2018年龙东地区中考数学试题

合集下载

【真题】黑龙江省龙东地区2018年中考数学试卷(解析版)

【真题】黑龙江省龙东地区2018年中考数学试卷(解析版)

黑龙江省龙东地区2018年中考数学试卷(解析版)2018年黑龙江省龙东地区中考数学试卷一、填空题(每题3分,满分30分)1.人民日报2018年2月23日报道,2017年黑龙江粮食总产量达到1203.76亿斤,成功超越1200亿斤,连续七年居全国首位,将1200亿斤用科学记数法表示为_____斤.【答案】1.2×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1200亿斤=120000000000斤,∴将1200亿斤用科学记数法表示应为1.2×1011斤,故答案为:1.2×1011.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.在函数y=中,自变量x的取值范围是_______.【答案】x≥﹣2且x≠0【解析】根据题意得x+2≥0且x≠0,即x≥-2且x≠0.3.如图,在平行四边形ABCD中,添加一个条件_____使平行四边形ABCD是菱形.【答案】AB=BC(或AC⊥BD)答案不唯一【解析】【分析】根据邻边相等的平行四边形是菱形可知添加条件AB=BC.【详解】解:添加条件:AB=BC,根据邻边相等的平行四边形是菱形可以判定四边形ABCD 是菱形.故答案为:AB=BC.【点睛】此题主要考查了菱形的判定,关键是熟练掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形.4.掷一枚质地均匀的骰子,向上一面的点数为5的概率是_____.【答案】【解析】【分析】利用随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数进行计算即可.【详解】掷一枚质地均匀的骰子,向上一面的点数有6种可能,向上一面的点数为5有一种可能,所以向上一面的点数为5有的概率是:,故答案为:.【点睛】本题考查了简单的概率计算,熟练掌握概率公式是解题的关键.5.若关于x的一元一次不等式组有2个负整数解,则a的取值范围是_____.【答案】﹣3≤a<﹣2【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集和已知得出a的范围即可.【详解】,∵解不等式①得:x>a,解不等式②得:x<2,又∵关于x的一元一次不等式组有2个负整数解,∴﹣3≤a<﹣2,故答案为:﹣3≤a<﹣2.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集和已知得出关于a的不等式是解此题的关键.6.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为_____.【答案】5【解析】解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=x﹣1,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣1)2,解得:x=5,∴⊙O的半径为5,故答案为:5.点睛:本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键.7.用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为_____.【答案】【解析】【分析】设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,然后求出r后利用勾股定理计算圆锥的高.【详解】设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=1,所以此圆锥的高=,故答案:.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.8.如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE 于点G,点P是AB边上另一动点,则PD+PG的最小值为_____.【答案】2-2【解析】【分析】作DC关于AB的对称点D′C′,以BC中的O为圆心作半圆O,连D′O分别交AB及半圆O 于P、G.将PD+PG转化为D′G找到最小值.【详解】如图:取点D关于直线AB的对称点D′,以BC中点O为圆心,OB为半径画半圆,连接OD′交AB于点P,交半圆O于点G,连BG,连CG并延长交AB于点E,由以上作图可知,BG⊥EC于G,PD+PG=PD′+PG=D′G,由两点之间线段最短可知,此时PD+PG最小,∵D′C’=4,OC′=6,∴D′O=,∴D′G=-2,∴PD+PG的最小值为-2,故答案为:-2.【点睛】本题考查了轴对称的性质、直径所对的圆周角是直角、线段和的最小值问题等,综合性较强,能灵活利用相关知识正确添加辅助线是解题的关键.通常解此类问题都是将线段之和转化为固定两点之间的线段和最短.9.Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.【答案】3.6或4.32或4.8【解析】【分析】在Rt△ABC中,通过解直角三角形可得出AC=5、S△ABC=6,找出所有可能的分割方法,并求出剪出的等腰三角形的面积即可.【详解】在Rt△ABC中,∠ACB=90°,AB=3,BC=4,∴AB==5,S△ABC=AB•BC=6.沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:①当AB=AP=3时,如图1所示,S等腰△ABP=•S△ABC=×6=3.6;②当AB=BP=3,且P在AC上时,如图2所示,作△ABC的高BD,则BD=,∴AD=DP==1.8,∴AP=2AD=3.6,∴S等腰△ABP=•S△ABC=×6=4.32;③当CB=CP=4时,如图3所示,S等腰△BCP=•S△ABC=×6=4.8;综上所述:等腰三角形的面积可能为3.6或4.32或4.8,故答案为:3.6或4.32或4.8.【点睛】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的分割方法,并求出剪出的等腰三角形的面积是解题的关键.10.如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则S n=_____.【答案】【解析】【分析】由AB1是边长为2的等边三角形ABC的高,利用三线合一得到B1为BC的中点,求出CB1的长,继而可得△B1CB2是有一个角为30度的直角三角形,同理可知△B2C1B3、△B3C2B4、△B4C3B5、…、都是有一个角为30度的直角三角形,而且后一个的斜边是前一个30度角所邻的直角边,由此即可求得S n.【详解】∵等边三角形ABC的边长为2,AB1⊥BC,∴∠C=60°,CB1=BB1=1,又∵∠B1B2C=90°,∴∠CB1B2=30°,∴CB2=,B1B2=,∴S1=,同理,Rt△B2C1B3中,B2C1=B1B2=,∴C1B3=×=,B2B3=,∴S2=,同理,S3=…,∴S n=,故答案为:.【点睛】本题考查了规律题,涉及等边三角形的性质,含30度角的直角三角形的性质、勾股定理等,有一定难度,熟练掌握并灵活运用等边三角形的性质、勾股定理等解本题的关键.二、选择题(每题3分,满分30分)11.下列各运算中,计算正确的是()A. a12÷a3=a4B. (3a2)3=9a6C. (a﹣b)2=a2﹣ab+b2D. 2a•3a=6a2【答案】D【解析】【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.【详解】A、原式=a9,故A选项错误,不符合题意;B、原式=27a6,故B选项错误,不符合题意;C、原式=a2﹣2ab+b2,故C选项错误,不符合题意;D、原式=6a2,故D选项正确,符合题意,故选D.【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.12.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的定义以及中心对称图形的定义进行判断即可得.【详解】根据轴对称图形的定义,选项中轴对称图形有A、C、D,根据中心对称图形的定义,选项中的中心对称图形有B、D,综上可知,既是轴对称图形又是中心对称图形的是D,故选D.【点睛】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.13.如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是()A. 3B. 4C. 5D. 6【答案】D【解析】【分析】左视图底面有2个小正方体,主视图与左视图相同,则可以判断出该几何体底面最少有2个小正方体,最多有4个.根据这个思路可判断出该几何体有多少个小立方块.【详解】左视图与主视图相同,可判断出底面最少有2个,最多有4个小正方体,而第二层则只有1个小正方体,则这个几何体的小立方块可能有3或4或5个.故选D.【点睛】本题考查了由三视图判断几何体,主要考查了学生的空间想象能力以及三视图的相关知识,解答本题的关键是弄清一共有几层、每层最多与最少各有多少个.14.某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A. 平均分是91B. 中位数是90C. 众数是94D. 极差是20【答案】C【解析】【分析】直接利用平均数、中位数、众数以及极差的定义分别分析得出答案.【详解】A、平均分为:×(94+98+90+94+74)=90(分),故此选项错误;B、五名同学成绩按大小顺序排序为:74,90,94,94,98,故中位数是94分,故此选项错误;C、94分、98分、90分、94分、74分中,众数是94分.故此选项正确;D、极差是98﹣74=24,故此选项错误,故选C.【点睛】本题主要考查了平均数、中位数、众数以及极差的定义,正确把握相关定义以及求解方法是解题的关键.15.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A. 4B. 5C. 6D. 7【答案】C【解析】【分析】设共有x个班级参赛,根据第一个球队和其他球队打(x﹣1)场球,第二个球队和其他球队打(x﹣2)场,以此类推可以知道共打(1+2+3+…+x﹣1)场球,然后根据计划安排15场比赛即可列出方程求解.【详解】设共有x个班级参赛,根据题意得:=15,解得:x1=6,x2=﹣5(不合题意,舍去),则共有6个班级参赛,故选C.【点睛】本题考查了一元二次方程的应用,关键是准确找到描述语,根据等量关系准确的列出方程.此题还要判断所求的解是否符合题意,舍去不合题意的解.16.已知关于x的分式方程=1的解是负数,则m的取值范围是()A. m≤3B. m≤3且m≠2C. m<3D. m<3且m≠2【答案】D【解析】【分析】解方程得到方程的解,再根据解为负数得到关于m的不等式结合分式的分母不为零,即可求得m的取值范围.【详解】=1,解得:x=m﹣3,∵关于x的分式方程=1的解是负数,∴m﹣3<0,解得:m<3,当x=m﹣3=﹣1时,方程无解,则m≠2,故m的取值范围是:m<3且m≠2,故选D.【点睛】本题考查了分式方程的解,熟练掌握分式方程的解法以及分式方程的分母不为零是解题关键.17.如图,平面直角坐标系中,点A是x轴上任意一点,BC平行于x轴,分别交y=(x>0)、y=(x<0)的图象于B、C两点,若△ABC的面积为2,则k值为()A. ﹣1B. 1C.D.【答案】A【解析】【分析】连接OC、OB,如图,由于BC∥x轴,根据三角形面积公式得到S△ACB=S△OCB,再利用反比例函数系数k的几何意义得到×|3|+•|k|=2,然后解关于k的绝对值方程可得到满足条件的k的值.【详解】连接OC、OB,如图,∵BC∥x轴,∴S△ACB=S△OCB,而S△OCB=×|3|+•|k|,∴×|3|+•|k|=2,而k<0,∴k=﹣1,故选A.【点睛】本题考查了反比例函数系数k几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.18.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为()A. 15B. 12.5C. 14.5D. 17【答案】B【解析】【分析】过A作AE⊥AC,交CB的延长线于E,判定△ACD≌△AEB,即可得到△ACE是等腰直角三角形,四边形ABCD的面积与△ACE的面积相等,根据S△ACE=×5×5=12.5,即可得出结论.【详解】如图,过A作AE⊥AC,交CB的延长线于E,∵∠DAB=∠DCB=90°,∴∠D+∠ABC=180°=∠ABE+∠ABC,∴∠D=∠ABE,又∵∠DAB=∠CAE=90°,∴∠CAD=∠EAB,又∵AD=AB,∴△ACD≌△AEB,∴AC=AE,即△ACE是等腰直角三角形,∴四边形ABCD的面积与△ACE的面积相等,∵S△ACE=×5×5=12.5,∴四边形ABCD的面积为12.5,故选B.【点睛】本题主要考查了全等三角形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.19.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A. 4种B. 3种C. 2种D. 1种【答案】B【解析】【分析】设购买篮球x个,排球y个,根据“购买篮球总钱数+购买排球的总钱数=1200”列出关于x、y的方程,由x、y均为非负整数即可得.【详解】设购买篮球x个,排球y个,根据题意可得120x+90y=1200,则y=,∵x、y均为正整数,∴x=1、y=12或x=4、y=8或x=7、y=4,所以购买资金恰好用尽的情况下,购买方案有3种,故选B.【点睛】本题考查二元一次方程的应用,解题的关键是理解题意,依据相等关系列出方程.20.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD 于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:①∠CAD=30°②BD=③S平行四边形ABCD=AB•AC④OE=AD⑤S△APO=,正确的个数是()A. 2B. 3C. 4D. 5【答案】D【解析】【分析】①先根据角平分线和平行得:∠BAE=∠BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;②先根据三角形中位线定理得:OE=AB=,OE∥AB,根据勾股定理计算OC=和OD的长,可得BD的长;③因为∠BAC=90°,根据平行四边形的面积公式可作判断;④根据三角形中位线定理可作判断;⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=S△EOC=OE•OC=,,代入可得结论.【详解】①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正确;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=,∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=,∴BD=2OD=,故②正确;③由②知:∠BAC=90°,∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,又AB=BC,BC=AD,∴OE=AB=AD,故④正确;⑤∵四边形ABCD是平行四边形,∴OA=OC=,∴S△AOE=S△EOC=OE•OC=××,∵OE∥AB,∴,∴,∴S△AOP=S△AOE==,故⑤正确;本题正确的有:①②③④⑤,5个,故选D.【点睛】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.三、解答题(满分60分)21.先化简,再求值:(1﹣)÷,其中a=sin30°.【答案】,-1.【解析】【分析】括号内先通分进行分式的加减法运算,然后再进行分式的乘除法运算,根据特殊角的三角函数值得到a的值代入进行计算即可得.【详解】原式===,当a=sin30°=时,原式==﹣1.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及特殊角的三角函数值是解题的关键.22.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).【答案】(1)作图见解析;(2)作图见解析;(3)2π.【解析】【分析】(1)利用轴对称的性质画出图形即可;(2)利用旋转变换的性质画出图形即可;(3)BC扫过的面积=,由此计算即可;【详解】(1)△ABC关于x轴对称的△A1B1C1如图所示;(2)△ABC绕点O逆时针旋转90°后的△A2B2C2如图所示;(3)BC扫过的面积===2π.【点睛】本题考查了利用轴对称和旋转变换作图,扇形面积公式等知识,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.【答案】(1)抛物线的解析式为y=x2+4x+2;(2)P的坐标为(﹣6,0)或(﹣13,0).【解析】【分析】(1)由对称轴直线x=2,以及A点坐标确定出b与c的值,即可求出抛物线解析式;(2)由抛物线的对称轴及BC的长,确定出B与C的横坐标,代入抛物线解析式求出纵坐标,确定出B与C坐标,利用待定系数法求出直线AB解析式,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,由已知面积之比求出QH的长,确定出Q横坐标,代入直线AB解析式求出纵坐标,确定出Q坐标,再利用待定系数法求出直线CQ解析式,即可确定出P的坐标.【详解】(1)由题意得:x=﹣=﹣=﹣2,c=2,解得:b=4,c=2,则此抛物线的解析式为y=x2+4x+2;(2)∵抛物线对称轴为直线x=﹣2,BC=6,∴B横坐标为﹣5,C横坐标为1,把x=1代入抛物线解析式得:y=7,∴B(﹣5,7),C(1,7),设直线AB解析式为y=kx+2,把B坐标代入得:k=﹣1,即y=﹣x+2,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,可得△AQH∽△ABM,∴,∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:QB=3:5,∵BM=5,∴QH=2或QH=3,当QH=2时,把x=﹣2代入直线AB解析式得:y=4,此时Q(﹣2,4),直线CQ解析式为y=x+6,令y=0,得到x=﹣6,即P(﹣6,0);当QH=3时,把x=﹣3代入直线AB解析式得:y=5,此时Q(﹣3,5),直线CQ解析式为y=x+,令y=0,得到x=﹣13,此时P(﹣13,0),综上,P的坐标为(﹣6,0)或(﹣13,0).【点睛】本题考查了待定系数法求二次函数解析式,二次函数性质,二次函数图象上点的坐标特征以及相似三角形的判定与性质等,有一定的难度,熟练掌握待定系数法和相似三角形的判定与性质是解本题的关键.24.为响应党“文化自信”号召,某校开展了古诗词诵读大赛活动,现随机抽取部分同学的成绩进行统计,并绘制成如下的两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a= ,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?【答案】(1)30,补图见解析;(2)扇形B的圆心角度数为50.4°;(3)估计获得优秀奖的学生有400人.【解析】【分析】(1)先根据E等级人数及其占总人数的比例可得总人数,再用D等级人数除以总人数可得a的值,用总人数减去其他各等级人数求得C等级人数可补全图形;(2)用360°乘以A等级人数所占比例可得;(3)用总人数乘以样本中E等级人数所占比例.【详解】(1)∵被调查的总人数为10÷=50(人),∴D等级人数所占百分比a%=×100%=30%,即a=30,C等级人数为50﹣(5+7+15+10)=13人,补全图形如下:故答案为:30;(2)扇形B的圆心角度数为360°×=50.4°;(3)估计获得优秀奖的学生有2000×=400人.【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间s(天)之间的关系如图(1)所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图(2)所示,请结合图象回答下列问题:(1)甲车间每天加工大米吨,a= .(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式.(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?【答案】(1)20,15;(2)y=35x﹣55;(3)再过1天装满第二节车厢.【解析】【分析】(1)根据题意,由图2得出两个车间同时加工和甲单独加工的速度;(2)用待定系数法解决问题;(3)求出两个车间每天加工速度分别计算两个55吨完成的时间.【详解】(1)由图象可知,第一天甲乙共加工220﹣185=35吨,第二天,乙停止工作,甲单独加工185﹣165=20吨,则乙一天加工35﹣20=15吨,a=15,故答案为:20,15;(2)设y=kx+b,把(2,15),(5,120)代入得,解得:,∴y=35x﹣55(2≤x≤5);(3)①当0<x≤1时,20+15=35<55,不合理,②当1<x≤2是地,20x+15=55,x=2,③当2<x≤5时,20x+35x-55=110,x=3,3-2=1(天),所以生产2天可装满第一节车厢,再经过1天可装满第二节车厢.【点睛】本题为一次函数实际应用问题,应用了待定系数法、分类讨论思想等,解答要注意通过对这两个函数图象实际意义对比分析得到问题答案.26.如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点F.(1)当点E线段BD上移动时,如图(1)所示,求证:BC﹣DE=DF.(2)当点E在直线BD上移动时,如图(2)、图(3)所示,线段BC、DE与DF又有怎样的数量关系?请直接写出你的猜想,不需证明.【答案】(1)证明见解析;(2)如图2:DE﹣BC=DF;图3:BC+DE=DF.【解析】【分析】(1)如图1中,在BA上截取BH,使得BH=BE.构造全等三角形即可解决问题;(2)如图2中,在BC上截取BH=BE,同法可证:DF=EH.可得:DE﹣BC=DF.如图3中,在BA上截取BH,使得BH=BE.同法可证:DF=HE,可得BC+DE=DF.【详解】(1)如图1中,在BA上截取BH,使得BH=BE.∵BC=AB=BD,BE=BH,∴AH=ED,∵∠AEF=∠ABE=90°,∴∠AEB+∠FED=90°,∠AEB+∠BAE=90°,∴∠FED=∠HAE,∵∠BHE=∠CDB=45°,∴∠AHE=∠EDF=135°,∴△AHE≌△EDF,∴HE=DF,∴BC﹣DE=BD﹣DE=BE=EH=DF.∴BC﹣DE=DF.(2)如图2中,在BC上截取BH=BE,同法可证:DF=EH.可得:DE﹣BC=DF;如图3中,在BA上截取BH,使得BH=BE.同法可证:DF=HE,可得BC+DE=DF.【点睛】本题考查了全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.27.为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?【答案】(1)A城和B城分别有200吨和300吨肥料;(2)从A城运往D乡200吨,从B 城运往C乡肥料240吨,运往D乡60吨时,运费最少,最少运费是10040元;(3)当0<a<4时,A城200吨肥料都运往D乡,B城240吨运往C乡,60吨运往D乡;当a=4时,在0≤x≤200范围内的哪种调运方案费用都一样;当4<a<6时, A城200吨肥料都运往C乡,B城40吨运往C乡,260吨运往D乡.【解析】【分析】(1)根据A、B两城共有肥料500吨,其中A城肥料比B城少100吨,列方程或方程组得答案;(2)设从A城运往C乡肥料x吨,用含x的代数式分别表示出从A运往运往D乡的肥料吨数,从B城运往C乡肥料吨数,及从B城运往D乡肥料吨数,根据:运费=运输吨数×运输费用,得一次函数解析式,利用一次函数的性质得结论;(3)列出当A城运往C乡的运费每吨减少a(0<a<6)元时的一次函数解析式,利用一次函数的性质讨论,得结论.【详解】(1)设A城有化肥a吨,B城有化肥b吨,根据题意,得,解得,答:A城和B城分别有200吨和300吨肥料;(2)设从A城运往C乡肥料x吨,则运往D乡(200﹣x)吨,从B城运往C乡肥料(240﹣x)吨,则运往D乡(60+x)吨,设总运费为y元,根据题意,则:y=20x+25(200﹣x)+15(240﹣x)+24(60+x)=4x+10040,∵,∴0≤x≤200,由于函数是一次函数,k=4>0,所以当x=0时,运费最少,最少运费是10040元;(3)从A城运往C乡肥料x吨,由于A城运往C乡的运费每吨减少a(0<a<6)元,所以y=(20﹣a)x+25(200﹣x)+15(240﹣x)+24(60+x)=(4﹣a)x+10040,当4﹣a>0时,即0<a<4时,y随着x的增大而增大,∴当x=0时,运费最少,A城200吨肥料都运往D乡,B城240吨运往C乡,60吨运往D乡;当4-a=0时,即a=4时,y=10040,在0≤x≤200范围内的哪种调运方案费用都一样;当4﹣a<0时,即4<a<6时,y随着x的增大而减小,∴当x=240时,运费最少,此时A城200吨肥料都运往C乡,B城40吨运往C乡,260吨运往D乡.【点睛】本题考查了二元一次方程组的应用、不等式组的应用、一次函数的应用等,弄清题意、根据题意找准等量关系、不等关系列出方程组,列出一次函数解析式是关键.注意(3)小题需分类讨论.28.如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B坐标(﹣3,0),点C 在y轴正半轴上,且sin∠CBO=,点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.。

2018年黑龙江省龙东地区中考数学试卷(原卷版)

2018年黑龙江省龙东地区中考数学试卷(原卷版)

2018年黑龙江省龙东地区中考数学试卷一、填空题(每题3分,满分30分)1. 人民日报2018年2月23日报道,2017年黑龙江粮食总产量达到1203.76亿斤,成功超越1200亿斤,连续七年居全国首位,将1200亿斤用科学记数法表示为_____斤.2. 在函数x的取值范围是_____.3. 如图,在平行四边形ABCD中,添加一个条件_____使平行四边形ABCD是菱形.4. 掷一枚质地均匀的骰子,向上一面的点数为5的概率是_____.5. 若关于x2个负整数解,则a的取值范围是_____.6. 如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为_____.学¥科¥网...7. 用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为_____.8. 如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为_____.9. Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.10. 如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则S n=_____.二、选择题(每题3分,满分30分)11. 下列各运算中,计算正确的是()A. a12÷a3=a4B. (3a2)3=9a6C. (a﹣b)2=a2﹣ab+b2D. 2a•3a=6a212. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.13. 如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是()A. 3B. 4C. 5D. 614. 某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A. 平均分是91B. 中位数是90C. 众数是94D. 极差是2015. 某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A. 4B. 5C. 6D. 716. 已知关于x的解是负数,则m的取值范围是()A. m≤3B. m≤3且m≠2C. m<3D. m<3且m≠217. 如图,平面直角坐标系中,点A是x轴上任意一点,BC平行于x轴,分别交x>0)、x<0)的图象于B、C两点,若△ABC的面积为2,则k值为()A. ﹣1B. 118. 如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为()A. 15B. 12.5C. 14.5D. 1719. 为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A. 4种B. 3种C. 2种D. 1种20. 如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,,则下列结论:①∠CAD=30°②S平行四边形ABCD=AB•AC④⑤S△APO)A. 2B. 3C. 4D. 5三、解答题(满分60分)21. 先化简,再求值:(1÷a=sin30°.22. 如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).23. 如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.24. 为响应党的“文化自信”号召,某校开展了古诗词诵读大赛活动,现随机抽取部分同学的成绩进行统计,并绘制成如下的两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a= ,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?25. 某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间s(天)之间的关系如图(1)所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图(2)所示,请结合图象回答下列问题:(1)甲车间每天加工大米吨,a= .(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式.(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?26. 如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点F.(1)当点E在线段BD上移动时,如图(1)所示,求证:BC﹣.(2)当点E在直线BD上移动时,如图(2)、图(3)所示,线段BC、DE与DF又有怎样的数量关系?请直接写出你的猜想,不需证明.27. 为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?28. 如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B坐标(﹣3,0),点C在y轴正半轴上,且sin∠点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.。

2018年黑龙江省龙东地区中考数学试题含答案

2018年黑龙江省龙东地区中考数学试题含答案

黑龙江省龙东地区2018年初中毕业学业统一考试数 学 试 题考生注意:一、填空题<每题3分,满分30分)1. 数据显示,今年高校毕业生规模达到727加。

数据727万人用科学记数法表示为人。

2. 函数中,自变量的取值范围是。

3. 如图,梯形ABCD 中,AD ∥BC,点M 是AD 的中点,不添加辅助线,梯形满足条件时,有MB =MC<只填一个即可)。

4. 三张扑克牌中只有一张黑桃,三位同学依次抽取,第一位同学抽到黑桃的概率为。

5.不等式组2≤3x -7<8的解集为。

6. 直径为10cm 的⊙O中,弦AB =5cm,则弦AB 所对的圆周角是。

7. 小明带7元钱去买中性笔和橡皮<两种文具都买),中性笔每支2元,橡皮每块1元,那么中性笔能买支。

p1EanqFDPw 8. △ABC 中,AB =4,BC =3,∠BAC =30°,则△ABC 的面积为。

第3题图ABDN MCP9. 如图,菱形ABCD 中,对角线AC=6,BD =8,M 、N 分别是BC 、CD 的中点,P 是线段BD 上的一个动点,则PM +PN 的最小值是。

DXDiTa9E3d 10.如图,等腰Rt △ABC 中,∠ACB=90°,AC =BC =1,且AC 边在直线a 上,将△ABC 绕点A 顺时针旋转到位置①可得到点P1 ,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;……,按此规律继续旋转,直至得到点P2018为止。

则AP2018=。

RTCrpUDGiT二、选择题<每题3分,满分30分) 11.下列各运算中,计算正确的是 <)A. B. C.D.12.下列交通标志中,成轴对称图形的是 <)A B C D5PCzVD7HxA 13.由若干个相同的小正方体搭成的一个几何体的俯视图如图所示,小正方形中的数字表示该位置的小正方体的个数,则这个几何体的主视图是 < )jLBHrnAILg俯视图 A B C DxHAQX74J0X 14.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表。

最新2018年黑龙江省龙东地区中考数学试卷

最新2018年黑龙江省龙东地区中考数学试卷

2018年黑龙江省龙东地区中考数学试卷一、填空题(每题3分,满分30分)1.(3分)(2018•黑龙江)人民日报2018年2月23日报道,2017年黑龙江粮食总产量达到1203.76亿斤,成功超越1200亿斤,连续七年居全国首位,将1200亿斤用科学记数法表示为斤.2.(3分)(2018•黑龙江)在函数y=中,自变量x的取值范围是.3.(3分)(2018•黑龙江)如图,在平行四边形ABCD中,添加一个条件使平行四边形ABCD是菱形.4.(3分)(2018•黑龙江)掷一枚质地均匀的骰子,向上一面的点数为5的概率是.5.(3分)(2018•黑龙江)若关于x的一元一次不等式组有2个负整数解,则a的取值范围是.6.(3分)(2018•黑龙江)如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.7.(3分)(2018•黑龙江)用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为.8.(3分)(2018•黑龙江)如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG 的最小值为.9.(3分)(2018•黑龙江)Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是.10.(3分)(2018•黑龙江)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则S n=.二、选择题(每题3分,满分30分)11.(3分)(2018•黑龙江)下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a212.(3分)(2018•黑龙江)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.13.(3分)(2018•黑龙江)如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是()A.3 B.4 C.5 D.614.(3分)(2018•黑龙江)某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91 B.中位数是90 C.众数是94 D.极差是2015.(3分)(2018•黑龙江)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.716.(3分)(2018•黑龙江)已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠217.(3分)(2018•黑龙江)如图,平面直角坐标系中,点A是x轴上任意一点,BC平行于x轴,分别交y=(x>0)、y=(x<0)的图象于B、C两点,若△ABC 的面积为2,则k值为()A.﹣1 B.1 C.D.18.(3分)(2018•黑龙江)如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为()A.15 B.12.5 C.14.5 D.1719.(3分)(2018•黑龙江)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种B.3种C.2种D.1种20.(3分)(2018•黑龙江)如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:=AB•AC④OE=AD⑤S△APO=,正确的个数①∠CAD=30°②BD=③S平行四边形ABCD是()A.2 B.3 C.4 D.5三、解答题(满分60分)21.(5分)(2018•黑龙江)先化简,再求值:(1﹣)÷,其中a=sin30°.22.(6分)(2018•黑龙江)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B (1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).23.(6分)(2018•黑龙江)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.24.(7分)(2018•黑龙江)为响应党的“文化自信”号召,某校开展了古诗词诵读大赛活动,现随机抽取部分同学的成绩进行统计,并绘制成如下的两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a=,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?25.(8分)(2018•黑龙江)某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间s(天)之间的关系如图(1)所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图(2)所示,请结合图象回答下列问题:(1)甲车间每天加工大米吨,a=.(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式.(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?26.(8分)(2018•黑龙江)如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点F.(1)当点E在线段BD上移动时,如图(1)所示,求证:BC﹣DE=DF.(2)当点E在直线BD上移动时,如图(2)、图(3)所示,线段BC、DE与DF又有怎样的数量关系?请直接写出你的猜想,不需证明.27.(10分)(2018•黑龙江)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?28.(10分)(2018•黑龙江)如图,在平面直角坐标系中,菱形ABCD的边AB 在x轴上,点B坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO=,点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.2018年黑龙江省龙东地区中考数学试卷参考答案与试题解析一、填空题(每题3分,满分30分)1.(3分)(2018•黑龙江)人民日报2018年2月23日报道,2017年黑龙江粮食总产量达到1203.76亿斤,成功超越1200亿斤,连续七年居全国首位,将1200亿斤用科学记数法表示为 1.2×1011斤.【解答】解:将1200亿斤用科学记数法表示应为1.2×1011斤.故答案为:1.2×10112.(3分)(2018•黑龙江)在函数y=中,自变量x的取值范围是x≥﹣2且x≠0.【解答】解:由题意得,x+2≥0且x≠0,解得x≥﹣2且x≠0.故答案为:x≥﹣2且x≠0.3.(3分)(2018•黑龙江)如图,在平行四边形ABCD中,添加一个条件AB=BC 或AC⊥BD使平行四边形ABCD是菱形.【解答】解:当AB=BC或AC⊥BD时,四边形ABCD是菱形.故答案为AB=BC或AC⊥BD.4.(3分)(2018•黑龙江)掷一枚质地均匀的骰子,向上一面的点数为5的概率是.【解答】解:掷一枚质地均匀的骰子,向上一面的点数为5的概率是:,故答案为:.5.(3分)(2018•黑龙江)若关于x的一元一次不等式组有2个负整数解,则a的取值范围是﹣3≤a<﹣2.【解答】解:∵解不等式①得:x>a,解不等式②得:x<2,又∵关于x的一元一次不等式组有2个负整数解,∴﹣3≤a<﹣2,故答案为:﹣3≤a<﹣2.6.(3分)(2018•黑龙江)如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为5.【解答】解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=x﹣1,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣1)2,解得:x=5,∴⊙O的半径为5,故答案为:5.7.(3分)(2018•黑龙江)用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为.【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=1,所以此圆锥的高==.故答案为.8.(3分)(2018•黑龙江)如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG 的最小值为2.【解答】解:如图:取点D关于直线AB的对称点D′.以BC中点O为圆心,OB为半径画半圆.连接OD′交AB于点P,交半圆O于点G,连BG.连CG并延长交AB于点E.由以上作图可知,BG⊥EC于G.PD+PG=PD′+PG=D′G由两点之间线段最短可知,此时PD+PG最小.∵D′C=4,OC′=6∴D′O=∴D′G=2∴PD+PG的最小值为2故答案为:29.(3分)(2018•黑龙江)Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是 3.6或4.32或4.8.【解答】解:在Rt△ABC中,∠ABC=90°,AB=3,BC=4,=AB•BC=6.∴AC==5,S△ABC沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:①当AB=AP=3时,如图1所示,S等腰△ABP=S△ABC=×6=3.6;②当AB=BP=3,且P在AC上时,如图2所示,作△ABC的高BD,则BD===2.4,∴AD=DP==1.8,∴AP=2AD=3.6,=S△ABC=×6=4.32;∴S等腰△ABP④当CB=CP=4时,如图3所示,S等腰△BCP=S△ABC=×6=4.8.综上所述:等腰三角形的面积可能为3.6或4.32或4.8.故答案为3.6或4.32或4.8.10.(3分)(2018•黑龙江)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则S n=•()n﹣1.【解答】解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=B1C=1,∠ACB=60°,∴B1B2=B1C=,B2C=,∴S1=××=依题意得,图中阴影部分的三角形都是相似图形,且相似比为,故S n=•()n﹣1.故答案为:•()n﹣1.二、选择题(每题3分,满分30分)11.(3分)(2018•黑龙江)下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a2【解答】解:A、原式=a9,不符合题意;B、原式=27a6,不符合题意;C、原式=a2﹣2ab+b2,不符合题意;D、原式=6a2,符合题意.故选:D.12.(3分)(2018•黑龙江)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故此选项错误.故选:C.13.(3分)(2018•黑龙江)如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是()A.3 B.4 C.5 D.6【解答】解:左视图与主视图相同,可判断出底面最少有2个,最多有4个小正方体.而第二层则只有1个小正方体.则这个几何体的小立方块可能有3或4或5个.故选:D.14.(3分)(2018•黑龙江)某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91 B.中位数是90 C.众数是94 D.极差是20【解答】解:A、平均分为:(94+98+90+94+74)=90(分),故此选项错误;B、五名同学成绩按大小顺序排序为:74,90,94,94,98,故中位数是94分,故此选项错误;C、94分、98分、90分、94分、74分中,众数是94分.故此选项正确;D、极差是98﹣74=24,故此选项错误.故选:C.15.(3分)(2018•黑龙江)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.7【解答】解:设共有x个班级参赛,根据题意得:=15,解得:x1=6,x2=﹣5(不合题意,舍去),则共有6个班级参赛.故选:C.16.(3分)(2018•黑龙江)已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠2【解答】解:=1解得:x=m﹣3,∵关于x的分式方程=1的解是负数,∴m﹣3<0,解得:m<3,当x=m﹣3=﹣1时,方程无解,则m≠2,故m的取值范围是:m<3且m≠2.故选:D.17.(3分)(2018•黑龙江)如图,平面直角坐标系中,点A是x轴上任意一点,BC平行于x轴,分别交y=(x>0)、y=(x<0)的图象于B、C两点,若△ABC 的面积为2,则k值为()A.﹣1 B.1 C.D.【解答】解:连接OC、OB,如图,∵BC∥x轴,∴S=S△OCB,△ACB=•|3|+•|k|,而S△OCB∴•|3|+•|k|=2,而k<0,∴k=﹣1.故选:A.18.(3分)(2018•黑龙江)如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为()A.15 B.12.5 C.14.5 D.17【解答】解:如图,过A作AE⊥AC,交CB的延长线于E,∵∠DAB=∠DCB=90°,∴∠D+∠ABC=180°=∠ABE+∠ABC,∴∠D=∠ABE,又∵∠DAB=∠CAE=90°,∴∠CAD=∠EAB,又∵AD=AB,∴△ACD≌△AEB,∴AC=AE,即△ACE是等腰直角三角形,∴四边形ABCD的面积与△ACE的面积相等,∵S=×5×5=12.5,△ACE∴四边形ABCD的面积为12.5,故选:B.19.(3分)(2018•黑龙江)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种B.3种C.2种D.1种【解答】解:设购买篮球x个,排球y个,根据题意可得120x+90y=1200,则y=,∵x、y均为正整数,∴x=1、y=12;x=4、y=8;x=7、y=4;所以购买资金恰好用尽的情况下,购买方案有3种,故选:B.20.(3分)(2018•黑龙江)如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:=AB•AC④OE=AD⑤S△APO=,正确的个数①∠CAD=30°②BD=③S平行四边形ABCD是()A.2 B.3 C.4 D.5【解答】解:①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正确;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC==,∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD==,∴BD=2OD=,故②正确;③由②知:∠BAC=90°,∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,∴OE=AB,∵AB=BC,∴OE=BC=AD,故④正确;⑤∵四边形ABCD是平行四边形,∴OA=OC=,=S△EOC=OE•OC==,∴S△AOE∵OE∥AB,∴,∴=,===;∴S△AOP故⑤正确;本题正确的有:①②③④⑤,5个,故选:D.三、解答题(满分60分)21.(5分)(2018•黑龙江)先化简,再求值:(1﹣)÷,其中a=sin30°.【解答】解:当a=sin30°时,所以a=原式=•=•==﹣122.(6分)(2018•黑龙江)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B (1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).【解答】解:(1)△ABC关于x轴对称的△A1B1C1如图所示;(2)△ABC绕点O逆时针旋转90°后的△A2B2C2如图所示;(3)BC扫过的面积=﹣=﹣=2π.23.(6分)(2018•黑龙江)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.【解答】解:(1)由题意得:x=﹣=﹣=﹣2,c=2,解得:b=4,c=2,则此抛物线的解析式为y=x2+4x+2;(2)∵抛物线对称轴为直线x=﹣2,BC=6,∴B横坐标为﹣5,C横坐标为1,把x=1代入抛物线解析式得:y=7,∴B(﹣5,7),C(1,7),设直线AB解析式为y=kx+2,把B坐标代入得:k=﹣1,即y=﹣x+2,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,可得△AQH∽△ABM,∴=,∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:QB=3:5,∵BM=5,∴QH=2或QH=3,当QH=2时,把x=﹣2代入直线AB解析式得:y=4,此时Q(﹣2,4),直线CQ解析式为y=x+6,令y=0,得到x=﹣6,即P(﹣6,0);当QH=3时,把x=﹣3代入直线AB解析式得:y=5,此时Q(﹣3,5),直线CQ解析式为y=x+,令y=0,得到x=﹣13,此时P (﹣13,0),综上,P的坐标为(﹣6,0)或(﹣13,0).24.(7分)(2018•黑龙江)为响应党的“文化自信”号召,某校开展了古诗词诵读大赛活动,现随机抽取部分同学的成绩进行统计,并绘制成如下的两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a=30,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?【解答】解:(1)∵被调查的总人数为10÷=50(人),∴D等级人数所占百分比a%=×100%=30%,即a=30,C等级人数为50﹣(5+7+15+10)=13人,补全图形如下:故答案为:30;(2)扇形B的圆心角度数为360°×=50.4°;(3)估计获得优秀奖的学生有2000×=400人.25.(8分)(2018•黑龙江)某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间s(天)之间的关系如图(1)所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图(2)所示,请结合图象回答下列问题:(1)甲车间每天加工大米20吨,a=15.(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式.(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?【解答】解:(1)由图象可知,第一天甲乙共加工220﹣185=35吨,第二天,乙停止工作,甲单独加工185﹣165=20吨,则乙一天加工35﹣20=15吨.a=15故答案为:20,15(2)设y=kx+b把(2,15),(5,120)代入解得∴y=35x﹣55(3)由图2可知当w=220﹣55=165时,恰好是第二天加工结束.当2≤x≤5时,两个车间每天加工速度为=55吨∴再过1天装满第二节车厢26.(8分)(2018•黑龙江)如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点F.(1)当点E在线段BD上移动时,如图(1)所示,求证:BC﹣DE=DF.(2)当点E在直线BD上移动时,如图(2)、图(3)所示,线段BC、DE与DF 又有怎样的数量关系?请直接写出你的猜想,不需证明.【解答】(1)证明:如图1中,在BA上截取BH,使得BH=BE.∵BC=AB=BD,BE=BH,∴AH=ED,∵∠AEF=∠ABE=90°,∴∠AEB+∠FED=90°,∠AEB+∠BAE=90°,∴∠FED=∠HAE,∵∠BHE=∠CDB=45°,∴∠AHE=∠EDF=135°,∴△AHE≌△EDF,∴HE=DF,∴BC﹣DE=BD﹣DE=BE=EH=DF.∴BC﹣DE=DF.(2)解:如图2中,在BC上截取BH=BE,同法可证:DF=EH.可得:DE﹣BC=DF.如图3中,在BA上截取BH,使得BH=BE.同法可证:DF=HE,可得BC+DE=DF.27.(10分)(2018•黑龙江)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?【解答】解:(1)设A城有化肥a吨,B城有化肥b吨根据题意,得解得答:A城和B城分别有200吨和300吨肥料;(2)设从A城运往C乡肥料x吨,则运往D乡(200﹣x)吨从B城运往C乡肥料(240﹣x)吨,则运往D乡(60+x)吨如总运费为y元,根据题意,则:y=20x+25(200﹣x)+15(240﹣x)+24(60+x)=4x+10040由于函数是一次函数,k=4>0所以当x=0时,运费最少,最少运费是10040元.(3)从A城运往C乡肥料x吨,由于A城运往C乡的运费每吨减少a(0<a<6)元,所以y=y=(20﹣a)x+25(200﹣x)+15(240﹣x)+24(60+x)=(4﹣a)x+10040当0<a≤4时,∵4﹣a≥0∴当x=0时,运费最少;当4<a<6时,∵4﹣a<0∴当x最大时,运费最少.即当x=200时,运费最少.所以:当0<a≤4时,A城化肥全部运往D乡,B城运往C城240吨,运往D乡60吨,运费最少;当4<a<6时,A城化肥全部运往C乡,B城运往C城40吨,运往D乡260吨,运费最少.28.(10分)(2018•黑龙江)如图,在平面直角坐标系中,菱形ABCD的边AB 在x轴上,点B坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO=,点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.【解答】解:(1)在Rt△BOC中,OB=3,sin∠CBO==,设CO=4k,BC=5k,∵BC2=CO2+OB2,∴25k2=16k2+9,∴k=1或﹣1(舍弃),BC=5,OC=4,∵四边形ABCD是菱形,∴CD=BC=5,∴D(5,4).(2)①如图1中,当0≤t≤2时,直线l扫过的图象是四边形CCQP,S=4t.②如图2中,当2<t≤5时,直线l扫过的图形是五边形OCQTA.S=S梯形OCDA﹣S△DQT=×(2+5)×4﹣×(5﹣t)×(5﹣t)=﹣t2+t﹣.(3)如图3中,①当QB=QC,∠BQC=90°,Q(,).②当BC=CQ′,∠BCQ′=90°时,Q′(4,1);③当BC=BQ″,∠CBQ″=90°时,Q″(1,﹣3);学习-----好资料综上所述,满足条件的点Q 坐标为(,)或(4,1)或(1,﹣3).更多精品文档。

黑龙江省龙东地区(鹤岗、七台河、佳木斯、鸡西、伊春)中考数学试题及参考答案案

黑龙江省龙东地区(鹤岗、七台河、佳木斯、鸡西、伊春)中考数学试题及参考答案案

黑龙江省龙东地区(鹤岗、七台河、佳木斯、鸡西、伊春)2018年初中毕业学业统一考试数学试题一、填空题(每题3分,满分30分)1.(2018黑龙江龙东中考,1,3分,★☆☆)人民日报2018年2月23日报道,2017年黑龙江粮食总产量达到1203.76亿斤,成功超越1200亿斤,连续七年居全国首位,将1200亿斤用科学记数法表示为斤.2.(2018黑龙江龙东中考,2,3分,★☆☆)在函数y=2xx+中,自变量x的取值范围是____.3.(2018黑龙江龙东中考,3,3分,★☆☆)如图,在平行四边形ABCD中,添加一个条件___ _,使平行四边形ABCD是菱形.第3题图4.(2018黑龙江龙东中考,4,3分,★☆☆)掷一枚质地均匀的骰子,向上一面的点数为5的概率是.5.(2018黑龙江龙东中考分,5,3分,★★☆)若关于x的一元一次不等式组0 231 x ax-⎧⎨-⎩><有2个负整数解,则a的取值范围是.6. (2018黑龙江龙东中考,6,3分,★★☆)如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.第6题图7.(2018黑龙江龙东中考,7,3分,★★☆)用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为.8.(2018黑龙江龙东中考,8,3分,★★☆)如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为_____.第8题图9.(2018黑龙江龙东中考,9,3分,★★☆)Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是.10.(2018黑龙江龙东中考,10,3分,★★★)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1:再以等边△AB1C1的BC边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;……,记△B1CB2面积为S1,△B2C1 B3面积为S2,△B3C2B4面积为S3,如此下去,则S n=____.第10题图二、选择题(每题3分,满分30分)11.(2018黑龙江龙东中考,11,3分,★☆☆)下列各运算中,计算正确的是( )A.a12÷a3=a4B.(3a2)3=9a6C.(a-b)2=a2-ab+b2D.2a·3a=6a212.(2018黑龙江龙东中考,12,3分,★☆☆)下列图形中,既是轴对称图形又是中心对称图形的是( )A B C D13.(2018黑龙江龙东中考,13,3分,★☆☆)右图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是( )第13题图A.3 B.4 C.5 D.614.(2018黑龙江龙东中考,14,3分,★☆☆)某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是( )A.平均分是91 B.中位数是90 C.众数是94 D.极差是2015.(2018黑龙江龙东中考,15,3分,★☆☆)某中学组织初三学生进行篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?( )A.4 B.5 C.6 D.716.(2018黑龙江龙东中考,16,3分,★★☆)已知关于x的分式方程211mx-=+的解是负数,则m的取值范围是( )A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠217.(2018黑龙江龙东中考,17,3分,★★☆)如图,平面直角坐标系中,点A是x轴上任意一点,BC平行于x轴,分别交y=3x(x>0)、y=kx(x<0)的图象于B、C两点,若△ABC的面积为2,则k值为()第13题图A.﹣1 B.1 C.12D.1218. (2018黑龙江龙东中考,18,3分,★★☆)如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为()第18题图A.15 B.12.5 C.14.5 D.1719.(2018黑龙江龙东中考,19,3分,★★☆)为奖励消防演练活动中表现优异的同学,某校决定用1200元买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( )A.4种B.3种C.2种D.1种20.(2018黑龙江龙东中考,20,3分,★★★)如图,平行四边形ABCD的对角线AC、BD相交于点O.AE平分∠BAD,分别交BC、BD于点E、P,连接O E,∠ADC=60°,AB=12BC=1,则下列结论:①∠CAD=30°②BD=7③S平行四边形ABCD=AB·AC④O E=14AD ⑤S△AP O=312,正确的个数是( )A.2 B.3 C.4 D.5第20题图三、解答题(满分60分)21. (2018黑龙江龙东中考,21,5分,★☆☆)先化简,再求值:(1-a a a +2)÷12122++-a a a ,其中a=sin30°.22. (2018黑龙江龙东中考,22,6分,★☆☆)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC 的三个顶点坐标分别为A (1,4),B (1,1),C (3,1).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)画出△ABC 绕点O 逆时针旋转90°后的△A 2B 2C 2;(3)在(2)的条件下,求线段BC 扫过的面积(结果保留π).第22题图23. (2018黑龙江龙东中考,23,6分,★★☆)如图抛物线y =x 2+bx +c 与y 轴交于点A (0,2)对称轴为x =-2,平行于x 轴的直线与抛物线交于B 、C 两点,点B 在对称轴左侧,BC =6.(1)求此抛物线的解析式.(2)点P 在x 轴上,直线CP 将△ABC 面积分成2:3两部分,请直接写出P 点坐标.第23题图24. (2018黑龙江龙东中考,24,7分,★☆☆)为响应党的“文化自信”号召,某校开展了古诗词诵读大赛活动,现随机抽取部分同学的成绩进行统计,并绘制成如下的两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a=,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?第24题图25.(2018黑龙江龙东中考,25,8分,★★☆)某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间s(天)之间的关系如图(1)所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图(2)所示,请结合图象回答下列问题:(1)甲车间每天加工大米吨,a=.(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式.(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?第25题图26.(2018黑龙江龙东中考,26,8分,★★☆)如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点F.(1)当点E在线段BD上移动时,如图(1)所示,求证:BC﹣DE=22DF.(2)当点E在直线BD上移动时,如图(2)、图(3)所示,线段BC、DE与DF又有怎样的数量关系?请直接写出你的猜想,不需证明.第26题图27.(2018黑龙江龙东中考,27,10分,★★☆)为了落实党的“精准扶贫”政策,A、B 两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A 城肥料比B城少100吨.从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨;现C乡需要肥料240吨,D乡需要肥料260吨,(1)A城和B城各有多少吨肥料?(2)从A城往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?28.(2018黑龙江龙东中考,28,10分,★★★)如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B坐标(-3,0),点C在y轴正半轴上.且sin∠CB O=45,点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线,直线l扫过四边形COAD的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标:若不存在,请说明理由.第28题图黑龙江省龙东地区2018年初中毕业学业统一考试数学试题全解全析1.答案:1.2×1011.解析:1200亿=120000000000=1.2×1011.考查内容:科学记数法.命题意图:本题考查用科学记数法表示带单位的数,难度较小.2.答案:x≥﹣2且x≠0.解析:根据“被开方数大于或等于0时,二次根式有意义”,得x+2≥0,解得x≥﹣2;根据“分母不等于0时,分式有意义”,得x≠0,所以自变量x的取值范围是x≥﹣2且x≠0.考查内容:函数自变量的取值范围.命题意图:本题考查根据函数解析式确定自变量的取值范围的能力,难度较小.3.答案:AB=BC(AC⊥BD或AC平分∠BAD等)(答案不唯一).解析:根据菱形的判定方法,当添加条件AB=BC或BC=CD或CD=DA或DA=AB或AC ⊥BD或∠ABD=∠CBD或∠DAC=∠BAC(答案不唯一)时,平行四边形ABCD是菱形.考查内容:菱形的判定.命题意图:本题考查学生探求一个平行四边形是菱形的条件,难度较小.4.答案:16.解析:总的结果数是6个,符合条件的结果数是1个,所以P(向上一面的点数为5)=16.考查内容:概率公式.命题意图:本题考查利用概率公式计算概率的能力,难度较小.5.答案:﹣3≤a<﹣2解析:31.x ax->⎧⎨-⎩①,②∵解不等式①,得x>a,解不等式②,得x<2,所以不等式组的解集是a<x<2. 又∵不等式31x ax->⎧⎨-⎩,有2个负整数解,∴负整数解一定是﹣1,﹣2,∴a的取值范围是﹣3≤a<﹣2.考查内容:一元一次不等式组的整数解.命题意图:本题考查求一元一次不等式组的整数解的能力,难度中等.6.答案:5.解析:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE= 12CD=12×6=3.设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=(x﹣1)cm.在Rt△OCE中,由勾股定理,得OC2=OE2+CE2,∴x2=32+(x﹣1)2,解得x=5,即⊙O的半径为5cm.考查内容:垂径定理;勾股定理.命题意图:本题考查利用垂径定理和勾股定理构建方程求圆的半径的能力,难度中等.7.答案:15 解析:如图,设圆锥底面半径为r ,根据扇形弧长等于圆锥底面圆的周长,可得9042180r ππ⨯=,解得r =1,再由勾股定理得圆锥的高h =224115-=.考查内容:圆锥的计算.命题意图:本题考查利用圆锥的侧面积求高的能力,难度中等.8.答案:213-2.解析:如图,取点D 关于直线AB 的对称点D′.以BC 中点O 为圆心,OB 为半径画半圆. 连接OD′交AB 于点P ,交半圆O 于点G ,连BG .连CG 并延长交AB 于点E .由以上作图可知,BG ⊥EC 于G .由轴对称的性质,得PD+PG=PD′+PG=D′G .由两点之间线段最短可知,此时PD+PG 最小.∵D′C´=DC=4,OC′= C′B+OB=6,∴D′O= 22D C OC '''+= 2246+= 213,∴D′G= D′O ﹣OG=213﹣2,即PD+PG 的最小值为213﹣2.考查内容:正方形的性质;轴对称﹣最短路线问题.命题意图:本题考查线段和的最小值问题,通常思路是将线段之和转化为固定两点之间的线段和最短,难度中等.9.答案:524或185或25108. 解析:当过点B 的直线过AC 中点D 时,△ABD 与△BCD 都是等腰三角形,不符合条件,舍去;在Rt △ABC 中,过B 作BE ⊥AC 于E ,∵∠ABC =90°,AB =3,BC =4,∴AC =225AB BC +=, S △ABC =12×AB ×BC =12×BE ×AC ,∴BE =341255AB BC AC ⨯⨯==,(1)如答图①,当过点B 的直线过以点C 为圆心、BC 为半径的⊙C 与AC 的交点D 1时,△CBD 1是C D 1、BC 为腰的等腰三角形, 1CBD S ∆=12BE ×CD 1=12×4×125=245;如答图②,当过点B 的直线过以点B 为圆心、AB 为半径的⊙B 与AC 的交点D 2时,△ABD 2是AB 、BD 2为腰的等腰三角形,AE =22221235AB BE ⎛⎫-=- ⎪⎝⎭=95,∴AD 2=2AE =185,∴2ABD S ∆ =12×BE ×AD 2=12×125×518=25108;如答图③,当过点B 的直线过以点A 为圆心、AB 为半径的⊙A 与AC 的交点D 3时,△ABD 3是AB 、AD 3为腰的等腰三角形,AD 3=AB =3,∴3ABD S ∆=12×BE ×AD 3=12×125×3=185;综上,这个等腰三角形的面积是245或185或25108.① ② ③第9题答图考查内容:勾股定理;等腰三角形的性质;三角形的面积.命题意图:本题通过考察勾股定理和等腰三角形的性质求三角形的面积,难度中等偏上.10.3•(34)n-1. 解析:∵等边三角形ABC 的边长为2,AB 1⊥BC ,∴BB 1=B 1C=1,∠ACB=60°,∴B 1B 23B 13,B 2C=12,∴S 1=12×1233依题意得,图中阴影部分3,故S n 3•(34)n-1. 考查内容:等边三角形的性质;规律型—图形的变化类.命题意图:本题考查等边三角形的性质,属于规律型试题,熟练掌握等边三角形与相似三角形的性质是解本题的关键,难度较大.11.答案:D.解析:由幂的性质与乘法公式可知,∵a 12÷a 3=a 12-3= a 9,∴A 选项错误;∵(3a 2)3= 27a 6,∴B 选项正确;∵(a -b )2=a 2-2ab +b 2 ,∴C 选项错误;∵2a ·3a =6a 2,∴D 选项正确,故选D.考查内容:同底数幂的除法;积的乘方;整式的乘法.命题意图:本题考查利用幂的性质和整式的乘法运算法则计算的能力,难度较小.12.答案:C.解析:根据轴对称图形与中心对称图形的定义可知,选项A、D中的图形仅仅是中心对称图形,选项B中的图形仅仅是轴对称图形,只有选项C中的图形既是轴对称图形又是中心对称图形,故选C.考查内容:轴对称图形;中心对称图形.命题意图:本题考查识别轴对称图形和中心对称图形的能力,难度较小.方法归纳:如果一个图形绕某个点旋转180°后能与原图形重合,那么这个图形叫做中心对称图形;如果一个图形沿某条直线对折后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形.13.答案:D.解析:由于主视图是第一列是两个正方形,第二列是一个正方形,而左视图是第一列是一个正方形,第二列是二个正方形,所以俯视图只能是四个正方形组成2×2的图形,如图①,组成这个几何体的小正方体的个数最多是5个,如图②,组成这个几何体的小正方体的个数最少是3个,故选D.考查内容:由三视图判断几何体.命题意图:主要考查了考生的空间想象能力以及三视图的相关知识,难度不大.14.答案:C.解析:∵五名同学的成绩分别是94分、98分、90分、94分、74分,∴平均分=()++++÷=,选项A错误;五个成绩从小到大排列为74分、90分、94 9498909474590分、94分、98分,∴中位数为94,选项B错误;∵五个成绩中,94出现了2次,出现的次数最多,∴众数是94,选项C正确;∵最高成绩98,最低成绩74,极差98-74=24,∴D选项错误,故选C.考查内容:平均数;中位数;众数;极差.命题意图:本题考查了根据平均数、中位数、众数以及极差的定义,正确计算的能力,难度较小.15.答案:C.解析:设有x个班级参赛,根据题意得12x(x-1)=15,解得x1=6,x2=-5(不合题意,舍去),∴共有6个班级参赛,故选C.考查内容:一元二次方程的应用.命题意图:本题考查利用一元二次方程解应用题的能力,难度较小.16.答案:D.解析:解方程211mx-=+,得x=m-3,由题意得10xx<⎧⎨+≠⎩,,即-30-310mm<⎧⎨+≠⎩,,解得m<3且m≠2,故选D.考查内容:分式方程的解;解一元一次不等式组.命题意图:本题综合考查了分式方程的解与一元一次不等式组的解法,难度中等.17.答案:A.解析:如图,连接OC、OB,∵BC∥x轴,∴S△OCB=S△ACB= 2,而S△OCB= S△OBD+S△OCD=12•3+12•|k,∴12•3+12•k=2,化简,得k=1而k<0,∴k=﹣1.故选A.考查内容:反比例函数系数k的几何意义.命题意图:本题考查了反比例函数系数k的几何意义,注意k的符号,难度中等.18.答案:B.解析:如图,过A作AE⊥AC,交CB的延长线于E,∴∠CAE=90°,∵∠DAB=90°,∴∠DAB=∠CAE.∴∠DAB﹣∠CAB =∠CAE﹣∠CAB.即∠CAD=∠EAB.∵∠DAB=∠DCB=90°,∴∠D+∠ABC=180°=∠ABE+∠ABC,∴∠D=∠ABE.又∵AD=AB,∴△ACD≌△AEB (ASA ),∴AC=AE ,即△ACE 是等腰直角三角形,∴S四边形ABCD =S △ACE ,∵S △ACE =12AC·AE=12×5×5=12.5,∴四边形ABCD 的面积为12.5,故选B .考查内容:全等三角形的判定与性质.命题意图:本题考查通过全等三角形的判定与性质计算三角形面积的能力,难度中等.19.答案:B.解析:设购买篮球x 只,购买排球y 只,根据题意得120x +90y =1200,变形得x =10-34y ,因为x ,y 都是正整数,所以y 只能是4的正整数倍,因为所列方程的正整数解共有三个,分别为74x y =⎧⎨=⎩,,48x y =⎧⎨=⎩,,112x y =⎧⎨=⎩,,故选B . 考查内容:二元一次方程的应用.命题意图:本题考查列二元一次方程解决方案设计问题的能力,难度中等.20.答案:D.解析:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠EAD =∠BEA ,∵AE 平分∠BAD ,∴∠EAD =∠BAE ,∴∠BAE =∠BEA ,∴BA =BE =1,∵∠ABC =∠ADC =60°,∴△ABE为等边三角形,∴AE =BE =AB =1,∠AEB =60°,∵12BC =1,∴BC =2,∴CE =BC -BE =1=BE =AE ,∴∠EAC =∠ECA =30°,∠EAD =∠BAE =60°,∴∠CAD =∠EAD -∠EAC =30°,∴①正确;②∵BE=EC ,OA=OC ,∴OE=12AB=12,OE ∥AB ,∴∠EOC=∠BAC=60°+30°=90°,Rt △EOC 中,2211()2-343,∵四边形ABCD 是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=∠BCD ﹣∠ACB =90°,Rt △OCD中,2231()2+747,∴7,故②正确;∵△ABE 为等边三角形,∴∠BAC =60°,∠EAC =30°,∴∠BAC =90°,∴BA ⊥AC ,∴S 平行四边形ABCD =AB ·AC ,∴③正确;∵BE =EC =1,A O =O C ,∴O E =12AB =12,而BC =AD =2,∴O E =14AD ,∴④正确;过O 作O G ⊥AE 于G ,∵BE =EC ,A O =O C ,∴O E ∥AB ,∴∠BAE =∠O EA=60°,O G =sin60°O E =32×12=34,AE =1,∵O E ∥AB ,∴△O PE ∽△BPA ,∴12PE OE AP AB ==,∴ AP =23AE =23,S △AP O =12AP ×O G =12×23×34 =312,∴⑤正确,本题正确的有:①②③④⑤,5个.故选D .考查内容:平行四边形的性质;三角形中位线定理;相似三角形的判定与性质.命题意图:本题考查运用平行四边形与三角形知识解决问题的综合能力,难度较高.21.解析:原式=(22a a a a ++﹣2a a a +)÷2(1)(1)(1)a a a +-+= 22a a a +•2(1)(1)(1)a a a ++- =2(1)a a a +•2(1)(1)(1)a a a ++- =1a a -,当a=sin30°= 12时, 原式= 12112-= 1212-=﹣1. 考查内容:分式的化简求值;特殊角的三角函数值.命题意图:本题考查熟练运用分式的运算法则计算的能力,难度较小.22.解析:(1)如图所示;(2)如图所示;(3)∵OC=OC 2=2231+=10,OB=OB 2= 2211+=2,∴BC 扫过的面积=S 扇形OCC2﹣S 扇形OBB2=290(10)360π﹣290(2)360π=2π.考查内容:作图﹣轴对称变换;勾股定理;作图﹣旋转变换;扇形面积的计算.命题意图:本题重点考查轴对称和旋转作图,熟练掌握网格结构准确找出对应点的位置是解题的关键,题目难度中等.23.解析:(1)根据题意得222bc⎧-=-⎪⎨⎪=⎩,,解得42bc=⎧⎨=⎩,,∴此抛物线的解析式为y=x2+4x+2;(2)P点坐标为(-6,0)或(-13,0).解答过程如下:∵BC=6,BC∥x轴,对称轴为x=-2,∴x B=-2-62=-5,x C=-2+62=1,∴y B=y C=7,∴B(-5,7),C(1,7).过A作直线l平行于x轴,则该直线方程为y=2,设CP交直线l于D,交AB于E,分两种情况:①当S△EBC:S△EAC=2:3时,BE:AE=2:3.∵BC∥AD,∴△BEC∽△AED,∴23BE BCEA AD==,∴AD=9,∴D坐标为(-9,2),设CP的解析式为y=kx+b,则-927k bk b+=⎧⎨+=⎩,,解得12162kb⎧=⎪⎪⎨⎪=⎪⎩,,∴y=11322x+,当y=0时,x=-13,∴P点坐标为(-13,0);②当S△EBC:S△EAC=3:2时,BE:AE=3:2,∵BC∥AD,∴△BEC∽△AED,∴32BE BCEA AD==,∴AD=4,∴D坐标为(-4,2)。

黑龙江省龙东地区2018年中考数学试题(含解析)

黑龙江省龙东地区2018年中考数学试题(含解析)

2018年黑龙江省龙东地区中考数学试卷一、填空题(每题3分,满分30分)1.(3.00分)人民日报2018年2月23日报道,2017年黑龙江粮食总产量达到1203.76亿斤,成功超越1200亿斤,连续七年居全国首位,将1200亿斤用科学记数法表示为斤.2.(3.00分)在函数y=中,自变量x的取值范围是.3.(3.00分)如图,在平行四边形ABCD中,添加一个条件使平行四边形ABCD是菱形.4.(3.00分)掷一枚质地均匀的骰子,向上一面的点数为5的概率是.5.(3.00分)若关于x的一元一次不等式组有2个负整数解,则a的取值范围是.6.(3.00分)如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.7.(3.00分)用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为.8.(3.00分)如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为.9.(3.00分)Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是.10.(3.00分)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则S n=.二、选择题(每题3分,满分30分)11.(3.00分)下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a212.(3.00分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.13.(3.00分)如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是()A.3 B.4 C.5 D.614.(3.00分)某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91 B.中位数是90 C.众数是94 D.极差是2015.(3.00分)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.716.(3.00分)已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠217.(3.00分)如图,平面直角坐标系中,点A是x轴上任意一点,BC平行于x 轴,分别交y=(x>0)、y=(x<0)的图象于B、C两点,若△ABC的面积为2,则k值为()A.﹣1 B.1 C.D.18.(3.00分)如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为()A .15B .12.5C .14.5D .1719.(3.00分)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( )A .4种B .3种C .2种D .1种20.(3.00分)如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,AE 平分∠BAD ,分别交BC 、BD 于点E 、P ,连接OE ,∠ADC=60°,AB=BC=1,则下列结论:①∠CAD=30°②BD=③S 平行四边形ABCD =AB•AC ④OE=AD ⑤S △APO =,正确的个数是( )A .2B .3C .4D .5三、解答题(满分60分)21.(5.00分)先化简,再求值:(1﹣)÷,其中a=sin30°.22.(6.00分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC 的三个顶点坐标分别为A (1,4),B (1,1),C (3,1).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)画出△ABC 绕点O 逆时针旋转90°后的△A 2B 2C 2;(3)在(2)的条件下,求线段BC 扫过的面积(结果保留π).23.(6.00分)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.24.(7.00分)为响应党的“文化自信”号召,某校开展了古诗词诵读大赛活动,现随机抽取部分同学的成绩进行统计,并绘制成如下的两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a=,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?25.(8.00分)某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间s(天)之间的关系如图(1)所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图(2)所示,请结合图象回答下列问题:(1)甲车间每天加工大米吨,a=.(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式.(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?26.(8.00分)如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点F.(1)当点E在线段BD上移动时,如图(1)所示,求证:BC﹣DE=DF.(2)当点E在直线BD上移动时,如图(2)、图(3)所示,线段BC、DE与DF又有怎样的数量关系?请直接写出你的猜想,不需证明.27.(10.00分)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?28.(10.00分)如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO=,点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.2018年黑龙江省龙东地区中考数学试卷参考答案与试题解析一、填空题(每题3分,满分30分)1.(3.00分)人民日报2018年2月23日报道,2017年黑龙江粮食总产量达到1203.76亿斤,成功超越1200亿斤,连续七年居全国首位,将1200亿斤用科学记数法表示为 1.2×1011斤.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将1200亿斤用科学记数法表示应为1.2×1011斤.故答案为:1.2×1011【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(3.00分)在函数y=中,自变量x的取值范围是x≥﹣2且x≠0.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x+2≥0且x≠0,解得x≥﹣2且x≠0.故答案为:x≥﹣2且x≠0.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.(3.00分)如图,在平行四边形ABCD中,添加一个条件AB=BC或AC⊥BD 使平行四边形ABCD是菱形.【分析】根据菱形的判定方法即可判断.【解答】解:当AB=BC或AC⊥BD时,四边形ABCD是菱形.故答案为AB=BC或AC⊥BD.【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是记住菱形的判定方法.4.(3.00分)掷一枚质地均匀的骰子,向上一面的点数为5的概率是.【分析】利用随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数进行计算即可.【解答】解:掷一枚质地均匀的骰子,向上一面的点数为5的概率是:,故答案为:.【点评】此题主要考查了概率公式,关键是掌握概率的计算方法.5.(3.00分)若关于x的一元一次不等式组有2个负整数解,则a的取值范围是﹣3≤a<﹣2.【分析】先求出每个不等式的解集,再求出不等式组的解集和已知得出a的范围即可.【解答】解:∵解不等式①得:x>a,解不等式②得:x<2,又∵关于x的一元一次不等式组有2个负整数解,∴﹣3≤a<﹣2,故答案为:﹣3≤a<﹣2.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集和已知得出关于a的不等式是解此题的关键.6.(3.00分)如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为5.【分析】连接OC,由垂径定理知,点E是CD的中点,AE=CD,在直角△OCE 中,利用勾股定理即可得到关于半径的方程,求得圆半径即可.【解答】解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=x﹣1,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣1)2,解得:x=5,∴⊙O的半径为5,故答案为:5.【点评】本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键.7.(3.00分)用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为.【分析】设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,然后求出r后利用勾股定理计算圆锥的高.【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=1,所以此圆锥的高==.故答案为.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.8.(3.00分)如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为2.【分析】作DC关于AB的对称点D′C′,以BC中的O为圆心作半圆O,连D′O分别交AB及半圆O于P、G.将PD+PG转化为D′G找到最小值.【解答】解:如图:取点D关于直线AB的对称点D′.以BC中点O为圆心,OB为半径画半圆.连接OD′交AB于点P,交半圆O于点G,连BG.连CG并延长交AB于点E.由以上作图可知,BG⊥EC于G.PD+PG=PD′+PG=D′G由两点之间线段最短可知,此时PD+PG最小.∵D′C=4,OC′=6∴D′O=∴D′G=2∴PD+PG的最小值为2故答案为:2【点评】本题考查线段和的最小值问题,通常思想是将线段之和转化为固定两点之间的线段和最短.9.(3.00分)Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是3.6或4.32或4.8.=6,找出所有可【分析】在Rt△ABC中,通过解直角三角形可得出AC=5、S△ABC能的剪法,并求出剪出的等腰三角形的面积即可.【解答】解:在Rt△ABC中,∠ACB=90°,AB=3,BC=4,∴AB==5,S=AB•BC=6.△ABC沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:①当AB=AP=3时,如图1所示,S等腰△ABP=S△ABC=×6=3.6;②当AB=BP=3,且P在AC上时,如图2所示,作△ABC的高BD,则BD===2.4,∴AD=DP==1.8,∴AP=2AD=3.6,∴S等腰△ABP =S△ABC=×6=4.32;④当CB=CP=4时,如图3所示,S等腰△BCP=S△ABC=×6=4.8.综上所述:等腰三角形的面积可能为3.6或4.32或4.8.故答案为3.6或4.32或4.8.【点评】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的剪法,并求出剪出的等腰三角形的面积是解题的关键.10.(3.00分)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则S n=()n.【分析】由AB1为边长为2的等边三角形ABC的高,利用三线合一得到B1为BC的中点,求出BB1的长,利用勾股定理求出AB1的长,进而求出第一个等边三角形AB1C1的面积,同理求出第二个等边三角形AB2C2的面积,依此类推,得到第n个等边三角形AB n C n的面积.【解答】解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=1,AB=2,根据勾股定理得:AB1=,∴第一个等边三角形AB1C1的面积为×()2=()1;∵等边三角形AB1C1的边长为,AB2⊥B1C1,∴B1B2=,AB1=,根据勾股定理得:AB2=,∴第二个等边三角形AB2C2的面积为×()2=()2;依此类推,第n个等边三角形AB n C n的面积为()n.故答案为:()n.【点评】此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.二、选择题(每题3分,满分30分)11.(3.00分)下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a9,不符合题意;B、原式=27a6,不符合题意;C、原式=a2﹣2ab+b2,不符合题意;D、原式=6a2,符合题意.故选:D.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.12.(3.00分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故此选项错误.故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.13.(3.00分)如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是()A.3 B.4 C.5 D.6【分析】左视图底面有2个小正方体,主视图与左视图相同,则可以判断出该几何体底面最少有2个小正方体,最多有4个.根据这个思路可判断出该几何体有多少个小立方块.【解答】解:左视图与主视图相同,可判断出底面最少有2个,最多有4个小正方体.而第二层则只有1个小正方体.则这个几何体的小立方块可能有3或4或5个.故选:D.【点评】本题考查了由三视图判断几何体,难度不大,主要考查了考生的空间想象能力以及三视图的相关知识.14.(3.00分)某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91 B.中位数是90 C.众数是94 D.极差是20【分析】直接利用平均数、中位数、众数以及极差的定义分别分析得出答案.【解答】解:A、平均分为:(94+98+90+94+74)=90(分),故此选项错误;B、五名同学成绩按大小顺序排序为:74,90,94,94,98,故中位数是94分,故此选项错误;C、94分、98分、90分、94分、74分中,众数是94分.故此选项正确;D、极差是98﹣74=24,故此选项错误.故选:C.【点评】此题主要考查了平均数、中位数、众数以及极差的定义,正确把握相关定义是解题关键.15.(3.00分)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.7【分析】设共有x个班级参赛,根据第一个球队和其他球队打(x﹣1)场球,第二个球队和其他球队打(x﹣2)场,以此类推可以知道共打(1+2+3+…+x﹣1)场球,然后根据计划安排15场比赛即可列出方程求解.【解答】解:设共有x个班级参赛,根据题意得:=15,解得:x1=6,x2=﹣5(不合题意,舍去),则共有6个班级参赛.故选:C.【点评】此题考查了一元二次方程的应用,关键是准确找到描述语,根据等量关系准确的列出方程.此题还要判断所求的解是否符合题意,舍去不合题意的解.16.(3.00分)已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠2【分析】直接解方程得出分式的分母为零,再利用x≠﹣1求出答案.【解答】解:=1解得:x=m﹣3,∵关于x的分式方程=1的解是负数,∴m﹣3<0,解得:m<3,当x=m﹣3=﹣1时,方程无解,则m≠2,故m的取值范围是:m<3且m≠2.故选:D.【点评】此题主要考查了分式方程的解,正确得出分母不为零是解题关键.17.(3.00分)如图,平面直角坐标系中,点A是x轴上任意一点,BC平行于x 轴,分别交y=(x>0)、y=(x<0)的图象于B、C两点,若△ABC的面积为2,则k值为()A.﹣1 B.1 C.D.=S 【分析】连接OC、OB,如图,由于BC∥x轴,根据三角形面积公式得到S△ACB,再利用反比例函数系数k的几何意义得到•|3|+•|k|=2,然后解关于k △OCB的绝对值方程可得到满足条件的k的值.【解答】解:连接OC、OB,如图,∵BC∥x轴,∴S △ACB =S △OCB ,而S △OCB =•|3|+•|k |, ∴•|3|+•|k |=2,而k <0,∴k=﹣1.故选:A .【点评】本题考查了反比例函数系数k 的几何意义:在反比例函数y=图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k |,且保持不变.18.(3.00分)如图,四边形ABCD 中,AB=AD ,AC=5,∠DAB=∠DCB=90°,则四边形ABCD 的面积为( )A .15B .12.5C .14.5D .17【分析】过A 作AE ⊥AC ,交CB 的延长线于E ,判定△ACD ≌△AEB ,即可得到△ACE 是等腰直角三角形,四边形ABCD 的面积与△ACE 的面积相等,根据S △ACE =×5×5=12.5,即可得出结论.【解答】解:如图,过A 作AE ⊥AC ,交CB 的延长线于E ,∵∠DAB=∠DCB=90°,∴∠D+∠ABC=180°=∠ABE+∠ABC,∴∠D=∠ABE,又∵∠DAB=∠CAE=90°,∴∠CAD=∠EAB,又∵AD=AB,∴△ACD≌△AEB,∴AC=AE,即△ACE是等腰直角三角形,∴四边形ABCD的面积与△ACE的面积相等,∵S=×5×5=12.5,△ACE∴四边形ABCD的面积为12.5,故选:B.【点评】本题主要考查了全等三角形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.19.(3.00分)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种 B.3种 C.2种 D.1种【分析】设购买篮球x个,排球y个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x、y的方程,由x、y均为非负整数即可得.【解答】解:设购买篮球x个,排球y个,根据题意可得120x+90y=1200,则y=,∵x 、y 均为非负整数,∴x=1、y=12;x=4、y=8;x=7、y=4;x=10、y=0;所以购买资金恰好用尽的情况下,购买方案有4种,故选:A .【点评】本题主要考查二元一次方程的应用,解题的关键是理解题意,依据相等关系列出方程.20.(3.00分)如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,AE 平分∠BAD ,分别交BC 、BD 于点E 、P ,连接OE ,∠ADC=60°,AB=BC=1,则下列结论:①∠CAD=30°②BD=③S 平行四边形ABCD =AB•AC ④OE=AD ⑤S △APO =,正确的个数是( )A .2B .3C .4D .5【分析】①先根据角平分线和平行得:∠BAE=∠BEA ,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE 是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;②先根据三角形中位线定理得:OE=AB=,OE ∥AB ,根据勾股定理计算OC==和OD 的长,可得BD 的长;③因为∠BAC=90°,根据平行四边形的面积公式可作判断;④根据三角形中位线定理可作判断;⑤根据同高三角形面积的比等于对应底边的比可得:S △AOE =S △EOC =OE•OC=,=,代入可得结论.【解答】解:①∵AE 平分∠BAD ,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正确;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC==,∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD==,∴BD=2OD=,故②正确;③由②知:∠BAC=90°,∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,∴OE=AB,故④不正确;⑤∵四边形ABCD是平行四边形,∴OA=OC=,∴S△AOE =S△EOC=OE•OC==,∵OE∥AB,∴,∴=,∴S△AOP===;故⑤正确;本题正确的有:①②③⑤,4个,故选:C.【点评】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.三、解答题(满分60分)21.(5.00分)先化简,再求值:(1﹣)÷,其中a=sin30°.【分析】根据分式的运算法则即可求出答案,【解答】解:当a=sin30°时,所以a=原式=•=•==﹣1【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.(6.00分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).【分析】(1)利用轴对称的性质画出图形即可;(2)利用旋转变换的性质画出图形即可;(3)BC扫过的面积=﹣,由此计算即可;【解答】解:(1)△ABC关于x轴对称的△A1B1C1如图所示;(2)△ABC绕点O逆时针旋转90°后的△A2B2C2如图所示;(3)BC扫过的面积=﹣=﹣=2π.【点评】本题考查了利用旋转变换作图,轴对称和扇形面积公式等知识,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.(6.00分)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.【分析】(1)由对称轴直线x=2,以及A点坐标确定出b与c的值,即可求出抛物线解析式;(2)由抛物线的对称轴及BC的长,确定出B与C的横坐标,代入抛物线解析式求出纵坐标,确定出B与C坐标,利用待定系数法求出直线AB解析式,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,由已知面积之比求出QH的长,确定出Q横坐标,代入直线AB解析式求出纵坐标,确定出Q坐标,再利用待定系数法求出直线CQ解析式,即可确定出P的坐标.【解答】解:(1)由题意得:x=﹣=﹣=﹣2,c=2,解得:b=4,c=2,则此抛物线的解析式为y=x2+4x+2;(2)∵抛物线对称轴为直线x=﹣2,BC=6,∴B横坐标为﹣5,C横坐标为1,把x=1代入抛物线解析式得:y=7,∴B(﹣5,7),C(1,7),设直线AB解析式为y=kx+2,把B坐标代入得:k=﹣1,即y=﹣x+2,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,可得△AQH∽△ABM,∴=,∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:QB=3:5,∵BM=5,∴QH=2或QH=3,当QH=2时,把x=﹣2代入直线AB解析式得:y=4,此时Q(﹣2,4),直线CQ解析式为y=x+6,令y=0,得到x=﹣6,即P(﹣6,0);当QH=3时,把x=﹣3代入直线AB解析式得:y=5,此时Q(﹣3,5),直线CQ解析式为y=x+,令y=0,得到x=﹣13,此时P (﹣13,0),综上,P的坐标为(﹣6,0)或(﹣13,0).【点评】此题考查了待定系数法求二次函数解析式,二次函数性质,以及二次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.24.(7.00分)为响应党的“文化自信”号召,某校开展了古诗词诵读大赛活动,现随机抽取部分同学的成绩进行统计,并绘制成如下的两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a=30,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?【分析】(1)先根据E等级人数及其占总人数的比例可得总人数,再用D等级人数除以总人数可得a的值,用总人数减去其他各等级人数求得C等级人数可补全图形;(2)用360°乘以A等级人数所占比例可得;(3)用总人数乘以样本中E等级人数所占比例.【解答】解:(1)∵被调查的总人数为10÷=50(人),∴D等级人数所占百分比a%=×100%=30%,即a=30,C等级人数为50﹣(5+7+15+10)=13人,补全图形如下:故答案为:30;(2)扇形B的圆心角度数为360°×=50.4°;(3)估计获得优秀奖的学生有2000×=400人.【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(8.00分)某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间s(天)之间的关系如图(1)所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图(2)所示,请结合图象回答下列问题:(1)甲车间每天加工大米20吨,a=15.(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式.(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加。

黑龙江省龙东地区2018年中考数学试卷(解析版)

黑龙江省龙东地区2018年中考数学试卷(解析版)

2018年黑龙江省龙东地区中考数学试卷一、填空题(每题3分,满分30分)1.人民日报2018年2月23日报道,2017年黑龙江粮食总产量达到1203.76亿斤,成功超越1200亿斤,连续七年居全国首位,将1200亿斤用科学记数法表示为_____斤.【答案】1.2×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1200亿斤=120000000000斤,∴将1200亿斤用科学记数法表示应为1.2×1011斤,故答案为:1.2×1011.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.在函数y=中,自变量x的取值范围是_______.【答案】x≥﹣2且x≠0【解析】根据题意得x+2≥0且x≠0,即x≥-2且x≠0.3.如图,在平行四边形ABCD中,添加一个条件_____使平行四边形ABCD是菱形.【答案】AB=BC(或AC⊥BD)答案不唯一【解析】【分析】根据邻边相等的平行四边形是菱形可知添加条件AB=BC.【详解】解:添加条件:AB=BC,根据邻边相等的平行四边形是菱形可以判定四边形ABCD是菱形.故答案为:AB=BC.【点睛】此题主要考查了菱形的判定,关键是熟练掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形.4.掷一枚质地均匀的骰子,向上一面的点数为5的概率是_____.【答案】【解析】【分析】利用随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数进行计算即可.【详解】掷一枚质地均匀的骰子,向上一面的点数有6种可能,向上一面的点数为5有一种可能,所以向上一面的点数为5有的概率是:,故答案为:.【点睛】本题考查了简单的概率计算,熟练掌握概率公式是解题的关键.5.若关于x的一元一次不等式组有2个负整数解,则a的取值范围是_____.【答案】﹣3≤a<﹣2【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集和已知得出a的范围即可.【详解】,∵解不等式①得:x>a,解不等式②得:x<2,又∵关于x的一元一次不等式组有2个负整数解,∴﹣3≤a<﹣2,故答案为:﹣3≤a<﹣2.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集和已知得出关于a的不等式是解此题的关键.6.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为_____.【答案】5【解析】解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=x﹣1,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣1)2,解得:x=5,∴⊙O的半径为5,故答案为:5.点睛:本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键.7.用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为_____.【答案】【解析】【分析】设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,然后求出r后利用勾股定理计算圆锥的高.【详解】设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=1,所以此圆锥的高=,故答案:.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.8.如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为_____.【答案】2-2【解析】【分析】作DC关于AB的对称点D′C′,以BC中的O为圆心作半圆O,连D′O分别交AB及半圆O于P、G.将PD+PG 转化为D′G找到最小值.【详解】如图:取点D关于直线AB的对称点D′,以BC中点O为圆心,OB为半径画半圆,连接OD′交AB于点P,交半圆O于点G,连BG,连CG并延长交AB于点E,由以上作图可知,BG⊥EC于G,PD+PG=PD′+PG=D′G,由两点之间线段最短可知,此时PD+PG最小,∵D′C’=4,OC′=6,∴D′O=,∴D′G=-2,∴PD+PG的最小值为-2,故答案为:-2.【点睛】本题考查了轴对称的性质、直径所对的圆周角是直角、线段和的最小值问题等,综合性较强,能灵活利用相关知识正确添加辅助线是解题的关键.通常解此类问题都是将线段之和转化为固定两点之间的线段和最短.9.Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.【答案】3.6或4.32或4.8【解析】【分析】在Rt△ABC中,通过解直角三角形可得出AC=5、S△ABC=6,找出所有可能的分割方法,并求出剪出的等腰三角形的面积即可.【详解】在Rt△ABC中,∠ACB=90°,AB=3,BC=4,∴AB==5,S△ABC=AB•BC=6.沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:①当AB=AP=3时,如图1所示,S等腰△ABP=•S△ABC=×6=3.6;②当AB=BP=3,且P在AC上时,如图2所示,作△ABC的高BD,则BD=,∴AD=DP==1.8,∴AP=2AD=3.6,∴S等腰△ABP=•S△ABC=×6=4.32;③当CB=CP=4时,如图3所示,S等腰△BCP=•S△ABC=×6=4.8;综上所述:等腰三角形的面积可能为3.6或4.32或4.8,故答案为:3.6或4.32或4.8.【点睛】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的分割方法,并求出剪出的等腰三角形的面积是解题的关键.10.如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则S n=_____.【答案】【解析】【分析】由AB1是边长为2的等边三角形ABC的高,利用三线合一得到B1为BC的中点,求出CB1的长,继而可得△B1CB2是有一个角为30度的直角三角形,同理可知△B2C1B3、△B3C2B4、△B4C3B5、…、都是有一个角为30度的直角三角形,而且后一个的斜边是前一个30度角所邻的直角边,由此即可求得S n.【详解】∵等边三角形ABC的边长为2,AB1⊥BC,∴∠C=60°,CB1=BB1=1,又∵∠B1B2C=90°,∴∠CB1B2=30°,∴CB2=,B1B2=,∴S1=,同理,Rt△B2C1B3中,B2C1=B1B2=,∴C1B3=×=,B2B3=,∴S2=,同理,S3=…,∴S n=,故答案为:.【点睛】本题考查了规律题,涉及等边三角形的性质,含30度角的直角三角形的性质、勾股定理等,有一定难度,熟练掌握并灵活运用等边三角形的性质、勾股定理等解本题的关键.二、选择题(每题3分,满分30分)11.下列各运算中,计算正确的是()A. a12÷a3=a4B. (3a2)3=9a6C. (a﹣b)2=a2﹣ab+b2D. 2a•3a=6a2【答案】D【解析】【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.【详解】A、原式=a9,故A选项错误,不符合题意;B、原式=27a6,故B选项错误,不符合题意;C、原式=a2﹣2ab+b2,故C选项错误,不符合题意;D、原式=6a2,故D选项正确,符合题意,故选D.【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.12.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的定义以及中心对称图形的定义进行判断即可得.【详解】根据轴对称图形的定义,选项中轴对称图形有A、C、D,根据中心对称图形的定义,选项中的中心对称图形有B、D,综上可知,既是轴对称图形又是中心对称图形的是D,故选D.【点睛】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.13.如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是()A. 3B. 4C. 5D. 6【答案】D【解析】【分析】左视图底面有2个小正方体,主视图与左视图相同,则可以判断出该几何体底面最少有2个小正方体,最多有4个.根据这个思路可判断出该几何体有多少个小立方块.【详解】左视图与主视图相同,可判断出底面最少有2个,最多有4个小正方体,而第二层则只有1个小正方体,则这个几何体的小立方块可能有3或4或5个.故选D.【点睛】本题考查了由三视图判断几何体,主要考查了学生的空间想象能力以及三视图的相关知识,解答本题的关键是弄清一共有几层、每层最多与最少各有多少个.14.某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A. 平均分是91B. 中位数是90C. 众数是94D. 极差是20【答案】C【解析】【分析】直接利用平均数、中位数、众数以及极差的定义分别分析得出答案.【详解】A、平均分为:×(94+98+90+94+74)=90(分),故此选项错误;B、五名同学成绩按大小顺序排序为:74,90,94,94,98,故中位数是94分,故此选项错误;C、94分、98分、90分、94分、74分中,众数是94分.故此选项正确;D、极差是98﹣74=24,故此选项错误,故选C.【点睛】本题主要考查了平均数、中位数、众数以及极差的定义,正确把握相关定义以及求解方法是解题的关键.15.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A. 4B. 5C. 6D. 7【答案】C【解析】【分析】设共有x个班级参赛,根据第一个球队和其他球队打(x﹣1)场球,第二个球队和其他球队打(x﹣2)场,以此类推可以知道共打(1+2+3+…+x﹣1)场球,然后根据计划安排15场比赛即可列出方程求解.【详解】设共有x个班级参赛,根据题意得:=15,解得:x1=6,x2=﹣5(不合题意,舍去),则共有6个班级参赛,故选C.【点睛】本题考查了一元二次方程的应用,关键是准确找到描述语,根据等量关系准确的列出方程.此题还要判断所求的解是否符合题意,舍去不合题意的解.16.已知关于x的分式方程=1的解是负数,则m的取值范围是()A. m≤3B. m≤3且m≠2C. m<3D. m<3且m≠2【答案】D【解析】【分析】解方程得到方程的解,再根据解为负数得到关于m的不等式结合分式的分母不为零,即可求得m 的取值范围.【详解】=1,解得:x=m﹣3,∵关于x的分式方程=1的解是负数,∴m﹣3<0,解得:m<3,当x=m﹣3=﹣1时,方程无解,则m≠2,故m的取值范围是:m<3且m≠2,故选D.【点睛】本题考查了分式方程的解,熟练掌握分式方程的解法以及分式方程的分母不为零是解题关键.17.如图,平面直角坐标系中,点A是x轴上任意一点,BC平行于x轴,分别交y=(x>0)、y=(x<0)的图象于B、C两点,若△ABC的面积为2,则k值为()A. ﹣1B. 1C.D.【答案】A【解析】【分析】连接OC、OB,如图,由于BC∥x轴,根据三角形面积公式得到S△ACB=S△OCB,再利用反比例函数系数k的几何意义得到×|3|+•|k|=2,然后解关于k的绝对值方程可得到满足条件的k的值.【详解】连接OC、OB,如图,∵BC∥x轴,∴S△ACB=S△OCB,而S△OCB=×|3|+•|k|,∴×|3|+•|k|=2,而k<0,∴k=﹣1,故选A.【点睛】本题考查了反比例函数系数k几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.18.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为()A. 15B. 12.5C. 14.5D. 17【答案】B【解析】【分析】过A作AE⊥AC,交CB的延长线于E,判定△ACD≌△AEB,即可得到△ACE是等腰直角三角形,四边形ABCD的面积与△ACE的面积相等,根据S△ACE=×5×5=12.5,即可得出结论.【详解】如图,过A作AE⊥AC,交CB的延长线于E,∵∠DAB=∠DCB=90°,∴∠D+∠ABC=180°=∠ABE+∠ABC,∴∠D=∠ABE,又∵∠DAB=∠CAE=90°,∴∠CAD=∠EAB,又∵AD=AB,∴△ACD≌△AEB,∴AC=AE,即△ACE是等腰直角三角形,∴四边形ABCD的面积与△ACE的面积相等,∵S△ACE=×5×5=12.5,∴四边形ABCD的面积为12.5,故选B.【点睛】本题主要考查了全等三角形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.19.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A. 4种B. 3种C. 2种D. 1种【答案】B【解析】【分析】设购买篮球x个,排球y个,根据“购买篮球总钱数+购买排球的总钱数=1200”列出关于x、y的方程,由x、y均为非负整数即可得.【详解】设购买篮球x个,排球y个,根据题意可得120x+90y=1200,则y=,∵x、y均为正整数,∴x=1、y=12或x=4、y=8或x=7、y=4,所以购买资金恰好用尽的情况下,购买方案有3种,故选B.【点睛】本题考查二元一次方程的应用,解题的关键是理解题意,依据相等关系列出方程.20.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:①∠CAD=30°②BD=③S平行四边形ABCD=AB•AC④OE=AD⑤S△APO=,正确的个数是()A. 2B. 3C. 4D. 5【答案】D【解析】【分析】①先根据角平分线和平行得:∠BAE=∠BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;②先根据三角形中位线定理得:OE=AB=,OE∥AB,根据勾股定理计算OC=和OD的长,可得BD的长;③因为∠BAC=90°,根据平行四边形的面积公式可作判断;④根据三角形中位线定理可作判断;⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=S△EOC=OE•OC=,,代入可得结论.【详解】①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正确;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=,∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=,∴BD=2OD=,故②正确;③由②知:∠BAC=90°,∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,又AB=BC,BC=AD,∴OE=AB=AD,故④正确;⑤∵四边形ABCD是平行四边形,∴OA=OC=,∴S△AOE=S△EOC=OE•OC=××,∵OE∥AB,∴,∴,∴S△AOP=S△AOE==,故⑤正确;本题正确的有:①②③④⑤,5个,故选D.【点睛】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.三、解答题(满分60分)21.先化简,再求值:(1﹣)÷,其中a=sin30°.【答案】,-1.【解析】【分析】括号内先通分进行分式的加减法运算,然后再进行分式的乘除法运算,根据特殊角的三角函数值得到a的值代入进行计算即可得.【详解】原式===,当a=sin30°=时,原式==﹣1.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及特殊角的三角函数值是解题的关键.22.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).【答案】(1)作图见解析;(2)作图见解析;(3)2π.【解析】【分析】(1)利用轴对称的性质画出图形即可;(2)利用旋转变换的性质画出图形即可;(3)BC扫过的面积=,由此计算即可;【详解】(1)△ABC关于x轴对称的△A1B1C1如图所示;(2)△ABC绕点O逆时针旋转90°后的△A2B2C2如图所示;(3)BC扫过的面积===2π.【点睛】本题考查了利用轴对称和旋转变换作图,扇形面积公式等知识,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.【答案】(1)抛物线的解析式为y=x2+4x+2;(2)P的坐标为(﹣6,0)或(﹣13,0).【解析】【分析】(1)由对称轴直线x=2,以及A点坐标确定出b与c的值,即可求出抛物线解析式;(2)由抛物线的对称轴及BC的长,确定出B与C的横坐标,代入抛物线解析式求出纵坐标,确定出B与C坐标,利用待定系数法求出直线AB解析式,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,由已知面积之比求出QH的长,确定出Q横坐标,代入直线AB解析式求出纵坐标,确定出Q坐标,再利用待定系数法求出直线CQ解析式,即可确定出P的坐标.【详解】(1)由题意得:x=﹣=﹣=﹣2,c=2,解得:b=4,c=2,则此抛物线的解析式为y=x2+4x+2;(2)∵抛物线对称轴为直线x=﹣2,BC=6,∴B横坐标为﹣5,C横坐标为1,把x=1代入抛物线解析式得:y=7,∴B(﹣5,7),C(1,7),设直线AB解析式为y=kx+2,把B坐标代入得:k=﹣1,即y=﹣x+2,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,可得△AQH∽△ABM,∴,∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:QB=3:5,∵BM=5,∴QH=2或QH=3,当QH=2时,把x=﹣2代入直线AB解析式得:y=4,此时Q(﹣2,4),直线CQ解析式为y=x+6,令y=0,得到x=﹣6,即P(﹣6,0);当QH=3时,把x=﹣3代入直线AB解析式得:y=5,此时Q(﹣3,5),直线CQ解析式为y=x+,令y=0,得到x=﹣13,此时P(﹣13,0),综上,P的坐标为(﹣6,0)或(﹣13,0).【点睛】本题考查了待定系数法求二次函数解析式,二次函数性质,二次函数图象上点的坐标特征以及相似三角形的判定与性质等,有一定的难度,熟练掌握待定系数法和相似三角形的判定与性质是解本题的关键.24.为响应党“文化自信”号召,某校开展了古诗词诵读大赛活动,现随机抽取部分同学的成绩进行统计,并绘制成如下的两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a= ,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?【答案】(1)30,补图见解析;(2)扇形B的圆心角度数为50.4°;(3)估计获得优秀奖的学生有400人.【解析】【分析】(1)先根据E等级人数及其占总人数的比例可得总人数,再用D等级人数除以总人数可得a的值,用总人数减去其他各等级人数求得C等级人数可补全图形;(2)用360°乘以A等级人数所占比例可得;(3)用总人数乘以样本中E等级人数所占比例.【详解】(1)∵被调查的总人数为10÷=50(人),∴D等级人数所占百分比a%=×100%=30%,即a=30,C等级人数为50﹣(5+7+15+10)=13人,补全图形如下:故答案为:30;(2)扇形B的圆心角度数为360°×=50.4°;(3)估计获得优秀奖的学生有2000×=400人.【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间s(天)之间的关系如图(1)所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图(2)所示,请结合图象回答下列问题:(1)甲车间每天加工大米吨,a= .(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式.(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?【答案】(1)20,15;(2)y=35x﹣55;(3)再过1天装满第二节车厢.【解析】【分析】(1)根据题意,由图2得出两个车间同时加工和甲单独加工的速度;(2)用待定系数法解决问题;(3)求出两个车间每天加工速度分别计算两个55吨完成的时间.【详解】(1)由图象可知,第一天甲乙共加工220﹣185=35吨,第二天,乙停止工作,甲单独加工185﹣165=20吨,则乙一天加工35﹣20=15吨,a=15,故答案为:20,15;(2)设y=kx+b,把(2,15),(5,120)代入得,解得:,∴y=35x﹣55(2≤x≤5);(3)①当0<x≤1时,20+15=35<55,不合理,②当1<x≤2是地,20x+15=55,x=2,③当2<x≤5时,20x+35x-55=110,x=3,3-2=1(天),所以生产2天可装满第一节车厢,再经过1天可装满第二节车厢.【点睛】本题为一次函数实际应用问题,应用了待定系数法、分类讨论思想等,解答要注意通过对这两个函数图象实际意义对比分析得到问题答案.26.如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点F.(1)当点E线段BD上移动时,如图(1)所示,求证:BC﹣DE=DF.(2)当点E在直线BD上移动时,如图(2)、图(3)所示,线段BC、DE与DF又有怎样的数量关系?请直接写出你的猜想,不需证明.【答案】(1)证明见解析;(2)如图2:DE﹣BC=DF;图3:BC+DE=DF.【解析】【分析】(1)如图1中,在BA上截取BH,使得BH=BE.构造全等三角形即可解决问题;(2)如图2中,在BC上截取BH=BE,同法可证:DF=EH.可得:DE﹣BC=DF.如图3中,在BA上截取BH,使得BH=BE.同法可证:DF=HE,可得BC+DE=DF.【详解】(1)如图1中,在BA上截取BH,使得BH=BE.∵BC=AB=BD,BE=BH,∴AH=ED,∵∠AEF=∠ABE=90°,∴∠AEB+∠FED=90°,∠AEB+∠BAE=90°,∴∠FED=∠HAE,∵∠BHE=∠CDB=45°,∴∠AHE=∠EDF=135°,∴△AHE≌△EDF,∴HE=DF,∴BC﹣DE=BD﹣DE=BE=EH=DF.∴BC﹣DE=DF.(2)如图2中,在BC上截取BH=BE,同法可证:DF=EH.可得:DE﹣BC=DF;如图3中,在BA上截取BH,使得BH=BE.同法可证:DF=HE,可得BC+DE=DF.【点睛】本题考查了全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.27.为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?【答案】(1)A城和B城分别有200吨和300吨肥料;(2)从A城运往D乡200吨,从B城运往C乡肥料240吨,运往D乡60吨时,运费最少,最少运费是10040元;(3)当0<a<4时,A城200吨肥料都运往D乡,B城240吨运往C乡,60吨运往D乡;当a=4时,在0≤x≤200范围内的哪种调运方案费用都一样;当4<a<6时, A城200吨肥料都运往C乡,B城40吨运往C乡,260吨运往D乡.【解析】【分析】(1)根据A、B两城共有肥料500吨,其中A城肥料比B城少100吨,列方程或方程组得答案;(2)设从A城运往C乡肥料x吨,用含x的代数式分别表示出从A运往运往D乡的肥料吨数,从B城运往C乡肥料吨数,及从B城运往D乡肥料吨数,根据:运费=运输吨数×运输费用,得一次函数解析式,利用一次函数的性质得结论;(3)列出当A城运往C乡的运费每吨减少a(0<a<6)元时的一次函数解析式,利用一次函数的性质讨论,得结论.【详解】(1)设A城有化肥a吨,B城有化肥b吨,根据题意,得,解得,答:A城和B城分别有200吨和300吨肥料;(2)设从A城运往C乡肥料x吨,则运往D乡(200﹣x)吨,从B城运往C乡肥料(240﹣x)吨,则运往D乡(60+x)吨,设总运费为y元,根据题意,则:y=20x+25(200﹣x)+15(240﹣x)+24(60+x)=4x+10040,∵,∴0≤x≤200,由于函数是一次函数,k=4>0,所以当x=0时,运费最少,最少运费是10040元;(3)从A城运往C乡肥料x吨,由于A城运往C乡的运费每吨减少a(0<a<6)元,所以y=(20﹣a)x+25(200﹣x)+15(240﹣x)+24(60+x)=(4﹣a)x+10040,当4﹣a>0时,即0<a<4时,y随着x的增大而增大,∴当x=0时,运费最少,A城200吨肥料都运往D乡,B城240吨运往C乡,60吨运往D乡;当4-a=0时,即a=4时,y=10040,在0≤x≤200范围内的哪种调运方案费用都一样;当4﹣a<0时,即4<a<6时,y随着x的增大而减小,∴当x=240时,运费最少,此时A城200吨肥料都运往C乡,B城40吨运往C乡,260吨运往D乡.【点睛】本题考查了二元一次方程组的应用、不等式组的应用、一次函数的应用等,弄清题意、根据题意找准等量关系、不等关系列出方程组,列出一次函数解析式是关键.注意(3)小题需分类讨论.28.如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO=,点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.【答案】(1)D(5,4);(2)见解析;(3)点Q坐标为(,)或(4,1)或(1,﹣3).【解析】【分析】(1)在Rt△BOC中,OB=3,sin∠CBO=,设CO=4k,BC=5k,根据BC2=CO2+OB2,可得25k2=16k2+9,推出k=1或﹣1(舍弃),求出菱形的边长即可解决问题;(2)①如图1中,当0≤t≤2时,直线l扫过的图象是四边形CCQP,S=4t;②如图2中,当2<t≤5时,直线l扫过的图形是五边形OCQTA.分别求解即可解决问题;(3)画出符合条件的图形,分三种情形分别求解即可解决问题;【详解】(1)在Rt△BOC中,OB=3,sin∠CBO=,设CO=4k,BC=5k,∵BC2=CO2+OB2,∴25k2=16k2+9,。

龙东地区中考数学试卷含答案解析

龙东地区中考数学试卷含答案解析

2018年黑龙江省龙东地区中考数学试卷一、填空题(每题3分,满分30分)1.(3.00分)人民日报2018年2月23日报道,2017年黑龙江粮食总产量达到1203.76亿斤,成功超越1200亿斤,连续七年居全国首位,将1200亿斤用科学记数法表示为斤.2.(3.00分)在函数y=中,自变量x的取值范围是.3.(3.00分)如图,在平行四边形ABCD中,添加一个条件使平行四边形ABCD是菱形.4.(3.00分)掷一枚质地均匀的骰子,向上一面的点数为5的概率是.5.(3.00分)若关于x的一元一次不等式组有2个负整数解,则a的取值范围是.6.(3.00分)如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.7.(3.00分)用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为.8.(3.00分)如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为.9.(3.00分)Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是.10.(3.00分)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则S n=.二、选择题(每题3分,满分30分)11.(3.00分)下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a212.(3.00分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.13.(3.00分)如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是()A.3 B.4 C.5 D.614.(3.00分)某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91 B.中位数是90 C.众数是94 D.极差是2015.(3.00分)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.716.(3.00分)已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠217.(3.00分)如图,平面直角坐标系中,点A是x轴上任意一点,BC平行于x轴,分别交y=(x>0)、y=(x<0)的图象于B、C两点,若△ABC的面积为2,则k值为()A.﹣1 B.1 C.D.18.(3.00分)如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为()A.15 B.12.5 C.14.5 D.1719.(3.00分)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种 B.3种 C.2种 D.1种20.(3.00分)如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:=AB•AC④OE=AD⑤S△APO=,正确的个数①∠CAD=30°②BD=③S平行四边形ABCD是()A.2 B.3 C.4 D.5三、解答题(满分60分)21.(5.00分)先化简,再求值:(1﹣)÷,其中a=sin30°.22.(6.00分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).23.(6.00分)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.24.(7.00分)为响应党的“文化自信”号召,某校开展了古诗词诵读大赛活动,现随机抽取部分同学的成绩进行统计,并绘制成如下的两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a=,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?25.(8.00分)某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间s(天)之间的关系如图(1)所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图(2)所示,请结合图象回答下列问题:(1)甲车间每天加工大米吨,a=.(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式.(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?26.(8.00分)如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点F.(1)当点E在线段BD上移动时,如图(1)所示,求证:BC﹣DE=DF.(2)当点E在直线BD上移动时,如图(2)、图(3)所示,线段BC、DE与DF又有怎样的数量关系?请直接写出你的猜想,不需证明.27.(10.00分)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?28.(10.00分)如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO=,点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.2018年黑龙江省龙东地区中考数学试卷参考答案与试题解析一、填空题(每题3分,满分30分)1.(3.00分)人民日报2018年2月23日报道,2017年黑龙江粮食总产量达到1203.76亿斤,成功超越1200亿斤,连续七年居全国首位,将1200亿斤用科学记数法表示为 1.2×1011斤.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将1200亿斤用科学记数法表示应为1.2×1011斤.故答案为:1.2×1011【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(3.00分)在函数y=中,自变量x的取值范围是x≥﹣2且x≠0.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x+2≥0且x≠0,解得x≥﹣2且x≠0.故答案为:x≥﹣2且x≠0.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.(3.00分)如图,在平行四边形ABCD中,添加一个条件AB=BC或AC⊥BD 使平行四边形ABCD是菱形.【分析】根据菱形的判定方法即可判断.【解答】解:当AB=BC或AC⊥BD时,四边形ABCD是菱形.故答案为AB=BC或AC⊥BD.【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是记住菱形的判定方法.4.(3.00分)掷一枚质地均匀的骰子,向上一面的点数为5的概率是.【分析】利用随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数进行计算即可.【解答】解:掷一枚质地均匀的骰子,向上一面的点数为5的概率是:,故答案为:.【点评】此题主要考查了概率公式,关键是掌握概率的计算方法.5.(3.00分)若关于x的一元一次不等式组有2个负整数解,则a的取值范围是﹣3≤a<﹣2.【分析】先求出每个不等式的解集,再求出不等式组的解集和已知得出a的范围即可.【解答】解:∵解不等式①得:x>a,解不等式②得:x<2,又∵关于x的一元一次不等式组有2个负整数解,∴﹣3≤a<﹣2,故答案为:﹣3≤a<﹣2.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集和已知得出关于a的不等式是解此题的关键.6.(3.00分)如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为5.【分析】连接OC,由垂径定理知,点E是CD的中点,AE=CD,在直角△OCE 中,利用勾股定理即可得到关于半径的方程,求得圆半径即可.【解答】解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=x﹣1,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣1)2,解得:x=5,∴⊙O的半径为5,故答案为:5.【点评】本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键.7.(3.00分)用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为.【分析】设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,然后求出r后利用勾股定理计算圆锥的高.【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=1,所以此圆锥的高==.故答案为.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.8.(3.00分)如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为2.【分析】作DC关于AB的对称点D′C′,以BC中的O为圆心作半圆O,连D′O分别交AB及半圆O于P、G.将PD+PG转化为D′G找到最小值.【解答】解:如图:取点D关于直线AB的对称点D′.以BC中点O为圆心,OB为半径画半圆.连接OD′交AB于点P,交半圆O于点G,连BG.连CG并延长交AB于点E.由以上作图可知,BG⊥EC于G.PD+PG=PD′+PG=D′G由两点之间线段最短可知,此时PD+PG最小.∵D′C=4,OC′=6∴D′O=∴D′G=2∴PD+PG的最小值为2故答案为:2【点评】本题考查线段和的最小值问题,通常思想是将线段之和转化为固定两点之间的线段和最短.9.(3.00分)Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是3.6或4.32或4.8.=6,找出所有可【分析】在Rt△ABC中,通过解直角三角形可得出AC=5、S△ABC能的剪法,并求出剪出的等腰三角形的面积即可.【解答】解:在Rt△ABC中,∠ACB=90°,AB=3,BC=4,∴AB==5,S=AB•BC=6.△ABC沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:①当AB=AP=3时,如图1所示,S等腰△ABP=S△ABC=×6=3.6;②当AB=BP=3,且P在AC上时,如图2所示,作△ABC的高BD,则BD===2.4,∴AD=DP==1.8,∴AP=2AD=3.6,∴S=S△ABC=×6=4.32;等腰△ABP④当CB=CP=4时,如图3所示,S等腰△BCP=S△ABC=×6=4.8.综上所述:等腰三角形的面积可能为3.6或4.32或4.8.故答案为3.6或4.32或4.8.【点评】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的剪法,并求出剪出的等腰三角形的面积是解题的关键.10.(3.00分)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则S n=()n.【分析】由AB1为边长为2的等边三角形ABC的高,利用三线合一得到B1为BC的中点,求出BB1的长,利用勾股定理求出AB1的长,进而求出第一个等边三角形AB1C1的面积,同理求出第二个等边三角形AB2C2的面积,依此类推,得到第n个等边三角形AB n C n的面积.【解答】解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=1,AB=2,根据勾股定理得:AB1=,∴第一个等边三角形AB1C1的面积为×()2=()1;∵等边三角形AB1C1的边长为,AB2⊥B1C1,∴B1B2=,AB1=,根据勾股定理得:AB2=,∴第二个等边三角形AB2C2的面积为×()2=()2;依此类推,第n个等边三角形AB n C n的面积为()n.故答案为:()n.【点评】此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.二、选择题(每题3分,满分30分)11.(3.00分)下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a9,不符合题意;B、原式=27a6,不符合题意;C、原式=a2﹣2ab+b2,不符合题意;D、原式=6a2,符合题意.故选:D.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.12.(3.00分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故此选项错误.故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.13.(3.00分)如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是()A.3 B.4 C.5 D.6【分析】左视图底面有2个小正方体,主视图与左视图相同,则可以判断出该几何体底面最少有2个小正方体,最多有4个.根据这个思路可判断出该几何体有多少个小立方块.【解答】解:左视图与主视图相同,可判断出底面最少有2个,最多有4个小正方体.而第二层则只有1个小正方体.则这个几何体的小立方块可能有3或4或5个.故选:D.【点评】本题考查了由三视图判断几何体,难度不大,主要考查了考生的空间想象能力以及三视图的相关知识.14.(3.00分)某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91 B.中位数是90 C.众数是94 D.极差是20【分析】直接利用平均数、中位数、众数以及极差的定义分别分析得出答案.【解答】解:A、平均分为:(94+98+90+94+74)=90(分),故此选项错误;B、五名同学成绩按大小顺序排序为:74,90,94,94,98,故中位数是94分,故此选项错误;C、94分、98分、90分、94分、74分中,众数是94分.故此选项正确;D、极差是98﹣74=24,故此选项错误.故选:C.【点评】此题主要考查了平均数、中位数、众数以及极差的定义,正确把握相关定义是解题关键.15.(3.00分)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.7【分析】设共有x个班级参赛,根据第一个球队和其他球队打(x﹣1)场球,第二个球队和其他球队打(x﹣2)场,以此类推可以知道共打(1+2+3+…+x﹣1)场球,然后根据计划安排15场比赛即可列出方程求解.【解答】解:设共有x个班级参赛,根据题意得:=15,解得:x1=6,x2=﹣5(不合题意,舍去),则共有6个班级参赛.故选:C.【点评】此题考查了一元二次方程的应用,关键是准确找到描述语,根据等量关系准确的列出方程.此题还要判断所求的解是否符合题意,舍去不合题意的解.16.(3.00分)已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠2【分析】直接解方程得出分式的分母为零,再利用x≠﹣1求出答案.【解答】解:=1解得:x=m﹣3,∵关于x的分式方程=1的解是负数,∴m﹣3<0,解得:m<3,当x=m﹣3=﹣1时,方程无解,则m≠2,故m的取值范围是:m<3且m≠2.故选:D.【点评】此题主要考查了分式方程的解,正确得出分母不为零是解题关键.17.(3.00分)如图,平面直角坐标系中,点A是x轴上任意一点,BC平行于x轴,分别交y=(x>0)、y=(x<0)的图象于B、C两点,若△ABC的面积为2,则k值为()A.﹣1 B.1 C.D.=S 【分析】连接OC、OB,如图,由于BC∥x轴,根据三角形面积公式得到S△ACB,再利用反比例函数系数k的几何意义得到•|3|+•|k|=2,然后解关于k △OCB的绝对值方程可得到满足条件的k的值.【解答】解:连接OC、OB,如图,∵BC∥x轴,∴S=S△OCB,△ACB=•|3|+•|k|,而S△OCB∴•|3|+•|k|=2,而k<0,∴k=﹣1.故选:A.【点评】本题考查了反比例函数系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.18.(3.00分)如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为()A.15 B.12.5 C.14.5 D.17【分析】过A作AE⊥AC,交CB的延长线于E,判定△ACD≌△AEB,即可得到△ACE是等腰直角三角形,四边形ABCD的面积与△ACE的面积相等,根据S=△ACE×5×5=12.5,即可得出结论.【解答】解:如图,过A作AE⊥AC,交CB的延长线于E,∵∠DAB=∠DCB=90°,∴∠D+∠ABC=180°=∠ABE+∠ABC,∴∠D=∠ABE,又∵∠DAB=∠CAE=90°,∴∠CAD=∠EAB,又∵AD=AB,∴△ACD≌△AEB,∴AC=AE,即△ACE是等腰直角三角形,∴四边形ABCD的面积与△ACE的面积相等,∵S=×5×5=12.5,△ACE∴四边形ABCD的面积为12.5,故选:B.【点评】本题主要考查了全等三角形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.19.(3.00分)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种 B.3种 C.2种 D.1种【分析】设购买篮球x个,排球y个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x、y的方程,由x、y均为非负整数即可得.【解答】解:设购买篮球x个,排球y个,根据题意可得120x+90y=1200,则y=,∵x、y均为非负整数,∴x=1、y=12;x=4、y=8;x=7、y=4;x=10、y=0;所以购买资金恰好用尽的情况下,购买方案有4种,故选:A.【点评】本题主要考查二元一次方程的应用,解题的关键是理解题意,依据相等关系列出方程.20.(3.00分)如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:=AB•AC④OE=AD⑤S△APO=,正确的个数①∠CAD=30°②BD=③S平行四边形ABCD是()A.2 B.3 C.4 D.5【分析】①先根据角平分线和平行得:∠BAE=∠BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;②先根据三角形中位线定理得:OE=AB=,OE∥AB,根据勾股定理计算OC==和OD的长,可得BD的长;③因为∠BAC=90°,根据平行四边形的面积公式可作判断;④根据三角形中位线定理可作判断;=S△EOC=OE•OC=,⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=,代入可得结论.【解答】解:①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正确;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC==,∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD==,∴BD=2OD=,故②正确;③由②知:∠BAC=90°,∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,∴OE=AB,故④不正确;⑤∵四边形ABCD是平行四边形,∴OA=OC=,=S△EOC=OE•OC==,∴S△AOE∵OE∥AB,∴,∴=,===;∴S△AOP故⑤正确;本题正确的有:①②③⑤,4个,故选:C.【点评】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.三、解答题(满分60分)21.(5.00分)先化简,再求值:(1﹣)÷,其中a=sin30°.【分析】根据分式的运算法则即可求出答案,【解答】解:当a=sin30°时,所以a=原式=•=•==﹣1【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.(6.00分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).【分析】(1)利用轴对称的性质画出图形即可;(2)利用旋转变换的性质画出图形即可;(3)BC扫过的面积=﹣,由此计算即可;【解答】解:(1)△ABC关于x轴对称的△A1B1C1如图所示;(2)△ABC绕点O逆时针旋转90°后的△A2B2C2如图所示;(3)BC扫过的面积=﹣=﹣=2π.【点评】本题考查了利用旋转变换作图,轴对称和扇形面积公式等知识,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.(6.00分)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.【分析】(1)由对称轴直线x=2,以及A点坐标确定出b与c的值,即可求出抛物线解析式;(2)由抛物线的对称轴及BC的长,确定出B与C的横坐标,代入抛物线解析式求出纵坐标,确定出B与C坐标,利用待定系数法求出直线AB解析式,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,由已知面积之比求出QH的长,确定出Q横坐标,代入直线AB解析式求出纵坐标,确定出Q坐标,再利用待定系数法求出直线CQ解析式,即可确定出P的坐标.【解答】解:(1)由题意得:x=﹣=﹣=﹣2,c=2,解得:b=4,c=2,则此抛物线的解析式为y=x2+4x+2;(2)∵抛物线对称轴为直线x=﹣2,BC=6,∴B横坐标为﹣5,C横坐标为1,把x=1代入抛物线解析式得:y=7,∴B(﹣5,7),C(1,7),设直线AB解析式为y=kx+2,把B坐标代入得:k=﹣1,即y=﹣x+2,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,可得△AQH∽△ABM,∴=,∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:QB=3:5,∵BM=5,∴QH=2或QH=3,当QH=2时,把x=﹣2代入直线AB解析式得:y=4,此时Q(﹣2,4),直线CQ解析式为y=x+6,令y=0,得到x=﹣6,即P(﹣6,0);当QH=3时,把x=﹣3代入直线AB解析式得:y=5,此时Q(﹣3,5),直线CQ解析式为y=x+,令y=0,得到x=﹣13,此时P (﹣13,0),综上,P的坐标为(﹣6,0)或(﹣13,0).【点评】此题考查了待定系数法求二次函数解析式,二次函数性质,以及二次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.24.(7.00分)为响应党的“文化自信”号召,某校开展了古诗词诵读大赛活动,现随机抽取部分同学的成绩进行统计,并绘制成如下的两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a=30,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?【分析】(1)先根据E等级人数及其占总人数的比例可得总人数,再用D等级人数除以总人数可得a的值,用总人数减去其他各等级人数求得C等级人数可补全图形;(2)用360°乘以A等级人数所占比例可得;(3)用总人数乘以样本中E等级人数所占比例.【解答】解:(1)∵被调查的总人数为10÷=50(人),∴D等级人数所占百分比a%=×100%=30%,即a=30,C等级人数为50﹣(5+7+15+10)=13人,补全图形如下:故答案为:30;(2)扇形B的圆心角度数为360°×=50.4°;(3)估计获得优秀奖的学生有2000×=400人.【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(8.00分)某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间s(天)之间的关系如图(1)所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图(2)所示,请结合图象回答下列问题:(1)甲车间每天加工大米20吨,a=15.(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式.(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加。

2018年黑龙江省龙东地区中考数学试卷(含答案解析版) (1) - 副本

2018年黑龙江省龙东地区中考数学试卷(含答案解析版) (1) - 副本

2018年黑龙江省龙东地区中考数学试卷一、填空题(每题3分,满分30分)1.(3.00分)(2018•黑龙江)人民日报2018年2月23日报道,2017年黑龙江粮食总产量达到1203.76亿斤,成功超越1200亿斤,连续七年居全国首位,将1200亿斤用科学记数法表示为斤.2.(3.00分)(2018•黑龙江)在函数y=中,自变量x的取值范围是.3.(3.00分)(2018•黑龙江)如图,在平行四边形ABCD中,添加一个条件使平行四边形ABCD 是菱形.4.(3.00分)(2018•黑龙江)掷一枚质地均匀的骰子,向上一面的点数为5的概率是.5.(3.00分)(2018•黑龙江)若关于x的一元一次不等式组><有2个负整数解,则a的取值范围是.6.(3.00分)(2018•黑龙江)如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O 的半径为.7.(3.00分)(2018•黑龙江)用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为.8.(3.00分)(2018•黑龙江)如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为.9.(3.00分)(2018•黑龙江)Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是.10.(3.00分)(2018•黑龙江)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则S n=.二、选择题(每题3分,满分30分)11.(3.00分)(2018•黑龙江)下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a212.(3.00分)(2018•黑龙江)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.13.(3.00分)(2018•黑龙江)如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是()A.3 B.4 C.5 D.614.(3.00分)(2018•黑龙江)某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91 B.中位数是90 C.众数是94 D.极差是2015.(3.00分)(2018•黑龙江)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.716.(3.00分)(2018•黑龙江)已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠217.(3.00分)(2018•黑龙江)如图,平面直角坐标系中,点A是x轴上任意一点,BC平行于x轴,分别交y=(x>0)、y=(x<0)的图象于B、C两点,若△ABC的面积为2,则k值为()A.﹣1 B.1 C.D.18.(3.00分)(2018•黑龙江)如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为()A.15 B.12.5 C.14.5 D.1719.(3.00分)(2018•黑龙江)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种 B.3种 C.2种 D.1种20.(3.00分)(2018•黑龙江)如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:①∠CAD=30°②BD=③S=AB•AC④OE=AD⑤S△APO=,正确的个数是()平行四边形ABCDA.2 B.3 C.4 D.5三、解答题(满分60分)21.(5.00分)(2018•黑龙江)先化简,再求值:(1﹣)÷,其中a=sin30°.22.(6.00分)(2018•黑龙江)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).23.(6.00分)(2018•黑龙江)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.24.(7.00分)(2018•黑龙江)为响应党的“文化自信”号召,某校开展了古诗词诵读大赛活动,现随机抽取部分同学的成绩进行统计,并绘制成如下的两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a=,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?25.(8.00分)(2018•黑龙江)某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间s(天)之间的关系如图(1)所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图(2)所示,请结合图象回答下列问题:(1)甲车间每天加工大米吨,a=.(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式.(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?26.(8.00分)(2018•黑龙江)如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点F.(1)当点E在线段BD上移动时,如图(1)所示,求证:BC﹣DE=DF.(2)当点E在直线BD上移动时,如图(2)、图(3)所示,线段BC、DE与DF又有怎样的数量关系?请直接写出你的猜想,不需证明.27.(10.00分)(2018•黑龙江)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D 两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?28.(10.00分)(2018•黑龙江)如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO=,点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.。

2018年黑龙江省龙东地区中考数学试卷与答案

2018年黑龙江省龙东地区中考数学试卷与答案

2018年黑龙江省龙东地区中考数学试卷一、填空题(每题3分,满分30分)1.人民日报2018年2月23日报道,2017年黑龙江粮食总产量达到1203.76亿斤,成功超越1200亿斤,连续七年居全国首位,将1200亿斤用科学记数法表示为斤.2.在函数y=中,自变量x的取值范围是.3.如图,在平行四边形ABCD中,添加一个条件使平行四边形ABCD是菱形.4.掷一枚质地均匀的骰子,向上一面的点数为5的概率是.5.若关于x的一元一次不等式组有2个负整数解,则a的取值范围是.6.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.7.用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为.8.如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE 于点G,点P是AB边上另一动点,则PD+PG的最小值为.9.Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是.10.如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则S n=.二、选择题(每题3分,满分30分)11.下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a212.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.13.如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是()A.3 B.4 C.5 D.614.某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91 B.中位数是90 C.众数是94 D.极差是2015.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.716.已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠217.如图,平面直角坐标系中,点A是x轴上任意一点,BC平行于x轴,分别交y=(x>0)、y=(x<0)的图象于B、C两点,若△ABC的面积为2,则k值为()A.﹣1 B.1 C.D.18.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为()A.15 B.12.5 C.14.5 D.1719.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种B.3种C.2种D.1种20.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD 于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:①∠CAD=30°②BD=③S=AB•AC④OE=AD⑤S△APO=,正确的个数是()平行四边形ABCDA.2 B.3 C.4 D.5三、解答题(满分60分)21.(5分)先化简,再求值:(1﹣)÷,其中a=sin30°.22.(6分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).23.(6分)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x 轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.24.(7分)为响应党的“文化自信”号召,某校开展了古诗词诵读大赛活动,现随机抽取部分同学的成绩进行统计,并绘制成如下的两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a=,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?25.(8分)某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间s(天)之间的关系如图(1)所示;未加工大米w(吨)与甲加工时间x (天)之间的关系如图(2)所示,请结合图象回答下列问题:(1)甲车间每天加工大米吨,a=.(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式.(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?26.(8分)如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点F.(1)当点E在线段BD上移动时,如图(1)所示,求证:BC﹣DE=DF.(2)当点E在直线BD上移动时,如图(2)、图(3)所示,线段BC、DE与DF又有怎样的数量关系?请直接写出你的猜想,不需证明.27.(10分)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?28.(10分)如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO=,点P从原点O出发,以每秒一个单位长度的速度沿x 轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.2018年黑龙江省龙东地区中考数学试卷答案1.1.2×10112.x≥﹣2且x≠0.3..5.﹣3≤a<﹣2.6.5.7..8.29.3.6或4.32或4.8.10.•()n﹣1.11.D.12.C.13.D.14.C.15.C.16.D.17.A.18.B.19.B.20.D.21.解:当a=sin30°时,所以a=原式=•=•==﹣122.解:(1)△ABC关于x轴对称的△A1B1C1如图所示;(2)△ABC绕点O逆时针旋转90°后的△A2B2C2如图所示;(3)BC扫过的面积=﹣=﹣=2π.23.解:(1)由题意得:x=﹣=﹣=﹣2,c=2,解得:b=4,c=2,则此抛物线的解析式为y=x2+4x+2;(2)∵抛物线对称轴为直线x=﹣2,BC=6,∴B横坐标为﹣5,C横坐标为1,把x=1代入抛物线解析式得:y=7,∴B(﹣5,7),C(1,7),设直线AB解析式为y=kx+2,把B坐标代入得:k=﹣1,即y=﹣x+2,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,可得△AQH∽△ABM,∴=,∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:QB=3:5,∵BM=5,∴QH=2或QH=3,当QH=2时,把x=﹣2代入直线AB解析式得:y=4,此时Q(﹣2,4),直线CQ解析式为y=x+6,令y=0,得到x=﹣6,即P(﹣6,0);当QH=3时,把x=﹣3代入直线AB解析式得:y=5,此时Q(﹣3,5),直线CQ解析式为y=x+,令y=0,得到x=﹣13,此时P(﹣13,0),综上,P的坐标为(﹣6,0)或(﹣13,0).24.解:(1)∵被调查的总人数为10÷=50(人),∴D等级人数所占百分比a%=×100%=30%,即a=30,C等级人数为50﹣(5+7+15+10)=13人,补全图形如下:故答案为:30;(2)扇形B的圆心角度数为360°×=50.4°;(3)估计获得优秀奖的学生有2000×=400人.25.解:(1)由图象可知,第一天甲乙共加工220﹣185=35吨,第二天,乙停止工作,甲单独加工185﹣165=20吨,则乙一天加工35﹣20=15吨.a=15故答案为:20,15(2)设y=kx+b把(2,15),(5,120)代入解得∴y=35x﹣55(3)由图2可知当w=220﹣55=165时,恰好是第二天加工结束.当2≤x≤5时,两个车间每天加工速度为=55吨∴再过1天装满第二节车厢26.(1)证明:如图1中,在BA上截取BH,使得BH=BE.∵BC=AB=BD,BE=BH,∴AH=ED,∵∠AEF=∠ABE=90°,∴∠AEB+∠FED=90°,∠AEB+∠BAE=90°,∴∠FED=∠HAE,∵∠BHE=∠CDB=45°,∴∠AHE=∠EDF=135°,∴△AHE≌△EDF,∴HE=DF,∴BC﹣DE=BD﹣DE=BE=EH=DF.∴BC﹣DE=DF.(2)解:如图2中,在BC上截取BH=BE,同法可证:DF=EH.可得:DE﹣BC=DF.如图3中,在BA上截取BH,使得BH=BE.同法可证:DF=HE,可得BC+DE=DF.27.解:(1)设A城有化肥a吨,B城有化肥b吨根据题意,得解得答:A城和B城分别有200吨和300吨肥料;(2)设从A城运往C乡肥料x吨,则运往D乡(200﹣x)吨从B城运往C乡肥料(240﹣x)吨,则运往D乡(60+x)吨如总运费为y元,根据题意,则:y=20x+25(200﹣x)+15(240﹣x)+24(60+x)=4x+10040由于函数是一次函数,k=4>0所以当x=0时,运费最少,最少运费是10040元.(3)从A城运往C乡肥料x吨,由于A城运往C乡的运费每吨减少a(0<a<6)元,所以y=y=(20﹣a)x+25(200﹣x)+15(240﹣x)+24(60+x)=(4﹣a)x+10040当0<a≤4时,∵4﹣a≥0∴当x=0时,运费最少;当4<a<6时,∵4﹣a<0∴当x最大时,运费最少.即当x=200时,运费最少.所以:当0<a≤4时,A城化肥全部运往D乡,B城运往C城240吨,运往D乡60吨,运费最少;当4<a<6时,A城化肥全部运往C乡,B城运往C城40吨,运往D乡260吨,运费最少.28.解:(1)在Rt△BOC中,OB=3,sin∠CBO==,设CO=4k,BC=5k,∵BC2=CO2+OB2,∴25k2=16k2+9,∴k=1或﹣1(舍弃),BC=5,OC=4,∵四边形ABCD是菱形,∴CD=BC=5,∴D(5,4).(2)①如图1中,当0≤t≤2时,直线l扫过的图象是四边形CCQP,S=4t.②如图2中,当2<t≤5时,直线l扫过的图形是五边形OCQTA.S=S梯形OCDA﹣S△DQT=×(2+5)×4﹣×(5﹣t)×(5﹣t)=﹣t2+t﹣.(3)如图3中,①当QB=QC,∠BQC=90°,Q(,).②当BC=CQ′,∠BCQ′=90°时,Q′(4,1);③当BC=BQ″,∠CBQ″=90°时,Q″(1,﹣3);综上所述,满足条件的点Q坐标为(,)或(4,1)或(1,﹣3).。

2018年全国中考数学真题黑龙江龙东地区中考数学(解析版-精品文档)

2018年全国中考数学真题黑龙江龙东地区中考数学(解析版-精品文档)

2018年黑龙江省龙东地区初中毕业学业统一考试数学试题(满分120分,考试时间120分钟)一、填空题(每题3分,满分30分)1.(2018黑龙江省龙东地区,1,3分)人民日报2018年2月23日报道,2017年黑龙江粮食总产量达到1203.76亿斤,成功超越1200亿斤,连续七年居全国首位.将1200亿斤用科学记数法表示为________斤.【答案】1.2×1011【解析】根据科学记数法表示较大的数的要求,把1200亿表示为a×10n的形式(其中1≤|a|<10,n为整数)即可.【知识点】科学记数法2.(2018黑龙江省龙东地区,2,3分)在函数y x的取值范围是________.【答案】x≥-2且x≠0【解析】x+2≥0,即x≥-2,又x≠0,∴x≥-2且x≠0.【知识点】函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件3.(2018黑龙江省龙东地区,3,3分)如图,在平行四边形ABCD中,添加一个条件________,使平行四边形ABCD是菱形.【答案】答案不唯一,如∠ABC=90°或AC=BD等.【解析】根据“……的平行四边形是矩形”来判定矩形,常见的有两种思路,一是根据有一个角是直角的平行四边形是矩形;二是根据对角线相等的平行四边形是矩形.【知识点】矩形的判定方法BA D4.(2018黑龙江省龙东地区,4,3分)投掷一枚质地均匀的骰子,向上一面的点数为5的概率是________.【答案】16【解析】骰子有6个 ,每个面上的点数分别为1,2,3,4,5,6,随机投掷一次,每个面向上的机会都是均等的,因此向上一面的点数为5的概率是16. 【知识点】概率的计算公式5.(2018黑龙江省龙东地区,5,3分) 若关于x 的一元一次不等式组0231x a x -⎧⎨-⎩><有2个负整数解,则a 的取值范围是________. 【答案】-3≤a <-2【解析】解x -a >0得x >a ,解2x -3<1得x <2,∵不等式组有解,∴a <x <2,∵不等式组有2个负整数解,∴这2个负整数解为-1和-2,∴-3≤a <-2. 【知识点】6.(2018黑龙江省龙东地区,6,3分)如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB ==1,则⊙O 的半径为________.D【答案】5【解析】连接OC ,∵AB 是⊙O 的直径,CD ⊥AB ,∴CE =12CD ,∵CD =6,∴CE =3.设⊙O 的半径为r ,则OC =r ,∵EB =1,∴OE =4,在Rt △OCE 中,由勾股定理得OE 2+CE 2=OC 2,∴(r -1)2+32=r 2,解得r =5,∴⊙O 的半径为5.D【知识点】垂径定理;勾股定理7.(2018黑龙江省龙东地区,7,3分) 用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为________.【解析】扇形的弧长为904180π⨯⨯=2π,∴该圆锥的底面圆半径为1【知识点】圆锥的侧面展开图;弧长公式;勾股定理;圆的周长公式8.(2018黑龙江省龙东地区,8,3分) 如图,已知正方形ABCD 的边长为4,点E 是AB 边上一动点,连接CE .过点B 作BG ⊥CE 于点G .点P 是AB 边上另一动点,则PD +PG 的最小值为________.AB EP【答案】2【思路分析】由问题“PD +PG ”考虑到“最短路径问题”,点D 为定点,因此考虑作点D 关于AB 轴对称的点M ,连接PM ,GM ,则MP =DP .根据两点之间线段最短,当点M ,P ,G 不在同一条直线上时,PM +PG >MG ,即DP +PG >MG ;当点M ,P ,G 在同一条直线上时,PM +PG =MG ,即DP +PG =MG ,因此,当PD +PG 取最小值时,点M ,P ,G 在同一条直线上,此时,DP +PG =MG .进一步得到:当MG 取得最小值时,DP +PG 随之取得最小值.下面分析MG 何时取得最小值.注意到问题与点G 有关,点G 是△BCG 的直角顶点,△BCG 的斜边为定值,因此,其斜边的一半也为定值,因此取BC 中点N ,连接GN ,则GN 的长为2.结合定点M ,可知MN 也为定值.再分析点G ,无论点E 怎样变化,点G 始终在以N 为圆心,NG 长为半径的圆上.根据三角形两边之差小于第三边,可知,当点M ,G ,N 不在同一直线上时,MG >MN -GN ,进一步可知,当点G 在线段MN 上时,MG =MN -GN ,此时MG 最小,最小值为MN -GN .如答图2所示,易知MN 的长,进一步可得结果.MQM图1图2【解题过程】如图2,作点D 关于AB 轴对称的点M ,取BC 中点N ,连接MN ,交AB 于点P ,以BC为直径画圆,交MN 于点G ,连接并延长CG ,交AB 于点E ,连接BG .则DP =MP ,∴DP +PG =MP +PG =MG=MN -GN .作NQ ⊥AD ,则MNMN -GN=2,∴PD +PG 的最小值为2.【知识点】轴对称的性质;线段的性质;直角三角形斜边上的中线等于斜边的一半;三角形的三边关系9.(2018黑龙江省龙东地区,9,3分) 在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,过点B 的直线把△ABC 分割成两个三角形,使其中只有一个是等腰三角形.则这个等腰三角形的面积是________. 【答案】10825或185或245. 【思路分析】先画出基本图形△ABC ,考虑到分割后的要求,所以用圆规帮助找等腰三角形的顶点.由于其中只有一个是等腰三角形,因此排除作AB 或BC 的垂直平分线.【解题过程】(1)如图1,以B 为圆心,AB 长为半径画圆,交AC 于点D 1,连接BD 1,则△ABD 1是等腰三角形,且△BCD 1不是等腰三角形.作BE ⊥AC ,则AD 1=2AE .∵∠ABC =90°,AB =3,BC =4,∴AC 5,∵S △ABC =12AB ·BC =12AC ·BE ,∴BE =AB BC AC =125,在Rt △ABE 中,由勾股定理得AE =95,∴AD 1=185,∴1ABD S =12AD 1·BE =11812255⨯⨯=10825. (2)如图2,以A 为圆心,AB 长为半径画圆,交AC 于点D 2,连接BD 2,则△ABD 2是等腰三角形,且△BCD 2不是等腰三角形.作BF ⊥AC ,同(1)理可得BF =125,又AD 2=AB =3,∴2ABD S =12AD 2·BF=112325⨯⨯=185. (3)如图3,以C 为圆心,BC 长为半径画圆,交AC 于点D 3,连接BD 3,则△ABD 3是等腰三角形,且△BCD 3不是等腰三角形.作BG ⊥AC ,∴3ABD S =12CD 3·BG =112425⨯⨯=245. 综上,这个等腰三角形的面积是10825或185或245.ACCB图1图2图3【知识点】勾股定理;等腰三角形的性质与判定;三角形的面积公式;尺规作图10.(2018黑龙江省龙东地区,10,3分)如图,已知等边△ABC 的边长是2,以BC 边上的高AB 1为边作等边三角形,得到第一个等边△AB 1C 1;再以等边△AB 1C 1的B 1C 1边上的高AB 2为边作等边三角形,得到第二个等边△AB 2C 2;再以等边△AB 2C 2的B 2C 2边上的高AB 3为边作等边三角形,得到第三个等边△AB 3C 3;…,记△B 1CB 2面积为S 1,△B 2C 1B 3面积为S 2,△B 3C 2B 4面积为S 3,如此下去,则S n =________.C 4C2C 1B 1B等其他形式)【思路分析】首先要明确,图中所有的阴影直角三角形都是含30°的直角三角形,它们都是相似的,对于每一个含30°角的直角三角形,其三边之比为1:2:3.在此基础上,利用相似三角形的性质“相似三角形的面积比等于相似比的平方”求解即可. 【解题过程】依题意得B 1C=1,B 2C =12,B 1B 2=32,又B 1B 2=B 2C 1,∴B 2C 1=32,∵∠C =∠C 1=60°,∠B 1B 2C =∠B 2B 3C 1=90°,∴△B 1B 2C ∽∠B 2B 3C 1,∴1223121214()3B B C B B C S B C S B C ==△△,∴231B B C S △=3412B B C S △;同理可得342B BC S △=34231B B C S △=34×3412B B C S △;453B BC S △=34×34×3412B B C S △;…,∴11n n n B BC S +-△=3(1)433334444n -⨯⨯⨯⨯个相乘…12B B C S △=134n -⎛⎫ ⎪⎝⎭12B B C S △.∵12B B C S △=21212CB B B ⨯⨯=113222⨯⨯=38,∴S n =134n -⎛⎫⎪⎝⎭×38=121332n n -+.【知识点】等边三角形的性质;相似三角形的性质;勾股定理二、选择题(每题3分,满分30分)11.(2018黑龙江省龙东地区,11,3分) 下列各运算中,计算正确的是( )A .a 12÷a 3=a 4B .(3a 2)3=9a 6C .(a -b )2=a 2-ab +b 2D .2a ·3a =6a 2【答案】D .【解析】对于A ,a 12÷a 3=a 9;对于B ,(3a 2)3=27a 6;对于C ,(a -b )2=a 2-2ab +b 2;选项D 正确.故选D .【知识点】同底数幂的除法;幂的乘方;积的乘方;完全平方公式12.(2018黑龙江省龙东地区,12,3分)下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】C .【解析】选项A 是中心对称图形,但不是轴对称图形;选项B 是轴对称图形,但不是中心对称图形;选项C 既是轴对称图形,又是中心对称图形;选项D 是中心对称图形,但不是轴对称图形,故选C . 【知识点】轴对称图形;中心对称图形13.(2018黑龙江省龙东地区,13,3分) 右图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是( ) A .3B .4C .5D .6主视图左视图【答案】D【解析】通过画俯视图,可以清晰地反映出这个几何体的组成情况:121121111221112由此可知,组成这个几何体的小正方体的个数可能是5个或4个或3个,不可能是6个.故选D . 【知识点】三视图14.(2018黑龙江省龙东地区,14,3分) 某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是( ) A .平均分是91 B .中位数是90 C .众数是94 D .极差是20【答案】C【解析】先确定众数是94,选项C 正确,故选C .此外,这组数据的平均数是90;中位数是94;极差是24.【知识点】平均数;中位数;众数;极差15.(2018黑龙江省龙东地区,15,3分) 某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?( )A .4B .5C .6D .7【答案】C【解析】设有x 个班级参赛,依题意列方程得1(1)152x x -=,解得x 1=-5(舍去),x 2=6,∴有6个班级参赛.【知识点】一元二次方程的实际应用16.(2018黑龙江省龙东地区,16,3分)已知关于x 的分式方程211m x -=+的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2 C .m <3 D .m <3且m ≠2【答案】D 【解析】解211m x -=+得x =m -3,∵方程的解是负数,∴m -3<0,∴m <3,∵当x +1=0即x =-1时方程有增根,∴m -3≠-1,即m ≠2.∴m <3且m ≠2.故选D . 【知识点】分式方程的解法;分式方程的增根17.(2018黑龙江省龙东地区,17,3分) 如图,平面直角坐标系中,点A 是x 轴上任意一点,BC ∥x 轴,分别交3y x=(x >0),ky x=(x <0)的图象于B 、C 两点,若△ABC 的面积为2,则k 的值为( ) A .-1B .1C .12-D .12【答案】A【解析】如图,连接OB ,OC ,设BC 与y 轴交于点D ,∵BC ∥x 轴,∴S △OBC =S △ABC =2,∵点B 在反比例函数3y x=的图象上,∴S △OBD =32,∴S △OCD =2-32=12,又∵点C 在反比例函数k y x=的图象上,∴|k |=1,k =±1.∵反比例函数k y x=的图象经过第二象限,∴k <0,∴k =-1.故选A .【知识点】反比例函数的性质;反比例函数中|k |的几何意义;等积变换18.(2018黑龙江省龙东地区,18,3分) 如图,四边形ABCD 中,AB =AD ,AC =5,∠DAB =∠DCB=90°,则四边形ABCD 的面积为( ) A .15B .12.5C .14.5D .17ACBD【答案】B【解析】延长CB 至点M ,使BM =DC ,连接AM .∵∠DAB =∠DCB =90°,∴∠ADC +∠ABC =360°-(∠DAB +∠DCB )=180°,∵∠ABC +∠ABM =180°,∴∠ADC =∠ABM .∵AB =AD ,∴△ADC ≌△ABM ,∴AC =AM ,∠DAC =∠BAM ,∵∠DAC +∠CAB =90°,∴∠BAM +∠CAB =90°,即∠CAM =90°,∵AC =5,∴AM =5,∴S △ACM =12×5×5=252.∵△ADC ≌△ABM ,∴S △ADC ≌S △ABM ,∴S 四边形ABCD=S △ACM=252=12.5.故选B .MACBD【知识点】全等三角形的判定和性质;三角形的面积;四边形的内角和19.(2018黑龙江省龙东地区,19,分值) 为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( )A .4种B .3种C .2种D .1种【答案】B【思路分析】先确定问题中的已知量和未知量,再找到它们之间的相等关系,进一步确定:①篮球和排球都要购买;②两种球的个数均为整数个;③资金恰好用完.【解题过程】解:设购买篮球x 个,排球y 个,依题意列方程得120x +90y =1200,化简得4x +3y =40,∵x ,y 均为正整数,∴74x y =⎧⎨=⎩或48x y =⎧⎨=⎩或112x y =⎧⎨=⎩,∴共有3种购买方案,故选B .【知识点】二元一次方程;不定方程的整数解20.(2018黑龙江省龙东地区,20,5分)如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,AE 平分∠BAD ,分别交BC 、BD 于点E 、P ,连接OE ,∠ADC =60°,AB =12BC =1.则下列结论:①∠CAD =30°;②BDS 平行四边形ABCD=AB ·AC ;④OE =14AD ;⑤S △APO是( ) A .2B .3C .4D .5DBE【答案】D【思路分析】由于条件和结论较多,需要逐条分析、综合思考、分层落实.由已知条件容易得到的结论首先是:∠BAD =120°,∠BAE =60°,∠ABE =60°,AB =DC =1,BC =AD =2,OA =OC ,OB =OD ;然后得到的结论是:△ABE 是等边三角形,AB =AE =BE =EC ,OE 是△ABC 的中位线,OE ∥AB ,OE =12AB ;进一步得到的结论是:OP =12BP =13OB =16BD ,∠EAC =∠ECA =30°,∠BAC =90°.分析到这个程度后,问题自然就获解了.【解题过程】解:对于①,∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∠ABC =∠ADC ,AB∥CD ,∴∠BAD +∠ADC =180°,∵∠ADC =60°,∴∠BAD =120°,∠ABC =60°,∵AE 平分∠BAD ,∴∠BAE =60°,∴△ABE 是等边三角形,又∵AB =12BC =1,∴AB =AE =BE =EC =1,∴∠EAC =∠ECA =30°,∴∠CAD =30°,故①正确;对于②,∵BD =2BO ,BO AO =12AC ,AC BD 对于③,S 平行四边形ABCD =AB ·AC 刚好符合平行四边形的面积公式,故③正确; 对于④,OE =12AB ,AB =12AD ,∴OE =14AD ,故④正确;对于⑤,由③得S 平行四边形ABCD =AB ·AC ∵BE =EC ,AO =OC ,∴OE 是△ABC 的中位线,∴OE ∥AB ,OE =12AB ,∴OP =12BP =13OB =16BD ,∴S △APO =16S △ABD =112S 平行四边形ABCD,故⑤正确. 【知识点】平行四边形的性质;等边三角形的判定和性质;等腰三角形的判定和性质;三角形的中位线;比例线段;相似三角形的性质;勾股定理;三角形的面积公式;平行四边形的面积公式三、解答题(本大题共8小题,满分60分)21.(2018黑龙江省龙东地区,21,5分) 先化简,再求值:2221(1)21a a a a a a --÷+++,其中a =sin30°.【思路分析】先化简分式,再求a 的值,最后把a 的值代入计算即可.【解题过程】解:原式=2222(1)()(1)(1)a a a a a a a a a a ++-+-++=22(1)(1)(1)(1)a a a a a a +++-=1aa -. 当a =sin30°=12时,原式=-1.【知识点】分式的化简求值;特殊角的锐角三角函数值;平方差公式;完全平方公式22.(2018黑龙江省龙东地区,22,6分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (1,4),B (1,1),C (3,1). (1)画△ABC 关于x 轴对称的△A 1B 1C 1;(2)画△ABC 绕点O 逆时针旋转90°后的△A 2B 2C 2;(3)在(2)的条件下,求线段BC 扫过的面积(结果保留π).【思路分析】先按要求作图,再分析线段BC扫过的面积.将BC扫过的面积如答图1和答图2进行转化,在答图1中,S阴影=2222OB C OBCCOC BOBS S S S+--△△扇形扇形=22COC BOBS S-扇形扇形,在答图2中,S阴影=2COC MONS S-扇形扇形=2MCC NS扇环,由此可以得到结论:一条线段绕一点旋转,其扫过的面积等于一个扇环的面积.进一步地,可以得到一个解法:求一条线段绕一点旋转后扫过的面积,就是求一个扇环的面积,而求一个扇环的面积,就是用较大的扇形的面积减去较小的扇形的面积.【解题过程】解:(1)如图所示,△A1B1C1即为所求作的三角形;(2)如图所示,△A2B2C2即为所求作的三角形;(3)∵OC=OB∴S=221()4OC OBπ-=2π.答图1 答图2【知识点】轴对称作图;旋转作图;扇形的面积公式23.(2018黑龙江省龙东地区,23,6分) 如图,抛物线y =x 2+bx +c 与y 轴交于点A (0,2),对称轴为直线x =-2,平行于x 轴的直线与抛物线交于B 、C 两点,点B 在对称轴左侧,BC =6.(1)求此抛物线的解析式;(2)点P 在x 轴上,直线CP 将△ABC 面积分成2:3的两部分,请直接写出P 点坐标.【思路分析】对于(1),根据点A 坐标可求c 的值,根据对称轴直线可求b 的值;对于(2),先确定点C 和点B 的坐标,计算出△ABC 的面积,再根据直线CP 分△ABC 面积之比确定点P 存在的可能性有两种,结合两种情况,分别确定点P 的位置即可.【解题过程】解:(1)∵点A (0,2)在抛物线y =x 2+bx +c 上,∴c =2,∵抛物线对称轴为直线x =-2,∴221b-=-⨯,∴b =4,∴抛物线的解析式为y =x 2+4x +2.(2)点P 的坐标为(-5,0)或(-13,0),理由如下:∵抛物线对称轴为直线x =-2,BC ∥x 轴,且BC =6,∴点C 的横坐标为6÷2-2=1,把x =1代入y =x 2+4x +2得y =7,∴C (1,7),∴△ABC 中BC 边上的高为7-2=5,∴S △ABC =12×6×5=15.令y =7,得x 2+4x +2=7,解得x 1=1,x 2=-5,∴B (-5,7),∴AB =线CP 交AB 于点Q ,∵直线CP 将△ABC 面积分成2:3的两部分,∴符合题意的点P 有两个,对应的点Q 也有两个.①当AQ 1:BQ 1=2:3时,作Q1M 1⊥y 轴,Q 1N 1⊥BC ,则AQ 1=Q 1M 1=2,BQ 1=Q 1N 1=3,Q 1(-2,4),∵C (1,7),∴直线CQ 1的解析式为y =x +5,令y =0,则x =-5,∴P 1(-5,0); ②当BQ 2:AQ 2=2:3时,作Q 2M 2⊥y 轴,Q 2N 2⊥BC ,则AQ 2=Q 2M 2=3,BQ 2=Q 2N 2=2,Q 2(-3,5),∵C (1,7),∴直线CQ 2的解析式为y =12x +132,令y =0,则x =-13,∴P 2(-13,0)综上,点P 的坐标为(-5,0)或(-13,0).【知识点】待定系数法;二次函数的性质;一次函数的性质;三角形的面积公式;平行线分线段成比例24.(2018黑龙江省龙东地区,24,7分) 为响应党的“文化自信”号召,某校开展了古诗词诵读大赛活动.现随机抽取部分同学的成绩进行统计,并绘制成如下的两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a =________,并把频数分布直方图补充完整; (2)求扇形B 的圆心角度数;(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?【思路分析】根据E 组频数和该组对应的扇形圆心角度数,可求得样本容量,再根据各组频数可求得C 组频数,根据D 组频数和样本容量可求得D 组所占百分比,根据样本中获得优秀奖的学生人数和样本容量,可以估计获得优秀奖的学生人数. 【解题过程】解:(1)依题意得7210360=样本容量,∴样本容量=50,即一共调查了50人. 1530%50=,∴a =30,C 组频数为50-5-7-15-10=13,补充频数直方图如下:(2)依题意得7=36050B ︒扇形的圆心角,∴扇形B 的圆心角为50.4°.(3)10200050⨯=400,答:估计获得优秀奖的学生有400人. 【知识点】频数分布直方图;扇形统计图;用样本估计总体25.(2018黑龙江省龙东地区,25,8分) 某市制米厂接到加工大米任务,要求5天内加工完220吨大米.制米厂安排甲、乙两车间共同完成加工任务.乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y (吨)与甲车间加工时间x (天)之间的关系如图(1)所示;未加工大米w (吨)与甲车间加工时间x (天)之间的关系如图(2)所示.请结合图象回答下列问题: (1)甲车间每天加工大米________吨,a =________;(2)求乙车间维修设备后,乙车间加工大米数量y (吨)与x (天)之间的函数关系式; (3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?图1 图2【思路分析】本题重在理解题意和读懂图象:对于图1,应理解以下含义:120吨大米220吨大米对于图2,应理解以下含义:185吨减少到165吨220吨减少到185吨对于(1),读懂图象即可求解;对于(2),根据两个点的坐标,用待定系数法即可求解; 对于(3),根据题意列一元一次方程即可求解.【解题过程】解:(1)根据题意,由图2可得,甲车间每天加工大米18516521--=20(吨),乙车间每天加工大米220-185-20=15(吨), 故填:20,15.(2)如图,设直线AB 解析式为y =kx +b , 由(1)知,a =15,∴A (2,15), 又∵B (5,120), 代入y =kx +b 得2155120k b k b +=⎧⎨+=⎩,解得3555k b =⎧⎨=-⎩,∴乙车间维修设备后,乙车间加工大米数量y (吨)与x (天)之间的函数关系式为y =35x -55(2≤x ≤5).(3)①设加工m天装满第一节车厢,依题意列方程得20m+15×1+35(m-2)=55,解得m=2.②设再加工n天恰好装满第二节车厢,依题意列方程得20n+35n=55,解得n=1.答:加工2天装满第一节车厢,再加工1天恰好装满第二节车厢.【知识点】一次函数的实际应用;待定系数法;一元一次方程的实际应用26.(2018黑龙江省龙东地区,26,8分)如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点F.(1)当点E在线段BD上移动时,如图1所示,求证:BC-DE;(2)当点E在直线BD上移动时,如图2、图3所示,线段BC、DE与DF又有怎样的数量关系?请直接写出你的猜想,不需证明.图1 图2 图3【思路分析】由BC =BD 很容易发现:BC -DE =BE ,因此,此题事实上就是去判断BE 与DF 的数量关系,因此有两种基本思路,一是将DF 向BE 靠拢,二是将BE 向DF 的数量关系,因此在“靠拢”的过程中要思考构造等腰直角三角形的几何模型.思路1:根据前面的思考,结合∠ABD =90°,因此考虑在AB 上取一点G ,使BG =BE ,如答图1,连接EG ,则BE EG ,接下来证明EG =DF 即可.思路2:根据前面的思考,结合∠BDC =45°,其对顶角也是45°,因此考虑过点F 作BD 的垂线,构造等腰直角三角形DFG ,则FG DF ,接下来证明FG =BE 即可.答图2,答图3,答图4,答图5都体现了这种思路.此外,从相似三角形的角度也可以解决此题.【解题过程】解:(1)证法1:如答图1,在AB 上取一点G ,使BG =BE ,连接EG ,∵∠CBD =90°,∴∠ABD =90°,∴△GBE 是等腰直角三角形,∠BGE =45°,∴∠AGE =135°.∵BC =BD ,∴△BCD 是等腰直角三角形,∴∠BDC =45°,∴∠EDF =135°,∴∠AGE =∠EDF .∵BC =BD ,BC =BA ,∴BA =BD ,∴AG =E D .∵∠AEF =90°,∴∠FED +∠AEB =90°,∵∠ABD =90°,∴∠GAE +∠AEB=90°,∴∠FED =∠EAG ,∴△FED ≌△EAG ,∴DF =GE .在Rt △BEG 中,由勾股定理得BE GE ,∵BE =BD -DE =BC -DE ,∴BC -DE DF .证法2:如答图2,作FG ⊥BD ,交BD 延长线于点G ,连接EC ,则EA =EC ,∠BAE =∠BCE ,∵ABE =90°,∴∠BAE +∠AEB =90°,∵∠AEF =90°,∴∠AEB +∠FEG =90°,∴∠FEG =∠BCE ,∵BC =BD ,∴∠BCD =45°,∴∠BDC =45°,∴∠FDG =45°,∴∠ECD =45°-∠BCE ,∠EFD =45°-∠FEG ,∴∠ECD =∠EFD ,∴EC =EF ,∴AE =EF ,∴△ABE ≌△EGF ,∴BE =GF ,在Rt △DFG 中,由勾股定理得GF DF ,∵BE =BD -DE =BC -DE ,∴BC -DE DF .方法3:如答图3,取点F 关于BD 轴对称的点H ,作FG ⊥BD ,交BD 延长线于点G .类比方法2,问题可证.方法4:如答图4,连接AD ,作EH ⊥BD ,交AD 于点H ,作FG ⊥BD ,交BD 延长线于点G .先证明△AHE ≌△FDE ,得AE =EF ,再证明△ABE ≌△EGF ,问题可证.方法5:作FG ⊥BD ,交BD 延长线于点G .∵∠EAB =∠FEG ,∠ABE =∠EGF =90°,∴△ABE ∽△EGF ,∴BE GF AB EG =,∵AB =BD ,DG =GF ,∴BE DG BD EG =,即BE DGBE ED ED DG=++,∴BE DG ED ED =,∴BE =DG ,∴BE =GF ,在Rt △DFG 中,由勾股定理得GF DF ,∵BE =BD -DE =BC -DE ,∴BC -DE DF .(2)图2中,猜想DE-BCDF.图3中,猜想BC+DEDF.答图1 答图2 答图3答图4 答图5【知识点】全等三角形的判定和性质;相似三角形的判定和性质;勾股定理27.(2018黑龙江省龙东地区,27,10分)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产.已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨.从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?【思路分析】对于(1),用一元一次方程或二元一次方程组的知识即可求解;对于(2),要先理顺从A、B两城向C、D两乡调运肥料的吨数,再根据运费标准即可写出总运费与x的相等关系,根据问题的实际意义得到自变量x 的取值范围,最后确定最少总运费即可;对于(3),解题的基本思路与(2)相同,但由于介入了参数a ,所以要通过分类讨论分别确定各种情况下的最少总运费.x )300200260240D 乡C 乡B 城A 城【解题过程】解:(1)设A 城有m 吨肥料,B 城有n 吨肥料, 依题意列方程组得500100m n m n +=⎧⎨+=⎩,解得200300m n =⎧⎨=⎩,∴A 城有200吨肥料,B 城有300吨肥料.(2)依题意得y =20x +25(200-x )+15(240-x )+24[300-(240-x )]=4x +10040,∵020002400300(240)0x x x x ≥⎧⎪-≥⎪⎨-≥⎪⎪--≥⎩,∴0≤x ≤200. 又∵4>0,∴y 随x 的增大而增大, ∴当x =0时,y 最小=10040(元). 答:最少总运费为10040元. (3)设减少运费后,总运费为w 元,w =(20-a )x +25(200-x )+15(240-x )+24[300-(240-x )]=(4-a )x +10040(0≤x ≤200) ①当0<a <4时,4-a >0,w 随x 的增大而增大, ∴当x =0时,w 最小=10040元; ②当a =4时,w =10040元,∴各种方案费用一样多,均为10040元;③当4<a <6时,4-a <0,此时,x 越大,w 越小, ∴当x =200时,总运费最少,调运方案为:从A 城运往C 乡200吨,从A 城运往D 乡0吨,从B 城运往C 乡40吨,从B 城运往D 乡260吨.【知识点】一元一次方程的实际应用;二元一次方程组的实际应用;一次函数的性质28.(2018黑龙江省龙东地区,28,10分) 如图,在平面直角坐标系中,菱形ABCD 的边AB 在x轴上,点B 坐标(-3,0),点C 在y 轴正半轴上,且sin ∠CBO =45.点P 从原点O 出发,以每秒一个单位长度的速度沿x 轴正方向移动,移动时间为t (0≤t ≤5)秒,过点P 作平行于y 轴的直线l ,直线l 扫过四边形OCDA 的面积为S . (1)求点D 坐标;(2)求S 关于t 的函数关系式;(3)在直线l 移动过程中,l 上是否存在一点Q ,使以B 、C 、Q 为顶点的三角形是等腰直角三角形?若存在,直接写出Q 点的坐标;若不存在,请说明理由.【思路分析】对于(1),根据点B 坐标和锐角三角函数值可求OC 和BC 的长,得到点C 的坐标,根据菱形的性质得到CD 的长,从而得到点D 的坐标;对于(2),分两种情况,第一种,直线l 扫过的图形是矩形,利用矩形面积公式即可求解,第二种,直线l 扫过的图形是矩形和梯形的组合图形,分别利用面积公式即可求解;对于(3),分三种情况讨论,根据等腰直角三角形的性质,求解过程用全等三角形的判定和性质即可.【解题过程】解:(1)∵点B 坐标(-3,0),∴OB =3,∵sin ∠CBO =45,∴OC =4,BC =5,C (0,4).∵菱形ABCD ,∴CD =BC =BA =5,CD ∥BA ,∴D (5,4). (2)依题意知OP =t ,由(1)知OC =4,OA =BA -OB =2. ①当0≤t ≤2时,如答图1,S =OP ×OC =4t ;②当2<t ≤5时,如答图2,AP =OP -OA =t -2,∵BC ∥AD ,∴∠CBO =∠SAP ,∴△CBO ∽△SAP ,∴SP AP CO BO =,∴243SP t -=,∴SP =4833t -,∴S △APS =12AP SP ⨯⨯=148(2)()233t t ⨯--=2288333t t -+,∴S OASRC =S 矩形OPRC -S △APS =4t -(2288333t t -+)=22208333t t -+-.综上,S 关于t 的函数关系式为S =24(02)2208(25)333tt t t t ≤≤⎧⎪⎨-+-<≤⎪⎩.答图1答图2(3)点Q 的坐标为(12,12)或(1,-3)或(4,1).①如答图3,当BQ =CQ 时,延长PQ 交CD 于点M ,∵∠BQC =90°,∴∠BQP +∠CQM =90°,∵∠CQM +∠QCM =90°,∴∠BQP =∠QCM ,∴△BQP ≌△QCM ,∴CM =QP ,QM =BP ,又∵CM =OP ,∴OP =QP =t ,∴QM =PM -QP =4-t ,BP =BO +OP =3+t ,∴4-t =3+t ,∴t =12,∴Q 1(12,12). ②如答图4,当BQ =BC 时,∵∠CBQ =90°,∴∠CBO +∠PBQ =90°,∵∠PBQ +∠BQP =90°,∴∠CBO =∠BQP ,∴△CBO ≌△BQP ,∴BP =CO =4,PQ =OB =3,∴OP =BP -OB =1,∴Q 2(1,-3).③如答图5,当CB =CQ 时,∵∠BCQ =90°,∴∠BCO +∠OCQ =90°,∵∠OCQ +∠QCM =90°,∴∠BCO =∠QCM ,∴△BCO ≌△QCM ,∴CM =CO =4,MQ =OB =3,∴PQ =MP -MQ =1,∴Q 3(4,1). 综上,点Q 的坐标为(12,12)或(1,-3)或(4,1).答图3答图4答图5【知识点】解直角三角形;全等三角形的判定和性质;菱形的性质;相似三角形的判定和性质。

2018黑龙江龙东地区中考数学试卷(含解析)

2018黑龙江龙东地区中考数学试卷(含解析)

2018年黑龙江省龙东地区初中毕业学业统一考试数学试题(满分120分,考试时间120分钟)一、填空题(每题3分,满分30分)1.(2018黑龙江省龙东地区,1,3分)人民日报2018年2月23日报道,2017年黑龙江粮食总产量达到1203.76亿斤,成功超越1200亿斤,连续七年居全国首位.将1200亿斤用科学记数法表示为________斤.【答案】1.2×1011【解析】根据科学记数法表示较大的数的要求,把1200亿表示为a×10n的形式(其中1≤|a|<10,n为整数)即可.【知识点】科学记数法2.(2018黑龙江省龙东地区,2,3分)在函数2xyx+=中,自变量x的取值范围是________.【答案】x≥-2且x≠0【解析】由2x+得x+2≥0,即x≥-2,又x≠0,∴x≥-2且x≠0.【知识点】函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件3.(2018黑龙江省龙东地区,3,3分)如图,在平行四边形ABCD中,添加一个条件________,使平行四边形ABCD是菱形.【答案】答案不唯一,如∠ABC=90°或AC=BD等.【解析】根据“……的平行四边形是矩形”来判定矩形,常见的有两种思路,一是根据有一个角是直角的平行四边形是矩形;二是根据对角线相等的平行四边形是矩形.【知识点】矩形的判定方法OB CA D4.(2018黑龙江省龙东地区,4,3分)投掷一枚质地均匀的骰子,向上一面的点数为5的概率是________.【答案】1 6【解析】骰子有6个,每个面上的点数分别为1,2,3,4,5,6,随机投掷一次,每个面向上的机会都是均等的,因此向上一面的点数为5的概率是16.【知识点】概率的计算公式5.(2018黑龙江省龙东地区,5,3分)若关于x的一元一次不等式组231x ax-⎧⎨-⎩><有2个负整数解,则a的取值范围是________.【答案】-3≤a<-2【解析】解x-a>0得x>a,解2x-3<1得x<2,∵不等式组有解,∴a<x<2,∵不等式组有2个负整数解,∴这2个负整数解为-1和-2,∴-3≤a<-2.【知识点】6.(2018黑龙江省龙东地区,6,3分)如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB==1,则⊙O的半径为________.DCE OAB【答案】5【解析】连接OC ,∵AB 是⊙O 的直径,CD ⊥AB ,∴CE =12CD ,∵CD =6,∴CE =3.设⊙O 的半径为r ,则OC =r ,∵EB =1,∴OE =4,在Rt △OCE 中,由勾股定理得OE 2+CE 2=OC 2,∴(r -1)2+32=r 2,解得r =5,∴⊙O 的半径为5.DCE OAB【知识点】垂径定理;勾股定理 7.(2018黑龙江省龙东地区,7,3分) 用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为________. 【答案】15 【解析】扇形的弧长为904180π⨯⨯=2π,∴该圆锥的底面圆半径为1,∴圆锥的高为2241-=15. 【知识点】圆锥的侧面展开图;弧长公式;勾股定理;圆的周长公式 8.(2018黑龙江省龙东地区,8,3分) 如图,已知正方形ABCD 的边长为4,点E 是AB 边上一动点,连接CE .过点B 作BG ⊥CE 于点G .点P 是AB 边上另一动点,则PD +PG 的最小值为________.GDACB EP【答案】2132-【思路分析】由问题“PD +PG ”考虑到“最短路径问题”,点D 为定点,因此考虑作点D 关于AB 轴对称的点M ,连接PM ,GM ,则MP =DP .根据两点之间线段最短,当点M ,P ,G 不在同一条直线上时,PM +PG >MG ,即DP +PG >MG ;当点M ,P ,G 在同一条直线上时,PM +PG =MG ,即DP +PG =MG ,因此,当PD +PG 取最小值时,点M ,P ,G 在同一条直线上,此时,DP +PG =MG .进一步得到:当MG 取得最小值时,DP +PG 随之取得最小值.下面分析MG 何时取得最小值.注意到问题与点G 有关,点G 是△BCG 的直角顶点,△BCG 的斜边为定值,因此,其斜边的一半也为定值,因此取BC 中点N ,连接GN ,则GN 的长为2.结合定点M ,可知MN 也为定值.再分析点G ,无论点E 怎样变化,点G 始终在以N 为圆心,NG 长为半径的圆上.根据三角形两边之差小于第三边,可知,当点M ,G ,N 不在同一直线上时,MG >MN -GN ,进一步可知,当点G 在线段MN 上时,MG =MN -GN ,此时MG 最小,最小值为MN -GN .如答图2所示,易知MN 的长,进一步可得结果.NMGDA CBEP QE GP NMDACB图1 图2【解题过程】如图2,作点D 关于AB 轴对称的点M ,取BC 中点N ,连接MN ,交AB 于点P ,以BC 为直径画圆,交MN 于点G ,连接并延长CG ,交AB 于点E ,连接BG .则DP =MP ,∴DP +PG =MP +PG =MG =MN -GN .作NQ ⊥AD ,则MN =22MQ NQ +=213,∴MN -GN =213-2,∴PD +PG 的最小值为213-2.【知识点】轴对称的性质;线段的性质;直角三角形斜边上的中线等于斜边的一半;三角形的三边关系 9.(2018黑龙江省龙东地区,9,3分) 在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,过点B 的直线把△ABC 分割成两个三角形,使其中只有一个是等腰三角形.则这个等腰三角形的面积是________. 【答案】10825或185或245. 【思路分析】先画出基本图形△ABC ,考虑到分割后的要求,所以用圆规帮助找等腰三角形的顶点.由于其中只有一个是等腰三角形,因此排除作AB 或BC 的垂直平分线. 【解题过程】(1)如图1,以B 为圆心,AB 长为半径画圆,交AC 于点D 1,连接BD 1,则△ABD 1是等腰三角形,且△BCD 1不是等腰三角形.作BE ⊥AC ,则AD 1=2AE .∵∠ABC =90°,AB =3,BC =4,∴AC =2234+=5,∵S △ABC =12AB ·BC =12AC ·BE ,∴BE =AB BC AC g =125,在Rt △ABE 中,由勾股定理得AE =95,∴AD 1=185,∴1ABD S V =12AD 1·BE =11812255⨯⨯=10825.(2)如图2,以A 为圆心,AB 长为半径画圆,交AC 于点D 2,连接BD 2,则△ABD 2是等腰三角形,且△BCD 2不是等腰三角形.作BF ⊥AC ,同(1)理可得BF =125,又AD 2=AB =3,∴2ABD S V =12AD 2·BF =112325⨯⨯=185. (3)如图3,以C 为圆心,BC 长为半径画圆,交AC 于点D 3,连接BD 3,则△ABD 3是等腰三角形,且△BCD 3不是等腰三角形.作BG ⊥AC ,∴3ABD S V =12CD 3·BG =112425⨯⨯=245.综上,这个等腰三角形的面积是10825或185或245.ED 1ABCF D 2ABCGD 3ACB图1 图2 图3【知识点】勾股定理;等腰三角形的性质与判定;三角形的面积公式;尺规作图 10.(2018黑龙江省龙东地区,10,3分)如图,已知等边△ABC 的边长是2,以BC 边上的高AB 1为边作等边三角形,得到第一个等边△AB 1C 1;再以等边△AB 1C 1的B 1C 1边上的高AB 2为边作等边三角形,得到第二个等边△AB 2C 2;再以等边△AB 2C 2的B 2C 2边上的高AB 3为边作等边三角形,得到第三个等边△AB 3C 3;…,记△B 1CB 2面积为S 1,△B 2C 1B 3面积为S 2,△B 3C 2B 4面积为S 3,如此下去,则S n =________.C 6B 6C 5B 5C 4B 4C 3B 3C 2B 2C 1B 1ABC【答案】2121(3)2n n -+(或写成121332n n -+等其他形式)【思路分析】首先要明确,图中所有的阴影直角三角形都是含30°的直角三角形,它们都是相似的,对于每一个含30°角的直角三角形,其三边之比为1:2:3.在此基础上,利用相似三角形的性质“相似三角形的面积比等于相似比的平方”求解即可.【解题过程】依题意得B 1C =1,B 2C =12,B 1B 2=32,又B 1B 2=B 2C 1,∴B 2C 1=32,∵∠C =∠C 1=60°,∠B 1B 2C =∠B 2B 3C 1=90°,∴△B 1B 2C ∽∠B 2B 3C 1,∴1223121214()3B BC B B C S B C S B C ==△△,∴231B B C S △=3412B B C S △;同理可得342B B C S △=34231B B C S △=34×3412B B C S △;453B B C S △=34×34×3412B B C S △;…,∴11n n n B B C S +-△=3(1)433334444n -⨯⨯⨯⨯1442443个相乘…12B B C S △=134n -⎛⎫ ⎪⎝⎭12B B C S △.∵12B B C S △=21212CB B B ⨯⨯=113222⨯⨯=38,∴S n =134n -⎛⎫⎪⎝⎭×38=121332n n -+. 【知识点】等边三角形的性质;相似三角形的性质;勾股定理二、选择题(每题3分,满分30分)11.(2018黑龙江省龙东地区,11,3分) 下列各运算中,计算正确的是( )A .a 12÷a 3=a 4B .(3a 2)3=9a 6C .(a -b )2=a 2-ab +b 2D .2a ·3a =6a 2 【答案】D .【解析】对于A ,a 12÷a 3=a 9;对于B ,(3a 2)3=27a 6;对于C ,(a -b )2=a 2-2ab +b 2;选项D 正确.故选D . 【知识点】同底数幂的除法;幂的乘方;积的乘方;完全平方公式 12.(2018黑龙江省龙东地区,12,3分)下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】C .【解析】选项A 是中心对称图形,但不是轴对称图形;选项B 是轴对称图形,但不是中心对称图形;选项C 既是轴对称图形,又是中心对称图形;选项D 是中心对称图形,但不是轴对称图形,故选C . 【知识点】轴对称图形;中心对称图形 13.(2018黑龙江省龙东地区,13,3分) 右图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是( ) A .3 B .4 C .5 D .6主视图左视图【答案】D【解析】通过画俯视图,可以清晰地反映出这个几何体的组成情况:121121111221112由此可知,组成这个几何体的小正方体的个数可能是5个或4个或3个,不可能是6个.故选D . 【知识点】三视图 14.(2018黑龙江省龙东地区,14,3分) 某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是( ) A .平均分是91 B .中位数是90 C .众数是94 D .极差是20 【答案】C【解析】先确定众数是94,选项C 正确,故选C .此外,这组数据的平均数是90;中位数是94;极差是24. 【知识点】平均数;中位数;众数;极差 15.(2018黑龙江省龙东地区,15,3分) 某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?( )A .4B .5C .6D .7 【答案】C【解析】设有x 个班级参赛,依题意列方程得1(1)152x x -=,解得x 1=-5(舍去),x 2=6,∴有6个班级参赛. 【知识点】一元二次方程的实际应用16.(2018黑龙江省龙东地区,16,3分)已知关于x 的分式方程211m x -=+的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2C .m <3D .m <3且m ≠2【答案】D 【解析】解211m x -=+得x =m -3,∵方程的解是负数,∴m -3<0,∴m <3,∵当x +1=0即x =-1时方程有增根,∴m -3≠-1,即m ≠2.∴m <3且m ≠2.故选D . 【知识点】分式方程的解法;分式方程的增根 17.(2018黑龙江省龙东地区,17,3分) 如图,平面直角坐标系中,点A 是x 轴上任意一点,BC ∥x 轴,分别交3y x =(x >0),ky x=(x <0)的图象于B 、C 两点,若△ABC 的面积为2,则k 的值为( ) A .-1 B .1 C .12-D .12xyC BOA【答案】A【解析】如图,连接OB ,OC ,设BC 与y 轴交于点D ,∵BC ∥x 轴,∴S △OBC =S △ABC =2,∵点B 在反比例函数3y x =的图象上,∴S △OBD =32,∴S △OCD =2-32=12,又∵点C 在反比例函数ky x=的图象上,∴|k |=1,k =±1.∵反比例函数ky x=的图象经过第二象限,∴k <0,∴k =-1.故选A . xyDCBOA【知识点】反比例函数的性质;反比例函数中|k |的几何意义;等积变换 18.(2018黑龙江省龙东地区,18,3分) 如图,四边形ABCD 中,AB =AD ,AC =5,∠DAB =∠DCB =90°,则四边形ABCD 的面积为( ) A .15 B .12.5 C .14.5 D .17ACBD【答案】B【解析】延长CB至点M,使BM=DC,连接AM.∵∠DAB=∠DCB=90°,∴∠ADC+∠ABC=360°-(∠DAB +∠DCB)=180°,∵∠ABC+∠ABM=180°,∴∠ADC=∠ABM.∵AB=AD,∴△ADC≌△ABM,∴AC=AM,∠DAC=∠BAM,∵∠DAC+∠CAB=90°,∴∠BAM+∠CAB=90°,即∠CAM=90°,∵AC=5,∴AM=5,∴S△ACM=12×5×5=252.∵△ADC≌△ABM,∴S△ADC≌S△ABM,∴S四边形ABCD=S△ACM=252=12.5.故选B.MACBD【知识点】全等三角形的判定和性质;三角形的面积;四边形的内角和19.(2018黑龙江省龙东地区,19,分值)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种B.3种C.2种D.1种【答案】B【思路分析】先确定问题中的已知量和未知量,再找到它们之间的相等关系,进一步确定:①篮球和排球都要购买;②两种球的个数均为整数个;③资金恰好用完.【解题过程】解:设购买篮球x个,排球y个,依题意列方程得120x+90y=1200,化简得4x+3y=40,∵x,y均为正整数,∴74xy=⎧⎨=⎩或48xy=⎧⎨=⎩或112xy=⎧⎨=⎩,∴共有3种购买方案,故选B.【知识点】二元一次方程;不定方程的整数解20.(2018黑龙江省龙东地区,20,5分)如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=12BC=1.则下列结论:①∠CAD=30°;②BD =7;③S平行四边形ABCD=AB·AC;④OE=14AD;⑤S△APO =312,正确的个数是()A.2 B.3 C.4 D.5P ODCAB E【答案】D【思路分析】由于条件和结论较多,需要逐条分析、综合思考、分层落实.由已知条件容易得到的结论首先是:∠BAD=120°,∠BAE=60°,∠ABE=60°,AB=DC=1,BC=AD=2,OA=OC,OB=OD;然后得到的结论是:△ABE是等边三角形,AB=AE=BE=EC,OE是△ABC的中位线,OE∥AB,OE=12AB;进一步得到的结论是:OP=12BP=13OB=16BD,∠EAC=∠ECA=30°,∠BAC=90°.分析到这个程度后,问题自然就获解了.【解题过程】解:对于①,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∠ABC=∠ADC,AB∥CD,∴∠BAD+∠ADC=180°,∵∠ADC=60°,∴∠BAD=120°,∠ABC=60°,∵AE平分∠BAD,∴∠BAE=60°,∴△ABE是等边三角形,又∵AB=12BC=1,∴AB=AE=BE=EC=1,∴∠EAC=∠ECA=30°,∴∠CAD=30°,故①正确;对于②,∵BD=2BO,BO=22AB AO+,AO =12AC,AC =22BC AB-=3,∴BD=7,故②正确;对于③,S平行四边形ABCD=AB·AC刚好符合平行四边形的面积公式,故③正确;对于④,OE=12AB,AB=12AD,∴OE=14AD,故④正确;对于⑤,由③得S 平行四边形ABCD=AB·AC=3.∵BE=EC,AO=OC,∴OE是△ABC的中位线,∴OE∥AB,OE=12AB,∴OP=12BP=13OB=16BD,∴S△APO=16S△ABD=112S平行四边形ABCD=312,故⑤正确.【知识点】平行四边形的性质;等边三角形的判定和性质;等腰三角形的判定和性质;三角形的中位线;比例线段;相似三角形的性质;勾股定理;三角形的面积公式;平行四边形的面积公式三、解答题(本大题共8小题,满分60分)21.(2018黑龙江省龙东地区,21,5分)先化简,再求值:2221(1)21a aa a a a--÷+++,其中a=sin30°.【思路分析】先化简分式,再求a的值,最后把a的值代入计算即可.【解题过程】解:原式=2222(1)()(1)(1)a a a aa aa a a a++-+-++g=22(1)(1)(1)(1)a aa a a a+++-g=1aa-.当a=sin30°=12时,原式=-1.【知识点】分式的化简求值;特殊角的锐角三角函数值;平方差公式;完全平方公式22.(2018黑龙江省龙东地区,22,6分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画△ABC关于x轴对称的△A1B1C1;(2)画△ABC绕点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).xy CAOB【思路分析】先按要求作图,再分析线段BC 扫过的面积.将BC 扫过的面积如答图1和答图2进行转化,在答图1中,S阴影=2222OB C OBC COC BOB S S S S +--△△扇形扇形=22COC BOB S S -扇形扇形,在答图2中,S阴影=2COC MON S S -扇形扇形=2MCC N S 扇环,由此可以得到结论:一条线段绕一点旋转,其扫过的面积等于一个扇环的面积.进一步地,可以得到一个解法:求一条线段绕一点旋转后扫过的面积,就是求一个扇环的面积,而求一个扇环的面积,就是用较大的扇形的面积减去较小的扇形的面积. 【解题过程】解:(1)如图所示,△A 1B 1C 1即为所求作的三角形; (2)如图所示,△A 2B 2C 2即为所求作的三角形; (3)∵OC =2213+=10,OB =2211+=2, ∴S =221()4OC OB π-=2π.xy A 2B 2C 2B 1C 1A 1C A OB xy NM A 2B 2C 2B 1C 1A 1C AO B答图1 答图2【知识点】轴对称作图;旋转作图;扇形的面积公式 23.(2018黑龙江省龙东地区,23,6分) 如图,抛物线y =x 2+bx +c 与y 轴交于点A (0,2),对称轴为直线x =-2,平行于x 轴的直线与抛物线交于B 、C 两点,点B 在对称轴左侧,BC =6. (1)求此抛物线的解析式;(2)点P 在x 轴上,直线CP 将△ABC 面积分成2:3的两部分,请直接写出P 点坐标.xy2-2BACO【思路分析】对于(1),根据点A 坐标可求c 的值,根据对称轴直线可求b 的值;对于(2),先确定点C 和点B 的坐标,计算出△ABC 的面积,再根据直线CP 分△ABC 面积之比确定点P 存在的可能性有两种,结合两种情况,分别确定点P 的位置即可. 【解题过程】解:(1)∵点A (0,2)在抛物线y =x 2+bx +c 上,∴c =2,∵抛物线对称轴为直线x =-2,∴221b-=-⨯,∴b =4,∴抛物线的解析式为y =x 2+4x +2. (2)点P 的坐标为(-5,0)或(-13,0),理由如下:∵抛物线对称轴为直线x =-2,BC ∥x 轴,且BC =6,∴点C 的横坐标为6÷2-2=1,把x =1代入y =x 2+4x+2得y =7,∴C (1,7),∴△ABC 中BC 边上的高为7-2=5,∴S △ABC =12×6×5=15.令y =7,得x 2+4x +2=7,解得x 1=1,x 2=-5,∴B (-5,7),∴AB =52.设直线CP 交AB 于点Q ,∵直线CP 将△ABC 面积分成2:3的两部分,∴符合题意的点P 有两个,对应的点Q 也有两个.①当AQ 1:BQ 1=2:3时,作Q 1M 1⊥y 轴,Q 1N 1⊥BC ,则AQ 1=22,Q 1M 1=2,BQ 1=32,Q 1N 1=3,Q 1(-2,4),∵C (1,7),∴直线CQ 1的解析式为y =x +5,令y =0,则x =-5,∴P 1(-5,0); ②当BQ 2:AQ 2=2:3时,作Q 2M 2⊥y 轴,Q 2N 2⊥BC ,则AQ 2=32,Q 2M 2=3,BQ 2=22,Q 2N 2=2,Q 2(-3,5),∵C (1,7),∴直线CQ 2的解析式为y =12x +132,令y =0,则x =-13,∴P 2(-13,0) 综上,点P 的坐标为(-5,0)或(-13,0).xy 2-2N 1N 2M 2M 1P 2P 1Q 2Q 1BAC O【知识点】待定系数法;二次函数的性质;一次函数的性质;三角形的面积公式;平行线分线段成比例24.(2018黑龙江省龙东地区,24,7分) 为响应党的“文化自信”号召,某校开展了古诗词诵读大赛活动.现随机抽取部分同学的成绩进行统计,并绘制成如下的两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a 的值,a =________,并把频数分布直方图补充完整; (2)求扇形B 的圆心角度数;(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?成绩/分频数/人1009080706050OEDB A151075CAB D E a %72°【思路分析】根据E 组频数和该组对应的扇形圆心角度数,可求得样本容量,再根据各组频数可求得C 组频数,根据D 组频数和样本容量可求得D 组所占百分比,根据样本中获得优秀奖的学生人数和样本容量,可以估计获得优秀奖的学生人数. 【解题过程】解:(1)依题意得7210360=样本容量,∴样本容量=50,即一共调查了50人. 1530%50=,∴a =30,C 组频数为50-5-7-15-10=13,补充频数直方图如下: 13571015AB CDEO5060708090100频数/人成绩/分(2)依题意得7=36050B ︒扇形的圆心角,∴扇形B 的圆心角为50.4°. (3)10200050⨯=400,答:估计获得优秀奖的学生有400人. 【知识点】频数分布直方图;扇形统计图;用样本估计总体 25.(2018黑龙江省龙东地区,25,8分) 某市制米厂接到加工大米任务,要求5天内加工完220吨大米.制米厂安排甲、乙两车间共同完成加工任务.乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y (吨)与甲车间加工时间x (天)之间的关系如图(1)所示;未加工大米w (吨)与甲车间加工时间x (天)之间的关系如图(2)所示.请结合图象回答下列问题:(1)甲车间每天加工大米________吨,a =________;(2)求乙车间维修设备后,乙车间加工大米数量y (吨)与x (天)之间的函数关系式;(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?521a O120y /吨 x /天165185 x /天w /吨220O 125图1图2【思路分析】本题重在理解题意和读懂图象: 对于图1,应理解以下含义:5天后乙车间一共加工了120吨大米5天后,加工完220吨大米甲车间一直以不变的工作效率加工大米2天后,乙车间提高了工作效率乙车间停工1天乙车间1天加工a 吨大米521a O120y /吨 x /天对于图2,应理解以下含义:5天后,大米全部加工完两车间同时加工大米,此时乙车间提高了工作效率2天后,未加工的大米由185吨减少到165吨甲车间单独加工大米,乙车间停工1天后,未加工的大米由220吨减少到185吨两车间同时加工大米最初,有220吨大米待加工165185 x /天w /吨220O 125对于(1),读懂图象即可求解; 对于(2),根据两个点的坐标,用待定系数法即可求解; 对于(3),根据题意列一元一次方程即可求解.【解题过程】解:(1)根据题意,由图2可得,甲车间每天加工大米18516521--=20(吨), 乙车间每天加工大米220-185-20=15(吨), 故填:20,15.(2)如图,设直线AB 解析式为y =kx +b , 由(1)知,a =15,∴A (2,15), 又∵B (5,120), 代入y =kx +b 得2155120k b k b +=⎧⎨+=⎩,解得3555k b =⎧⎨=-⎩,∴乙车间维修设备后,乙车间加工大米数量y (吨)与x (天)之间的函数关系式为y =35x -55(2≤x ≤5).BA521a O120y /吨 x /天(3)①设加工m 天装满第一节车厢, 依题意列方程得20m +15×1+35(m -2)=55,解得m =2. ②设再加工n 天恰好装满第二节车厢,依题意列方程得20n +35n =55,解得n =1.答:加工2天装满第一节车厢,再加工1天恰好装满第二节车厢.【知识点】一次函数的实际应用;待定系数法;一元一次方程的实际应用26.(2018黑龙江省龙东地区,26,8分)如图,在Rt △BCD 中,∠CBD =90°,BC =BD ,点A 在CB 的延长线上,且BA =BC ,点E 在直线BD 上移动,过点E 作射线EF ⊥EA ,交CD 所在直线于点F . (1)当点E 在线段BD 上移动时,如图1所示,求证:BC -DE =22DF ; (2)当点E 在直线BD 上移动时,如图2、图3所示,线段BC 、DE 与DF 又有怎样的数量关系?请直接写出你的猜想,不需证明.FDABCEFDABCEFD ABCE图1 图2图3【思路分析】由BC =BD 很容易发现:BC -DE =BE ,因此,此题事实上就是去判断BE 与DF 的数量关系,因此有两种基本思路,一是将DF 向BE 靠拢,二是将BE 向DF 靠拢.结合问题中的22的数量关系,因此在“靠拢”的过程中要思考构造等腰直角三角形的几何模型. 思路1:根据前面的思考,结合∠ABD =90°,因此考虑在AB 上取一点G ,使BG =BE ,如答图1,连接EG ,则BE =22EG ,接下来证明EG =DF 即可. 思路2:根据前面的思考,结合∠BDC =45°,其对顶角也是45°,因此考虑过点F 作BD 的垂线,构造等腰直角三角形DFG ,则FG =22DF ,接下来证明FG =BE 即可.答图2,答图3,答图4,答图5都体现了这种思路. 此外,从相似三角形的角度也可以解决此题.【解题过程】解:(1)证法1:如答图1,在AB 上取一点G ,使BG =BE ,连接EG ,∵∠CBD =90°,∴∠ABD =90°,∴△GBE 是等腰直角三角形,∠BGE =45°,∴∠AGE =135°.∵BC =BD ,∴△BCD 是等腰直角三角形,∴∠BDC =45°,∴∠EDF =135°,∴∠AGE =∠EDF .∵BC =BD ,BC =BA ,∴BA =BD ,∴AG =E D .∵∠AEF =90°,∴∠FED +∠AEB =90°,∵∠ABD =90°,∴∠GAE +∠AEB =90°,∴∠FED =∠EAG ,∴△FED ≌△EAG ,∴DF =GE .在Rt △BEG 中,由勾股定理得BE =22GE ,∵BE =BD -DE =BC -DE ,∴BC -DE =22DF . 证法2:如答图2,作FG ⊥BD ,交BD 延长线于点G ,连接EC ,则EA =EC ,∠BAE =∠BCE ,∵ABE =90°,∴∠BAE +∠AEB =90°,∵∠AEF =90°,∴∠AEB +∠FEG =90°,∴∠FEG =∠BCE ,∵BC =BD ,∴∠BCD =45°,∴∠BDC =45°,∴∠FDG =45°,∴∠ECD =45°-∠BCE ,∠EFD =45°-∠FEG ,∴∠ECD =∠EFD ,∴EC =EF ,∴AE =EF ,∴△ABE ≌△EGF ,∴BE =GF ,在Rt △DFG 中,由勾股定理得GF =22DF ,∵BE =BD -DE =BC -DE ,∴BC -DE =22DF . 方法3:如答图3,取点F 关于BD 轴对称的点H ,作FG ⊥BD ,交BD 延长线于点G .类比方法2,问题可证.方法4:如答图4,连接AD ,作EH ⊥BD ,交AD 于点H ,作FG ⊥BD ,交BD 延长线于点G .先证明△AHE ≌△FDE ,得AE =EF ,再证明△ABE ≌△EGF ,问题可证.方法5:作FG ⊥BD ,交BD 延长线于点G .∵∠EAB =∠FEG ,∠ABE =∠EGF =90°,∴△ABE ∽△EGF ,∴BE GF AB EG =,∵AB =BD ,DG =GF ,∴BE DG BD EG =,即BE DGBE ED ED DG=++,∴BE DG ED ED =,∴BE =DG ,∴BE =GF ,在Rt △DFG 中,由勾股定理得GF =22DF ,∵BE =BD -DE =BC -DE ,∴BC -DE =22DF . (2)图2中,猜想DE -BC =22DF .图3中,猜想BC +DE =22DF .GFD AB C E G FDAB C EHG F DAB CE答图1 答图2答图3HG FDABCEGFD AB CE答图4 答图5【知识点】全等三角形的判定和性质;相似三角形的判定和性质;勾股定理 27.(2018黑龙江省龙东地区,27,10分) 为了落实党的“精准扶贫”政策,A 、B 两城决定向C 、D 两乡运送肥料以支持农村生产.已知A 、B 两城共有肥料500吨,其中A 城肥料比B 城少100吨.从A 城往C 、D 两乡运肥料的费用分别为20元/吨和25元/吨;从B 城往C 、D 两乡运肥料的费用分别为15元/吨和24元/吨.现C 乡需要肥料240吨,D 乡需要肥料260吨. (1)A 城和B 城各有多少吨肥料?(2)设从A 城运往C 乡肥料x 吨,总运费为y 元,求出最少总运费.(3)由于更换车型,使A 城运往C 乡的运费每吨减少a (0<a <6)元,这时怎样调运才能使总运费最少? 【思路分析】对于(1),用一元一次方程或二元一次方程组的知识即可求解;对于(2),要先理顺从A 、B 两城向C 、D 两乡调运肥料的吨数,再根据运费标准即可写出总运费与x 的相等关系,根据问题的实际意义得到自变量x 的取值范围,最后确定最少总运费即可;对于(3),解题的基本思路与(2)相同,但由于介入了参数a ,所以要通过分类讨论分别确定各种情况下的最少总运费.300-(240-x )300200260240240-x 200-xxD 乡C 乡B 城A 城【解题过程】解:(1)设A 城有m 吨肥料,B 城有n 吨肥料, 依题意列方程组得500100m n m n +=⎧⎨+=⎩,解得200300m n =⎧⎨=⎩,∴A 城有200吨肥料,B 城有300吨肥料.(2)依题意得y =20x +25(200-x )+15(240-x )+24[300-(240-x )]=4x +10040, ∵020002400300(240)0x x x x ≥⎧⎪-≥⎪⎨-≥⎪⎪--≥⎩,∴0≤x ≤200.又∵4>0,∴y 随x 的增大而增大, ∴当x =0时,y 最小=10040(元). 答:最少总运费为10040元.(3)设减少运费后,总运费为w 元,w =(20-a )x +25(200-x )+15(240-x )+24[300-(240-x )]=(4-a )x +10040(0≤x ≤200) ①当0<a <4时,4-a >0,w 随x 的增大而增大, ∴当x =0时,w 最小=10040元; ②当a =4时,w =10040元,∴各种方案费用一样多,均为10040元;③当4<a <6时,4-a <0,此时,x 越大,w 越小, ∴当x =200时,总运费最少,调运方案为:从A 城运往C 乡200吨,从A 城运往D 乡0吨,从B 城运往C 乡40吨,从B 城运往D 乡260吨. 【知识点】一元一次方程的实际应用;二元一次方程组的实际应用;一次函数的性质 28.(2018黑龙江省龙东地区,28,10分) 如图,在平面直角坐标系中,菱形ABCD 的边AB 在x 轴上,点B坐标(-3,0),点C 在y 轴正半轴上,且sin ∠CBO =45.点P 从原点O 出发,以每秒一个单位长度的速度沿x 轴正方向移动,移动时间为t (0≤t ≤5)秒,过点P 作平行于y 轴的直线l ,直线l 扫过四边形OCDA 的面积为S . (1)求点D 坐标;(2)求S 关于t 的函数关系式;(3)在直线l 移动过程中,l 上是否存在一点Q ,使以B 、C 、Q 为顶点的三角形是等腰直角三角形?若存在,直接写出Q 点的坐标;若不存在,请说明理由.xyDAC BO【思路分析】对于(1),根据点B 坐标和锐角三角函数值可求OC 和BC 的长,得到点C 的坐标,根据菱形的性质得到CD 的长,从而得到点D 的坐标;对于(2),分两种情况,第一种,直线l 扫过的图形是矩形,利用矩形面积公式即可求解,第二种,直线l 扫过的图形是矩形和梯形的组合图形,分别利用面积公式即可求解;对于(3),分三种情况讨论,根据等腰直角三角形的性质,求解过程用全等三角形的判定和性质即可.【解题过程】解:(1)∵点B 坐标(-3,0),∴OB =3,∵sin ∠CBO =45,∴OC =4,BC =5,C (0,4).∵菱形ABCD ,∴CD =BC =BA =5,CD ∥BA ,∴D (5,4). (2)依题意知OP =t ,由(1)知OC =4,OA =BA -OB =2. ①当0≤t ≤2时,如答图1,S =OP ×OC =4t ;②当2<t ≤5时,如答图2,AP =OP -OA =t -2,∵BC ∥AD ,∴∠CBO =∠SAP ,∴△CBO ∽△SAP ,∴SP APCO BO=,∴243SP t -=,∴SP =4833t -,∴S △APS =12AP SP ⨯⨯=148(2)()233t t ⨯--=2288333t t -+,∴S OASRC =S 矩形OPRC-S △APS =4t -(2288333t t -+)=22208333t t -+-.综上,S 关于t 的函数关系式为S =24(02)2208(25)333tt t t t ≤≤⎧⎪⎨-+-<≤⎪⎩.xyRD ACBO P xySRDA CBOP答图1答图2(3)点Q 的坐标为(12,12)或(1,-3)或(4,1).①如答图3,当BQ =CQ 时,延长PQ 交CD 于点M ,∵∠BQC =90°,∴∠BQP +∠CQM =90°,∵∠CQM +∠QCM =90°,∴∠BQP =∠QCM ,∴△BQP ≌△QCM ,∴CM =QP ,QM =BP ,又∵CM =OP ,∴OP =QP =t ,∴QM =PM -QP =4-t ,BP =BO +OP =3+t ,∴4-t =3+t ,∴t =12,∴Q 1(12,12).②如答图4,当BQ =BC 时,∵∠CBQ =90°,∴∠CBO +∠PBQ =90°,∵∠PBQ +∠BQP =90°,∴∠CBO =∠BQP ,∴△CBO ≌△BQP ,∴BP =CO =4,PQ =OB =3,∴OP =BP -OB =1,∴Q 2(1,-3). ③如答图5,当CB =CQ 时,∵∠BCQ =90°,∴∠BCO +∠OCQ =90°,∵∠OCQ +∠QCM =90°,∴∠BCO =∠QCM ,∴△BCO ≌△QCM ,∴CM =CO =4,MQ =OB =3,∴PQ =MP -MQ =1,∴Q 3(4,1). 综上,点Q 的坐标为(12,12)或(1,-3)或(4,1).xyMP Q D ACBOxyP QD A C BO xyMPQ DACBO答图3 答图4 答图5【知识点】解直角三角形;全等三角形的判定和性质;菱形的性质;相似三角形的判定和性质。

2018年黑龙江中考数学试卷及答案(word)

2018年黑龙江中考数学试卷及答案(word)

黑龙江省龙东地区2018年中考数学试题一、填空题(每题3分,满分30分)1.人民日报2018年2月23日报道,2017年黑龙江粮食总产量达到1203.76亿斤,成功超越1200亿斤,连续七年居全国首位,将1200亿斤用科学记数法表示为斤.2.在函数y=中,自变量x的取值范围是.3.如图,在平行四边形ABCD中,添加一个条件使平行四边形ABCD 是菱形.4.掷一枚质地均匀的骰子,向上一面的点数为5的概率是.5.若关于x的一元一次不等式组有2个负整数解,则a的取值范围是.6.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.7.用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为.8.如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为.9.Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是.10.如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则S n= .二、选择题(每题3分,满分30分)11.下列各运算中,计算正确的是()A.a12÷a3=a4 B.(3a2)3=9a6 C.(a﹣b)2=a2﹣ab+b2 D.2a•3a=6a212.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.13.如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是()A.3 B.4 C.5 D.614.某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91 B.中位数是90 C.众数是94 D.极差是2015.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.716.已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠217.如图,平面直角坐标系中,点A是x轴上任意一点,BC平行于x轴,分别交y=(x>0)、y=(x<0)的图象于B、C两点,若△ABC的面积为2,则k值为()A.﹣1 B.1 C. D.18.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为() A.15 B.12.5 C.14.5 D.1719.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种B.3种C.2种D.1种20.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:①∠CAD=30°②BD=③S平行四边形ABCD=AB•AC④OE=AD⑤S△APO=,正确的个数是()A.2 B.3 C.4 D.5三、解答题21.(5分)先化简,再求值:(1﹣)÷,其中a=sin30°.22.(6分)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P 点坐标.23.(6分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).24.(7分)为响应党的“文化自信”号召,某校开展了古诗词诵读大赛活动,现随机抽取部分同学的成绩进行统计,并绘制成如下的两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a= ,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?25.(8分)某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间s(天)之间的关系如图(1)所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图(2)所示,请结合图象回答下列问题:(1)甲车间每天加工大米吨,a= .(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式.(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?26.(8分)如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点F.(1)当点E在线段BD上移动时,如图(1)所示,求证:BC﹣DE=DF.(2)当点E在直线BD上移动时,如图(2)、图(3)所示,线段BC、DE与DF又有怎样的数量关系?请直接写出你的猜想,不需证明.27.(10分)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A 城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?28.(10分)如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO=,点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.2018参考答案一、1.2×1011 2. x≥﹣2且x≠0.3. AB=BC或AC⊥BD.4..5.﹣3≤a<﹣2.6. 5.7..8. 29. 3.6或4.32或4.8.10.()n.二、11.D 12. C.13. D.14. C.15. C.16. D.17. A.18. B.19. A.20. C.三、21.解:当a=sin30°时,所以a=原式=•=•==﹣122.解:(1)△ABC关于x轴对称的△A1B1C1如图所示;(2)△ABC绕点O逆时针旋转90°后的△A2B2C2如图所示;(3)BC扫过的面积=﹣=﹣=2π.23.解:(1)由题意得:x=﹣=﹣=﹣2,c=2,解得:b=4,c=2,则此抛物线的解析式为y=x2+4x+2;(2)∵抛物线对称轴为直线x=﹣2,BC=6,∴B横坐标为﹣5,C横坐标为1,把x=1代入抛物线解析式得:y=7,∴B(﹣5,7),C(1,7),设直线AB解析式为y=kx+2,把B坐标代入得:k=﹣1,即y=﹣x+2,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,可得△AQH∽△ABM,∴=,∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:QB=3:5,∵BM=5,∴QH=2或QH=3,当QH=2时,把x=﹣2代入直线AB解析式得:y=4,此时Q(﹣2,4),直线CQ解析式为y=x+6,令y=0,得到x=﹣6,即P(﹣6,0);当QH=3时,把x=﹣3代入直线AB解析式得:y=5,此时Q(﹣3,5),直线CQ解析式为y=x+,令y=0,得到x=﹣13,此时P(﹣13,0),综上,P的坐标为(﹣6,0)或(﹣13,0).24.解:(1)∵被调查的总人数为10÷=50(人),∴D等级人数所占百分比a%=×100%=30%,即a=30,C等级人数为50﹣(5+7+15+10)=13人,补全图形如下:故答案为:30;(2)扇形B的圆心角度数为360°×=50.4°;(3)估计获得优秀奖的学生有2000×=400人.25.解:(1)由图象可知,第一天甲乙共加工220﹣185=35吨,第二天,乙停止工作,甲单独加工185﹣165=20吨,则乙一天加工35﹣20=15吨.a=15故答案为:20,15(2)设y=kx+b把(2,15),(5,120)代入解得∴y=35x﹣55(3)由图2可知当w=220﹣55=165时,恰好是第二天加工结束.当2≤x≤5时,两个车间每天加工速度为=55吨∴再过1天装满第二节车厢26.(1)证明:如图1中,在BA上截取BH,使得BH=BE.∵BC=AB=BD,BE=BH,∴AH=ED,∵∠AEF=∠ABE=90°,∴∠AEB+∠FED=90°,∠AEB+∠BAE=90°,∴∠FED=∠HAE,∵∠BHE=∠CDB=45°,∴∠AHE=∠EDF=135°,∴△AHE≌△EDF,∴HE=DF,∴BC﹣DE=BD﹣DE=BE=EH=DF.∴BC﹣DE=DF.(2)解:如图2中,在BC上截取BH=BE,同法可证:DF=EH.可得:DE﹣BC=DF.如图3中,在BA上截取BH,使得BH=BE.同法可证:DF=HE,可得BC+DE=DF.27.解:(1)设A城有化肥a吨,B城有化肥b吨根据题意,得解得答:A城和B城分别有200吨和300吨肥料;(2)设从A城运往C乡肥料x吨,则运往D乡(200﹣x)吨从B城运往C乡肥料(240﹣x)吨,则运往D乡(60+x)吨如总运费为y元,根据题意,则:y=20x+25(200﹣x)+15(240﹣x)+24(60+x)=4x+10040由于函数是一次函数,k=4>0所以当x=0时,运费最少,最少运费是10040元.(3)从A城运往C乡肥料x吨,由于A城运往C乡的运费每吨减少a(0<a<6)元,所以y=y=(20﹣a)x+25(200﹣x)+15(240﹣x)+24(60+x)=(4﹣a)x+10040当0<a≤4时,∵4﹣a≥0 ∴当x=0时,运费最少;当4<a<6时,∵4﹣a<0∴当x=240时,运费最少.所以:当0<a≤4时,A城化肥全部运往D乡,B城运往C城240吨,运往D乡60吨,运费最少;当4<a<6时,A城化肥全部运往C乡,B城运往C城40吨,运往D乡260吨,运费最少.28.解:(1)在Rt△BOC中,OB=3,sin∠CBO==,设CO=4k,BC=5k,∵BC2=CO2+OB2,∴25k2=16k2+9,∴k=1或﹣1(舍弃),BC=5,OC=4,∵四边形ABCD是菱形,∴CD=BC=5,∴D(5,4).(2)①如图1中,当0≤t≤2时,直线l扫过的图象是四边形CCQP,S=4t.②如图2中,当2<t≤5时,直线l扫过的图形是五边形OCQTA.S=S梯形OCDA﹣S△DQT=×(2+5)×4﹣×(5﹣t)×(5﹣t)=﹣t2+t﹣.(3)如图3中,①当QB=QC,∠BQC=90°,Q(,).②当BC=CQ′,∠BCQ′=90°时,Q′(4,1);③当BC=BQ″,∠CBQ″=90°时,Q″(1,﹣3);综上所述,满足条件的点Q坐标为(,)或(4,1)或(1,﹣3).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档