2018年高考总复习数学(理科)课时作业阶段检测卷(五) (圆锥曲线) Word版含解析
2018版高考数学(人教A版理科)一轮复习课时跟踪检测5含答案
课时跟踪检测(五)1.下列函数中,定义域是R且为增函数的是()A.y=2-x B.y=xC.y=log2x D.y=-错误!答案:B解析:由题知,只有y=2-x与y=x的定义域为R,且只有y=x在R上是增函数.2.函数f(x)=|x-2|x的单调减区间是()A.B.C.D..3.已知函数f(x)=|x+a|在(-∞,-1)上是单调函数,则a的取值范围是( )A.(-∞,1]B.(-∞,-1]C.函数f(x)=错误!在()A.(-∞,1)∪(1,+∞)上是增函数B.(-∞,1)∪(1,+∞)上是减函数C.(-∞,1)和(1,+∞)上是增函数D.(-∞,1)和(1,+∞)上是减函数答案:C解析:函数f(x)的定义域为{x|x≠1}.f(x)=错误!=错误!-1,根据函数y=-错误!的单调性及有关性质可知,f(x)在(-∞,1)和(1,+∞)上是增函数.5.已知函数f(x)=错误!,则该函数的单调递增区间为()A.(-∞,1]B.D.∪上单调递减,在的最大值等于()A.-1 B.1C.6 D.12答案:C解析:由已知得,当-2≤x≤1时,f(x)=x-2,当1〈x≤2时,f(x)=x3-2。
∵f(x)=x-2,f(x)=x3-2在定义域内都为增函数.∴f(x)的最大值为f(2)=23-2=6.7.已知f(x)=错误!是(-∞,+∞)上的减函数,那么a的取值范围是()A.(0,1)B.错误!C.错误!D.错误!答案:C解析:当x=1时,log a1=0,若f(x)为R上的减函数,则(3a-1)x+4a>0在x<1时恒成立,令g(x)=(3a-1)x+4a,则必有错误!即错误!⇒错误!≤a<错误!。
此时,log a x是减函数,符合题意.8.如果函数f(x)对任意的实数x,都有f(1+x)=f(-x),且当x≥错误!时,f(x)=log2(3x-1),那么函数f(x)在上的最大值与最小值之和为()A.2 B.3C.4 D.-1答案:C解析:根据f(1+x)=f(-x),可知函数f(x)的图象关于直线x=错误!对称.又函数f(x)在错误!上单调递增,故f(x)在错误!上单调递减,则函数f(x)在上的最大值与最小值之和为f(-2)+f(0)=f(1+2)+f(1+0)=f(3)+f(1)=log28+log22=4。
高考总复习数学(理科)课时作业:阶段检测卷(五) (圆锥曲线) Word版含解析
阶段检测卷(五) (圆锥曲线)时间:50分钟 满分:100分一、选择题:本大题共8小题,每小题6分,共48分,有且只有一个正确答案,请将答案选项填入题后的括号中.1.已知过点A (-2,m )和B (m,4)的直线与直线2x +y -1=0垂直,则m 的值为( ) A .-8 B .0 C .10 D .22.若椭圆x 2m +y 28=1的焦距为2,则m 的值为( )A .9B .9或16C .7D .9或73.(2014年新课标Ⅰ)已知双曲线x 2a 2-y 23=1(a >0)的离心率为2,则a =( )A .2 B.62C.52D .1 4.设过点(0,b ),且斜率为1的直线与圆x 2+y 2-2x =0相切,则b 的值为( ) A .2±2 B .2±2 2 C .-1±2 D.2±15.设F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 在双曲线上,若PF 1→·PF 2→=0,|PF 1→|·|PF 2→|=2ac (c 为半焦距),则双曲线的离心率为( )A.3-12B.3+12C .2 D.5+126.已知双曲线C :x 29-y 216=1的左、右焦点分别为F 1,F 2,点P 为C 的右支上一点,且|PF 2|=|F 1F 2|,则△PF 1F 2的面积等于( )A .24B .36C .48D .967.抛物线y 2=2px (p >0)的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足∠AFB =2π3,设线段AB 的中点M 在l 上的投影为N ,则|MN ||AB |的最大值是( )A. 3B.32C.33D.348.如图N5-1,F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 1的直线l 与双曲线的左、右两支分别交于点A ,B .若△ABF 2为等边三角形,则双曲线的离心率为( )图N5-1A .4 B.7 C.2 33D. 3二、填空题:本大题共3小题,每小题6分,共18分,把答案填在题中横线上.9.已知双曲线C 1,C 2的顶点重合,C 1的方程为x 24-y 2=1,若C 2的一条渐近线的斜率是C 1的一条渐近线的斜率的2倍,则C 2的方程为__________.10.若直线l 1:y =x +a 和直线l 2:y =x +b 将圆(x -1)2+(y -2)2=8分成长度相等的四段弧,则a 2+b 2=__________.11.在△ABC 中,∠A =30°,|AB |=2,S △ABC = 3.若以A ,B 为焦点的椭圆经过点C ,则该椭圆的离心率e =__________.三、解答题:本大题共2小题,共34分,解答须写出文字说明、证明过程或演算步骤.12.(14分)已知椭圆E :x 2a 2+y2b2=1(a >b >0)的长轴长为短轴长的3倍.(1)求椭圆E 的离心率;(2)设椭圆E 的焦距为2 2,直线l 与椭圆E 交于P ,Q 两点,且OP ⊥OQ ,求证:直线l 恒与圆x 2+y 2=34相切.13.(20分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,以原点O 为圆心,椭圆C 的长半轴长为半径的圆与直线2x -2y +6=0相切.(1)求椭圆C 的标准方程;(2)已知点A ,B 为动直线y =k (x -2)(k ≠0)与椭圆C 的两个交点,问:在x 轴上是否存在点E ,使EA →2+EA →·AB →为定值?若存在,试求出点E 的坐标和定值;若不存在,说明理由.阶段检测卷(五)1.D 解析:由条件知,4-mm +2·(-2)=-1,∴m =2.2.D 解析:m -8=1,或8-m =1,∴m =9,或m =7.故选D. 3.D 解析:双曲线x 2a 2-y 23=1(a >0)的离心率为e =a 2+3a=2.解得a =1. 4.C 解析:设直线l 的方程为y =x +b ,圆心(1,0)到直线l 的距离等于半径1,∴|1+b |2=1,即b 的值为-1±2.故选C.5.D 解析:由题意得△PF 1F 2是直角三角形,由勾股定理,得(2c )2=|PF 1|2+|PF 2|2=|PF 1-PF 2|2+2|PF 1||PF 2|=4a 2+4ac ,∴c 2-ac -a 2=0,∴e 2-e -1=0,∵e >1,∴e =5+12.故选D.6.C 解析:∵双曲线C :x 29-y 216=1中,a =3,b =4,∴c =5.∴F 1(-5,0),F 2(5,0).∵|PF 2|=|F 1F 2|=10,∴|PF 1|=2a +|PF 2|=6+10=16.如图D180,过点F 2作F 2A ⊥PF 1于点A ,则AF 1=8,∴AF 2=102-82=6.∴△PF 1F 2的面积为12|PF 1|·|AF 2|=12×16×6=48.故选C.图D1807.C 解析:如图D181,设|AF |=a ,|BF |=b ,则图D181AB =a 2+b 2-2ab cos2π3=a 2+b 2+ab .∴|MN ||AB |=a +b 2a 2+ab +b2=12a 2+b 2+2ab a 2+ab +b 2=121+aba 2+ab +b 2 =121+11+a 2+b 2ab≤121+11+2=33. 当且仅当a =b 时,等号成立,故|MN ||AB |的最大值是33.故选C.8.B 解析:设AF 1=x ,则AF 2=2a +x =AB =BF 2,BF 1=2a +2x . 又BF 1-BF 2=(2a +2x )-(2a +x )=x =2a , ∴BF 1=6a ,BF 2=4a ,F 1F 2=2c ,∠F 1BF 2=60°.由余弦定理,得(2c )2=36a 2+16a 2-2×6a ×4a ×12=28a 2.∴e 2=c2a 2=7,即e =7.故选B.9.x 24-y 24=1 解析:因为C 1的方程为x 24-y 2=1,所以C 1的一条渐近线的斜率k 1=12,所以C 2的一条渐近线的斜率k 2=1.因为双曲线C 1,C 2的顶点重合,即焦点都在x 轴上,所以设C 2的方程为x 2a 2-y 2b2=1(a >0,b >0).所以a =b =2,所以C 2的方程为x 24-y 24=1.10.18 解析:由题意得直线l 1:y =x +a 和直线l 2:y =x +b 截得圆的弦所对圆周角相等,皆为直角,因此圆心到两直线距离皆为22r =2, 即|1-2+a |2=|1-2+b |2=2⇒a 2+b 2=(2 2+1)2+(-2 2+1)2=18.11.3-12解析:S △ABC =12|AB |·|AC |sin A =3,∴|AC |=2 3,|BC |=|AB |2+|AC |2-2|AB |·|AC |cos A =2,e =|AB ||AC |+|BC |=22 3+2=3-12.12.解:(1)依题意,得2a2b = 3.又a 2=b 2+c 2,∴e =c a =63.证明:(2)∵c a =63,2c =2 2,∴a 2=3,b 2=1,∴椭圆E 的方程为x 23+y 2=1,①当直线l 的斜率存在时,设其方程为y =kx +m ,联立椭圆方程,得(1+3k 2)x 2+6kmx +3(m 2-1)=0.则Δ=12(1+3k 2-m 2)>0. 设P (x 1,y 1),Q (x 2,y 2),由韦达定理,得x 1+x 2=-6km1+3k 2,x 1·x 2=3(m 2-1)1+3k 2.所以y 1·y 2=(kx 1+m )·(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2.结合韦达定理,得OP →·OQ →=x 1·x 2+y 1·y 2=4m 2-3(k 2+1)1+3k2=0.所以4m 2=3(k 2+1). 则原点O 到直线l 的距离 d =|m |1+k 2=m 21+k 2=34=32, ∴当直线l 的斜率存在时,l 恒与圆x 2+y 2=34相切.②当直线l 的斜率不存在时,△OPQ 是以PQ 为斜边的等腰直角三角形,P ,Q 的坐标满足方程|y |=|x |,结合椭圆方程,得|x |=32,从而原点O 到直线l 的距离d =32. ∴当直线l 的斜率不存在时,l 与圆x 2+y 2=34相切.综上,直线l 恒与圆x 2+y 2=34相切.13.解:(1)由e =63,得c a =63,即c =63a . ①又以原点O 为圆心,椭圆C 的长半轴长为半径的圆为x 2+y 2=a 2, 且与直线2x -2y +6=0相切, 所以a =622+(2)2= 6.代入①,得c =2.所以b 2=a 2-c 2=2.所以椭圆C 的方程为x 26+y 22=1.(2)由⎩⎪⎨⎪⎧x 26+y 22=1,y =k (x -2),得(1+3k 2)x 2-12k 2x +12k 2-6=0.设A (x 1,y 1),B (x 2,y 2),所以x 1+x 2=12k 21+3k 2,x 1·x 2=12k 2-61+3k 2.根据题意,假设x 轴上存在定点E (m,0),使得EA →2+EA →·AB →=EA →·(EA →+AB →)=EA →·EB →为定值,则有EA →·EB →=(x 1-m ,y 1)·(x 2-m ,y 2) =(x 1-m )·(x 2-m )+y 1y 2=(x 1-m )(x 2-m )+k 2(x 1-2)(x 2-2) =(k 2+1)x 1x 2-(2k 2+m )(x 1+x 2)+(4k 2+m 2)=(k 2+1)·12k 2-61+3k 2-(2k 2+m )·12k 21+3k2+(4k 2+m 2) =(3m 2-12m +10)k 2+(m 2-6)3k 2+1.要使上式为定值,即与k 无关,则应有3m 2-12m +10=3(m 2-6),即m =73,此时EA →·EB →=m 2-6=-59为定值,定点为⎝⎛⎭⎫73,0.。
2018圆锥曲线高考题全国卷真题汇总
20182010圆锥曲线高考题全国卷真题汇总(word版可编辑修改)
20182010圆锥曲线高考题全国卷真题汇总(word版可编辑修改)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(20182010圆锥曲线高考题全国卷真题汇总(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为20182010圆锥曲线高考题全国卷真题汇总(word版可编辑修改)的全部内容。
,
A
点为
>0
两点,若,则圆。
2018年高考数学试题分类汇编之圆锥曲线解析版
2018年高考数学试题分类汇编之圆锥曲线(解析版)一、选择题1.(浙江卷)(2)双曲线221 3=x y -的焦点坐标是A .(0),0)B .(−2,0),(2,0)C .(0,,(0D .(0,−2),(0,2)解:∵双曲线方程可得双曲线的焦点在x 轴上,且a 2=3,b 2=1, 由此可得222=+=b a c ∴该双曲线的焦点坐标为(±2,0)故选:B2.(天津文)(7)已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d += 则双曲线的方程为(A )22139x y -= (B )22193x y -= (C )221412x y -=(D )221124x y -= 解:由题意可得,CD 是双曲线的一条渐近线x aby =,即0=-ay bx ,)0,(c F故选:A3.(天津理)(7)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为A221412x y -= B221124x y -= C 22139x y -= D 22193x y -=解:由题意可得,CD 是双曲线的一条渐近线x aby =,即0=-ay bx ,)0,(c F故选:C4.(全国卷一文)(4)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为A .13B .12C D 解:椭圆的一个焦点为(2,0),可得a 2-4=4,解得22=a ,故选:C5.(全国卷一理)(8)设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅= A .5B .6C .7D .8解:抛物线C :y 2=4x 的焦点为F (1,0),过点(-2,0联立直线与抛物线C :y 2=4x ,消去x 可得:y 2-6y+8=0, 解得y 1=2,y 2=4,不妨M (1,2),N (4,4),FM =(0,2), FN =(3,4).则 FM ∙FN =(0,2)•(3,4)=8. 故选:D6.(全国卷一理)(11)已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形,则|MN |= A .32B .3 C. D .4故选:B7.(全国卷二文)(6)双曲线22221(0,0)x y a b a b-=>>A.y =B.y =C.y = D .y = 解:∵双曲线的离心率为==ace则2222±=-=aa c ab 故选:A.8.(全国卷二文)(11)已知1F ,2F 是椭圆C 的两个焦点,P 是C上的一点,若12PF PF ⊥,且2160PFF ∠=︒,则C 的离心率为 A.1 B.2C D 1-解:F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点,若PF 1⊥PF 2,且∠PF 2F 1=60°, 可得椭圆的焦点坐标F 2(c ,0),所以P(c 23,21故选:D9.(全国卷二理)(5)双曲线22221(0,0)x y a b a b-=>>A .y =B .y =C .y x =D .y =解:∵双曲线的离心率为==ace则2222±=-=aa c ab 故选:A .10.(全国卷二理)(12)已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P在过A 12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23B .12C .13D .14解:由题意可知:A (-a ,0),F 1(-c ,0),F 2(c ,0),直线AP 的方程为:)(a x y +=63,故选:D11.(全国卷三文)(10)已知双曲线22221(00)x y C a b a b-=>>:,(4,0)到C 的渐近线的距离为AB .2CD .故选:D12.(全国卷三理)(11)设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1PF ,则C 的离心率为A B .2 C D在三角形F 1PF 2中,由余弦定理可得|PF 1|2=|PF 2|2+|F 1F 2|2-2|PF 2|•|F 1F 2|COS ∠PF 2O ,故选:C二、填空题1.(北京文)(10)已知直线l 过点(1,0)且垂直于 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.解:∵直线l 过点(1,0)且垂直于x 轴,∴x=1,代入到y 2=4ax ,可得y 2=4a ,显然a >0,∴y=±∴抛物线的焦点坐标为(1,0), 故答案为:(1,0)2.(北京文)(12)若双曲线2221(0)4x y a a -=>的离心率为2,则a =_________.解:双曲线的离心率为245422=+a a ,解得a=4. 故答案为:43.(北京理)(14)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22221x y N m n -=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.解:若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,4.(江苏卷)(8)在平面直角坐标系xOy中,若双曲线22221(0,0)x ya ba b-=>>的右焦点(,0)F c到一条渐近,则其离心率的值是.,故答案为:25.(浙江卷)(17)已知点P(0,1),椭圆24x+y2=m(m>1)上两点A,B满足AP=2PB,则当m=_______时,点B横坐标的绝对值最大.解:设A(x1,y1),B(x2,y2),由P(0,1),AP=2PB,可得-x 1=2x2,1-y1=2(y2-1),即有x1=-2x2,y1+2y2=3,又x12+4y12=4m,即为x22+y12=m,①x22+4y22=4m,②①-②得(y1-2y2)(y1+2y2)=-3m,可得y1-2y2=-m,即有m=5时,x22有最大值4,即点B横坐标的绝对值最大.故答案为:5.6.(全国卷三理)(16)已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB =︒∠,则k =________.解:∵抛物线C :y 2=4x 的焦点F (1,0),∴过A ,B 两点的直线方程为y=k (x-1),联立⎩⎨⎧-==)1(42x k y xy 可得,k 2x 2-2(2+k 2)x+k 2=0,设A (x 1,y 1),B (x 2,y 2),y 1y 2=k 2(x 1-1)(x 2-1)=k 2[x 1x 2-(x 1+x 2)+1]=-4,∵M (-1,1),∴ MA =(x 1+1,y 1-1), MB =(x 2+1,y 2-1), ∵∠AMB=90°=0,∴MA *MB =0∴(x 1+1)(x 2+1)+(y 1-1)(y 2-1)=0,整理可得,x 1x 2+(x 1+x 2)+y 1y 2-(y 1+y 2)+2=0,∴即k 2-4k+4=0, ∴k=2. 故答案为:2三、解答题1.(北京文)(20)(本小题14分)已知椭圆2222:1(0)x y M a b a b +=>>焦距为斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B .(Ⅰ)求椭圆M 的方程;(Ⅱ)若1k =,求||AB 的最大值;(Ⅲ)设(2,0)P -,直线P A 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D和点71(,)42Q -共线,求k .解析(Ⅰ)由题意得2c =,所以c =3c e a ==,所以a =2221b a c =-=, 所以椭圆M 的标准方程为2213x y +=.(Ⅱ)设直线AB 的方程为y x m =+,由2213y x m x y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232m x x +=-,212334m x x -=,则12|||AB x x =-=,易得当20m =时,max ||AB =||AB(Ⅲ)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y , 则221133x y += ①,222233x y += ②, 又(2,0)P -,所以可设1112PA y k k x ==+,直线PA 的方程为1(2)y k x =+, 由122(2)13y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222111(13)121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+, 所以1111712(,)4747x y C x x --++,同理可得2222712(,)4747x y D x x --++.故3371(,)44QC x y =+-,4471(,)44QD x y =+-, 因为,,Q C D 三点共线,所以34437171()()()()04444x y x y +--+-=,将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =.2.(北京理)(19)(本小题14分)已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,μλ==,,求证:μλ11+为定值.解析:(Ⅰ)因为抛物线y 2=2px 经过点P (1,2), 所以4=2p ,解得p =2,所以抛物线的方程为y 2=4x . 由题意可知直线l 的斜率存在且不为0, 设直线l 的方程为y =kx +1(k ≠0). 由241y x y kx ⎧=⎨=+⎩得22(24)10k x k x +-+=. 依题意22(24)410k k ∆=--⨯⨯>,解得k<0或0<k<1. 又P A ,PB 与y 轴相交,故直线l 不过点(1,-2).从而k ≠-3. 所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (Ⅱ)设A (x 1,y 1),B (x 2,y 2). 由(I )知12224k x x k -+=-,1221x x k =. 直线P A 的方程为y –2=1122(1)1y y x x --=--. 令x =0,得点M 的纵坐标为1111212211M y kx y x x -+-+=+=+--. 同理得点N 的纵坐标为22121N kx y x -+=+-. 由μλ==,得=1M y λ-,1N y μ=-.所以2212121212122224112()111111=211(1)(1)11M N k x x x x x x k k y y k x k x k x x k k λμ-+---++=+=+=⋅=⋅------. 所以11λμ+为定值.3.(江苏卷)(18)(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程.解析:(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a b a b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222200004243640()x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以001x y =. 因此,点P的坐标为. ②因为三角形OAB,所以1 2AB OP ⋅=,从而AB =.设1122,,()(),A x y B x y ,由(*)得001,2x =,所以2222121()()x B y y x A =-+-222000222200048(2)(1)(4)x y x y x y -=+⋅+. 因为22003x y +=, 所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P的坐标为. 综上,直线l的方程为y =+4.(天津文)(19)(本小题满分14分) 设椭圆22221(0)x y a b a b +=>> 的右顶点为A ,上顶点为B .||AB =(I )求椭圆的方程;(II )设直线:(0)l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值.解析:(I )设椭圆的焦距为2c ,由已知得2259c a =,又由222a b c =+,可得23.a b =由||AB ==从而3,2a b ==. 所以,椭圆的方程为22194x y +=. (II )解:设点P 的坐标为11(,)x y ,点M 的坐标为22(,)x y ,由题意,210x x >>,点Q 的坐标为11(,).x y -- 由BPM △的面积是BPQ △面积的2倍,可得||=2||PM PQ ,从而21112[()]x x x x -=--,即215x x =.易知直线AB 的方程为236x y +=,由方程组236,,x y y kx +=⎧⎨=⎩ 消去y ,可得2632x k =+.由方程组221,94,x y y kx ⎧+⎪=⎨⎪=⎩消去y,可得1x =由215x x =5(32)k =+,两边平方,整理得2182580k k ++=,解得89k =-,或12k =-. 当89k =-时,290x =-<,不合题意,舍去;当12k =-时,212x =,1125x =,符合题意. 所以,k 的值为12-. 5.(天津理)(19)(本小题满分14分) 设椭圆22221x x a b +=(a >b >0)的左焦点为F ,上顶点为B .,点A 的坐标为(,0)b ,且FB AB ⋅=.(I )求椭圆的方程;(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若AQAOQ PQ =∠(O 为原点) ,求k 的值. 解析(Ⅰ):设椭圆的焦距为2c ,由已知知2259c a =,又由a 2=b 2+c 2,可得2a =3b .由已知可得,FB a =,AB,由FB AB ⋅=ab =6,从而a =3,b =2. 所以,椭圆的方程为22194x y +=. (Ⅱ)解:设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2).由已知有y 1>y 2>0,故12sin PQ AOQ y y ∠=-.又因为2sin y AQ OAB =∠,而∠OAB =π4,故2AQ.由AQ AOQ PQ =∠,可得5y 1=9y 2. 由方程组22194y kx x y =⎧⎪⎨+=⎪⎩,,消去x,可得1y =.易知直线AB 的方程为x +y –2=0,由方程组20y kx x y =⎧⎨+-=⎩,,消去x ,可得221k y k =+.由5y 1=9y 2,可得5(k +1)=,两边平方,整理得25650110k k -+=,解得12k =,或1128k =.所以,k 的值为111228或. 6.(浙江卷)(21)(本题满分15分)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.(Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆x 2+24y =1(x <0)上的动点,求△P AB 面积的取值范围.解析(Ⅰ)设00(,)P x y ,2111(,)4A y y ,2221(,)4B y y . 因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程202014()422y x y y ++=⋅即22000280y y y x y -+-=的两个不同的实数根. 所以1202y y y +=.因此,PM 垂直于y 轴.(Ⅱ)由(Ⅰ)可知120212002,8,y y y y y x y +=⎧⎪⎨=-⎪⎩ 所以2221200013||()384PM y y x y x =+-=-,12||y y -= 因此,PAB △的面积32212001||||4)24PABS PM y y y x =⋅-=-△. 因为220001(0)4y x x +=<,所以2200004444[4,5]y x x x -=--+∈. 因此,PAB △面积的取值范围是7.(全国一卷文)(20)(12分)设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:ABM ABN =∠∠.解:(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,–2).所以直线BM 的方程为y =112x +或112y x =--. (2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0. 由2(2)2y k x y x=-⎧⎨=⎩,得ky 2–2y –4k =0,可知y 1+y 2=2k ,y 1y 2=–4. 直线BM ,BN 的斜率之和为1221121212122()22(2)(2)BM BN y y x y x y y y k k x x x x ++++=+=++++.① 将112y x k =+,222y x k=+及y 1+y 2,y 1y 2的表达式代入①式分子,可得 121221121224()882()0y y k y y x y x y y y k k ++-++++===. 所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM +∠ABN .综上,∠ABM =∠ABN .8.(全国一卷理)(19)(12分) 设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0). (1)当l 与x 轴垂直时,求直线AM 的方程;(2)设O 为坐标原点,证明:OMA OMB ∠=∠.解:(1)由已知得(1,0)F ,l 的方程为x =1.由已知可得,点A的坐标为或(1,. 所以AM的方程为y x =+y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<,直线MA ,MB 的斜率之和为212122MA MB x x y y k k +=+--. 由1122,y k k x y k x k =-=-得 121212(23()42)(2)MA MB x x x x k k x x k k k -+++=--. 将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=. 所以,21221222422,2121x x x k k k x k -+==++. 则3131322244128423()4021k k k k k k k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠.综上,OMA OMB ∠=∠.9.(全国二卷文)(20)(12分)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程; (2)求过点A ,B 且与C 的准线相切的圆的方程.解:(1)由题意得F (1,0),l 的方程为y =k (x –1)(k >0).设A (x 1,y 1),B (x 2,y 2).由2(1)4y k x y x =-⎧⎨=⎩得2222(24)0k x k x k -++=.216160k ∆=+=,故212224k x x k ++=. 所以212244(1)(1)k AB AF BF x x k +=+=+++=. 由题设知22448k k +=,解得k =–1(舍去),k =1.因此l 的方程为y =x –1. (2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+.设所求圆的圆心坐标为(x 0,y 0),则00220005(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩,解得0032x y =⎧⎨=⎩,或00116.x y =⎧⎨=-⎩, 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.10.(全国卷二理)(19)(12分)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.解:(1)由题意得(1,0)F ,l 的方程为(1)(0)y k x k =->.设1221(,),(,)A y x y x B ,由2(1),4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=. 216160k ∆=+>,故122224k x k x ++=. 所以122244||||||(1)(1)x k AB AF BF kx +=+=+++=. 由题设知22448k k +=,解得1k =-(舍去),1k =.因此l 的方程为1y x =-. (2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+. 设所求圆的圆心坐标为00(,)x y ,则00220005,(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩ 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.11.(全国卷三文)(20)(12分) 已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:2||||||FP FA FB =+.解:(1)设11()A x y ,,22()B x y ,,则2211143x y +=,2222143x y +=. 两式相减,并由1212=y y k x x --得1212043x x y y k +++⋅=.由题设知1212x x +=,122y y m +=,于是34k m=-. 由题设得302m <<,故12k <-. (2)由题意得F (1,0).设33()P x y ,,则331122(1)(1)(1)(00)x y x y x y -+-+-=,,,,. 由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<.又点P 在C 上,所以34m =,从而3(1)2P -,,3||=2FP uu r .于是1||22x FA =-uu r .同理2||=22x FB -uu r . 所以1214()32FA FB x x +=-+=u u r u u r .故2||=||+||FP FA FB u u r u u r u u r . 12.(全国卷三理)(20)(12分)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.解:(1)设1221(,),(,)A y x y x B ,则222212121,14343y x y x +=+=. 两式相减,并由1221y x y k x -=-得 1122043y x y k x +++⋅=. 由题设知12121,22x y x y m ++==,于是 34k m=-.① 由题设得302m <<,故12k <-. (2)由题意得(1,0)F ,设33(,)P x y ,则 331122(1,)(1,)(1,)(0,0)y x x y x y -+-+-=. 由(1)及题设得3321213()1,()20y y x x y x m =-+==-+=-<.又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =.于是 1||(22x FA x ==-. 同理2||22x FB =-. 所以121||||4()32FA FB x x +=-+=. 故2||||||FP FA FB =+,即||,||,||FA FP FB 成等差数列.设该数列的公差为d ,则 1212||||||||||2FB FA x x d =-=-=②将34m =代入①得1k =-. 所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故121212,28x x x x +==,代入②解得||d =.或。
高三数学-2018届高考复习圆锥曲线总检测精品
2, 从而 c 4 , a 2 , b 2 3 。
11. 3 F (0, 4) , 离心率为
所以求双曲线方程为 : y 2 x2 1 4 12
16.解 : 依题意可设
P(0,1),Q(x,y), 则 |PQ|=
x
2
+(y
-
1)
2
,又因为
Q 在椭圆上
,
所以 ,x2=a2(1 -y 2) , |PQ|2= a2(1- y2)+y 2- 2y+1=(1 - a2)y 2- 2y+1+a2
1 的离心率为 ,则 k 的值为
。
9 4k
5
13.直线 y 2x 1截抛物线 y 2 Biblioteka x 所得弦 AB 的长为。
14.以下同个关于圆锥曲线的命题中
①设 A 、B 为两个定点, k 为非零常数, | PA | | PB | k ,则动点 P 的轨迹为双曲线;
②过定圆 C 上一定点 A 作圆的动弦 AB ,O 为坐标原点, 若 OP
18.已知抛物线 C : y 2x2 ,直线 y kx 2 交 C 于 A, B 两点, M 是线段 AB 的中点, 过 M 作 x 轴的垂线交 C 于点 N . (Ⅰ)证明:抛物线 C 在点 N 处的切线与 AB 平行; (Ⅱ)是否存在实数 k 使 NA NB 0 ,若存在,求 k 的值;若不存在,说明理由.
分别相交于点 B、C,且 AB BC ,则双曲线 M 的离心率是
。
x2 y2 11. 双曲线 a2 b 2 1 ( a 0 , b 0 )的左、右焦点分别是 F1, F2 ,过 F1 作倾斜角为
30 的直线交双曲线右支于 M 点,若 MF 2 垂直于 x 轴,则双曲线的离心率为
2018年高考数学—圆锥曲线(解答+答案)
2018年高考数学——圆锥曲线解答1.(18北京理(19)(本小题14分))已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM QO λ=u u u u r u u u r ,QN QO μ=u u u r u u u r ,求证:11λμ+为定值.2.(18江苏18.(本小题满分16分))如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △26,求直线l 的方程.3.(18全国二理19.(12分))设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.4.(18全国三理20.(12分))已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r.证明:FA u u u r ,FP u u u r ,FB u u u r 成等差数列,并求该数列的公差.5.18全国一理19.(12分)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.6.(18天津理(19)(本小题满分14分))设椭圆22221x x a b+=(a >b >0)的左焦点为F ,上顶点为B .A的坐标为(,0)b,且FB AB ⋅=(I )求椭圆的方程;(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若4AQ AOQ PQ=∠(O 为原点) ,求k 的值.7.(18浙江21.(本题满分15分))如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆x 2+24y =1(x <0)上的动点,求△P AB 面积的取值范围.8.(18北京文(20)(本小题14分))已知椭圆2222:1(0)x y M a b a b +=>>的离心率为63,焦距为22.斜率为k 的直线l与椭圆M 有两个不同的交点A ,B . (Ⅰ)求椭圆M 的方程;(Ⅱ)若1k =,求||AB 的最大值;(Ⅲ)设(2,0)P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71(,)42Q - 共线,求k .9.(18全国三文20.(12分))已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r.证明:2||||||FP FA FB =+u u u r u u u r u u u r .10.(18全国一文20.(12分))设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN =∠∠.参考答案:1.解:(Ⅰ)因为抛物线y 2=2px 经过点P (1,2), 所以4=2p ,解得p =2,所以抛物线的方程为y 2=4x . 由题意可知直线l 的斜率存在且不为0, 设直线l 的方程为y =kx +1(k ≠0). 由241y xy kx ⎧=⎨=+⎩得22(24)10k x k x +-+=. 依题意22(24)410k k ∆=--⨯⨯>,解得k<0或0<k<1. 又PA ,PB 与y 轴相交,故直线l 不过点(1,-2).从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (Ⅱ)设A (x 1,y 1),B (x 2,y 2).由(I )知12224k x x k -+=-,1221x x k =. 直线PA 的方程为y –2=1122(1)1y y x x --=--.令x =0,得点M 的纵坐标为1111212211M y kx y x x -+-+=+=+--. 同理得点N 的纵坐标为22121N kx y x -+=+-. 由=QM QO λuuu r uuu r ,=QN QO μuuu r uuu r得=1M y λ-,1N y μ=-.所以2212121212122224112()111111=2111(1)(1)11M N k x x x x x x k k y y k x k x k x x k k λμ-+---++=+=+=⋅=⋅------. 所以11λμ+为定值.2.解:(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a ba b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩ 因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222200004243640()x y x x x y +-+-=.(*) 因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以002,1x y ==. 因此,点P 的坐标为(2,1). ②因为三角形OAB 的面积为26,所以21 26AB OP ⋅=,从而427AB =. 设1122,,()(),A x y B x y ,由(*)得22000001,22448(2)x y x x ±-=,所以2222121()()x B y y x A =-+- 222000222200048(2)(1)(4)x y x y x y -=+⋅+.因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P 的坐标为102(,).综上,直线l 的方程为532y x =-+.学*科网3.解:(1)由题意得(1,0)F ,l 的方程为(1)(0)y k x k =->.设1221(,),(,)A y x y x B , 由2(1),4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=.216160k ∆=+>,故122224k x k x ++=. 所以122244||||||(1)(1)x k AB AF BF k x +=+=+++=.由题设知22448k k+=,解得1k =-(舍去),1k =. 因此l 的方程为1y x =-.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+.设所求圆的圆心坐标为00(,)x y ,则00220005,(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩ 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.4.解:(1)设1221(,),(,)A y x y x B ,则222212121,14343y x y x +=+=. 两式相减,并由1221y x y k x -=-得1122043y x y k x +++⋅=. 由题设知12121,22x y x ym ++==,于是 34k m=-.① 由题设得302m <<,故12k <-. (2)由题意得(1,0)F ,设33(,)P x y ,则331122(1,)(1,)(1,)(0,0)y x x y x y -+-+-=.由(1)及题设得3321213()1,()20y y x x y x m =-+==-+=-<.又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =u u u r .于是1||22x FA ===-u u u r .同理2||22xFB =-u u u r .所以121||||4()32FA FB x x +=-+=u u u r u u u r .故2||||||FP FA FB =+u u u r u u u r u u u r ,即||,||,||FA FP FB u u u r u u u r u u u r成等差数列.设该数列的公差为d ,则1212||||||||||2FB FA x x d =-=-=u u u r u u u r .②将34m =代入①得1k =-. 所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故121212,28x x x x +==,代入②解得||28d =.所以该数列的公差为28或28-.5解:(1)由已知得(1,0)F ,l 的方程为x =1.由已知可得,点A 的坐标为(1,2或(1,2-.所以AM 的方程为y x =+y x =.(2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=.所以,21221222422,2121x x x k k k x k -+==++. 则3131322244128423()4021k k k k kk k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.6.(Ⅰ)解:设椭圆的焦距为2c ,由已知知2259c a =,又由a 2=b 2+c 2,可得2a =3b .由已知可得,FB a =,AB =,由FB AB ⋅=,可得ab =6,从而a =3,b =2.所以,椭圆的方程为22194x y +=. (Ⅱ)解:设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2).由已知有y 1>y 2>0,故12sin PQ AOQ y y ∠=-.又因为2sin y AQ OAB =∠,而∠OAB =π4,故2AQ =.由AQ AOQ PQ=∠,可得5y 1=9y 2. 由方程组22194y kx x y =⎧⎪⎨+=⎪⎩,,消去x,可得1y =AB 的方程为x +y –2=0,由方程组20y kx x y =⎧⎨+-=⎩,,消去x ,可得221ky k =+.由5y 1=9y 2,可得5(k +1)=,两边平方,整理得25650110k k -+=,解得12k =,或1128k =. 所以,k 的值为111228或.7.(Ⅰ)设00(,)P x y ,2111(,)4A y y ,2221(,)4B y y . 因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程202014()422y x y y ++=⋅即22000280y y y x y -+-=的两个不同的实数根. 所以1202y y y +=. 因此,PM 垂直于y 轴.(Ⅱ)由(Ⅰ)可知120212002,8,y y y y y x y +=⎧⎪⎨=-⎪⎩ 所以2221200013||()384PM y y x y x =+-=-,12||y y -= 因此,PAB △的面积32212001||||4)24PABS PM y y y x =⋅-=-△. 因为220001(0)4y x x +=<,所以2200004444[4,5]y x x x -=--+∈.因此,PAB △面积的取值范围是.8.【解析】(Ⅰ)由题意得2c =,所以c =又3c e a ==,所以a =2221b a c =-=, 所以椭圆M 的标准方程为2213x y +=.(Ⅱ)设直线AB 的方程为y x m =+,由2213y x m x y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232m x x +=-,212334m x x -=,则12|||2AB x x =-==,易得当20m =时,max ||AB ,故||AB. (Ⅲ)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,则221133x y += ①,222233x y += ②,又(2,0)P -,所以可设1112PA y k k x ==+,直线PA 的方程为1(2)y k x =+, 由122(2)13y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222111(13)121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+,所以1111712(,)4747x y C x x --++,同理可得2222712(,)4747x y D x x --++.故3371(,)44QC x y =+-u u u r ,4471(,)44QD x y =+-u u u r ,因为,,Q C D 三点共线,所以34437171()()()()04444x y x y +--+-=,将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =. 9..解:(1)设11()A x y ,,22()B x y ,,则2211143x y +=,2222143x y +=.两式相减,并由1212=y y k x x --得1212043x x y y k +++⋅=. 由题设知1212x x +=,122y y m +=,于是34k m=-. 由题设得302m <<,故12k <-. (2)由题意得F (1,0).设33()P x y ,,则 331122(1)(1)(1)(00)x y x y x y -+-+-=,,,,.由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<. 又点P 在C 上,所以34m =,从而3(1)2P -,,3||=2FP uu r .于是1||22x FA ==-uu r .同理2||=22xFB -uu r .所以1214()32FA FB x x +=-+=uu r uu r .故2||=||+||FP FA FB uu r uu r uu r .10.解:(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,–2).所以直线BM 的方程为y =112x +或112y x =--.(2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由2(2)2y k x y x=-⎧⎨=⎩,得ky 2–2y –4k =0,可知y 1+y 2=2k ,y 1y 2=–4.直线BM ,BN 的斜率之和为 1221121212122()22(2)(2)BM BN y y x y x y y y k k x x x x ++++=+=++++.① 将112y x k =+,222yx k=+及y 1+y 2,y 1y 2的表达式代入①式分子,可得 121221121224()882()0y y k y y x y x y y y k k++-++++===.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM +∠ABN .综上,∠ABM=∠ABN.。
2018年全国高考近四年圆锥曲线题目
全国高考近四年圆锥曲线题目一.选择题(共14小题)1.已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=2.已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.3.设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A. B.C.D.4.设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为()A.y=x﹣1或y=﹣x+1 B.y=(x﹣1)或 y=﹣(x﹣1)C.y=(x﹣1)或 y=﹣(x﹣1)D.y=(x﹣1)或 y=﹣(x﹣1)5.椭圆C:的左、右顶点分别为A1、A2,点P在C上且直线PA2斜率的取值范围是[﹣2,﹣1],那么直线PA1斜率的取值范围是()A.B.C.D.6.已知抛物线C:y2=8x的焦点为F,点M(﹣2,2),过点F且斜率为k的直线与C 交于A ,B 两点,若,则k=( )A .B .C .D .27.已知F 1(﹣1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交椭圆于A 、B 两点,且|AB|=3,则C 的方程为( ) A .B .C .D .8.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交于C 于A ,B 两点,则|AB|=( ) A .B .6C .12D .79.已知椭圆C :+=1(a >b >0)的左、右焦点为F 1、F 2,离心率为,过F 2的直线l 交C 于A 、B 两点,若△AF 1B 的周长为4,则C 的方程为( ) A .+=1 B .+y 2=1 C .+=1 D .+=110.已知双曲线C 的离心率为2,焦点为F 1、F 2,点A 在C 上,若|F 1A|=2|F 2A|,则cos ∠AF 2F 1=( ) A . B . C . D .11.双曲线C :﹣=1(a >0,b >0)的离心率为2,焦点到渐近线的距离为,则C 的焦距等于( ) A .2B .2C .4D .412.设F 为抛物线C :y 2=4x 的焦点,曲线y=(k >0)与C 交于点P ,PF ⊥x 轴,则k=( ) A . B .1C .D .213.已知O 为坐标原点,F 是椭圆C :+=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴,过点A 的直线l 与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.B.C.D.14.已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y2=8x 的焦点重合,A,B是C的准线与E的两个交点,则|AB|=()A.3 B.6 C.9 D.12二.填空题(共2小题)15.已知g(x)=+x2+2a1nx在[1,2]上是减函数,则实数a的取值范围为.16.已知F是双曲线C:x2﹣=1的右焦点,P是C的左支上一点,A(0,6).当△APF周长最小时,该三角形的面积为.三.解答题(共5小题)17.已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.18.设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l 交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.19.在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N 两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)20.已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.21.已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.全国高考近四年圆锥曲线题目参考答案与试题解析一.选择题(共14小题)1.(2013•新课标Ⅰ)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.2.(2013•新课标Ⅰ)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.【分析】设A (x 1,y 1),B (x 2,y 2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x 1+x 2=2,y 1+y 2=﹣2,利用斜率计算公式可得==.于是得到,化为a 2=2b 2,再利用c=3=,即可解得a 2,b 2.进而得到椭圆的方程.【解答】解:设A (x 1,y 1),B (x 2,y 2),代入椭圆方程得,相减得,∴.∵x 1+x 2=2,y 1+y 2=﹣2,==.∴,化为a 2=2b 2,又c=3=,解得a 2=18,b 2=9. ∴椭圆E 的方程为.故选D .【点评】熟练掌握“点差法”和中点坐标公式、斜率的计算公式是解题的关键.3.(2013•新课标Ⅱ)设椭圆C :=1(a >b >0)的左、右焦点分别为F 1、F 2,P是C上的点PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A. B.C.D.【分析】设|PF2|=x,在直角三角形PF1F2中,依题意可求得|PF1|与|F1F2|,利用椭圆离心率的性质即可求得答案.【解答】解:|PF2|=x,∵PF2⊥F1F2,∠PF1F2=30°,∴|PF1|=2x,|F1F2|=x,又|PF1|+|PF2|=2a,|F1F2|=2c∴2a=3x,2c=x,∴C的离心率为:e==.故选D.【点评】本题考查椭圆的简单性质,求得|PF1|与|PF2|及|F1F2|是关键,考查理解与应用能力,属于中档题.4.(2013•新课标Ⅱ)设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为()A.y=x﹣1或y=﹣x+1 B.y=(x﹣1)或 y=﹣(x﹣1)C.y=(x﹣1)或 y=﹣(x﹣1)D.y=(x﹣1)或 y=﹣(x﹣1)【分析】根据题意,可得抛物线焦点为F(1,0),由此设直线l方程为y=k(x﹣1),与抛物线方程联解消去x,得﹣y﹣k=0.再设A(x1,y1),B(x2,y2),由根与系数的关系和|AF|=3|BF|,建立关于y1、y2和k的方程组,解之可得k值,从而得到直线l的方程.【解答】解:∵抛物线C方程为y2=4x,可得它的焦点为F(1,0),∴设直线l方程为y=k(x﹣1)由消去x,得﹣y﹣k=0设A(x1,y1),B(x2,y2),可得y1+y2=,y1y2=﹣4…(*)∵|AF|=3|BF|,∴y 1+3y 2=0,可得y 1=﹣3y 2,代入(*)得﹣2y 2=且﹣3y 22=﹣4, 消去y 2得k 2=3,解之得k=∴直线l 方程为y=(x ﹣1)或y=﹣(x ﹣1)故选:C【点评】本题给出抛物线的焦点弦AB 被焦点F 分成1:3的两部分,求直线AB 的方程,着重考查了抛物线的标准方程、简单几何性质和直线与圆锥曲线的位置关系等知识,属于中档题.5.(2013•大纲版)椭圆C :的左、右顶点分别为A 1、A 2,点P 在C 上且直线PA 2斜率的取值范围是[﹣2,﹣1],那么直线PA 1斜率的取值范围是( ) A .B .C .D .【分析】由椭圆C :可知其左顶点A 1(﹣2,0),右顶点A 2(2,0).设P (x 0,y 0)(x 0≠±2),代入椭圆方程可得.利用斜率计算公式可得,再利用已知给出的的范围即可解出.【解答】解:由椭圆C :可知其左顶点A 1(﹣2,0),右顶点A 2(2,0).设P (x 0,y 0)(x 0≠±2),则,得.∵=,=,∴==,∵,∴,解得.故选B.【点评】熟练掌握椭圆的标准方程及其性质、斜率的计算公式、不等式的性质等是解题的关键.6.(2013•大纲版)已知抛物线C:y2=8x的焦点为F,点M(﹣2,2),过点F 且斜率为k的直线与C交于A,B两点,若,则k=()A.B. C.D.2【分析】斜率k存在,设直线AB为y=k(x﹣2),代入抛物线方程,利用=(x1+2,y1﹣2)•(x2+2,y2﹣2)=0,即可求出k的值.【解答】解:由抛物线C:y2=8x得焦点(2,0),由题意可知:斜率k存在,设直线AB为y=k(x﹣2),代入抛物线方程,得到k2x2﹣(4k2+8)x+4k2=0,△>0,设A(x1,y1),B(x2,y2).∴x1+x2=4+,x1x2=4.∴y1+y2=,y1y2=﹣16,又=0,∴=(x1+2,y1﹣2)•(x2+2,y2﹣2)==0∴k=2.故选:D.【点评】本题考查直线与抛物线的位置关系,考查向量的数量积公式,考查学生的计算能力,属于中档题.7.(2013•大纲版)已知F1(﹣1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交椭圆于A、B两点,且|AB|=3,则C的方程为()A.B.C.D.【分析】设椭圆的方程为,根据题意可得=1.再由AB经过右焦点F2且垂直于x轴且|AB|=3算出A、B的坐标,代入椭圆方程得,两式联解即可算出a2=4,b2=3,从而得到椭圆C的方程.【解答】解:设椭圆的方程为,可得c==1,所以a2﹣b2=1…①∵AB经过右焦点F2且垂直于x轴,且|AB|=3∴可得A(1,),B(1,﹣),代入椭圆方程得,…②联解①②,可得a2=4,b2=3∴椭圆C的方程为故选:C【点评】本题给出椭圆的焦距和通径长,求椭圆的方程.着重考查了椭圆的标准方程和椭圆的简单几何性质等知识,属于基础题.8.(2014•新课标Ⅱ)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交于C于A,B两点,则|AB|=()A.B.6 C.12 D.7【分析】求出焦点坐标,利用点斜式求出直线的方程,代入抛物线的方程,利用根与系数的关系,由弦长公式求得|AB|.【解答】解:由y2=3x得其焦点F(,0),准线方程为x=﹣.则过抛物线y2=3x的焦点F且倾斜角为30°的直线方程为y=tan30°(x﹣)=(x﹣).代入抛物线方程,消去y,得16x2﹣168x+9=0.设A(x1,y1),B(x2,y2)则x1+x2=,所以|AB|=x1++x2+=++=12故选:C【点评】本题考查抛物线的标准方程,以及简单性质的应用,弦长公式的应用,运用弦长公式是解题的难点和关键.9.(2014•大纲版)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1 B.+y2=1 C.+=1 D.+=1【分析】利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.【解答】解:∵△AF1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C 的方程为+=1.故选:A .【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.10.(2014•大纲版)已知双曲线C 的离心率为2,焦点为F 1、F 2,点A 在C 上,若|F 1A|=2|F 2A|,则cos ∠AF 2F 1=( ) A . B . C .D .【分析】根据双曲线的定义,以及余弦定理建立方程关系即可得到结论. 【解答】解:∵双曲线C 的离心率为2, ∴e=,即c=2a ,点A 在双曲线上, 则|F 1A|﹣|F 2A|=2a , 又|F 1A|=2|F 2A|,∴解得|F 1A|=4a ,|F 2A|=2a ,||F 1F 2|=2c , 则由余弦定理得cos∠AF 2F 1===.故选:A .【点评】本题主要考查双曲线的定义和运算,利用离心率的定义和余弦定理是解决本题的关键,考查学生的计算能力.11.(2014•大纲版)双曲线C :﹣=1(a >0,b >0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于()A.2 B.2C.4 D.4【分析】根据双曲线的离心率以及焦点到直线的距离公式,建立方程组即可得到结论.【解答】解:∵:﹣=1(a>0,b>0)的离心率为2,∴e=,双曲线的渐近线方程为y=,不妨取y=,即bx﹣ay=0,则c=2a,b=,∵焦点F(c,0)到渐近线bx﹣ay=0的距离为,∴d=,即,解得c=2,则焦距为2c=4,故选:C【点评】本题主要考查是双曲线的基本运算,利用双曲线的离心率以及焦点到直线的距离公式,建立方程组是解决本题的关键,比较基础.12.(2016•新课标Ⅱ)设F为抛物线C:y2=4x的焦点,曲线y=(k>0)与C 交于点P,PF⊥x轴,则k=()A.B.1 C.D.2【分析】根据已知,结合抛物线的性质,求出P点坐标,再由反比例函数的性质,可得k值.【解答】解:抛物线C:y2=4x的焦点F为(1,0),曲线y=(k>0)与C交于点P在第一象限,由PF⊥x轴得:P点横坐标为1,代入C得:P点纵坐标为2,故k=2,故选:D【点评】本题考查的知识点是抛物线的简单性质,反比例函数的性质,难度中档.13.(2016•新课标Ⅲ)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A 的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C 的离心率为()A.B.C.D.【分析】由题意可得F,A,B的坐标,设出直线AE的方程为y=k(x+a),分别令x=﹣c,x=0,可得M,E的坐标,再由中点坐标公式可得H的坐标,运用三点共线的条件:斜率相等,结合离心率公式,即可得到所求值.【解答】解:由题意可设F(﹣c,0),A(﹣a,0),B(a,0),令x=﹣c,代入椭圆方程可得y=±b=±,可得P(﹣c,±),设直线AE的方程为y=k(x+a),令x=﹣c,可得M(﹣c,k(a﹣c)),令x=0,可得E(0,ka),设OE的中点为H,可得H(0,),由B,H,M三点共线,可得kBH =kBM,即为=,化简可得=,即为a=3c,可得e==.故选:A.【点评】本题考查椭圆的离心率的求法,注意运用椭圆的方程和性质,以及直线方程的运用和三点共线的条件:斜率相等,考查化简整理的运算能力,属于中档题.14.(2015•新课标Ⅰ)已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=()A.3 B.6 C.9 D.12【分析】利用椭圆的离心率以及抛物线的焦点坐标,求出椭圆的半长轴,然后求解抛物线的准线方程,求出A,B坐标,即可求解所求结果.【解答】解:椭圆E的中心在坐标原点,离心率为,E的右焦点(c,0)与抛物线C:y2=8x的焦点(2,0)重合,可得c=2,a=4,b2=12,椭圆的标准方程为:,抛物线的准线方程为:x=﹣2,由,解得y=±3,所以A(﹣2,3),B(﹣2,﹣3).|AB|=6.故选:B.【点评】本题考查抛物线以及椭圆的简单性质的应用,考查计算能力.二.填空题(共2小题)15.已知g(x)=+x2+2a1nx在[1,2]上是减函数,则实数a的取值范围为(﹣∞,﹣] .【分析】求函数的导数,利用g′(x)≤0在[1,2]上恒成立,结合参数分离法进行求解即可.【解答】解:∵g(x)=+x2+2a1nx在[1,2]上是减函数∴等价为g′(x)≤0在[1,2]上恒成立,即g′(x)=﹣+2x+≤0,即≤﹣2x,则a≤﹣x2,设f(x)=﹣x2,则f(x)在[1,2]上是减函数,∴f(x)min=f(2)==﹣,即a≤﹣,故答案为:(﹣∞,﹣].【点评】本题主要考查导数的应用,根据函数单调性和导数之间的关系是解决本题的关键.16.(2015•新课标Ⅰ)已知F是双曲线C:x2﹣=1的右焦点,P是C的左支上一点,A(0,6).当△APF周长最小时,该三角形的面积为12.【分析】利用双曲线的定义,确定△APF周长最小时,P的坐标,即可求出△APF 周长最小时,该三角形的面积.【解答】解:由题意,设F′是左焦点,则△APF周长=|AF|+|AP|+|PF|=|AF|+|AP|+|PF′|+2≥|AF|+|AF′|+2(A,P,F′三点共线时,取等号),直线AF′的方程为与x2﹣=1联立可得y2+6y﹣96=0,∴P的纵坐标为2,∴△APF周长最小时,该三角形的面积为﹣=12.故答案为:12.【点评】本题考查双曲线的定义,考查三角形面积的计算,确定P的坐标是关键.三.解答题(共5小题)17.(2016•新课标Ⅲ)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.【分析】(Ⅰ)连接RF,PF,利用等角的余角相等,证明∠PRA=∠PQF,即可证明AR∥FQ;(Ⅱ)利用△PQF的面积是△ABF的面积的两倍,求出N的坐标,利用点差法求AB中点的轨迹方程.【解答】(Ⅰ)证明:连接RF,PF,由AP=AF,BQ=BF及AP∥BQ,得∠AFP+∠BFQ=90°,∴∠PFQ=90°,∵R是PQ的中点,∴RF=RP=RQ,∴△PAR≌△FAR,∴∠PAR=∠FAR,∠PRA=∠FRA,∵∠BQF+∠BFQ=180°﹣∠QBF=∠PAF=2∠PAR,∴∠FQB=∠PAR,∴∠PRA=∠PQF,∴AR∥FQ.(Ⅱ)设A(x1,y1),B(x2,y2),F(,0),准线为 x=﹣,S△PQF =|PQ|=|y1﹣y2|,设直线AB与x轴交点为N,∴S△ABF =|FN||y1﹣y2|,∵△PQF的面积是△ABF的面积的两倍,∴2|FN|=1,∴xN=1,即N(1,0).设AB中点为M(x,y),由得=2(x1﹣x2),又=,∴=,即y2=x﹣1.∴AB中点轨迹方程为y2=x﹣1.【点评】本题考查抛物线的方程与性质,考查轨迹方程,考查学生的计算能力,属于中档题.18.(2016•新课标Ⅰ)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.【分析】(Ⅰ)求得圆A的圆心和半径,运用直线平行的性质和等腰三角形的性质,可得EB=ED,再由圆的定义和椭圆的定义,可得E的轨迹为以A,B为焦点的椭圆,求得a,b,c,即可得到所求轨迹方程;(Ⅱ)设直线l:x=my+1,代入椭圆方程,运用韦达定理和弦长公式,可得|MN|,由PQ⊥l,设PQ:y=﹣m(x﹣1),求得A到PQ的距离,再由圆的弦长公式可得|PQ|,再由四边形的面积公式,化简整理,运用不等式的性质,即可得到所求范围.【解答】解:(Ⅰ)证明:圆x2+y2+2x﹣15=0即为(x+1)2+y2=16,可得圆心A(﹣1,0),半径r=4,由BE∥AC,可得∠C=∠EBD,由AC=AD,可得∠D=∠C,即为∠D=∠EBD,即有EB=ED,则|EA|+|EB|=|EA|+|ED|=|AD|=4,故E的轨迹为以A,B为焦点的椭圆,且有2a=4,即a=2,c=1,b==,则点E的轨迹方程为+=1(y≠0);(Ⅱ)椭圆C1:+=1,设直线l:x=my+1,由PQ⊥l,设PQ:y=﹣m(x﹣1),由可得(3m2+4)y2+6my﹣9=0,设M(x1,y1),N(x2,y2),可得y1+y2=﹣,y1y2=﹣,则|MN|=•|y1﹣y2|=•=•=12•,A到PQ的距离为d==,|PQ|=2=2=,则四边形MPNQ面积为S=|PQ|•|MN|=••12•=24•=24,当m=0时,S取得最小值12,又>0,可得S<24•=8,即有四边形MPNQ面积的取值范围是[12,8).【点评】本题考查轨迹方程的求法,注意运用椭圆和圆的定义,考查直线和椭圆方程联立,运用韦达定理和弦长公式,以及直线和圆相交的弦长公式,考查不等式的性质,属于中档题.19.(2015•新课标Ⅰ)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a (a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)【分析】(I)联立,可得交点M,N的坐标,由曲线C:y=,利用导数的运算法则可得:y′=,利用导数的几何意义、点斜式即可得出切线方程.(II)存在符合条件的点(0,﹣a),设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.直线方程与抛物线方程联立化为x2﹣4kx﹣4a=0,利用根与系数的关系、斜率计算公式可得k 1+k2=.k1+k2=0⇔直线PM,PN的倾斜角互补⇔∠OPM=∠OPN.即可证明.【解答】解:(I)联立,不妨取M,N,由曲线C:y=可得:y′=,∴曲线C在M点处的切线斜率为=,其切线方程为:y﹣a=,化为.同理可得曲线C在点N处的切线方程为:.(II)存在符合条件的点(0,﹣a),下面给出证明:设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.联立,化为x2﹣4kx﹣4a=0,∴x1+x2=4k,x1x2=﹣4a.∴k1+k2=+==.当b=﹣a时,k1+k2=0,直线PM,PN的倾斜角互补,∴∠OPM=∠OPN.∴点P(0,﹣a)符合条件.【点评】本题考查了导数的运算法则、利用导数的几何意义研究切线方程、直线与抛物线相交问题转化为方程联立可得根与系数的关系、斜率计算公式,考查了推理能力与计算能力,属于中档题.20.(2014•新课标Ⅰ)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.【分析】(Ⅰ)通过离心率得到a、c关系,通过A求出a,即可求E的方程;(Ⅱ)设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,利用△>0,求出k的范围,利用弦长公式求出|PQ|,然后求出△OPQ的面积表达式,利用换元法以及基本不等式求出最值,然后求解直线方程.【解答】解:(Ⅰ)设F(c,0),由条件知,得又,所以,b2=a2﹣c2=1,故E的方程.….(6分)(Ⅱ)依题意当l⊥x轴不合题意,故设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,得(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0,即时,从而又点O到直线PQ的距离,所以△OPQ的面积=,设,则t>0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ的面积最大时,l的方程为:y=x﹣2或y=﹣x﹣2.…(12分)【点评】本题考查直线与椭圆的位置关系的应用,椭圆的求法,基本不等式的应用,考查转化思想以及计算能力.21.(2014•大纲版)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.【分析】(Ⅰ)设点Q的坐标为(x,4),把点Q的坐标代入抛物线C的方程,求得x=,根据|QF|=|PQ|求得 p的值,可得C的方程.(Ⅱ)设l的方程为 x=my+1 (m≠0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|.把直线l′的方程代入抛物线方程化简,利用韦达定理、弦长公式求得|MN|.由于MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,由此求得m的值,可得直线l的方程.【解答】解:(Ⅰ)设点Q的坐标为(x,4),把点Q的坐标代入抛物线C:y2=2px (p>0),可得x=,∵点P(0,4),∴|PQ|=.又|QF|=x+=+,|QF|=|PQ|,∴+=×,求得 p=2,或 p=﹣2(舍去).故C的方程为 y2=4x.(Ⅱ)由题意可得,直线l和坐标轴不垂直,y2=4x的焦点F(1,0),设l的方程为 x=my+1(m≠0),代入抛物线方程可得y2﹣4my﹣4=0,显然判别式△=16m2+16>0,y1+y2=4m,y1•y2=﹣4.∴AB的中点坐标为D(2m2+1,2m),弦长|AB|=|y1﹣y2|==4(m2+1).又直线l′的斜率为﹣m,∴直线l′的方程为 x=﹣y+2m2+3.过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N 两点,把线l′的方程代入抛物线方程可得 y2+y﹣4(2m2+3)=0,∴y3+y4=,y3•y4=﹣4(2m2+3).故线段MN的中点E的坐标为(+2m2+3,),∴|MN|=|y3﹣y4|=,∵MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,∴+DE2=MN2,∴4(m2+1)2 ++=×,化简可得 m2﹣1=0,∴m=±1,∴直线l的方程为 x﹣y﹣1=0,或 x+y﹣1=0.【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题.。
2018年高考数学试题分类汇编之圆锥曲线解析版
FM = (0 , 2) , FN = (3 , 4) .
则 FM FN = (0 ,2 ) ? (3 , 4 ) =8 .
故选: D
x2 6.(全国卷一理)( 11)已知双曲线 C:
y2 1 ,O 为坐标原点, F 为 C 的右焦点,过 F 的直线与 C 的
3
两条渐近线的交点分别为 M、N.若 △ OMN 为直角三角形,则 |MN |=
2018 年高考数学试题分类汇编之圆锥曲线(解析版)
一、选择题
1.(浙江卷)( 2)双曲线 x2 3
2
y =1 的焦点坐标是
A . (- 2 ,0) ,( 2 , 0) B . (- 2, 0), (2, 0) C. (0, - 2 ), (0, 2 ) D. (0, - 2), (0, 2)
解:∵双曲线方程可得双曲线的焦点在
4)已知椭圆
C
:
x a2
y 4
1的一个焦点为 (2 ,0) ,则 C 的离心率为
1 A.
3
1 B.
2
2 C.
2
解:椭圆的一个焦点为( 2,0),可得 a2-4=4,解得 a
22 D.
3
2 2,
c c 2, e
a
2
.
2
故选: C
5.(全国卷一理)(
8)设抛物线
C: y2=4x 的焦点为
F,过点( –2, 0)且斜率为
故选: B
x2 7.(全国卷二文)( 6)双曲线 a2
y2 b2
1( a
0, b
0) 的离心率为
3 ,则其渐近线方程为
A . y 2x
B. y 3x
C. y
2x
2
高三数学-2018届高三数学专项训练(2018)《圆锥曲线》精品
C. 9
D. 16
12.给出下列结论 , 其中正确的是
()
A.渐近线方程为 y
b x a 0,b 0 的双曲线的标准方程一定是
a
x2 y2 a2 b2 1
B.抛物线 y
1 x2 的准线方程是 x 1
2
2
C.等轴双曲线的离心率是 2
D.椭圆 x2 m2
y2 n2
1 m 0, n 0 的焦点坐标是 F1
x1 1· x2 1 x1·x 2
x1 x21ຫໍສະໝຸດ 44 ………………( 10 分) k2
m n mn ,即 1
1 1
mn
综上可知 1 1 为定值。………………( mn
20.(本小题满分 12 分)
12 分)
解:(1) AM 2AP, NP AM 0. ∴ NP为 AM的垂直平分线,∴ |NA|=|NM|. ………………………… 2 分
由椭圆的对称性知 | OC|=| OB|, 由 AC · BC =0 得 AC⊥ BC,
A
O
x
∵ | BC|=2| AC| ,∴ | OC|=| AC| ,∴△ AOC是等腰直角三角形,∴ C 的坐标为( 1,1),
∵ C 点在椭圆上∴ 12 4
1 b2
1 , ∴ b2 = 4 , 所求的椭圆方程为 3
二、填空题(本题每小题 4 分,共 16 分)
m2 n2 ,0 , F2 m2 n2 ,0
13.如果正△ ABC 中 , D
AB,E
AC , 向量 DE
1 BC , 那么以 B , C 为焦点且过点 D , E 的双曲线
2
的离心率是
2
14.已知椭圆 x m
.
2018年高考真题汇编理科数学(解析版)10:圆锥曲线
2018高考真题分类汇编:圆锥曲线
一、选择题
1.【2018高考真题浙江理8】如图,F 1,F 2分别是双曲线C :22
221x y a b -=(a,b >0)的左、右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交与点M ,若|MF 2|=|F 1F 2|,则C 的离心率是
A. 233 B 。
62 2 D. 3【答案】B
【解析】由题意知直线B F 1的方程为:b x c b y +=,联立方程组⎪⎪⎩⎪⎪⎨⎧=-+=0,b
y a x b x c b y 得点Q ),(a c bc a c ac --,联立方程组⎪⎪⎩⎪⎪⎨⎧=++=0,b y a x b x c b y 得点P ),(a c bc a c ac ++-,所以PQ 的中点坐标为),(222b c b c a ,所以PQ 的垂直平分线方程为:)(222b c a x b c b c y --=-,令0=y ,得)1(22
b a
c x +=,所以c b
a c 3)1(22=+,所以2222222a c
b a -==,即2223
c a =,所以2
6=e 。
故选B 2.【2018高考真题新课标理8】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交
于,A B 两点,43AB =;则C 的实轴长为( )
()A 2 ()B 22 ()C 4 ()D 8
【答案】C。
2018年高考理科数学圆锥曲线与方程100题(含答案解析)
29.
过曲线C1: ﹣ =1(a>0,b>0)的左焦点F1作曲线C2:x2+y2=a2的切线,设切点为M,延长F1M交曲线C3:y2=2px(p>0)于点N,其中曲线C1与C3有一个共同的焦点,若|MF1|=|MN|,则曲线C1的离心率为( )
A. B.1C. D.
25.
抛物线y=x2与直线x=0、x=1及该抛物线在x=t(0<t<1)处的切线所围成的图形面积的最小值为( )
A. B. C. D.
26.
从抛物线y2=4x上一点P引抛物线准线的垂线,垂足为M,且|PM|=5,设抛物线的焦点为F,则△MPF的面积为( )
A.5B.10C.20D.
A.( ,+∞)B.( ,+∞)C.(1, )D.( , )
21.
已知直线l经过双曲线 ﹣y2=1的一个焦点且与其一条渐近线平行,则直线l的方程可以是( )
A.y=﹣ x+ B.y= x﹣ C.y=2x﹣ D.y=﹣2x+
22.
抛物线y2=2x的焦点到准线的距离为( )
A. B.1C.2D.3
23.
A. B. C. D.
11.
曲线 是平面内与两个定点 和 的距离的积等于常数 的点的轨迹.下列四个论断中一定错误的是( ).
A.曲线 关于坐标原点对称
B.曲线 与 轴恰有两个不同交点
C.若点 在曲线 上,则 的面积不大于
D.椭圆 的面积不小于曲线 所围成的区域的面积
12.
已知双曲线 的左、右焦点分别为 为坐标原点,点 是双曲线在第一象限内的点,直线 分别交双曲线 的左、右支于另一点 ,若 ,且 ,则双曲线的离心率为( )
高三数学-2018学年高三数学圆锥曲线测试 精品
2018-2018学年高三数学圆锥曲线测试一、选择题(本大题共10小题,每小题5分,共50分)1.椭圆12222=+b y a x (a >b>0)离心率为23,则双曲线12222=-by a x 的离心率为 ( )A .45B .25C .32D .452.抛物线顶点在原点,焦点在y 轴上,其上一点P(m ,1)到焦点距离为5,则抛物线方程为( ) A .y x 82= B .y x 82-= C .y x 162= D .y x 162-=3.圆的方程是(x -cos θ)2+(y -sin θ)2= 12 ,当θ从0变化到2π时,动圆所扫过的面积是 ( )A .π22B .πC .π)21(+D .π2)221(+4.若过原点的直线与圆2x +2y +x 4+3=0相切,若切点在第三象限,则该直线的方程是( )A .x y 3= B .x y 3-= C .x y 33=D .x y 33-= 5.椭圆131222=+y x 的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1中点在y 轴上,那么|PF 1|是|PF 2|的 ( ) A .7倍 B .5倍 C .4倍 D .3倍 6.以原点为圆心,且截直线01543=++y x 所得弦长为8的圆的方程是 ( )A .522=+y xB .2522=+y xC .422=+y xD .1622=+y x 7.曲线⎩⎨⎧==θθsin cos 2y x (θ为参数)上的点到原点的最大距离为( )A . 1B .2C .2D .38.如果实数x 、y 满足等式3)2(22=+-y x ,则xy最大值 ( )A .21B .33C .23 D .39.过双曲线x 2-22y =1的右焦点F 作直线l 交双曲线于A , B 两点,若|AB |=4,则这样的直线l 有 ( ) A .1条 B .2条 C .3条 D .4条10.如图,过抛物线)(022>=p px y 的焦点F 的直线l 交抛物线于点A .B ,交其准线于点C ,若BF BC 2=,且3=AF ( )A .x y 232=B .x y 32=C .x y 292=D .x y 92=二、填空题(本大题共4小题,每小题4分,共16分)11.椭圆的焦点是F 1(-3,0)F 2(3,0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则椭圆的方程为_____________________________. 12.若直线03=-+ny mx 与圆322=+y x 没有公共点,则n m ,满足的关系式为 .以(),n m 为点P 的坐标,过点P 的一条直线与椭圆13722=+y x 的公共点有 个.13.设点P 是双曲线1322=-y x 上一点,焦点F (2,0),点A (3,2),使|P A |+21|PF |有最小值时,则点P 的坐标是________________________________.14.AB 是抛物线y =x 2的一条弦,若AB 的中点到x 轴的距离为1,则弦AB 的长度的最大值为 . 三、解答题:(本大题共5小题,共54分)15、求一条渐近线方程是043=+y x ,一个焦点是()0,4的双曲线标准方程,并求此双曲线的离心率. 16、.已知点A (2,8),B (x 1,y 1),C (x 2,y 2)在抛物线pxy 22=上,△ABC 的重心与此抛物线的焦点F 重合(如图) (1)写出该抛物线的方程和焦点F 的坐标; (2)求线段BC 中点M 的坐标; (3)求BC 所在直线的方程.17、.已知A 、B 为椭圆22a x +22925a y =1上两点,F 2为椭圆的右焦点,若|AF 2|+|BF 2|=58a ,AB 中点到椭圆左准线的距离为23,求该椭圆方程.18、已知抛物线y 2=4ax (0<a <1=的焦点为F ,以A(a +4,0)为圆心,|AF |为半径在x 轴上方作半圆交抛物线于不同的两点M 和N ,设P 为线段MN 的中点. (1)求|MF |+|NF |的值;(2)是否存在这样的a 值,使|MF |、|PF |、|NF |成等差数列?如存在,求出a 的值,若不存在,说明理由.19、设双曲线C 1的方程为)0,0(12222>>=-b a by a x ,A 、B 为其左、右两个顶点,P 是双曲线C 1上的任意一点,引QB ⊥PB ,QA ⊥PA ,AQ 与BQ 交于点Q. (1)求Q 点的轨迹方程;(2)设(1)中所求轨迹为C 2,C 1、C 2的离心率分别为e 1、e 2,当21≥e 时,e 2的取值范围参考答案一、选择题(本大题共10小题,每小题5分,共50分)二、填空题(本大题共4小题,每小题4分,共16分)11.1273622=+y x 12.3022<+<n m , 2 13.)2,321(14. 25 三、解答题(本大题共5小题,共54分)15、[解析]:设双曲线方程为:λ=-22169y x ,∵双曲线有一个焦点为(4,0),0>∴λ双曲线方程化为:2548161691169222=⇒=+⇒=-λλλλλy x ,∴双曲线方程为:1251442525622=-y x ∴455164==e .16、[解析]:(1)由点A (2,8)在抛物线px y 22=上,有2282⋅=p ,解得p=16. 所以抛物线方程为x y 322=,焦点F 的坐标为(8,0).(2)如图,由于F (8,0)是△ABC 的重心,M 是BC 的中点,所以F 是线段AM 的 定比分点,且2=FMAF,设点M 的坐标为),(00y x ,则 02128,8212200=++=++y x ,解得4,1100-==y x , 所以点M 的坐标为(11,-4).(3)由于线段BC 的中点M 不在x 轴上,所以BC 所在的直线不垂直于x 轴.设BC 所在直线的方程为:).0)(11(4≠-=+k x k y由⎩⎨⎧=-=+xy x k y 32),11(42消x 得0)411(32322=+--k y ky , 所以ky y 3221=+,由(2)的结论得4221-=+y y ,解得.4-=k因此BC 所在直线的方程为:.0404=-+y x17、[解析]:设A(x 1,y 1),B(x 2,y 2),,54=e 由焦半径公式有a -ex 1+a -ex 2=a 58,∴x 1+x 2=a 21,即AB 中点横坐标为a 41,又左准线方程为a x 45-=,∴234541=+a a ,即a =1,∴椭圆方程为x 2+925y 2=1.18、[解析]:(1)F (a ,0),设),(),,(),,(002211y x P y x N y x M ,由16)4(4222=+--=y a x axy0)8()4(222=++-+⇒a a x a x ,)4(2,021a x x -=+∴>∆ ,8)()(21=+++=+a x a x NF MF (2)假设存在a 值,使的NF PF MF ,,成等差数列,即21022x x x NF MF PF +=⇒+= a x -=⇒40 ①,∵P 是圆A 上两点M 、N 所在弦的中点,∴MN AP ⊥1212004x x y y a x y --=--⇒由①得0448)(42222002212121212120<-=⇒-=+-=---=---=a y y a y y a x x y y a a x x y y a y ,这是不可能的. ∴假设不成立.即不存在a 值,使的NF PF MF ,,成等差数列.19、[解析]:(1)解法一:设P(x 0,y 0), Q(x ,y )⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+∴⊥⊥-)2(1)1(1,),0,(),0,(0000 a x y a x y a x y a x y PA QA PB QB a B a A)3(1:)2()1(22222200 =-⋅-⨯ax y ax y 得由 2222222220000,1ab ax y by ax =-∴=-4222242222,)3(a y b x a a a x y b =--=即得代入经检验点)0,(),0,(a a -不合,因此Q 点的轨迹方程为:a 2x 2-b 2y 2=a 4(除点(-a ,0),(a ,0)外). 解法二:设P(x 0,y 0), Q(x ,y), ∵PA ⊥QA ∴100-=-⋅-ax ya x y ……(1)连接PQ ,取PQ 中点R,))0,(),0,((,:0,,.1)(,1)3)(2()3(,1:)1()2(),2(,02|,||||,|21|||,|21||,,4222242222222222222220220220022000外除去点点轨迹方程为整理得不合题意时得代入把得代入把即轴上点在a a a y b x a Q a y b x a a x a x b y a x a x b y a x y a x y x a y y x x x x y R RB RA PQ RB PQ RA PB QB QA PA -=-∴=-≠-∴±==--=--=∴-=--==+∴∴=∴==∴⊥⊥11111 ,1)1(:)2(22222222422242222-+=-+=+=+==-e a c a b a a b a a e b a y a x C 的方程为得由解 21 ,21)2(11 ,22221≤<∴=-+≤∴≥e e e。
2018届高三数学文高考总复习课时跟踪检测 五十 圆锥曲
课时跟踪检测 (五十) 圆锥曲线的综合问题一保高考,全练题型做到高考达标1.过抛物线y 2=2x 的焦点作一条直线与抛物线交于A ,B 两点,它们的横坐标之和等于2,则这样的直线( )A .有且只有一条B .有且只有两条C .有且只有三条D .有且只有四条解析:选B 设该抛物线焦点为F ,A (x A ,y A ),B (x B ,y B ),则|AB |=|AF |+|FB |=x A +p2+x B +p2=x A +x B +1=3>2p =2.所以符合条件的直线有且只有两条.2.若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是( )A .⎝⎛⎭⎫-153,153 B .⎝⎛⎭⎫0,153 C .⎝⎛⎭⎫-153,0 D .⎝⎛⎭⎫-153,-1 解析:选D 由⎩⎪⎨⎪⎧y =kx +2,x 2-y 2=6得(1-k 2)x 2-4kx -10=0.设直线与双曲线右支交于不同的两点A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧1-k 2≠0,Δ=16k 2-4(1-k 2)×(-10)>0,x 1+x 2=4k 1-k 2>0,x 1x 2=-101-k 2>0,解得-153<k <-1.即k 的取值范围是⎝⎛⎭⎫-153,-1. 3.经过椭圆x 22+y 2=1的一个焦点作倾斜角为45°的直线l ,交椭圆于A ,B 两点.设O为坐标原点,则OA ―→·OB ―→等于( )A .-3B .-13C .-13或-3D .±13解析:选B 依题意,当直线l 经过椭圆的右焦点(1,0)时,其方程为y -0=tan 45°(x -1),即y =x -1,代入椭圆方程x 22+y 2=1并整理得3x 2-4x =0,解得x =0或x =43,所以两个交点坐标分别为(0,-1),⎝⎛⎭⎫43,13,∴OA ―→·OB ―→=-13,同理,直线 l 经过椭圆的左焦点时,也可得OA ―→·OB ―→=-13.4.已知抛物线y 2=2px 的焦点F 与椭圆16x 2+25y 2=400的左焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且|AK |=2|AF |,则点A 的横坐标为( )A .2B .-2C .3D .-3解析:选D 16x 2+25y 2=400可化为x 225+y 216=1,则椭圆的左焦点为F (-3,0),又抛物线y 2=2px 的焦点为⎝⎛⎭⎫p 2,0,准线为x =-p 2, 所以p2=-3,即p =-6,即y 2=-12x ,K (3,0).设A (x ,y ),则由|AK |=2|AF |得(x -3)2+y 2=2[(x +3)2+y 2],即x 2+18x +9+y 2=0, 又y 2=-12x ,所以x 2+6x +9=0,解得x =-3.5.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)上的一点到双曲线的左、右焦点的距离之差为4,若抛物线y =ax 2上的两点A (x 1,y 1),B (x 2,y 2)关于直线y =x +m 对称,且x 1x 2=-12,则m的值为( )A .32B .52C .2D .3解析:选A 由双曲线的定义知2a =4,得a =2, 所以抛物线的方程为y =2x 2.因为点A (x 1,y 1),B (x 2,y 2)在抛物线y =2x 2上,所以y 1=2x 21,y 2=2x 22,两式相减得y 1-y 2=2(x 1-x 2)(x 1+x 2),不妨设x 1<x 2,又A ,B 关于直线y =x +m 对称, 所以y 1-y 2x 1-x 2=-1, 故x 1+x 2=-12,而x 1x 2=-12,解得x 1=-1,x 2=12,设A (x 1,y 1),B (x 2,y 2)的中点为M (x 0,y 0), 则x 0=x 1+x 22=-14, y 0=y 1+y 22=2x 21+2x 222=54,因为中点M 在直线y =x +m 上, 所以54=-14+m ,解得m =32.6.已知(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则l 的方程是__________________.解析:设直线l 与椭圆相交于A (x 1,y 1),B (x 2,y 2).则x 2136+y 219=1,且x 2236+y 229=1, 两式相减并化简得y 1-y 2x 1-x 2=-x 1+x 24(y 1+y 2). 又x 1+x 2=8,y 1+y 2=4, 所以y 1-y 2x 1-x 2=-12,故直线l 的方程为y -2=-12(x -4),即x +2y -8=0. 答案:x +2y -8=07.如图,过抛物线y =14x 2的焦点F 的直线l 与抛物线和圆x 2+(y -1)2=1交于A ,B ,C ,D 四点,则AB ―→·DC ―→=________.解析:不妨设直线AB 的方程为y =1,联立⎩⎪⎨⎪⎧y =1,y =14x 2,解得x =±2,则A (-2,1),D (2,1),因为B (-1,1),C (1,1),所以AB ―→=(1,0),DC ―→=(-1,0),所以AB ―→·DC ―→=-1.答案:-18.若椭圆的中心在原点,一个焦点为(0,2),直线y =3x +7与椭圆相交所得弦的中点的纵坐标为1,则这个椭圆的方程为________________.解析:因为椭圆的中心在原点,一个焦点为(0,2),则a 2-b 2=4,所以可设椭圆方程为y 2b 2+4+x 2b2=1, 联立⎩⎪⎨⎪⎧y =3x +7,y 2b 2+4+x 2b2=1, 得(10b 2+4)y 2-14(b 2+4)y -9b 4+13b 2+196=0,设直线y =3x +7与椭圆相交所得弦的端点为(x 1,y 1),(x 2,y 2), 由一元二次方程根与系数的关系得: y 1+y 2=14(b 2+4)10b 2+4=2.解得:b 2=8.所以a 2=12. 则椭圆方程为x 28+y 212=1.答案:x 28+y 212=19.如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 斜率为0时,AB =4.(1)求椭圆的方程; (2)若|AB |+|CD |=487,求直线AB 的方程. 解:(1)由题意知e =c a =12,2a =4.又a 2=b 2+c 2, 解得a =2,b =3, 所以椭圆方程为x 24+y 23=1.(2)①当两条弦中一条弦所在直线的斜率为0时,另一条弦所在直线的斜率不存在时,由题意知|AB |+|CD |=7,不满足条件.②当两条弦所在直线的斜率均存在且不为0时, 设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2),则直线CD 的方程为y =-1k (x -1).将直线AB 方程代入椭圆方程中并整理, 得(3+4k 2)x 2-8k 2x +4k 2-12=0, 则x 1+x 2=8k 23+4k 2,x 1·x 2=4k 2-123+4k 2,所以|AB |=k 2+1|x 1-x 2|=k 2+1·(x 1+x 2)2-4x 1x 2=12(k 2+1)3+4k 2.同理,|CD |=12⎝⎛⎭⎫1k 2+13+4k 2=12(k 2+1)3k 2+4.所以|AB |+|CD |=12(k 2+1)3+4k 2+12(k 2+1)3k 2+4=84(k 2+1)2(3+4k 2)(3k 2+4)=487,解得k =±1, 所以直线AB 的方程为x -y -1=0或x +y -1=0.10.(2016·北京高考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a,0),B (0,b ),O (0,0),△OAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值.解:(1)由题意得⎩⎨⎧c a =32,12ab =1,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a =2,b =1,c = 3.所以椭圆C 的方程为x 24+y 2=1.(2)证明:由(1)知,A (2,0),B (0,1).设P (x 0,y 0),则x 20+4y 20=4.当x 0≠0时, 直线PA 的方程为y =y 0x 0-2(x -2). 令x =0,得y M =-2y 0x 0-2,从而|BM |=|1-y M |=⎪⎪⎪⎪1+2y 0x 0-2.直线PB 的方程为y =y 0-1x 0x +1.令y =0,得x N =-x 0y 0-1,从而|AN |=|2-x N |=⎪⎪⎪⎪2+x 0y 0-1.所以|AN |·|BM |=⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪1+2y 0x 0-2 =⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2=⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2 =4.当x 0=0时,y 0=-1,|BM |=2,|AN |=2, 所以|AN |·|BM |=4. 综上,|AN |·|BM |为定值.二上台阶,自主选做志在冲刺名校1.(2017·海口调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右顶点分别为A ,B ,其离心率e =12,点M 为椭圆上的一个动点,△MAB 面积的最大值是23.(1)求椭圆的方程;(2)若过椭圆C 右顶点B 的直线l 与椭圆的另一个交点为D ,线段BD 的垂直平分线与y 轴交于点P ,当PB ―→·PD ―→=0时,求点P 的坐标.解:(1)由题意可知⎩⎪⎨⎪⎧e =c a =12,12×2ab =23,a 2=b 2+c 2,解得a =2,b =3, 所以椭圆方程是x 24+y 23=1.(2)由(1)知B (2,0),设直线BD 的方程为y =k (x -2),D (x 1,y 1), 把y =k (x -2)代入椭圆方程x 24+y 23=1,整理得(3+4k 2)x 2-16k 2x +16k 2-12=0,所以2+x 1=16k 23+4k 2⇒x 1=8k 2-63+4k 2,则D ⎝ ⎛⎭⎪⎫8k 2-63+4k 2,-12k 3+4k 2,所以BD 中点的坐标为⎝ ⎛⎭⎪⎫8k 23+4k 2,-6k 3+4k 2,则直线BD 的垂直平分线方程为y --6k 3+4k 2=-1k ⎝⎛⎭⎫x -8k 23+4k 2,得P ⎝⎛⎭⎫0,2k3+4k 2.又PB ―→·PD ―→=0,即⎝⎛⎭⎫2,-2k 3+4k 2·⎝ ⎛⎭⎪⎫8k 2-63+4k 2,-14k 3+4k 2=0, 化简得64k 4+28k 2-36(3+4k 2)2=0⇒64k 4+28k 2-36=0, 解得k =±34.故P ⎝⎛⎭⎫0,27或⎝⎛⎭⎫0,-27. 2.如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P ⎝⎛⎭⎫1,32,离心率e =12,直线l 的方程为x =4.(1)求椭圆C 的方程.(2)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记PA ,PB ,PM 的斜率分别为k 1,k 2,k 3.问:是否存在常数λ,使得k 1+k 2=λk 3?若存在,求λ的值;若不存在,说明理由.解:(1)由P ⎝⎛⎭⎫1,32在椭圆上得,1a 2+94b 2=1,① 依题设知a =2c ,则a 2=4c 2,b 2=3c 2,② 将②代入①得c 2=1,a 2=4,b 2=3. 故椭圆C 的方程为x 24+y 23=1.(2)存在.理由如下: 由题意可设AB 的斜率为k , 则直线AB 的方程为y =k (x -1),③代入椭圆方程并整理得(4k 2+3)x 2-8k 2x +4(k 2-3)=0.设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=8k 24k 2+3,x 1x 2=4(k 2-3)4k 2+3,④在方程③中令x =4,得M (4,3k ).从而k 1=y 1-32x 1-1,k 2=y 2-32x 2-1,k 3=3k -324-1=k -12.因为A ,F ,B 三点共线,则有k =k AF =k BF , 即y 1x 1-1=y 2x 2-1=k . 所以k 1+k 2=y 1-32x 1-1+y 2-32x 2-1=y 1x 1-1+y 2x 2-1-32⎝⎛⎭⎫1x 1-1+1x 2-1=2k -32·x 1+x 2-2x 1x 2-(x 1+x 2)+1,⑤将④代入⑤得k 1+k 2=2k -32·8k 24k 2+3-24(k 2-3)4k 2+3-8k 24k 2+3+1=2k -1.又k 3=k -12,所以k 1+k 2=2k 3.故存在常数λ=2符合题意.。
江门市2018届高考数学一轮复习专项检测试题 圆锥曲线与方程
圆锥曲线与方程一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合要求的.1.椭圆22221(0)x y a b a b+=>>的离心率为2,则双曲线22221x y a b-=的离心率( )A 。
54B 。
2C.D2.方程0)()9(22222=--y x x 表示的图形是( )A 。
4个点 B. 2个点 C.1个点 D.四条直线3.抛物线214y x =-的焦点坐标是( )A. 1(0,)16- B 。
1(,0)16- C.(0,1)- D.(1,0)- 4.椭圆两焦点为12(1,0),(1,0)F F -,P 为椭圆上一点,且12||F F 是12||||PF PF 与的等差中项,则椭圆方程是( )A.221109x y += B 。
2211610x y += C 。
22143x y += D 。
22134x y +=5.正六边形ABCDEF 中, 顶点A 、D 与椭圆的焦点重合,其余四个顶点恰在椭圆上,则该椭圆的离心率为( )A. 215- B.22 C.23D.13-6.已知M (2,1),N (-1,2),在下列方程的曲线上,存在点P 满足NPMP =的曲线是 ( )A. 3x -y +1=0B.03422=+-+x y x C.1222=+y x D 。
1222=-y x 7.如图,过抛物线22(0)ypx p =>的焦点F 的直线l 交抛物线于点,A B ,交其准线于点C ,若||2||BC BF =,且||3,AF =则此抛物线的方程为( ) A.23y x = B 。
232y x =C.292y x = D 。
29y x =8.设(P x 、)y1=上的点,12(4,0),(4,0)F F -,则必有 ( ) A .12||||10PF PF +≤ B .12||||10PF PF +< C .12||||10PF PF +≥ D .12||||10PF PF +>9、已知双曲线 和椭圆 (a>0, m 〉b 〉0)的离心率互为倒数,那么以a 、b 、m 为边长的三角形是( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、等腰三角形10、过抛物线y 2=4x 的焦点作直线,交抛物线于A(x 1, y 1) ,B (x 2, y2)两点,如果x 1+ x 2=6,那么|AB|= ( )A .8B .10C .6D .4二、填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上。
2018年全国高考(理科)数学试题分类汇编:圆锥曲线
全国高考理科数学试题分类汇编9:圆锥曲线一、选择题1 (高考江西卷(理))过点引直线l与曲线y =A,B 两点,O 为坐标原点,当∆AOB 的面积取最大值时,直线l 的斜率等于 ( )A .y EB BC CD=++3 B.3- C.3± D. B 2 (福建数学(理)试题)双曲线2214x y -=的顶点到其渐近线的距离等于( )A .25B .45CDC 3 (广东省数学(理)卷)已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是( )A.2214x = B .22145x y -=C .22125x y -=D.2212x -=*B4 (高考新课标1(理))已知双曲线C :22221x y a b -=(0,0a b >>),则C 的渐近线方程为( )A .14y x =±B .13y x =±C .12y x =±D .y x =±*C5 (高考湖北卷(理))已知04πθ<<,则双曲线22122:1cos sin x y C θθ-=与222222:1sin sin tan y x C θθθ-=的( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等*D6 (高考四川卷(理))抛物线24y x =的焦点到双曲线2213yx -=的渐近线的距离是( )A .12BC .1 DB7 (浙江数学(理)试题)如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在。
2018年全国高考数学圆锥曲线试卷集锦
2018年全国高考数学部分省市圆锥曲线试卷集锦1.<2018•福建理科)已知双曲线的右焦点与抛物线y2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于<A)b5E2RGb CAPA. B.C.3D.5解:抛物线y2=12x的焦点坐标为<3,0)∵双曲线的右焦点与抛物线y2=12x的焦点重合∴4+b2=9∴b2=5∴双曲线的一条渐近线方程为,即∴双曲线的焦点到其渐近线的距离等于,故选A.2.<2018•福建理科)如图,椭圆E:的左焦点为F 1,右焦点为F2,离心率e=.过F1的直线交椭圆于A、B两点,且△A BF2的周长为8.p1EanqFDPw<Ⅰ)求椭圆E的方程.<Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x =4相较于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.DXDiTa9E3d解:<Ⅰ)∵过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.∴4a=8,∴a=2∵e=,∴c=1∴b2=a2﹣c2=3∴椭圆E的方程为.<Ⅱ)由,消元可得<4k2+3)x2+8kmx+4m2﹣12=0∵动直线l:y=kx+m与椭圆E有且只有一个公共点P<x0,y0)∴m≠0,△=0,∴<8km)2﹣4×<4k2+3)×<4m2﹣12)=0∴4k2﹣m2+3=0①此时x0==,y0=,即P<,)由得Q<4,4k+m)取k=0,m=,此时P<0,),Q<4,),以PQ为直径的圆为<x ﹣2)2+<y﹣)2=4,交x轴于点M1<1,0)或M2<3,0)RTCrpUDGiT 取k=,m=2,此时P<1,),Q<4,0),以PQ为直径的圆为<x﹣)2+<y﹣)2=,交x轴于点M3<1,0)或M4<4,0)5PCzVD7HxA故若满足条件的点M存在,只能是M<1,0),证明如下∵∴故以PQ为直径的圆恒过y轴上的定点M<1,0)3.<2018广东理科)在平面直角坐标系xOy中,已知椭圆C:的离心率,且椭圆C上的点到点Q<0,2)的距离的最大值为3.jLBHrnAILg<1)求椭圆C的方程;<2)在椭圆C上,是否存在点M<m,n),使得直线l:mx+ny=1与圆O :x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.xHA QX74J0X解:<1)由得a2=3b2,椭圆方程为x2+3y2=3b2椭圆上的点到点Q的距离=①当﹣b≤﹣1时,即b≥1,得b=1②当﹣b>﹣1时,即b<1,得b=1<舍)∴b=1∴椭圆方程为<2)假设M<m,n)存在,则有m2+n2>1∵|AB|=,点O到直线l距离∴=∵m2+n2>1∴0<<1,∴当且仅当,即m2+n2=2>1时,S△AOB取最大值,又∵解得:所以点M的坐标为或或或,△AOB的面积为.4.<2018•广东文科)在平面直角坐标系xOy中,已知椭圆C1:<a>b>0)的左焦点为F1<﹣1,0),且点P<0,1)在C1上.LDAYtRyKfE<1)求椭圆C1的方程;<2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.解.<1)因为椭圆C1的左焦点为F1<﹣1,0),所以c=1,点P<0,1)代入椭圆,得,即b=1,所以a2=b2+c2=2所以椭圆C1的方程为.<2)直线l的斜率显然存在,设直线l的方程为y=kx+m,由,消去y并整理得<1+2k2)x2+4kmx+2m2﹣2=0,因为直线l与椭圆C1相切,所以△=16k2m2﹣4<1+2k2)<2m2﹣2)=0整理得2k2﹣m2+1=0①由,消去y并整理得k2x2+<2km﹣4)x+m2=0因为直线l与抛物线C2相切,所以△=<2km﹣4)2﹣4k2m2=0整理得km=1②综合①②,解得或所以直线l的方程为或.5.<2018•北京文科)已知椭圆C:+=1<a>b>0)的一个顶点为A <2,0),离心率为,直线y=k<x﹣1)与椭圆C交于不同的两点M,NZzz6ZB2Ltk<Ⅰ)求椭圆C的方程<Ⅱ)当△AMN的面积为时,求k的值.解:<Ⅰ)∵椭圆一个顶点为A <2,0),离心率为,∴∴b=∴椭圆C的方程为;<Ⅱ)直线y=k<x﹣1)与椭圆C联立,消元可得<1+2k2)x2﹣4k2x+2k2﹣4=0设M<x1,y1),N<x2,y2),则x1+x2=,∴|MN|==∵A<2,0)到直线y=k<x﹣1)的距离为∴△AMN的面积S=∵△AMN的面积为,∴∴k=±1.6.<2018•湖北理科)如图,双曲线﹣=1<a,b>0)的两顶点为A 1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D.则:dvzfvkwMI1 <Ⅰ)双曲线的离心率e=_________;<Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值=_______ __.解:<Ⅰ)直线B2F1的方程为bx﹣cy+bc=0,所以O到直线的距离为=∵以A1A2为直径的圆内切于菱形F1B1F2B2,∴∴bc=a2∴<c2﹣a2)c2=a4∴c4﹣a2c2﹣a4=0∴e4﹣e2﹣1=0∴<Ⅱ)菱形F1B1F2B2的面积S1=2bc设矩形ABCD,BC=2m,BA=2n,∴∵m2+n2=a2,∴,∴面积S2=4mn=∴==∵bc=a2=c2﹣b2∴∴=故答案为:,7.<2018•湖北理科)设A是单位圆x2+y2=1上的任意一点,i是过点A 与x轴垂直的直线,D是直线i与x轴的交点,点M在直线l上,且满足丨DM丨=m丨DA丨<m>0,且m≠1).当点A在圆上运动时,记点M的轨迹为曲线C.rqyn14ZNXI<I)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;<Ⅱ)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m ,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由.EmxvxOtOco解:<I)如图1,设M<x,y),A<x0,y0)∵丨DM丨=m丨DA丨,∴x=x0,|y|=m|y0|∴x0=x,|y0|=|y|①∵点A在圆上运动,∴②①代入②即得所求曲线C的方程为∵m∈<0,1)∪<1,+∞),∴0<m<1时,曲线C是焦点在x轴上的椭圆,两焦点坐标分别为<),m>1时,曲线C是焦点在y轴上的椭圆,两焦点坐标分别为<),<Ⅱ)如图2、3,∀x1∈<0,1),设P<x1,y1),H<x2,y2),则Q< x2,y2),N<0,y1),SixE2yXPq5∵P,H两点在椭圆C上,∴①﹣②可得③∵Q,N,H三点共线,∴kQN=kQH,∴∴kPQ•kPH=∵PQ⊥PH,∴kPQ•kPH=﹣1∴∵m>0,∴故存在,使得在其对应的椭圆上,对任意k>0,都有PQ ⊥PH9.<2018•江西文科)椭圆<a>b>0)的左、右顶点分别是A ,B,左、右焦点分别是F1,F2.若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为< )6ewMyirQFLA.B.C.D.解:设该椭圆的半焦距为c,由题意可得,|AF1|=a﹣c,|F1F2|=2c ,|F1B|=a+c,∵|AF1|,|F1F2|,|F1B|成等比数列,∴<2c)2=<a﹣c)<a+c),∴=,即e2=,∴e=,即此椭圆的离心率为.故选B.10.<2018•江西文科)已知三点O<0,0),A<﹣2,1),B<2,1),曲线C上任意一点M<x,y)满足||=kavU42VRUs <1)求曲线C的方程;<2)点Q<x0,y0)<﹣2<x0<2)是曲线C上动点,曲线C在点Q处的切线为l,点P的坐标是<0,﹣1),l与PA,PB分别交于点D,E,求△QAB与△PDE的面积之比.y6v3ALoS89解:<1)由=<﹣2﹣x,1﹣y),=<2﹣x,1﹣y)可得=<﹣2x,2﹣2y),∴||=,=<x,y)•<0,2)=2y.由题意可得=2y,化简可得 x2=4y.<2)直线PA,PB的方程分别为y=﹣x﹣1、y=x﹣1,曲线C在点Q<x0,y0)<﹣2<x0<2)处的切线方程为y=x﹣,且与y轴的交点F<0,﹣).M2ub6vSTnP由求得xD=,由求得xE=.故xE﹣xD=2,故|FP|=1﹣.故S△PDE=|PF|•|xE﹣xD|=<1﹣)•2=,而S△QAB=×4×<1﹣)=,∴=2,即△QAB与△PDE的面积之比等于2.11.<2018•辽宁理科)已知P,Q为抛物线x2=2y上两点,点P,Q的横坐标为4,﹣2,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为_________.0YujCfmUCw解:因为点P,Q的横坐标分别为4,2,代入抛物线方程得P,Q的纵坐标分别为8,2.由x2=2y,则y=,所以y′=x,过点P,Q的抛物线的切线的斜率分别为4,2,所以过点P,Q的抛物线的切线方程分别为y=4x﹣8,y=﹣2x﹣2联立方程组解得x=1,y=﹣4故点A的纵坐标为﹣4.故答案为:﹣4.12.<2018•辽宁理科)如图,已知椭圆C0:,动圆C1:.点A 1,A2分别为C0的左右顶点,C1与C0相交于A,B,C,D四点.eUts8Z QVRd<I)求直线AA1与直线A2B交点M的轨迹方程;<II)设动圆C2:与C0相交于A',B',C',D'四点,其中b <t2<a,t1≠t2.若矩形ABCD与矩形A'B'C'D'的面积相等,证明:为定值.sQsAEJkW5T解:<I)设A<x1,y1),B<x2,y2),∵A1<﹣a,0),A2<a,0),则直线A1A的方程为①直线A2B的方程为②由①×②可得:③∵A<x1,y1)在椭圆C0上,∴∴代入③可得:∴;<II)证明:设A′<x3,y3),∵矩形ABCD与矩形A'B'C'D'的面积相等∴4|x1||y1|=4|x3||y3|∴=∵A,A′均在椭圆上,∴=∴=∴∵t1≠t2,∴x1≠x2.∴∵,∴∴=a2+b2为定值.13.<2018•山东文科)已知双曲线C1:的离心率为2.若抛物线的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为< )GMsIasNXkAA.B.x2=yC.x2=8yD.x2=16y解:双曲线C1:的离心率为2.所以,即:=4,所以;双曲线的渐近线方程为:抛物线的焦点<0,)到双曲线C1的渐近线的距离为2,所以2=,因为,所以p=8.抛物线C2的方程为x2=16y.故选D.14.<2018•山东文科)如图,椭圆的离心率为,直线x=±a和y=±b所围成的矩形ABCD的面积为8.TIrRGchYzg <Ⅰ)求椭圆M的标准方程;<Ⅱ)设直线l:y=x+m<m∈R)与椭圆M有两个不同的交点P,Q,l与矩形ABCD有两个不同的交点S,T.求的最大值及取得最大值时m 的值.7EqZcWLZNX解:<I)…①矩形ABCD面积为8,即2a•2b=8…②由①②解得:a=2,b=1,∴椭圆M的标准方程是.<II),由△=64m2﹣20<4m2﹣4)>0得.设P<x1,y1),Q<x2,y2),则,.当l过A点时,m=1,当l过C点时,m=﹣1.①当时,有,,其中t=m+3,由此知当,即时,取得最大值.②由对称性,可知若,则当时,取得最大值.③当﹣1≤m≤1时,,,由此知,当m=0时,取得最大值.综上可知,当或m=0时,取得最大值.15.<2018•天津文科)已知双曲线C1:与双曲线C:<a>0,b>0)有相同的渐近线,且C1的右焦点为F<,0).则a=_________,b=_________.lzq7IGf02E解:∵双曲线C:<a>0,b>0)的渐近线方程为y=±2x,∴=2∵且C1的右焦点为F<,0).∴c=,由a2+b2=c2解得a=1,b=2故答案为1,216.<2018•天津)已知椭圆,点P<)在椭圆上.<1)求椭圆的离心率;<2)设A为椭圆的左顶点,O为坐标原点.若点Q在椭圆上且满足|AQ| =|AO|,求直线OQ的斜率的值.zvpgeqJ1hk解:<1)因为点P<)在椭圆上,所以∴∴∴<2)设直线OQ的斜率为,则其方程为y=kx设点Q的坐标为<x0,y0),由条件得,消元并整理可得①∵|AQ|=|AO|,A<﹣a,0),y0=kx0,∴∴∵x0≠0,∴代入①,整理得∵∴∴5k4﹣22k2﹣15=0∴k2=5∴17.<2018新课标理科)设F1、F2是椭圆的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为< )NrpoJac3v1A.B.C.D.解:∵△F2PF1是底角为30°的等腰三角形∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选C.18.<2018新课标理科)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,,则C的实轴长为< )1nowfTG4KIA.B.C.4D.8解:设等轴双曲线C:x2﹣y2=a2<a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A<﹣4,2),B<﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选C.19.<2018新课标理科)设抛物线C:x2=2py<p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;fjnFL Da5Zo<1)若∠BFD=90°,△ABD的面积为;求p的值及圆F的方程;<2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.tfnNhnE6e5解:<1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,∵△ABD的面积S△ABD=,∴=,解得p=2,∴圆F的方程为x2+<y﹣1)2=8.<2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线切点直线坐标原点到m,n距离的比值为.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阶段检测卷(五) (圆锥曲线)
时间:分钟满分:分
一、选择题:本大题共小题,每小题分,共分,有且只有一个正确答案,请将答案选项
填入题后的括号中..已知过点(-,)和()的直线与直线+-=垂直,则的值为( )
.-...
.若椭圆+=的焦距为,则的值为( )
..或
..或
.(年新课标Ⅰ)已知双曲线-=(>)的离心率为,则=( )
.
.
.设过点(,),且斜率为的直线与圆+-=相切,则的值为( )
.±.±
.-±±.设,是双曲线-=(>,>)的两个焦点,在双曲线上,若·=,·
=(为半焦距),则双曲线的离心率为( )
.
.已知双曲线:-=的左、右焦点分别为,,点为的右支上一点,且=,则△
的面积等于( )
.....抛物线=(>)的焦点为,准线为,,是抛物线上的两个动点,且满足∠
=,设线段的中点在上的投影为,则的最大值是( ).如图-,,是双曲线-
=(>,>)的左、右焦点,过的直线与双曲线的左、右两支分别交于点,.若△
为等边三角形,则双曲线的离心率为( )
图-
.())
二、填空题:本大题共小题,每小题分,共分,把答案填在题中横线上..已知双曲线,的顶点重合,的方程为
-=,若的一条渐近线的斜率是的一条渐近线的斜率的倍,则的方程为..若直线:=+和直线:=+将圆(-)+(-)=分成长度相等的四段弧,则+=.
.在△中,∠=°,=,△=.若以,为焦点的椭圆经过点,则该椭圆的离心率=.
三、解答题:本大题共小题,共分,解答须写出文字说明、证明过程或演算步骤.
.(分)已知椭圆:+=(>>)的长轴长为短轴长的倍.
()求椭圆的离心率;
()设椭圆的焦距为,直线与椭圆交于,两点,且⊥,求证:直线恒与圆+=相切.
.(分)已知椭圆:+
=(>>)的离心率为,以原点为圆心,椭圆的长半轴长为半径的圆与直线-+=相切.
()求椭圆的标准方程;()已知点,为动直线=(-)(≠)与椭圆的两个交点,问:在轴上是否存在点,使+·
为定值?若存在,试求出点的坐标和定值;若不存在,说明理由.
阶段检测卷(五)
.解析:由条件知,·(-)=-,∴=.
.解析:-=,或-=,∴=,或=.故选.
.解析:双曲线-=(>)的离心率为==.解得=..解析:设直线的方程为=+,圆心()到直线的距离等于半径,∴=,即的值为-±.故
选..解析:由题意得△是直角三角形,由勾股定理,得()=+=-+=+,∴--=,
∴--=,∵>,∴=.故选..解析:∵双曲线:-=中,=,=,∴=.∴(-),().∵==,∴=+=+=.如图,。