAE ,AB=AC ,AD=AE ∴ △ABC ~△ADE ……………………………(2分) ∴ ∠ E=∠ ACB=∠ B ∵ AE//BC∴ ∠ EAB+∠ E=∠ EAB+∠ B=180º……(1分)∴ AB//ED ……………………………………(2分)∴ 四边形ABDE 是平行四边形(2)证明:∵ AB=AC ,M 是BC 中点∴ AM ⊥BC ,AM 平分∠ BAC ………………(1分) 同理AN ⊥DE ,AN 平分∠ DAE ……………(1分) ∵∠ MAN=∠ MAC+∠ CAD+∠ DAN ∠ BAD=∠ BAM+∠ MAC+∠ CAD∴∠ MAN=∠ BAD …………………………(1分) ∵△ABC ~△ADE ∴ANAMAD AB =……………………………………………………………………(1分) 在△ABD 和△AMN 中∴AB ADAM AN MAN BAD⎧=⎪⎨⎪∠=∠⎩ ∴△ABD ~△AMN .………………………………………………………………(1分)图2M A B C D E N (图二)EB AC D 图(1)(3)当74224x -=两圆外切 ………………………………………………(2分)当4x ≤<时两圆相交……(1分);74224x ->两圆外离. (1)。

相关文档
最新文档