金属切削过程的基础知识

合集下载

第一章金属切削过程的基础知识

第一章金属切削过程的基础知识
进给速度vf是单位时间的进给量,单位是mm/s(mm/min)
进给量是工件或刀具每回转一周时两者沿进给运动方向的相对位 移,单位是mm/r(毫米/转)。
对于铣刀、铰刀、拉刀、齿轮滚刀等多刃切削工具,在它们进行 工作时,还应规定每一个刀齿的进给量fz,即后一个刀齿相对于前一 个刀齿的进给量,单位是mm/z(毫米/齿)。
1.1.2.3 刀具工作角度的参考系
上述刀具标注角度参考系,在定义基面时,都只考虑主 运动,不考虑进给运动,即在假定运动条件下确定的参考 系。但刀具在实际使用时,这样的参考系所确定的刀具角 度,往往不能确切地反映切削加工的真实情形。只有用合
成切削运动方向ve来确定参考系,才符合切削加工的实际。
例如,图1.10所示三把刀具的标注角度完全相同,但由于
tanγn =tanγ0.cosλs cotαn =cotα0.cosλs
1.1.3.1主剖面与法剖面内的角度换算
以前角计算公式为例,公式推导如下:
tan n
ac Ma
tan o
ab Ma
tan n tan o
ac Ma Ma ab
ac ab
coss
tan n tan o cos s
1.1.3.2 主剖面与任意剖面的角度换算
(3)合成运动与合成切削速度
当主运动与进给运动同时进行时,刀具切削刃上某一 点相对工件的运动称为合成切削运动,其大小与方向用 合成速度向量ve表示。如图1.3所示,合成速度向量等 于主运动速度与进给运动速度的向量和。即
ve=vc+vf
(1.1)
图1.3 切削时合成切削速度
1.1.1.2 切削用量三要素
合成切削运动方向ve不同,后刀面与加工表面之间的接触

金属切削加工的基本知识

金属切削加工的基本知识
(2)进给速度vf和进给量f
进给速度vf是单位时间内刀具对工件沿进给方
向的相对位移,单位是mm/s或mm/min。
进给量f是工件或刀具每回转一周时两者沿进
给运动方向的相对位移,单位是mm/r。
二者关系:
vf=f×n
切 削 用 量 三 要 素
(3)背吃刀量 工件上已加工表面和待加工表面间的垂直距 离,单位为mm。 外圆柱表面车削的深度可用下式计算: ap=(dw-dm)/2 mm 对于钻孔工作 ap=dm/2 mm 上两式中 dm——已加工表面直径(mm) dw—— 待加工表面直径(mm)
(3)金刚石
是目前人工制造出的最硬的物质,分天然和人造两种。
特点:
耐磨性好,可用于加工硬质合金、陶瓷、高硅铝合金及耐磨塑料等高硬度、
高耐磨的材料;
其热稳定性差, 强度低、脆性大、对振动敏感,只宜微量切削; 与铁有极强的化学亲合力,不适于加工黑金属。
(4)立方氮化硼
由软的立方氮化硼在高温高压下加入催化剂转变而成。
切 削 层 横 截 面 要 素
由切削刃正在切削的这一层金属叫作切削层。切削层的 截面尺寸称为切削层参数。它决定了刀具切削部分所承受的 负荷和切屑尺寸的大小,通常在基面Pr内度量。 1. 切削厚度 ac (λs= 0)
ac= f sinκr
2. 切削宽度 aw
aw= ap/sinκr
3. 切削层面积 Ac ( κr = 0)
特点:Leabharlann 有很高的硬度及耐磨性; 热稳定性好,可用来加工高温合金; 化学惰性大,可用与加工淬硬钢及冷硬铸铁; 有良好的导热性、较低的摩擦系数。
第二节 金属切削过程中的基本规律
一、切削变形
1.变形区的划分

金属切削加工的基础知识

金属切削加工的基础知识

n——主运动每分钟的往复次数,单位 str/min。
(2) 进给量 f
表示进给运动速度大小的方法有三种,即进给速度 vf,进给量 f,每齿进给量 fz。 进给速度 vf 是指切削刃上选定点相对于工件的瞬时进给运动速度。单位为 mm/s。 进给量 f 是指主运动每转一转,或一个双行程,工件或刀具在进给运动方向上的相对位移量。
程中它的面积逐渐扩大。
过渡表面:工件上由切削刃形成的那部分表面,又称加工表
面。它在主运动的下一转里被切除,或者由下一切削刃切除(多齿 图 1-5 工件的加工表面和被吃刀量 刀具)。
单位为 mm/r 或 mm/str。
每齿进给量 fz 是指多齿刀具每转一齿,工件和刀具在进给运动方向上的相对位移量。单位为 mm/z。
(3) 背吃刀量 ap
切削过程中,通常会在工件上形成三个表面,如图 1-5 所示。
待加工表面:工件上即将被切除的的表面。在切削过程中它
的面积不断减少,直至全部切去。
已加工表面:工件上刀具切削后形成的新鲜表面。在切削过
v

d wn 60 1000
(m/s)
(1-1)
式中:dw——完成主运动的刀具或者工件的最大直径,单位 mm。 n ——主运动的转速,单位 r/min。
当主运动为往复运动时(如刨削),则切削速度为往复运动的平均速度。
v

2Ln 60 1000
(m/s)
(1-2)
式中:L——往复运动的形成长度,单位 mm。
常用的金属切削加工方法有:车削、铣削、刨削、磨削、钻削、镗削、拉削等。
1.1 工件表面的形成方法及所需的成形运动
任何零件的表面都可以看作由若干个基本表面按照一定的关系组合而成。如图 1-1 所示机器零 件上常用的典型表面有:平面、圆柱面、圆锥面和各种成形表面。

金属切削的基础知识

金属切削的基础知识
弹性变形 塑性变形 挤裂 切离 切屑
切削过程: 三个变形区
(1)第一变形区
(2)第二变形区: (3)第三变形区:
制造技术
切屑种类:
1)带状切屑
外形连绵不断,与前刀 面接触的面很光滑,背面呈毛 茸状。用较大前角、较高的切 削速度和较小的进给量切削塑 性材料时,容易得到带状切屑。
制造技术
2)崩碎切屑 切削铸铁等脆性材料
制造技术
二、切削热的传散
在一般干切削的情况下,大部分的切削热由切屑传散出 去,其次由工件和刀具传散,而周围介质传散出去的热量很 少。但各种传散热量的比例,随着工件材料、刀具材料、切 削用量、刀具角度及切削方式等切削条件的不同而异。 切削热传散给切削及周围介质,对切削加工没有影响, 且传散得越多越好。 切削热传散给刀具切削部分,使刀具磨损加快,缩短刀 具的使用寿命;切削热传散给工件,影响工件的加工精度和 表面质量。 为了减小切削热对工件加工质量的不良影响,可采取的 两方面工艺措施:一是减小工件材料的变形抗力和摩擦阻力, 降低功率消耗和减少切削热;二是要加速切削热的传散,以 降低切削温度。
面粗糙度;严重时,会引起崩刀打刀,加速刀具的磨损。 二、表层材质变化
1.加工硬化
加工硬化是指在切削过程中,工件已加工表面受刀刃和后 面的挤压和摩擦而产生塑性变形,使表层组织发生变化,硬度 显著提高的现象。硬化层深度可达到0.02~0.03mm,表层硬度 约为工件材料的1.2~2倍。
制造技术
对加工硬化的影响因素:刀具几何参数、切削条件、工件
制造技术
2.润滑作用 金属切削加工液(简称切削液)在切削过程中的润滑作用, 可以减小前刀面与切屑,后刀面与已加工表面间的摩擦,形成部 分润滑膜,从而减小切削力、摩擦和功率消耗,降低刀具与工件 坯料摩擦部位的表面温度和刀具磨损,改善工件材料的切削加工 性能。在磨削过程中,加入磨削液后,磨削液渗入砂轮磨粒-工 件及磨粒-磨屑之间形成润滑膜,使界面间的摩擦减小,防止磨 粒切削刃磨损和粘附切屑,从而减小磨削力和摩擦热,提高砂轮 耐用度以及工件表面质量。 3.清洗和排屑作用 在金属切削过程中,要求切削液有良好的清洗作用。除去生 成切屑、磨屑以及铁粉、油污和砂粒,防止机床和工件、刀具的 沾污,使刀具或砂轮的切削刃口保持锋利,不致影响切削效果。 对于油基切削油,粘度越低,清洗能力越强,尤其是含有煤油、 柴油等轻组份的切削油,渗透性和清洗性能就越好。含有表面活 性剂的水基切削液,清洗效果较好,因为它能在表面上形成吸附

第十七章 金属切削加工基础知识

第十七章 金属切削加工基础知识

图17-17 刀具磨损的三个阶段
• 第五节
工件材料的切削加工性
• 一、 衡量工件材料切削加工性的指标 • 由于切削加工性是对材料多方面的综合评价,所以很难用一个简单的 物理量来精确规定和测量。在生产和实验中,常取某一项指标来反映 材料切削加工性的某一具体方面,最常用的是vT和Kr。 • vT——指在一定的切削条件下,当刀具的寿命为T分钟时,切削某种材 料所允许的最大的切削速度。vT越高,表示材料的切削加工性越好。 通常取T=60min,则vT可写作v60。 • Kr——称为相对加工性,一般以正火状态45钢的v60为基准,写作 (v60),然后将其它各种材料的v60与之相比所得的比值。当Kr>1时, 表示该材料比45钢容易切削。反之,则比45钢难切削。常用工件材料 的相对加工性可分为八级,见表17-2。
• 五、切削热与切削温度 • 1.切削热的来源: • ⑴是正在加工和已加工表面所发生的弹性和塑性变形而产生的大量的热, 是切削热的主要来源; • ⑵是切屑与刀具前刀面之间的摩擦产生的热; • ⑶是工件与刀具后刀面之间的摩擦产生的热。切削时所消耗的功约有98% -99%转换为切削热。 • 2.切削温度 • 切削温度过高,会使刀头软化,磨损加剧,寿命下降;工件和刀具受热膨 胀,会导致工件精度超差影响加工精度,特别是在加工细长轴、薄壁套时, 更应注意热变形的影响。 ⑴ • 在生产实践中,为了有效地降低切削温度,常应用切削液,切削液能带走 大量的热,对降低切削温度的效果显著,同时还能起到润滑、清洗和防锈的 作用。常见的切削液有: • ⑴切削油 主要是各种矿物油、动植物油和加入油性、极压添加剂的混 合油。其润滑性能好,但冷却性能较差,主要用来减少磨损和降低工件的表 面粗糙度,一般用于低速精加工,如铣削加工和齿轮加工等。 • ⑵水溶液 主要成分是水并加入防锈剂、表面活性剂或油性添加剂。其 热导率高、流动性好,主要起冷却作用,同时还具有防锈、清洗等作用。 • ⑶乳化液 由乳化油加水稀释而成,呈乳白色或半透明状,有良好的流 动性和冷却作用,是应用最广泛的切削液。低浓度的乳化液用于粗车、磨削。 高浓度乳化液用于精车、钻孔和铣削等。在乳化液中加入硫、磷等有机化合 物,可提高润滑性。适用于螺纹、齿轮等精加工。

金属切削的基础知识

金属切削的基础知识

机械制造基础习题一、填空题1.切削用量三要素指的是切削速度、进给量、背吃刀量2.在金属切削过程中,切削运动可分为主运动和进给运动。

其中主运动消耗功率最大,速度最高。

3.金属切削刀具的材料应具备的性能有高的硬度和耐磨性、足够的强度和韧性、高的耐热性和良好的散热性、良好的工艺性与经济性。

4.刀具在高温下能保持高硬度、高耐磨性、足够的强度和韧性.则该刀具的热硬性较高。

5.前刀面和基面的夹角是前角,后刀面与切削平面的夹角是后角,主切削刃在基面上的投影和进给方向之间的夹角是主偏角,主切削刃与基面之间的夹角是角刃倾角。

6.刀具角度中,影响径向分力Fy大小的角度是主偏角。

因此,车削细长轴时,为减小径向分力作用,主偏角常用75°或90°。

7.车外圆时,刀尖高于工件中心,工作前角变大,工作后角变小。

8.切削过程中影响排屑方向的刀具角度是刃倾角,精加工时,刃倾角应取正值。

9.积屑瘤产生的条件是用中等速度切削塑性材料且能形成带状切屑时。

避免积屑瘤的产生,主要控制切削用量中的切削速度。

10.在切削用量中,影响切削力大小最显著的是背吃刀量,影响切削温度大小最显著的是切削速度。

11.切削用力常分解到三个相互垂直的方向上:主切削力与主切削刃上某点的切削速度方向一致;与工件轴线平行的为进给抗力;与工件半径方向一致的是切深抗力力。

12.从提高刀具耐用度出发,粗加工时选择切削消量的顺序应是背吃刀量、进给量、切削速度。

13.孔加工中,镗床主要用于箱体类零件上孔系的加工。

14.在拉削加工中,主运动是拉刀的旋转,进给运动是靠拉刀的齿升量来实现的。

15.合理的刀具耐用度(寿命)包括最高生产率寿命与最低成本寿命两种。

16.转位车刀的切削性能比焊接车刀好(好,差),粗加工孔时,应选择麻花钻(拉刀、麻花钻)刀具。

17.当主偏角增大时,刀具耐用度增加(增加,减少),当切削温度提高时,耐用度减少(增加、减少)。

18.当工件材料硬度提高时,切削力增加(增加,减少);当切削速度提高时,切削变形减少(增加、减少)。

第一章 金属切削基本知识

第一章 金属切削基本知识

刀具角度对加工过程的影响
1. 前角(0) ① 减小切屑的变形;
作用 ② 减小前刀面与切屑之间的摩擦力。
a .减小切削力和切削热; 所以 0 : b .减小刀具的磨损;
c .提高工件的加工精度和表面质量。
0
0选择:
加工塑性材料和精加工—取大前角( 0 ) 加工脆性材料和粗加工—取小前角(0 )
前角(0)可正、可负、也可以为零。
➢ 偏挤压:金属材料一部分受挤压时 ,OB线以下金属由于母体阻碍,不 能沿AB线滑移,而只能沿OM线滑移
F
B
O
a)正挤压
45° M A F
BO
b)偏挤压
➢ 切削:与偏挤压情况类似。弹性变
M
形→剪切应力增大,达到屈服点→产 生塑性变形,沿OM线滑移→剪切应
O F
力与滑移量继续增大,达到断裂强度
c)切削
后角( 0)只能是正的。
精加工: 0= 80~120 粗加工: 0= 40~80 3 . 主偏角(kr)
作用:改善切削条件,提高刀具寿命。
减小kr:当ap、f 不变时,则 aw 、ac — 使切削条件得到改善,提高了刀具寿命。
dw
ap
dm
但减小kr
Fy 、
n
Fx ,加大工件的变形
挠度,使工件精度降
化学惰性
低 惰性大 惰性小 惰性小 惰性大
耐磨性 低 加工质量

较高
高 最高
最高
很高
一般精度 Ra≤0.8 Ra≤0.8 IT7-8 IT7-8
高精度 Ra=0.1-0.05
IT5-6
Ra=0.4-0.2
IT5-6 可替代磨削
低速加 加工对象 工一般

金属切削过程的基础知识

金属切削过程的基础知识
第一节 基本概念
1. 切削运动
金属切削机床的基本运动有直线运动和回转运动。依其 作用不同,可把切削运动分为主运动与进给运动。
(1)主运动
主运动是切除多余金属层以形成工件要求的形状、尺寸 精度及表面质量所必须的基本运动,是速度最高、消耗功率 最大的运动。这种运动在切削过程中只能有一个。车削的主 运动是工件的回转运动。
前角γ0e和工作后角αoe都与其标注前
角γo和标注后角αo不同,它们之间的 关系见下式:
vc
第一节 基本概念
γ oe γ o η ;α oe α o η
η称为合成切削速度角,是 主运动方向与切削速度方向 的夹角:
tanη vf f
vc π d
vc
第一节 基本概念
(2)纵车
当考虑进给运动后,切削刃上选定点的运动轨迹是一螺旋线,这时的切削 平面Pse是过选定点与螺旋面相切的平面,刀具工作角度的参考系(Pse、Pre) 倾斜了一个角η,则工作进给剖面内的工作角度为:
第一节 基本概念
(1)前刀面
切屑流经的表面称为前刀面,记为Ar。
(2)后刀面
后刀面分为主后刀面和副后刀面。与工 件上加工表面相对的表面称为主后刀面,记 为Aa。与工件上已加工表面相对的表面称为 副后刀面,记为Aa’。
(3)切削刃 前刀面与主后刀面的交线,称
为主切削刃,用以完成主要切除 工作,记作S;前刀面与副后刀 面的交线,称为副切削刃,辅助 参与形成己加工表面,记作S’。 (4)刀尖
切削主运动和进绘运动的合成称合成切削运动,亦即刀具切削刃上某一点
相对工件的运动,其大小与方向用合成速度向量 ve 表示。
ve vc v f
第一节 基本概念
2. 切削用量三要素

金属切削的基础知识概述

金属切削的基础知识概述

金属切削的基础知识概述简介金属切削是一种通过削剪和切割金属材料的方法,是制造业中常见的一项工艺。

基于材料的性质和切削工具的性能,金属切削可以实现高精度和高效率的加工。

本文将介绍金属切削的基本原理、切削工具、切削过程中的参数和常见的切削方式。

基本原理金属切削的基本原理是通过切削工具对金属材料进行削剪,从而使金属材料形成所需的形状和尺寸。

切削工具通常是由刀具和刀具架组成。

刀具用于切削金属材料,而刀具架则用于固定刀具并提供切削力。

切削过程中,刀具和工件之间形成了切削区域。

刀具通过在切削区域施加切削力,将金属材料削去。

这种削去的过程称为切削,并产生了削屑。

削屑是通过切削工具对金属材料进行切割而产生的废料。

切削工具金属切削中常用的切削工具有刀具、铣刀和钻头等。

下面简单介绍几种常见的切削工具:1. 刀具刀具是用于切削金属材料的基本工具。

刀具通常包括刀片和刀柄两部分。

刀片是用来切削金属材料的零件,而刀柄则用于固定刀片和提供切削力。

常见的刀具类型包括车刀、铣刀、刨刀和麻花钻等。

不同的刀具适用于不同的切削任务和金属材料。

2. 铣刀铣刀是一种旋转切削工具,用于将金属材料进行铣削。

铣刀通常由刀柄和多个刀片组成。

刀柄用于固定刀片,而刀片通过旋转进行切削。

铣刀常用于对金属材料进行复杂的零件加工,如开槽、螺纹加工和表面光洁度要求较高的加工。

3. 钻头钻头是一种专门用于钻孔的切削工具。

钻头通常由刀片和刀杆组成。

刀片被用于切削金属材料,并通过刀杆进行固定。

钻头适用于对金属材料进行孔加工,如钻孔和锪孔等。

切削过程中的参数切削过程中有几个重要的参数需要考虑,包括切削速度、进给速度和切削深度。

1. 切削速度切削速度是指切削工具在单位时间内切削的线速度。

切削速度的选择与金属材料的性质和切削工具的性能有关。

切削速度过高容易引起切削工具的损坏,而切削速度过低则会降低加工效率。

因此,在切削过程中需要选择适当的切削速度,以确保切削质量和切削效率。

金属切削的基础知识

金属切削的基础知识

金属切削的基础知识金属切削是一种通过切削工具在金属工件上施加力量,使其产生剪切应力,从而剥离所需形状的金属层的加工方法。

它是目前最常用和广泛应用的金属加工方式之一。

以下是金属切削的基础知识:1. 切削工具:切削工具通常由硬质材料制成,如高速钢、硬质合金等。

常见的切削工具包括刀片、钻头、铣刀等。

刀具的选择根据加工材料、加工形状和加工质量要求等因素进行。

2. 切削速度:切削速度是指在单位时间内切削刀具工作部分对工件的相对运动速度。

它是影响切削加工效果和刀具寿命的重要因素。

通常以米每分钟(m/min)作为单位。

3. 进给速度:进给速度是指切削刀具沿工件表面移动的速度。

它决定了每分钟进给长度。

进给速度的选择需要考虑切削深度、加工精度和刀具强度等因素。

4. 切削深度:切削深度是指切削刀具在每次切削中从工件表面剥离金属的厚度。

切削深度越大,切削力也会增加,刀具磨损加剧。

因此,切削深度的选择要根据材料性质、刀具强度和加工要求等综合考虑。

5. 切削力:切削力是指在切削过程中作用在切削刀具上的力。

它是切削加工过程中的重要力学参数,会影响刀具的磨损和加工精度。

切削力的大小与切削厚度、切削速度、切削角度和材料硬度等因素密切相关。

6. 刀具磨损:切削刀具在切削过程中会不可避免地发生磨损。

刀具磨损会使切削力增加、切削质量下降,并且降低了刀具的寿命。

因此,定期更换和修磨切削刀具是保证加工质量和生产效率的重要措施。

7. 切削液:切削液是指在金属切削过程中加入的一种液体。

它主要用于降低切削温度、润滑切削表面、冲洗切削区域,以减少金属切削时产生的摩擦和热量。

良好的切削液选择能够有效地提高加工质量和刀具寿命。

金属切削是工业生产中广泛应用的加工方式之一,掌握金属切削的基础知识对于提高加工质量、降低生产成本具有重要意义。

因此,对于从事金属加工的工作者来说,了解切削工具、切削速度、进给速度、切削深度、切削力、刀具磨损以及切削液等基础知识是十分必要的。

第十七章 金属切削加工基础知识

第十七章 金属切削加工基础知识

图17-15 切削合力与分力
(1)主切削力Fc 垂直于基面且与切削主运动速度方向一致。机床动 力的主要依据。消耗功率95%以上。 (2)背向力Fp 在基面内,与切削进给速度方向垂直。易使工件变 2 形,同时还会引起振动,使工件的表面粗糙度值增大。 (3)进给力Ff 在基面内,与进给速度方向平行。是验证进给系统 零件强度和刚度的依据。 (17-6) 由图17-15可知 F2=F2c+ F2p+ F2f 2. 影响切削力的大小的因素: 影响切削力的大小的因素: (1)工件材料的影响 )工件材料的影响:一般材料的强度、硬度愈高,韧性、塑性愈好, 愈难切削,切削力也愈大。 (2)切削用量的影响:当ap和f增加时,切削力也增大。在车削加工时, )切削用量的影响: 当ap加大一倍,Fc也增大一倍;而f加大一倍,Fc只增大68%~86%,因 此,从切削力角度考虑,加大进给量比加大背吃刀量有利。 (3)刀具几何参数的影响 前角和后角对切削力的影响最大。 ) 前角愈大切屑变形小,切削力也小。 后角愈大,刀具后刀面与工件加工表面间的摩擦愈小。 改变主偏角的大小,可以改变轴向力与径向力的比例(特别是加工细长工 件时,经常采用较大的主偏角以使径向力减小)
• 二、影响材料切削加工性的因素 • 1.影响工件材料切削性能的主要因素 • (1)硬度、强度 一般来讲,材料的硬度、强度愈高,则切削力愈大, 消耗切削功率愈多,切削温度愈高,刀具磨损愈快,因此,其切削加 工性差。 • (2)塑性 材料的塑性愈大,则切削变形愈大,刀具容易发生磨损。 在较低的切削速度下加工塑性材料还容易出现积屑瘤使加工表面粗糙 度值增大,且断屑困难,故切削加工性不好。但材料塑性太差时,得 到崩碎切屑,切削力和切削热集中在切削刃附近,刀具易产生崩刃, 加工性也较差。 • (3)另外,材料的热导率、化学成分、金相组织等都对材料的切削加 工性有一定的影响。 • 2.改善材料切削加工性的主要措施 • (1)调整材料的化学成分 在钢中加入S、P、Pb、Ca等元素能起 到一定的润滑作用并增加材料的热脆性,从而改善其切削加工性。 • (2)对工件材料进行适当的热处理 利用热处理可改善低碳钢和高 碳钢的切削加工性。例如,对低碳钢和进行正火处理,或降低塑性, 提高硬度,使其切削加工性得到改善。对高碳钢和工具钢进行球化退 火,使网状、片状的渗碳体组织球状渗碳体,降低了材料的硬度,使 切削加工较易进行。对于出现白口组织的铸件,可在950~1000℃下 进行长时间退火,降低硬度, 达到改善切削加工性的目的。

金属工艺学第一章 金属切削基础知识

金属工艺学第一章 金属切削基础知识

主要的影响因素
切削速度 (切中碳钢) <5m/min不产生 5~50m/min形成
控 制 措 降低塑性 施
(正火、调质)
>100 m/min不形成 选用低速或高速
冷却润滑条件
300~500oC最易产 生 >500oC趋于消失
选用切削液
第三节 金属切削过程
三、切削力与切削功率
1、切削力的构成与分解
切削力的来源
热处理变形 不需要
用途
各种刀片
1200
(12~14)
高硬度钢材 精加工
人造金刚石
HV10000 (硬质合金为 HV1300~1800)
700~800
不宜加工钢铁材 料
第二节 刀具材料及刀具构造
三、刀具角度
各种刀具的切削部分形状
第二节 刀具材料及刀具构造
二、刀具角度
1、车刀切削部分的组成
三面
两刃 一尖
(2)作用 ①冷却 ②润滑
第三节 金属切削过程
五、刀具磨损和刀具耐用度
1、刀具磨损形式
(1)前刀面磨损 (2)后刀面磨损 (通常以后刀面磨损值VB表示刀具磨损程度) (3)前后刀面同时磨损
2、刀具磨损过程:
前面磨损、后面磨损、前后面同时磨损 。 刀具磨损过程: 初期磨损阶段、正常磨损阶段、急剧磨损阶段
刀尖高低对刀具工作角度的影响
车刀刀杆安装偏斜对刀具角度的影响
② 进给运动的影响
第二节 刀具材料及刀具构造
三、刀具结构
刀具的结构形式很多,有整体式、焊接式、机夹 不重磨式等。
目前一般整体式的多为高速钢车刀,其结构简单, 制造、使用都方便。而对于贵重刀具材料,如硬质合 金等,可采用焊接式或机夹不重磨式。焊接式车刀结 构简单、紧凑、刚性好,可磨出各种所需角度,应用 广泛。

第 一章 金属切削的基础知识

第 一章    金属切削的基础知识

背吃刀量
在垂直于主运动方向和进给方向的工 作平面内测量的刀具切削刃与工件切削表 面的接触长度。对于外圆车削,背吃刀量 为工件上已加工表面和待加工表面间的垂 直距离,单位为mm。即ap=(dw-dm)/2 其中: dw—工件待加工表面的直径,(mm); dm—工件已加工表面的直径, (mm)。
切削层参数
二、刀具角度
刀具的组成部分
(1)刀具静止参考系
劈柴
斧头角度
切西瓜
水果刀角度
外圆车刀是最基本、最典型的切削刀具,其切削部分 (又称刀头)由前面、主后面、副后面、主切削刃、副切削 刃和刀尖所组成。其定义分别为: (1)前面 刀具上与切屑接触并相互作用的表面。 (2)主后面 刀具上与工件过渡表面相对并相互作用的表 面。 (3)副后面 刀具上与已加工表面相对并相互作用的表面。 (4)主切削刃 前刀面与主后刀面的交线。它完成主要的切 削工作。 (5)副切削刃 前刀面与主后刀面的交线。它配合主切削刃 完成切削工作,并最终形成已加工表面。 (6)刀尖 主切削刃和副切削刃连接处的一段刀刃。它可 以是小的直线段或圆弧。
切削速度 Vc
切削刃上选定点相对于工件主运动的瞬时速度 主运动为旋转运动: 切削速度一般为其最大线速度。
由于切削刃上各点的切削速度可能是不同,计算 时常用最大切削速度代表刀具的切削速度 Vc = πdn/1000 m/s 或 m/min 式中:d:工件或刀具的直径,mm n: 工件或刀具的转速,r/s 或r/min
(3)高速钢
高速钢是含W、Cr、V等合金元素较多的合金工 具钢。它的耐热性、硬度和耐磨性虽低于硬质 合金,但强度和韧度却高于硬质合金(表1—1), 工艺性较硬质合金好,而且价格也比硬质合金 低。普通高速钢如W18Cr4V是国内使用最为普 遍的刀具材料,广泛地用于制造形状较为复杂 的各种刀具,如麻花钻、铣刀、拉刀、齿轮刀 具和其他成形刀具等。

金属切削的基础知识

金属切削的基础知识

已加工表面质量越好
2) 后角α0 在正交平面内测量, 主后刀面与切削平面之间
的夹角。
υc
切削平面投影线
后角α0 主后刀面投影线
作用:
减小后刀面与已加工表面之间的摩擦; 它和 前角一样影响刃口的强度和锋利程度。
后角应在60~120内选取; 粗加工取小, 精加 工取大。
3) 主偏角κr
主切削平面与假定工作平面之间的夹角。
• 目前绝大多数零件的质量还要靠切削加工的方法来 保证。
第一章 第二章
金属切削的基础知识 金属切削机床的基本知识
第三章
常用加工方法综述
第四章 精密加工和特种加工简介
第五章
典型表面加工分析
§1-1 切削运动及切削要素
一、零件表面的形成及切削运动
1.主运动―― ―主要完成切削的动,消耗功率最多,一种 加工主运动只有一个。( );
3.车刀的主要角度 为确定刀具的主要角度, 须建立三个相互垂直的
参考平面构 成的静止参考系。
(1) 建立车刀静止参考系 基面 切削平面 正交平面
1) 基面 通过切削刃选定点的平面, 它平行刀具安装的一个 平面, 其方位要垂直于主运动方向。
υc
2) 切削平面 通过切削刃选定点并同时垂直于基面的平面。
三、刀具结构 车刀按结构分类, 有整体式、焊接式、机夹式
和可转位式四种型式(见图)。 (它们的特点与常用场合见表1-2。)
表1-2 车刀结构类型、特点与用途
名称


整体 用整体高速钢制造,刃口较锋利,但价高的刀具 式 材料消耗较大
适 用 场合
小型车床或加工有色金 属
焊接 式
焊接硬质合金或高速钢于预制刀柄上,结构紧 凑,刚性好,灵活性大。但硬质合金刀片经过高 温焊接和刃磨,易产生内应力和裂纹
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含钴量增加,抗弯强度和冲击韧性提高,适于粗加工,含钴减少, 硬度、耐磨性及耐热性增加,适于精加工。
应注意,合金不适合加工不锈钢和钛合金。因YT中的钛元素之间 的亲合力会产生严重的粘刀现象,在高温切削及摩擦系数大的情况下 会加剧刀具磨损。
(3)YW(M)类,即WC—TiC-TaC-Co类硬质合金
在YT类中加入TaC(NbC)可提高其抗弯强度、疲劳强度、冲击 韧性、高温硬度、强度和抗氧能力、耐磨性等。既可用于加工铸铁, 也可加工钢,因而又有通用硬质合金之称。常用的牌号为YW1和 YW2。
典型牌号有高碳高速钢9W18Cr4V,高钒高速钢 W6MoCr4V3、钴高速钢W6MoCr4V2Co8、超硬高速钢 W2Mo9Cr4Co8等。
(3)粉末冶金高速钢
用高压氩气或氮气雾化熔融的高速钢水,直接得到细小的高速 钢粉末,高温下压制成致密的钢坯,而后锻压成材或刀具形状具有 良好的机械性能。其强度和韧性分别是熔炼高速钢的2倍和2.5~3倍; 磨加工性能好;物理机械性能高度各向同性,淬火变形小;耐磨性 能提高20%~30%,适合制造切削难加工材料的刀具,大尺寸刀具 (如滚刀、插齿刀)、精密刀具、磨加工量大的复杂刀具、高压动 载荷下使用的刀具等。
各类硬质合金钢刀具
ISO将切削用的硬质合金分为三类:
(1)YG(K)类,即WC-Co类硬质合金
由WC和Co组成。牌号有YG6、YG8、YG3X、YG6X,含钴量 分别为6%、8%、3%、6%,组织结构有粗晶粒、中晶粒、细晶粒 之分。一般(YG6、YG8)为中晶粒组织,细晶粒硬质合金(如 YG3X、YG6X)在含钴量相同时比中晶粒的硬度、耐磨性要高些, 但抗弯强度、韧性则低些。此类合金韧性、磨削性、导热性较好, 较适于加工产生崩碎切屑、有冲击切削力作用在刃口附近的脆性材 料,如铸铁、有色金属及其合金以及导热系数低的不锈钢和对刃口 韧性要求高(如端铣)的钢料等。
以上三类的主要成分均为WC,所以又称为WC基硬质合金。
表1.1列出了各种硬质合金牌号刀具的应用范围。
表1.1 各种硬质合金牌号的应用范围
刀具材料要比工件材料硬度高,常温硬度在HRC62以上。耐磨性 表示抵抗磨损的能力,它取决于组织中硬质、数量、大小和分布。 (2)足够的强度和韧性
为了承受切削中的压力冲击和振动,避免崩刃和折断,刀具材料 应该具有足够的强度和韧性。一般强度用抗弯强度来表示,韧性用冲击 值表示。 (3)高的耐热性
刀具材料在高温下保持硬度、耐磨性、强度和韧性的能力。 (4)良好的工艺性
各类高速钢刀18Cr4V(简称W18)。含W18%、Cr4%、V1 %。有良好的综合性能,可以制造各种复杂刀具。淬火时过热倾向 小;磨加工性好;碳化物含量高,塑性变形抗力大;但碳化物分布 不均匀,影响薄刃刀具或小截面刀具的耐用度;强度和韧性显得不够; 热塑性差,很难用作热成形方法制造的刀具(如热轧钻头)。
②钨钼钢 将钨钢中的一部分钨以钼代替而得。典型牌号为 W6MoCr4V2(简称M2)具有良好的机械性能,可做尺寸较小、承 受冲击力较大的刀具;热塑性特别好,更适用于制造热轧钻头等; 磨加工性也好,目前各国广为应用。
(2)高性能高速钢
是在通用高速钢的基础上再增加一些含碳量、含钒量及添 加钴、铝等元素。按其耐热性,又称为高热稳定性高速钢。具 有更好的切削性能,耐用度较通用型高速钢高1.3~3倍。适合于 加工高温合金、钛合金、超高强度钢等难加工材料。
1.2.2.2 硬质合金
由难熔金属化合物(如WC、TiC)和金属粘结剂(Co)经粉末 冶金法制成。
因含有大量熔点高、硬度高、化学稳定性好、热稳定性好的金 属碳化物,硬质合金的硬度、耐磨性和耐热性都很高。硬度可达 HRA89~93,在800~1000 °C还能承担切削,耐用度较高速钢高几 十倍。当耐用度相同时,切削速度可提高4~10倍。
唯抗弯强度较高速钢低,冲击韧性差,切削时不能承受大的振 动和冲击负荷。
碳化物含量较高时,硬度高,但抗弯强度低;粘结剂含量较高 时,抗弯强度高,但硬度低。
硬质合金以其切削性能优良被广泛用作刀具材料(约占50%)。 如大多数的车刀、端铣刀以至深孔钻、铰刀、齿轮刀具等。它还可 用于加工高速钢刀具不能切削的淬硬钢等硬材料。
为了便于制造,要求刀具材料有较好的可加工性,如切削加工性、 铸造性、锻造性、热处理性等。 (5)良好的经济性
1.2.2 常用的刀具材料
目前,生产中所用的刀具材料以高速钢和硬质合金居多。炭素工 具钢(如T10A、T12A)、工具钢(如9SiCr、CrWMn)因耐热性差, 仅用于一些手工或切削速度较低的刀具。
1.2 刀具材料
在切削过程中,刀具直接切除工件上的余量并形成已加工表面,刀 具材料对金属切削的生产率、成本、质量有很大的影响,因此要重视刀 具材料的正确选择与合理使用。
1.2.1 刀具材料应具备的性能
1.2.2 常用的刀具材料
1.2.3 其它刀具材料
1.2.1 刀具材料应具备的性能
作为刀具材料应满足以下基本要求: (1)高的硬度和耐磨性
(2)YT(P)类,即WC-TiC-Co类硬质合金
硬质点相除WC外,还含有5%~30%的TiC。牌号有YT5、YT14、 YT15、YT30、TiC的含量分别为5%、14%、15%、30%,相应的钴 含量为10%、8%、6%、4%,TiC含量提高,Co含量降低,硬度和耐 磨性提高,但是冲击韧性显著降低。 此类合金有较高的硬度和耐磨性,抗粘结扩散能力和抗氧化能力好; 但抗弯强度、磨削性能和导热系数下降,低温脆性大,韧性差。适于 高速切削钢料。
1.2.2.1 高速钢
是一种加入较多的钨、钼、铬、钒等合金元素的高合金工具钢。 有较高的热稳定性,较高的强度、韧性、硬度和耐磨性;其制造工艺简 单,容易磨成锋利的切削刃,可锻造,这对于一些形状复杂的工具,如 钻头、成形刀具、拉刀、齿轮刀具等尤为重要,是制造这些刀具的主要 材料。
高速钢按用途分为通用型高速钢和高性能高速钢;按制造工艺不同 分为熔炼高速钢和粉末高速钢。
相关文档
最新文档