高一数学必修1知识网络
人教版高一数学必修一知识点梳理
人教版高一数学必修一知识点梳理(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!人教版高一数学必修一知识点梳理本店铺为你整理的《人教版高一数学必修一知识点梳理》,希望你不负时光,努力向前,加油!1.人教版高一数学必修一知识点梳理函数的奇偶性(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.注意:○1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。
必修1高一数学人教版最全知识点(必须珍藏)
高中数学必修1知识点总结目录高中数学必修1知识点总结............................. 错误!未定义书签。
第一章集合与函数概念............................... 错误!未定义书签。
〖〗集合 ............................................ 错误!未定义书签。
【】集合的含义与表示................................. 错误!未定义书签。
【】集合间的基本关系................................. 错误!未定义书签。
【】集合的基本运算................................... 错误!未定义书签。
〖〗函数及其表示 .................................... 错误!未定义书签。
【】函数的概念 ...................................... 错误!未定义书签。
【】函数的表示法 .................................... 错误!未定义书签。
〖〗函数的基本性质................................... 错误!未定义书签。
【】单调性与最大(小)值............................. 错误!未定义书签。
【】奇偶性 .......................................... 错误!未定义书签。
【】函数周期性和对称性............................... 错误!未定义书签。
〖补充知识〗函数的图象............................... 错误!未定义书签。
第二章基本初等函数(Ⅰ) ............................. 错误!未定义书签。
高一数学必修一知识点梳理与总结
高一数学必修一知识点梳理与总结鹏博教育高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念集合是由一些元素组成的整体。
元素具有确定性、互异性和无序性。
例如,{a,b,c}和{a,c,b}表示同一集合。
集合可以用列举法和描述法表示。
例如,集合A可以表示为A={我校的篮球队员},或者用描述法表示为A={x R|x-3>2}。
常用的数集有非负整数集N、正整数集N*或N+、整数集Z、有理数集Q和实数集R。
二、集合间的基本关系集合间有包含关系和相等关系。
如果集合A包含于集合B,则称A为B的子集,记作A B。
如果A与B是同一集合,则记作A=B。
空集是不含任何元素的集合,记为Φ。
空集是任何集合的子集,也是任何非空集合的真子集。
三、集合的运算集合的运算有交集、并集和补集。
交集是由所有属于A且属于B的元素所组成的集合,记作A B。
并集是由所有属于集合A或属于集合B的元素所组成的集合,记作A B。
补集是由S中所有不属于A的元素组成的集合,记作A的补集。
1.定义集合B为由集合A和集合B'中的元素组成的集合,即B={x|x∈A或x∈B'}。
如图1所示。
2.定义集合CSA为由集合S中属于A的元素和不属于A但属于S的元素组成的集合,即CSA={x|x∈S且(x∈A或x∉A)}。
如图2所示。
3.关于集合A的性质:A与自身的交集等于A本身,即A∩A=A。
A与空集的交集等于空集,即A∩Φ=Φ。
A与集合B的交集包含于A和B中元素共有的部分,即A∩B⊆A且A∩B⊆B。
A与集合B的并集包含于A和B中所有元素的集合,即A∪B包含于A和B的并集。
A与集合B的并集等于A和B中所有元素的集合加上A和B中共有的元素的集合,即A∪B=(A∖B)∪(B∖A)∪(A∩B)。
A与集合B的并集等于集合B与A的补集的补集的并集,即A∪B=(CuA')∩(CuB')。
4.选择题答案:A。
5.集合{a,b,c}的真子集共有7个。
第三章 函数的概念与性质 章节复习知识点网络 高一上学期数学人教A版(2019)必修第一册
第三章 函数的概念与性质章节复习一、本章知识结构二、本章重难点概念知识点1、函数及三要素(定义域、对应法则、值域) 一、函数的概念2、区间一般区间、特殊区间、 端点大小关系、开闭区间 1、函数概念中强调三性:“任意性”、“存在性”、“唯一性”; 2、定义域、值域的结果写成集合或区间形式; 3、对应关系包括一对一、多对一。
一、判断对应法则或图象是否是一个函数(非空性、任意性x 、唯一确定性y )二、判断两个函数是否是相同函数(定义域、对应法则) 三、求函数定义域(写成集合或区间形式)3、分段函数概念、表示方式、定义域、值域、图象4、复合函数(定义域、值域) 二、函数的表示法5、函数的单调性、单调区间 1、三种表示方法:解析法、列表法、图像法; 2、列表法表示的函数图象是一些孤立的点,函数图象呈现形式主要有2种:连续的曲线或孤立的点; 3、画函数图象方法:描点法(列表、描点、连线)6、函数的最大值、最小值7、函数的奇偶性8、幂函数(概念、图象、性质)三、题型1、求一般函数的定义域(写成集合或区间形式)函数类型定义域举例①整式函数R f(x)=x2+2x+3②分式函数分母不为0 f(x)=1 2x+3③偶次根式函数根号中式子≥0f(x)=√x2+2x−3④奇次根式函数R f(x)=√x2+2x+33⑤绝对值函数R f(x)=|x2+2x+3|⑥0次幂函数底数不为0 f(x)=(x2+2x−3)0⑦对数函数真数大于0 f(x)=log2(2x−3)⑧实际问题考虑实际意义正方形周长公式f(x)=4x(x>0)多个使函数有意义的条件用花括号连接,写成不等式组。
2、求复合函数的定义域①已知f(x)的定义域,求f(g(x))的定义域;②已知f(g(x))的定义域,求f(x)的定义域;③已知f(g(x))的定义域,求f(g(x))的定义域;④已知f(g(x))的定义域,求F(x)=f(g(x))+f(ℎ(x))的定义域关键:定义域是指自变量x的值相同对应法则f下的整体变量取值范围相同(空间不变原理)3、求简单函数的值域(写成集合或区间形式)函数类型定义域值域一次函数R R二次函数Ra>0时,[4ac−b24a,+∞)a<0时,(-∞,4ac−b24a]配方、画图、找最高点和最低点反比例函数(−∞,0)∪(0,+∞)(−∞,0)∪(0,+∞)分式函数分母不为0 配凑法(利用基本不等式求解)4、求函数的解析式①待定系数法②换元法/配凑法③方程组法/消元法 ④赋值法最后一定要考虑定义域,定义域不是R 一定要写出来5、函数单调性的判断、证明及应用 单调递增单调递减函数f(x)在区间D 上为增函数,x 1,x 2∈D ,且x 1≠x 2,则函数f(x)在区间D 上为减函数,x 1,x 2∈D ,且x 1≠x 2,则① x 1<x 2⟺f (x 1)<f(x 2) ① x 1<x 2⟺f (x 1)>f(x 2) ② (x 1−x 2)[f (x 1)−f(x 2)]>0 ② (x 1−x 2)[f (x 1)−f(x 2)]<0 ③f (x 1)−f(x 2)x 1−x 2>0 ③f (x 1)−f(x 2)x 1−x 2<0④ x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1) ④ x 1f (x 1)+x 2f (x 2)<x 1f (x 2)+x 2f (x 1) 即x 与f(x)的变化趋势相同, 自变量增量与函数值增量同号。
高一数学必修1知识点总结
高一数学必修1知识点总结高一数学必修1知识点集合的分类(1)按元素属性分类,如点集,数集。
(2)按元素的个数多少,分为有/无限集关于集合的概念:(1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。
(2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。
(3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。
集合可以根据它含有的元素的个数分为两类:含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。
非负整数全体构成的集合,叫做自然数集,记作N;在自然数集内排除0的集合叫做正整数集,记作N+或N-;整数全体构成的集合,叫做整数集,记作Z;有理数全体构成的集合,叫做有理数集,记作Q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。
)实数全体构成的集合,叫做实数集,记作R。
(包括有理数和无理数。
其中无理数就是无限不循环小数,有理数就包括整数和分数。
数学上,实数直观地定义为和数轴上的点一一对应的数。
)1.列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}.有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为代表,其他元素用省略号表示。
例如:不大于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,100}.无限集有时也用上述的列举法表示,例如,自然数集N可表示为{1,2,3,…,n,…}.2.描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。
例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0”而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括号内竖线左边的X表示这个集合的任意一个元素,元素X 从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。
高一必修一数学知识点梳理
高一必修一数学知识点梳理1.高一必修一数学知识点梳理集合的运算1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合叫做AB的交集.记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做AB的并集。
记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.3、交集与并集的性质:A∩A=AA∩φ=φA∩B=B∩A,A∪A=AA∪φ=AA∪B=B∪A.4、全集与补集(1)补集:设S是一个集合,A是S的一个子集(即),由S 中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作:CSA即CSA={x?x?S且x?A}(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。
通常用U来表示。
(3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U2.高一必修一数学知识点梳理1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.(3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.2、求函数的最值与值域的区别和联系求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.如函数的值域是(0,16],值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润”或“面积(体积)(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.3.高一必修一数学知识点梳理定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
高一数学必修1 数学。第一章。完整知识点梳理大全(最全)
高一数学必修1 数学。
第一章。
完整知识点梳理大全(最全)集合与函数概念集合是数学中的基本概念之一,它包含了一些确定性、互异性和无序性的元素。
常见的数集有自然数集、正整数集、整数集、有理数集和实数集等。
集合中的元素与集合之间存在着一些关系,例如一个元素属于一个集合,可以表示为a∈M,而不属于则表示为a∉M。
集合的表示方法有自然语言法、列举法、描述法和图示法等。
其中,描述法是通过{x|x具有的性质}来表示集合,而图示法则是用数轴或XXX来表示集合。
集合还可以分为有限集、无限集和空集。
空集是不含有任何元素的集合,记为∅。
集合间的基本关系有子集、真子集和集合相等等。
子集指一个集合中的所有元素都属于另一个集合,而真子集则是指一个集合是另一个集合的子集,但不等于该集合。
如果两个集合中的元素完全相同,则它们是相等的。
集合的基本运算有交集、并集和补集等。
交集是指两个集合中共同存在的元素所组成的集合,而并集则是指两个集合中所有的元素所组成的集合。
补集是指一个集合中不属于另一个集合的所有元素所组成的集合。
最后,含有绝对值的不等式和一元二次不等式的解法也是数学中的重要知识点。
对于含有绝对值的不等式,可以通过分情况讨论来求解。
而对于一元二次不等式,则可以通过求解二次函数的根来确定其解集。
x|>a (a>0)x|c (c>0)XXX:x|-a<x<a}x|xa}We can treat ax+b as a whole and transform it into the form of |x|a (a>0) XXX.Summary of Knowledge Points in Chapter 1 of High School Mathematics2.Solving Quadratic InequalitiesDiscriminantΔ>0Δ=b-4acQuadratic ny=ax^2+bx+c (a>0) Δ=Δ<0XXXax^2+bx+c=0 (a>0) Ox=(-b±√Δ)/(2a)1,2where x1<x2)x|xx2}x|x1<x<x2}x1=x2=-b/2an of No Real Root ax^2+bx+c>0 (a>0) n setx|x≠-b/2a}Rax^2+bx+c0)n set1.2 n and Its XXX1.2.1 Concept of n1.A n is a correspondence een two non-empty sets A and B。
高一数学必修1 数学 第一章 完整知识点梳理大全(最全)
【1.1.1】集合的含义与表示1、集合的概念集合中的元素具有确定性、互异性和无序性. 2、常用数集及其记法N ——自然数集,N *或N +——正整数集,Z ——整数集,Q ——有理数集,R ——实数集.集合与函数概念3、集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. 4、集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. 5、集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集,记为∅.【1.1.2】集合间的基本关系6、子集、真子集、集合相等7、已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算8、交集、并集、补集)【补充知识】含绝对值的不等式与一元二次不等式的解法1、含绝对值的不等式的解法0)〖1.2〗函数及其表示【1.2.1】函数的概念1、函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. 2、区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a ≥b ,而后者必须a b <.3、求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.(暂不讲)⑤tan y x =中,()2x k k Z ππ≠+∈.(暂不讲)⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出. ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. 4、求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的. 事实上,如果在函数的值域中存在一个最小(大)数,这个数就是 函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值. ④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法5、函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.6、映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的映射,记作:f A B→.②给定一个集合A到集合B的映射,且,∈∈.如果元素a和元a Ab B素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值1、函数的单调性①定义及判定方法yxo②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.简称:同增异减。
北京高一数学必修1知识点
北京高一数学必修1知识点一、实数1. 实数的概念和性质实数是包括有理数和无理数的数集。
实数具有加法、减法、乘法、除法四则运算的封闭性,同时满足交换律、结合律和分配律等性质。
二、代数式与方程1. 代数式的概念与基本性质代数式是由变量和常数通过运算符号相连组成的表达式。
代数式可以进行加减乘除及乘方等运算。
2. 方程的概念与解方程的方法方程是含有未知数的等式。
解方程的方法包括等式的相加减消元法、等式的倍数相加减法、代入法、等式的平方根法等。
三、函数及其图像1. 函数的概念与性质函数是一种特殊的关系,每个自变量都有唯一的函数值。
函数具有定义域、值域和对应关系等性质。
2. 一次函数与二次函数的基本性质与图像一次函数的表达式为y = kx + b,其图像为一条直线。
二次函数的表达式为y = ax^2 + bx + c,其图像为抛物线。
3. 不等式及其解法不等式是含有不等关系的代数式。
解不等式可以通过代数方法和图像法进行,包括利用零点、关系式、符号规律等进行推导求解。
四、三角函数1. 弧度与角度的换算弧度是角度制的补充,常用于三角函数的计算。
弧度与角度之间可以通过π的换算关系进行转化。
2. 正弦、余弦和正切函数的概念与性质正弦函数、余弦函数和正切函数是常见的三角函数,它们具有周期性、奇偶性、单调性等特点。
3. 基本角和通解基本角是指sinθ、cosθ、tanθ等函数的特殊角度值,通解是指该函数在一个周期内的所有解。
五、数列与数学归纳法1. 数列的概念和性质数列是按照一定规律排列的一组数,可以是等差数列、等比数列或其他特殊规律的数列。
2. 等差数列的通项公式和求和公式等差数列是指相邻两项之差为常数的数列。
等差数列的通项公式和求和公式可以用来描述和计算等差数列的性质。
3. 数学归纳法的思想和应用数学归纳法是一种证明数学命题的方法,通过证明基本步骤和递推步骤来完成数学归纳证明。
六、平面向量1. 平面向量的概念与运算平面向量是具有大小和方向的量,可以进行加法、减法和数乘等运算。
高一数学必修一知识点
高一数学必修第一册知识点第一章集合与常用逻辑用语1元素:研究的对象统称为元素,用小写拉丁字母 ,,,c b a 表示,元素三大性质:互异性,确定性,无序性.2集合:一些元素组成的总体叫做集合,简称集,用大写拉丁字母 ,,,C B A 表示.3集合相等:两个集合B A ,的元素一样,记作B A .4元素与集合的关系:①属于:A a ;②不属于:A a .5常用的数集及其记法:自然数集N ;正整数集 N N 或*;整数集Z ;有理数集Q ;实数集R .6集合的表示方法:①列举法:把集合中的所有元素一一列举出来,并用花括号括起来表示集合的方法;②描述法:把集合中所有具有共同特征)(x P 的元素x 所组成的集合表示为})(|{x P A x 的方法;③图示法(Ve nn 图):用平面上封闭曲线的内部代表集合的方法.7集合间的基本关系:子集:对于两个集合B A ,,如果集合A 中任意一个元素都是集合B 中的元素,就称集合A 为集合A 的子集,记作,读作A 包含于B ;真子集:如果B A ,但存在元素B x ,且A x ,就称集合A 是集合B 的真子集,记作A B ,读作A 真包含于B .8空集:不含任何元素的集合,用 表示,空集的性质,空集是任何集合的子集,是任何集合的真子集.9集合的基本运算:并集},|{B x A x x B A 或 ;交集},|{B x A x x B A 且 ;补集},|{A x U x x A C U且(U 为全集,全集是含有所研究问题中涉及的所有元素).运算性质:B A B B A ;B A A B A ;A A ; A ;U C U C A A C C U U U U ,,)(,)()()(),()()(B A C B C A C B A C B C A C UU U U U U .10充分条件与必要条件:一般地,“若p ,则q ”为真命题,p 可以推出q ,记作q p ,称p 是q 的充分条件,q 是p 的必要条件;p 是q 的条件的四种类型:若q q p , p ,则p 是q 的充分不必要条件;若p p q , q ,则p 是q 的必要充分不条件;若q p ,则p 是q 的充要条件;若p q ,q p ,则p 是q 的既不充分也不必要条件.11全称量词及全称量词命题:短语“所有的”,“任意一个”在逻辑中叫做全称量词,并用符号 表示,含有全称量词的命题成为全称量词命题.12存在量词及存在量词命题:短语“存在一个”,“至少有一个”在逻辑中叫做存在量词,并用符号 表示,含有存在量词的命题成为存在量词命题.13全称量词命题与存在量词命题的否定:全称量词命题的否定是存在量词命题;存在量词命题的否定是全称量词命题.第二章一元二次函数、方程不等式1不等式的性质不等式的性质:①对称性a b b a ;②传递性,a b b c a c ;③可加性a b a c b c ;④可乘性,0a b c ac bc ,,0a b c ac bc ;⑤同向可加性,a b c d a c b d ;⑥同向可乘性0,0a b c d ac bd ;⑦可乘方性 0,1nna b a b n n ;⑧可开方性 0,1nna b ab n n.⑨可倒数性bab a 11.2重要不等式:若R b a ,,则ab b a 222,当且仅当b a 时等号成立.3基本不等式:若0a ,0b ,则2a b ab,即2abab,当且仅当b a 时等号成立.4不等式链:若0a ,0b ,则baabbab a1122222,当且仅当b a 时等号成立;一正二定三相等.5一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式.6一元二次不等式的解法:二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式24b ac0 0 0 二次函数2y a x b x c0a的图象一元二次方程2a xb x 0c0a的根有两个相异实数根1,22b x a12x x 有两个相等实数根122bx x a没有实数根一元二次不等式的解集20a x b x c 0a 12x xx x x 或2bx xaR2a xb x c0a12x x x x第三章函数的概念与性质1函数的概念:一般地,设B A ,是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 与它对应,那么就称B A f :为从集合A 到集合B 的一个函数,记作A x x f y ),(,其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 值叫做函数值,函数值的集合}|)({A x x f 叫做函数的值域,值域是集合B 的子集.2函数的三要素:定义域、对应关系、值域.求函数定义域的原则:(1)若 f x 为整式,则其定义域是R ;(2)若 f x 为分式,则其定义域是使分母不为0的实数集合;(3)若 f x 是二次根式(偶次根式),则其定义域是使根号内的式子不小于0的实数集合;(4)若 0f x x ,则其定义域是 0x x ;(5)若 0,1xf x aaa ,则其定义域是R ;(6)若 lo g 0,1af x x aa ,则其定义域是 0xx;(7)若x x f t a n )( ,则其定义域是},2|{Z k k x x;求函数值域的方法:配方法,换元法,图象法,单调性法等;求函数的解析式的方法:待定系数法,换元法,配凑法,方程组法等;3函数的表示方法:解析法(用函数表达式表示两个变量之间的对应关系)、图象法(用图象表达两个变量之间的对应关系)、列表法(列出表格表示两个变量之间的对应关系).4分段函数:在定义域内,对于自变量x 的不同取值区间,有不同对应关系的函数.6函数的单调性:(1)单调递增:设任意D x x 21,(I D ,I 是 f x 的定义域),当12x x 时,有12()()f x f x .特别的,当函数在它的定义域上单调递增时,该函数称为增函数;(2)单调递减:设任意D x x 21,(I D ,I 是 f x 的定义域),当12x x 时,有12()()f x f x.特别的,当函数在它的定义域上单调递增时,该函数称为减函数.7单调区间:如果函数在区间上单调递增或单调递减,那么就说函数在这一区间有(严格的)单调性,区间就叫做函数的单调区间,单调区间分为单调增区间和单调减区间.8复合函数的单调性:同增异减.9函数的最大值、最小值:一般地,设函数)(x f y 的定义域为I ,如果存在实数M 满足:I x ,都有))(()(M x f M x f ;I x 0使得M x f )(0,那么称M 是函数的最大(小)值.10函数的奇偶性:偶函数:一般地,设函数)(x f y 的定义域为I ,如果I x ,都有I x ,且)()(x f x f ,那么函数叫做偶函数;偶函数的图象关于y 轴对称;偶函数)(x f y 满足|)(|)()(x f x f x f ;奇函数:一般地,设函数)(x f y 的定义域为I ,如果I x ,都有I x ,且)()(x f x f ,那么函数叫做奇函数;奇函数的图象关于原点对称;若奇函数)(x f y 的定义域中有零,则其函数图象必过原点,即(0)0f .11幂函数:一般地,函数 x y 叫做幂函数,其中x 是自变量, 是常数.12幂函数 f x x 的性质:①所有的幂函数在 0, 都有定义,并且图象都通过点 1,1;②如果0 ,则幂函数的图象过原点,并且在区间 0, 上是增函数;③如果0 ,则幂函数的图象在区间 0, 上是减函数,在第一象限内,当x 从右边趋向于原点时,图象在y 轴右方无限地逼近y 轴,当x 趋向于 时,图象在x 轴上方无限地逼近x 轴;④在直线1 x 的右侧,幂函数图象“指大图高”;⑤幂函数图象不出现于第四象限.第四章指数函数与对数函数1、n 次方根与分数指数幂、指数幂运算性质(1)若nx a ,则 n na n xa n为奇数为偶数;(2)n n a n a n a为奇数为偶数;(3)()nna a ;(4)*(0,,,1)mnmn a a am n N n 且;(5)*1(0,,1)m nnmaam n N n a,且;(6)0的正分数指数幂为0,0的负分数指数幂没有意义.(7) 0,,r s r s a a a a r s R ;(8) ()0,,r s r s a a a r s R ;(9) ()0,0,,r r r ab a b a b r s R .2、对数、对数运算性质(1) lo g 0,1x a a N x N a a ;(2) lo g 100,1aa a ;(3) lo g 10,1aaa a ;(4); lo g 0,1a NaNaa ;(5) lo g 0,1maam a a ;(6) lo g ()lo g lo g 0,1,0,0aaaM N MN aa ;(7) lo g lo g lo g 0,1,0,0aaaM MN aa N;(8) lo glo g 0,1,0naaMn M aa ;(9)换底公式 lo g lo g 0,1,0,0,1lo g c a c b b aa b c c a;(10)l o g l o g 0,1,,*mna a n bb aa n m Nm;(11) 1lo g lo g 0,1,0,naa MM aa M n R n;(12) lo g lo g lo g 10,1,0,1,0,1a b c b c a a a b b c c .3、指数函数)1,0( a a a y x且及其性质:①定义域为 , ;②值域为 0, ;③过定点 0,1;④单调性:当1a 时,函数 f x 在R 上是增函数;当01a 时,函数 f x 在R 上是减函数;⑤在y 轴右侧,指数函数的图象“底大图高”.4、对数函数)1,0(lo ga ax y a且及其性质:①定义域为 0, ;②值域为 , ;③过定点 1,0;④单调性:当1a 时,函数f x 在 0, 上是增函数;当01a 时,函数 f x 在 0, 上是减函数;⑤在直线1 x 的右侧,对数函数的图象“底大图低”.5指数函数xa y 与对数函数)1,0(lo g a a x y a且互为反函数,它们的图象关于直线x y 对称.6不同函数增长的差异:线性函数模型)0( k b kx y 的增长特点是直线上升,其增长速度不变;指数函数模型)1( a a y x的增长特点是随着自变量的增大,函数值增大的速度越来越快,呈“指数爆炸”状态;对数函数模型)1(lo g a x y a的增长特点是随着自变量的增大,函数值增大速度越来越慢,即增长速度平缓;幂函数模型)0( n x y n的增长速度介于指数函数和对数函数之间.7函数的零点:在函数)(x f y 的定义域内,使得0)( x f 的实数x 叫做函数的零点.8零点存在性定理:如果函数 f x 在区间 ,a b 上的图象是连续不断的一条曲线,且有0f a f b ,那么函数y f x在区间 ,a b 内至少有一个零点,即存在 ,c a b ,使得0f c ,这个c 也就是方程 0f x 的根.9二分法:对于区间],[b a 上图象连续不断且 0f a f b 的函数)(x f y,通过不断把它的零点所在区间一分为二,使得区间的两个端点逐步逼近零点,进而得到零点近似值的方法.10给定精确度 ,用二分法求函数)(x f y 零点0x 近似值的步骤:⑴确定零点0x 的初始区间 ,a b ,验证 0f a f b ;⑵求区间 ,a b 的中点c ;⑶计算)(c f ,并进一步确定零点所在的区间;①若0)( c f ,则c 就是函数的零点;②若0)()( c f a f (此时),(0c a x ),则令c b ;③若0)()( b f c f (此时),(0b c x ),则令c a ;⑷判断是否达到精确度 :若a b ,则得到零点的近似值a (或b );否则重复上面的⑵至⑷.第五章三角函数1任意角的分类:按终边的旋转方向分:正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2象限角:角 的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的集合为 36036090,k k k ;第二象限角的集合为 36090360180,k k k ;第三象限角的集合为 360180360270,k k k ;第四象限角的集合为360270360360,k k k 角 的终边不在任何一个象限,就称这个角不属于任何一个象限终边在x 轴非负半轴的角的集合},2|{Z k k ;终边在x 轴非正半轴的角的集合},2|{Z k k ;终边在y 轴非负半轴的角的集合},22|{Z k k;终边在y 轴非正半轴的角的集合},22|{Z k k;终边在x 轴的角的集合},|{Z k k ;终边在y 轴的角的集合},2|{Z k k;终边在坐标轴的角的集合},2|{Z kk;2终边相同的角:与角 终边相同的角的集合为 360,k k .3弧度制:长度等于半径长的弧所对的圆心角叫做1弧度.4角度与弧度互化公式:2360 ,1180 ,180157.3.5扇形公式:半径为r 的圆的圆心角 所对弧的长为l ,则角 的弧度数的绝对值是lr .若扇形的圆心角为 为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r ,2Cr l ,21122S l rr.6三角函数的概念:设 是一个任意大小的角, 的终边上任意一点P 的坐标是 ,x y ,它与原点的距离是 220r r xy,则si n y r,c os x r, t a n 0y xx.7三角函数的符号:一全正二正弦三正切四余弦.8记忆特殊角的三角函数值:15 30 45 60759012013515018027036012643125 232 43 65232 sin 426212223426123222101c os4262322214260212223101t a n 321332不存在3133不存在9同角三角函数的基本关系:221si n c os 1 , 2222si n 1c os ,c os 1si n ;si n 2t a n c ossi n sinta n c os ,c os t a n.10诱导公式口诀:奇变偶不变,符号看象限.1si n 2si n k , c os 2c os k , t a n 2t a n k k .2si n si n, c os c os , t a n t a n . 3si n si n , c os c os , t a n t a n . 4si n si n, c os c os , t a n t a n .5si n c os 2,c os si n 2 . 6si n c os 2 ,c os si n 2.11三角函数的图象与性质:si n yxc os yxt a n yx图象定义域RR,2x xk k值域1,11,1 R函数性质12两角和差的正弦、余弦、正切公式:(1) c os c os c os si n si n ;(2) c os c os c os si n si n ;(3) si n si n c os c os si n ;(4) si n si n c os c os si n ;(5) t a n t a n t a n 1t a n t a n( t a n t a n t a n 1t a n t a n );(6) t a n t a n t a n 1t a n t a n( t a n t a n t a n 1t a n t a n ).13二倍角公式:(1)si n 22si n c os ;(2)2222c os 2c os si n 2c os 112si n ;(2c os 21c os 2 ,21c os 2si n 2);(3)22t a n t a n 21t a n ;14半角公式:(1)2c os 12sin ;(2)2c os12c os;(3)c os 1c os12t a n;(4)c os 1sin sin c os 12t a n15辅助角公式:的终边上在角点其中 ),(,t a n ),sin (c ossin 22b a ab xb axb xa.最值当22x kk时,m a x1y ;当22x kk时,m i n 1y .当 2x k k 时,m a x1y ;当2x kk时,m i n 1y .既无最大值也无最小值周期性22奇偶性奇函数偶函数奇函数单调性在2,222k kk上是增函数;在32,222k kk上是减函数.在2,2k k k上是增函数;在2,2k k k上是减函数.在,22k kk上是增函数.对称性对称中心 ,0k k 对称轴2x k k对称中心 ,02k k对称轴x k k 对称中心 ,02k k无对称轴16函数b x A y )sin ( 的图象与性质:图象变换:(1)先平移后伸缩:函数si n y x 的图象上所有点向左(右)平移 个单位长度,得到函数 si n yx 的图象;再将函数 si n y x 的图象上所有点的横坐标伸长(缩短)到原来的1倍(纵坐标不变),得到函数 si n y x 的图象;再将函数 si n y x 的图象上所有点的纵坐标伸长(缩短)到原来的 倍(横坐标不变),得到函数 si n y x 的图象.(2)先伸缩后平移:函数si n y x 的图象上所有点的横坐标伸长(缩短)到原来的1倍(纵坐标不变),得到函数si n y x 的图象;再将函数si n y x 的图象上所有点向左(右)平移个单位长度,得到函数 si n y x 的图象;再将函数 si n y x 的图象上所有点的纵坐标伸长(缩短)到原来的 倍(横坐标不变),得到函数 si n y x 的图象.五点法画图函数 si n 0,0y x 的性质:①定义域为R ;②值域为],[A A ;③单调性:根据函数x y sin 的单调区间求函数的单调区间;④奇偶性:当Z k k , 时,函数 si n y x 是奇函数;当Z k k ,2时,函数si n yx 是偶函数;⑤周期:2T ;⑥对称性:根据函数x y sin 的对称性研究函数的对称性1217函数B x A y )sin ( 的应用①振幅:A ;②周期:2 ;③频率:12f;④相位:x ;⑤初相: .⑥最值:函数B x A y )sin ( ,当1x x 时,取得最小值为m i n y ;当2x x 时,取得最大值为m a xy,则 m a xm i n 12y y, m a xm i n 12y y,21122x x x x.。
高一数学必修1知识点总结导图
高一数学必修1知识点总结导图1. 数与代数•实数–有理数–无理数•数轴和绝对值•代数式与代数方程•一次函数•二次函数•等差数列•等比数列2. 几何•平面与空间几何初步•平行线与平行四边形•直线之间的大小关系•三角形中的线段•相似三角形•背式与旋转体•直角三角形的应用3. 概率与统计•随机事件与概率•事件的并与交•独立事件与重复试验•抽样调查与统计表4. 函数与方程•函数的定义与性质•函数的图像与性质•二次函数及其图像和性质•一次函数及其图像和性质•函数的运算与复合函数•图像与方程的关系•一元一次方程与一元一次不等式•一元二次方程与一元二次不等式•一元一次方程组与一元一次不等式组•法方程、视角、投影、条件以上导图总结了高一数学必修1的主要知识点,包括数与代数、几何、概率与统计以及函数与方程。
下面将对每个知识点进行详细的解释。
数与代数实数实数是自然数、整数、有理数和无理数的统称。
有理数可以表示为一个整数的比率,无理数则无法表示为有理数的比率,如根号2、圆周率π等。
数轴和绝对值数轴是以一条直线为基础的有向线段,在数轴上我们可以方便地表示和比较数的大小关系。
绝对值是一个数到原点的距离,用来表示这个数的大小,非负数的绝对值等于其本身,负数的绝对值等于其相反数。
代数式与代数方程代数式是由数、字母和运算符号组成的式子,可以进行各种运算。
代数方程是含有未知数的等式,可通过变量的赋值求出未知数的值。
一次函数一次函数是指形如 y = kx + b 的函数,其中 k 是斜率,b 是截距。
一次函数的图像是一条直线,斜率决定了直线的倾斜方向和角度,截距决定了直线与 y 轴的交点位置。
二次函数二次函数是指形如 y = ax^2 + bx + c 的函数,其中 a、b、c 是常数且a ≠ 0。
二次函数的图像是一条抛物线,开口的方向由 a 的正负号决定,a>0 时开口向上,a<0 时开口向下。
等差数列等差数列是指数列中任意两个相邻项之差都相等的数列。
高一数学必修1各章知识点总结
高一数学必修1各章知识点总结高一数学必修1共有7个单元:
1. 函数与方程
- 函数和反函数
- 幂函数和指数函数
- 对数函数和指数方程
- 一次函数和一元一次方程
- 二次函数和一元二次方程
- 二次函数的图像和性质
- 一元二次方程的解
2. 三角函数
- 角度和弧度制
- 常用角的三角函数值
- 三角函数的定义和性质
- 三角函数图像
- 三角函数的和差化积公式
- 三角函数的倍角公式
3. 二次函数
- 二次函数的定义
- 二次函数的图像和性质
- 二次函数的解析式和一般式- 二次函数的最值和变化趋势- 二次函数和一次函数的关系- 二次函数与零点问题
4. 应用题
- 几何与量的关系
- 数据的收集和描述
- 数据的表达和分析
- 等腰三角形
- 三角形的性质和判定
- 直角三角形及其应用
5. 平面向量
- 平面向量的概念和表示
- 平面向量的运算
- 平面向量的共线和垂直
- 平面向量的模和单位向量- 平面向量的线性运算
- 平面向量的数量积和方向角
6. 数数原理和概率
- 数数原理的基本概念
- 排列和组合
- 加法原理和乘法原理
- 概率的基本概念和计算
- 事件的独立性和相关性
- 概率模型和统计调查
7. 数列
- 数列的概念和表示
- 等差数列的通项公式
- 等比数列的通项公式
- 数列的性质和运算
- 数列的极限与无穷
- 应用题
这些知识点涵盖了高一数学必修1的全部内容,希望对你有帮助!。
高中数学必修一最全知识点汇总
高中数学必修一最全知识点汇总高中数学必修1知识点第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示集合是由元素组成的整体,其中的元素具有确定性、互异性和无序性。
常用的数集有自然数集N、正整数集N*或N+、整数集Z、有理数集Q、实数集R。
集合与元素之间的关系可以表示为a∈M或a∉M。
集合的表示法有自然语言法、列举法、描述法和图示法。
集合可以分为有限集、无限集和空集(∅)。
1.1.2 集合间的基本关系集合间的基本关系包括子集、真子集和集合相等。
子集表示为A⊆B,真子集表示为A⊂B,集合相等表示为A=B。
已知集合A有n(n≥1)个元素,则它有2个子集,2^(n-1)个真子集,2^(n-1)个非空子集和2^n-2个非空真子集。
1.1.3 集合的基本运算集合的基本运算包括交集、并集和补集。
交集表示为A∩B,并集表示为A∪B,补集表示为A的补集。
补集的性质为A∪A的补集=全集,A∩A的补集=空集。
2.补充知识:含绝对值的不等式与一元二次不等式的解法含绝对值的不等式|x|0)的解集为{-aa(a>0)的解集为{xa}。
一元二次不等式的解法与一元二次方程类似,可以通过移项、配方法和求根公式等方式求解。
1.解一元二次不等式将$ax+b$看作一个整体,化成$|x|c(c>0)$,$|x|>a(a>0)$型不等式来求解。
2.解一元二次不等式的方法通过判别式$\Delta=b^2-4ac$,确定二次函数$y=ax^2+bx+c(a>0)$的图像,分类讨论$\Delta>\Delta'$,$\Delta=\Delta'$和$\Delta0)$的根$x_1,x_2$(其中$x_10$和$y<0$的解集。
3.函数及其表示3.1 函数的概念设$A$、$B$是两个非空的数集,如果按照某种对应法则$f$,对于集合$A$中任何一个数$x$,在集合$B$中都有唯一确定的数$f(x)$和它对应,那么这样的对应(包括集合$A$、$B$以及$A$到$B$的对应法则$f$)叫做集合$A$到$B$的一个函数,记作$f:A\to B$。
新版高一数学必修一知识点梳理
新版高一数学必修一知识点梳理一、集合1集合的概念集合是由一些确定的、不同的元素所组成的。
集合中的元素是不重复、不遗漏的。
2集合的表示方法(1)列举法:将集合中的元素一一列举出来,并用大括号“{}”括起来。
例如,A = {1, 2, 3}。
(2)描述法:用确定的条件来描述集合中的元素。
例如,B = {x | x > 0}。
3集合之间的关系(1)子集:如果集合A的每一个元素都是集合B的元素,那么A是B的子集,记作A ⊆ B。
(2)真子集:如果A ⊆B,且A ≠B,那么A是B的真子集。
(3)空集:不包含任何元素的集合称为空集,记作∅。
(4)全集:如果一个集合包含了某一问题中涉及的所有元素,那么这个集合就叫做全集。
(5)补集:对于全集U和它的一个子集A,由全集U 中所有不属于A的元素组成的集合称为A的补集,记作CₕA 或U - A。
4集合的运算(1)并集:由所有属于集合A或属于集合B的元素所组成的集合,记作A ∪B。
(2)交集:由所有既属于集合A又属于集合B的元素所组成的集合,记作A ∩B。
(3)差集:由属于集合A但不属于集合B的所有元素组成的集合,记作A - B。
二、函数1函数的概念设A、B是两个非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A →B为从集合A到集合B的一个函数。
记作y = f(x),x ∈A。
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x) | x ∈A}叫做函数的值域。
2函数的表示方法(1)解析法:用数学式子表示函数与自变量之间的对应关系。
(2)列表法:列出与自变量对应的一系列函数值。
(3)图像法:用图像表示函数与自变量之间的对应关系。
3函数的性质(1)函数的单调性:如果对于定义域内某个区间上的任意两个自变量的值x₁, x₂,当x₁ < x₂时都有f(x₁) < f(x₂),那么就说f(x)在此区间上是增函数;如果f(x₁) > f(x₂),那么就说f(x)在此区间上是减函数。
高一数学必修一知识点总结人教版
高一数学必修一知识点总结人教版高一数学必修一知识点总结1.知识网络图复数知识点网络图2.复数中的难点(1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难.对此应认真体会复数向量运算的几何意义,对其灵活地加以证明.(2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练.(3)复数的辐角主值的求法.(4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会.3.复数中的重点(1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点.(2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角.复数有代数,向量和三角三种表示法.特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容.(3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质.复数的运算是复数中的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容.(4)复数集中一元二次方程和二项方程的解法.数学教学心得数学学习要注重提升素养承认“解题”对数学学习的作用,并不是无限制地扩大它的价值,毕竟解题只是数学学习的途径与手段,绝不是数学学习的终极目标。
在新课程背景下,许多学者呼吁从关注“双基”到“四基”,数学学习的目标在于掌握必需的基础知识和基本技能,积累丰富的活动经验,体悟数学的基本思想。
数学学习不只是解题,在学习的过程中还将学会观察,学会思考,学会表达,学会书写,学会合作。
著名特级教师张天孝研究小学数学教学50年,他有一个治学心得是:“让学生在学习中学会学习,在思考中学会思考。
”这正是对数学学习目标的精辟提升。
如果以上的表述并不具有数学学科的特点的话,那么加上一个定语——让学生用数学的眼光进行数学思考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修1知识网络123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。
、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/nA A ABC A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。
、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。
集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩,,,A B A x B y f B A B x y x f y y x y →映射定义:设,是两个非空的集合,如果按某一个确定的对应关系,使对于集合中的任意一个元素, 在集合中都有唯一确定的元素与之对应,那么就称对应:为从集合到集合的一个映射传统定义:如果在某变化中有两个变量并且对于在某个范围内的每一个确定的值,定义 按照某个对应关系都有唯一确定的值和它对应。
那么就是的函数。
记作函数及其表示函数{[][][][][]().,,()()(),,1212()()(),,12f x a b a x x b f x f x f x a b a b f x f x f x a b a b a =≤<≤<>⎧⎪⎪⎧⎪⎨⎨⎩⎪⎧⎪⎨⎪⎩⎩近代定义:函数是从一个数集到另一个数集的映射。
定义域函数的三要素值域对应法则解析法函数的表示方法列表法图象法单调性函数的基本性质传统定义:在区间上,若如,则在上递增,是 递增区间;如,则在上递减,是的递减区间。
导数定义:在区间[][][][][]()1()2()()00,()0(),,()0(),,y f x I M x I f x M x I f x M M y f x b f x f x a b a b f x f x a b a b =∈≤∈==⎧⎪⎪⎨><⎪⎪⎩最大值:设函数的定义域为,如果存在实数满足:()对于任意的,都有; ()存在,使得。
则称是函数的最大值最值最上,若,则在上递增,是递增区间;如 则在上递减,是的递减区间。
()1()2()()00(1)()(),()(2)()(),()y f x I N x I f x N x I f x N N y f x f x f x x D f x f x f x x D f x =∈≥∈==-=-∈-=∈⎧⎪⎨⎪⎩小值:设函数的定义域为,如果存在实数满足:()对于任意的,都有; ()存在,使得。
则称是函数的最小值定义域,则叫做奇函数,其图象关于原点对称。
奇偶性定义域,则叫做偶函数,其图()()()(0)()()1,()112y f x f x T f x T f x T T f x y y x a x y f x a a α+=≠=-=⇒=+⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎪⎪⎩象关于轴对称。
奇偶函数的定义域关于原点对称周期性:在函数的定义域上恒有的常数则叫做周期函数,为周期;的最小正值叫做的最小正周期,简称周期()描点连线法:列表、描点、连线向左平移个单位:向右平移个平移变换函数图象的画法()变换法,()11,()11,()1110111/()11)01)1y y x a x y f x a b x x y b y y b f x b x x y b y y b f x x w w w x wx y f wx y A A =+=⇒=-=+=⇒-==-=⇒+=><<=⇒=><<⎧⎪⎨⎪⎩单位:向上平移个单位:向下平移个单位:横坐标变换:把各点的横坐标缩短(当时)或伸长(当时)到原来的倍(纵坐标不变),即伸缩变换纵坐标变换:把各点的纵坐标伸长(或缩短(到{{{{{{/()1221010(,)2(2)0000221010221010(2)0011112(00221010A y y A y f x x x x x x x x y y y f x x y y y y y yx x x x x x x x y f x x y y y y x x x x y y y y f y y y y y y =⇒=+==-⇒⇒-=-+==-+==-=⇒⇒=-=====⇒⇒-=+==-⎧⎪⎨⎪⎩原来的倍 (横坐标不变), 即关于点对称:关于直线对称:对称变换关于直线对称:{)11()1x x x y x y f x y y =-=⇒==⎧⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎩⎩⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩关于直线对称:附:一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于1;5、三角函数正切函数tan y x =中()2x k k Z ππ≠+∈;余切函数cot y x =中;6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。
二、函数的解析式的常用求法:1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、参数法;6、配方法 三、函数的值域的常用求法:1、换元法;2、配方法;3、判别式法;4、几何法;5、不等式法;6、单调性法;7、直接法 四、函数的最值的常用求法:1、配方法;2、换元法;3、不等式法;4、几何法;5、单调性法 五、函数单调性的常用结论:1、若(),()f x g x 均为某区间上的增(减)函数,则()()f x g x +在这个区间上也为增(减)函数2、若()f x 为增(减)函数,则()f x -为减(增)函数3、若()f x 与()g x 的单调性相同,则[()]y f g x =是增函数;若()f x 与()g x 的单调性不同,则[()]y f g x =是减函数。
4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。
5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。
六、函数奇偶性的常用结论:1、如果一个奇函数在0x =处有定义,则(0)0f =,如果一个函数()y f x =既是奇函数又是偶函数,则()0f x =(反之不成立)2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。
3、一个奇函数与一个偶函数的积(商)为奇函数。
4、两个函数()y f u =和()u g x =复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。
5、若函数()f x 的定义域关于原点对称,则()f x 可以表示为11()[()()][()()]22f x f x f x f x f x =+-+--,该式的特点是:右端为一个奇函数和一个偶函数的和。
,()0()()[,]()()0,()[,](,),()0,()0()0y f x f x x y f x y f x a b f a f b y f x a b c a b f c c f x f x ====⋅<=∈===零点:对于函数()我们把使的实数叫做函数的零点。
定理:如果函数在区间上的图象是连续不断的一条曲线,并且有零点与根的关系 那么,函数在区间内有零点。
即存在使得这个也是方程的根。
(反之不成立)关系:方程函数与方程函数的应用()()(1)[,],()()0,(2)(,);(3)()()0,()()0,(,)0()()0,0y f x y f x x a b f a f b a b c f c f c c f a f c b c x a b f c f b a c x ε⇔=⇔=⋅<=⋅<=∈⋅<=⎧⎪⎨⎪⎩有实数根函数有零点函数的图象与轴有交点确定区间验证给定精确度;求区间的中点计算;二分法求方程的近似解 ①若则就是函数的零点;②若则令(此时零点); ③若则令(此时零点(,)(4)-,();24c b a b a b εε∈<~⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎨⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎨⎪⎩⎩);判断是否达到精确度:即若则得到零点的近似值或否则重复。
几类不同的增长函数模型函数模型及其应用用已知函数模型解决问题建立实际问题的函数模型(0,,)()(0,,)()(0,0,)(01)1lo m n a n a r s r s a a a a r s Q r s rs a a a r s Q r r s ab a b a b r Q x y a a a x =+=>∈=>∈=>>∈=>≠=⎧⎧⎫⎪⎪⎪⎬⎪⎪⎪⎭⎪⎪⎧⎨⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎨⎪⎩⎩为根指数,为被开方数分数指数幂指数的运算指数函数性质定义:一般地把函数且叫做指数函数。
指数函数性质:见表对数:基本初等函数对数的运算对数函数g ,log ()log log ;log log log ;.log log ;(0,1,0,0)log log (01)1log (,0,1,0)log c a c N a N a M N M N a a a M M N a a a N n M n M a a M N a a y x a a a b b a c a c b a ⋅=+=-=>≠>>=>≠⎧⎧⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪=>≠>⎪⎪⎩⎩⎧⎨⎩⎩为底数,为真数性质换底公式:定义:一般地把函数且叫做对数函数对数函数性质:见表且y x x αα⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧=⎪⎨⎪⎩⎩幂函数定义:一般地,函数叫做幂函数,是自变量,是常数。