七年级数学上第三章单元测试卷

合集下载

七年级数学上册第三章单元测试题及答案

七年级数学上册第三章单元测试题及答案

字母表示数习题 32x y 5-的系数是 2、当x= __________时,的值为自然数;312-x 3、a 是13的倒数,b 是最小的质数,则21a b -= 。

4、三角形的面积为S ,底为a ,则高h= __________5、去括号:-2a 2 - [3a 3— (a - 2)] = __________6、若-7x m+2y 与—3x 3y n 是同类项,则m n +=7、化简:3(4x -2)-3(-1+8x )=8、y 与10的积的平方,用代数式表示为________ 9、当x=3时,代数式________132的值是--x x 10、当x=________时,|x |=16;当y=________时,y 2=16;二、精心选一选:(每小题3分,共30分。

请将你的选择答案填在下表中。

)1、 a 的2倍与b 的31的差的平方,用代数式表示应为( ) A 22312b a - B b a 3122- C 2312⎪⎭⎫ ⎝⎛-b a D 2312⎪⎭⎫ ⎝⎛-b a 2、下列说法中错误的是( )A x 与y 平方的差是x 2-y 2B x 加上y 除以x 的商是x+xy C x 减去y 的2倍所得的差是x —2y D x 与y 和的平方的2倍是2(x+y)23、已知2x 6y 2和321,9m - 5mn -173m n x y -是同类项则的值是 ( ) A —1 B —2 C -3 D -44、已知a=3b, c=) (cb ac b a ,2a 的值为则-+++ A 、712D 611C 115B 511、、、 5、已知:a 〈0, b 〉0,且|a|〉|b|, 则|b+1|-|a —b|等于( )A 、2b-a+1B 。

1+a C.a —1 D 。

-1-a6、上等米每千克售价为x 元,次等米每千克售价为y 元,取上等米a 千克和次等米b 千克,混合后的大米每千克售价为( ) A a b x y ++ B ax by ab + C ax by a b++ D x y 2+ 7、 小华的存款是x 元小林的存款比小华的一半还多2元,则小林的存款是( ) A )2(21+x B )2(21-x C 221+x D 221-x 8、m-[n —2m-(m-n )]等于( )A -2mB 2mC 4m —2nD 2m-2n9、若k 为有理数,则|k|-k 一定是( )A 0B 负数C 正数D 非负数10、已知长方形的周长是45㎝,一边长是a ㎝,则这个长方形的面积是( )A 、平方厘米、平方厘米245a B 2)45(a a - C 、平方厘米、平方厘米-a)-245a( D a)245( 三、化简题(每小题4分,共24分)1、2222(835)(223)a ab b a ab b ----+2、)231(34x xy xy -+-3、)(2)2(333c b a c b a b a ---+ 4、 ()⎪⎭⎫ ⎝⎛++-+--13431354b a b a 5、2223[723()1]a a a a a ----+ 6、2222(876)[8()]x y xy xy xy x y y x -+---+1、523531411()[2()()][()()]2323x y x y x y x y x y +++-+-+-+,其中3x y += (5分 2、2225[(53)6()]a a a a a a -+---,其中12a =- (5分) 3、已知:2(2)10x y +++=,求222225{2[3(42)]}xy xy xy xy x y ----的值. (6分)。

七年级上册数学第三单元测试卷【含答案】

七年级上册数学第三单元测试卷【含答案】

七年级上册数学第三单元测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是10厘米、6厘米和4厘米,那么它的体积是多少?A. 240立方厘米B. 120立方厘米C. 60立方厘米D. 48立方厘米4. 下列哪个数是偶数?A. 101B. 102C. 103D. 1045. 下列哪个图形是平行四边形?A. 正方形B. 长方形C. 梯形D. 圆形二、判断题(每题1分,共5分)1. 两个质数相乘的结果一定是合数。

()2. 一个等腰三角形的两个底角相等。

()3. 一个长方体的六个面都是长方形。

()4. 0是最小的自然数。

()5. 平行四边形的对边相等且平行。

()三、填空题(每题1分,共5分)1. 最大的两位数是______。

2. 一个等边三角形的三个角都是______度。

3. 一个长方体的体积是长×宽×______。

4. 6是______和______的公倍数。

5. 两条平行线的特点是对边______且______。

四、简答题(每题2分,共10分)1. 请简述质数和合数的区别。

2. 请解释等腰三角形的特点。

3. 请列举三个不同的长方体物品。

4. 请简述平行四边形的性质。

5. 请解释因数和倍数的概念。

五、应用题(每题2分,共10分)1. 一个长方体的长是10厘米,宽是6厘米,高是4厘米,求它的体积。

2. 一个等腰三角形的底边长是8厘米,腰长是10厘米,求它的周长。

3. 一个数的因数有1、2、3、4、6,请找出这个数。

4. 两个质数相乘,积是35,请找出这两个质数。

5. 一个平行四边形的对边分别是8厘米和12厘米,求它的面积。

六、分析题(每题5分,共10分)1. 请分析一个长方体和正方体的相同点和不同点。

RJ人教版七年级上册 第三章《一元二次方程》单元习题卷内含知识点解析与答案

RJ人教版七年级上册 第三章《一元二次方程》单元习题卷内含知识点解析与答案

第三章《一元二次方程》单元测试卷第Ⅰ卷选择题 (共42分)一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列方程是一元一次方程的是 【 】A.x 2-x-2=0 B.3x+2y+1=0 C.2+3=5D.2x-3=2x 2.下列说法中,错误的是【 】A.若a=b ,则b=aB.若a=b ,则7a=7bC.若a=b ,则a+10=b+10D.若a=b ,则a b m m= 3.马小虎解的下列四个方程,你认为正确的是【 】A.x-2x=3的解为x=3B.5y-3y=1的解为y=2C.x-12x=1的解为x=2 D.7y-2y=1-6的解为y=1 4.把方程12x=1变形为x=2,其依据是【 】A.等式的性质1B.等式的性质2C.分数的基本性质D.以上均不正确5.已知x=2是方程ax+3bx+6=0的解,则3a+9b-5的值是【 】A.15B.12C.-13D.-14 6.解方程322323x x ++-=1时,去分母后,正确的结果是【 】A.9x+6-4x+3=1B.9x+6-4x-6=1C.9x+6-4x-6=6D.9x+2-4x+3=67.若代数式5x-7与代数式4x+9的值相等,则x 的值等于【 】A.2B.16C.29 D.1698.已知x=y ,则下列各式中:x-3=y-3,3x=3y ,-2x=-2y ,yx=1,正确的有【 】A.1个B.2个C.3个D.4个 9.在下列方程中,解是x=-1的是【 】A.2x+1=1B.2-2x=2014C.x=1D.1332x x +--=2 10.将方程3x-5=2x-4变形,得3x-2x=-4+5,那么变形的依据是【 】A.合并同类项法则B.乘法分配律C.等式的性质1D.等式的性质211.当x=2时,整式ax-2x的值为4,当x=-2时,这个整式的值为【】A.-8B.-4C.-2D.812.如图,天平中的物体a,b,c使天平处于平衡状态,则物体a与物体c的重量关系是【】A.2a=3cB.4a=9cC.a=2cD.a=c13.如图是超市中某品牌洗发露的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发露的原价为【】A.22元B.23元C.24元D.26元14.小郑的年龄比妈妈小28岁,今年妈妈的年龄正好是小郑的5倍,小郑今年的年龄是【】A.7岁B.8岁C.9岁D.10岁15.已知关于x的方程(k-2)x|k|-1+5=3k是一元一次方程,则k的值是【】A.±2B.2C.-2D.±116.某地水费收费标准如下:用水每月不超过6m3,按0.8元/m3收费;如果超过6m3,超过部分按1.2元/m3收费.已知某用户某月的水费平均为0.88元/m3,那么该用户这个月应交水费为【】A.6.6元 B.6元 C.7.8元 D.7.2元第Ⅱ卷非选择题(共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案填在题中横线上)17.如果3x2a-1+5=6是关于x的一元一次方程,那么a= .18.有一个密码系统,其原理如下面的框图所示.当输出的值为10时,则输入的x= .19.在还没有出现字母以前,我们的祖先常用一些符号来表示方程中的未知数.现有一个方程:3× +5×=32,那么的值为 .20.有两桶水,甲桶有水180L,乙桶有水150L,要使甲桶水的体积是乙桶水的体积的两倍,则应由乙桶向甲桶倒 L水.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9分)解方程:(1)43-8x=3-112x;(2)12313 37x x-+=-(3)设y1=15x+1,y2=214x+,当x为何值时,y1与y2互为相反数呢?22.(本小题满分10分)数学迷小虎在解方程21134y y a-+=-去分母时,方程右边的-1漏乘了分母的最小公倍数12,因而求得方程的解为y=3,请你帮助小虎同学求出a的值,并正确求出原方程的解.23.(本小题满分10分)足球比赛的记分规则为:胜一场得3分,平一场得1分,负一场得0分.在2013年的中国足球超级联赛中,广州恒大战绩出色,在前29场比赛中,只输了一场,积74分排名榜首.请问这支球队胜了多少场?平了多少场?24.(本小题满分11分)七年级(2)班一个综合实践活动组去某停车场调查停车情况,下面是三位同学的谈话.你知道小型车停了几辆吗?中型车呢?25.(本小题满分12分)如图,用一根质地均匀长30cm的直尺和一些相同棋子做实验.已知支点到直尺左右两端的距离分别为a,b,通过实验可得如下结论:若左端棋子数×a=右端棋子数×b,则直尺就能平衡.现在已知a=10cm,并且左端放了4枚棋子,那么右端需放几枚棋子,直尺才能平衡?26.(本小题满分14分)一天,熊妈妈出门办事,临走吩咐小熊替它照看水果店.喜欢贪小便宜的小狐狸来买水果.它挑选了总共8kg 的鸭梨和葡萄,每千克鸭梨卖3元,每千克葡萄卖5元.在算账的时候,粗心的小熊把鸭梨和葡萄的价格搞错了,以鸭梨每千克5元、葡萄每千克3元的价格卖了28元.小狐狸付完钱后乐滋滋的走了.请聪明的你算一算,价格弄错后,小熊损失了多少钱?答案一、1.D提示:根据一元一次方程的定义求解.2.D提示:根据等式的性质进行判断.3.C提示:方程x-2x=3的解为x=-3,5y-3y=1的解为y=12,7y-2y=1-6的解为y=-1.4.B提示:由12x=1得x=2,是方程两边同时乘以2所得,故选B.5.D提示:由x=2是方程ax+3bx+6=0的解,所以2a+6b+6=0,即a+3b=-3,所以3a+9b-5=3(a+3b)-5=3×(-3)-5=-14.6.C提示:方程两边同时乘以6.7.B提示:由题意知,5x-7=4x+9,即x=16.8.C提示:根据等式的性质进行判断,特别注意除数不能为0.9.D提示:2x+1=1的解为x=0,2-2x=2014的解为x=-1006.1332x x+--=2的解为x=-1.10.C提示:移项的依据是等式的性质1.11.B提示:把x=2代入ax-2x得2a-4=4,即a=4,所以原整式为2x.12.B提示:2a=3b,2b=3c,所以4a=9c.13.C提示:设洗发露的原价为x元,由题意得,0.8x=19.2,即x=24.14.A提示:设小郑今年的年龄为x岁,则妈妈的年龄为(x+28)岁,由题意得,x+28=5x,解得x=7.15.C提示:由题意知,|k|-1=1且k-2≠0,解之得k=-2.16.A提示:设这个月该用户用xm3水,由题意知0.88x=6×0.8+1.2(x-6),解之得x=7.5,所以7.5×0.88=6.6(元).二、17.1提示:由题意得2a-1=1,即a=1.18.2提示:2x+6=10,解之得x=2.19.420.40提示:设应由乙桶向甲桶倒xL水,根据题意得,180+x=2(150-x),解之得x=40.三、21.解:(1)移项,得-8x+112x=3-34,合并同类项,得-5523x-=,系数化为1,得x=-23;(2)去分母,得7(1-2x)=3(3x+1)-63,去括号,得7-14x=9x+3-63,移项,得-14x-9x=3-63-7,合并同类项,得-23x=-67,系数化为1,得x=67 23.(3)根据题意,得y1+y2=0,即(15x+1)+214x+=0,解得x=-2514.经检验,符合题意.答:当x=-2514时,y1与y2互为相反数.22.解:由题意,将y=3代入方程4(2y-1)=3(y+a)-1,得4×(2×3-1)=3×(3+a)-1. 解得a=4.所以原方程为21434y y-+=-1.解这个方程,得y=4 5.23.解:设这支球队胜了x场,根据题意,得3x+(29-1-x)=74.解得x=23.经检验,符合题意.所以28-x=5(场).答:这支球队胜了23场,平了5场.24.解:设小型车停了x辆,则中型车停了(50-x)辆,根据题意,得5x+8(50-x)=340.解得x=20.经检验,符合题意.所以50-20=30(辆).答:小型车停了20辆,中型车停了30辆.25.右端需要放2枚棋子,直尺才能平衡.26.解:设小狐狸买了xkg鸭梨,则买了(8-x)kg葡萄,根据题意,得5x+3(8-x)=28,解得x=2.经检验,符合题意.所以8-x=6(kg).实际应付的钱为3×2+5×6=36(元).所以小熊损失了36-28=8(元). 答:小熊损失了8元钱.。

人教版七年级数学上册第三章《一元一次方程》单元测试(含答案)

人教版七年级数学上册第三章《一元一次方程》单元测试(含答案)

人教版七年级数学上册第三章《一元一次方程》单元测试一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 已知x=1是方程x−2k3=12−32x的解,则k的值是()A.−2B.2C.0D.−12. 某商品打七折后价格为a元,则原价为( )A.a元B.107a元 C.30%a元 D.710a元3. 在①2x+1;②1+7=15−8+1;③1−12x=x−1;④x+2y=3中,方程共有()A.1个B.2个C.3个D.4个4. 若关于x的方程3x+(2a+1)=x−(3a+2)的解为x=0,则a的值等于( )A.15B.35C.−15D.−355. 将一根长为acm的铁丝首尾相接围成一个正方形,若要将它按如图所示的方式向外等距扩大1cm得到新的正方形,则这根铁丝需增加()A.4cmB.8cmC.(a+4)cmD.(a+8)cm6. 七年级(1)班有30人会下象棋或围棋,已知会下象棋的人数比会下围棋的人数多5人,两种棋都会下的有17人,问只会下围棋的有多少人?设只会下围棋的有x人,可得方程()A.x+(x−5)+17=30B.x+(x+5)+17=30C.x+(x−5)−17=30D.x+(x+5)−17=307. 如图是某月份的日历表,任意框出同一列上的三个数,则这三个数的和不可能是()A.39B.43C.57D.668. 解方程x3−x−12=1时,去分母后,正确的是( )A.3x−2(x−1)=1B.2x−3(x−1)=1C.3x−2(x−1)=6D.2x−3(x−1)=69. 运用等式性质进行的变形,正确的是()A.如果a=b,那么a+c=b−cB.如果ac =bc,那么a=bC.如果a=b,那么ac =bcD.如果a2=3a,那么a=310. 已知x=2是方程5Xm+10=30的解,则m的值为( )A.2B.4C.6D.10二、填空题(本题共计 4 小题,每题 4 分,共计16分,)11. 当代数式2x−2与3+x的值相等时,x=________.12. 已知:(m−2)x−1=0是关于x的一元一次方程,则m________.13. 在等式5x−8=7−9x的两边同时________,得14x=15,这是根据________.14. 李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔的承包地去年甲种蔬菜有________亩.三、解答题(本题共计 5 小题,共计74分,)15.(20分) 解下列方程:(1)8(a+1)−2(3a−4)=13;(2)2x−13=2x+16−1;(3)y−y−12=2−y+25;(4)2x0.3+223=1.4−3x0.2.16.(12分) 列方程.(1)甲班有学生58人,乙班有学生46人,要使甲、乙两班的人数相等,应如何调动?(2)某推销员,卖出全部商品的2后,得到400元,卖出全部商品共得到多少元?517. (14分) “五一”期间,某电器城按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元,该电器的成本价为多少元?(只列方程)18. (14分)一个长方形的周长为28cm,将此长方形的长减少2cm,宽增加4cm,就可成为一个正方形,那么原长方形的长和宽分别是多少?19.(14分) 某公园门票价格规定如下表:某校七年级(1)(2)两个班共102人去游园,其中(1)班有40多人,不足50人.经计算,如果两个班都以班为单位购票,则一共应付1320元.问:(1)如果两班联合起来,作为一个团体购票,可省多少钱?(2)两班各有多少名学生?参考答案与试题解析一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】一元一次方程的解【解析】把x=1代入方程,即可得出一个关于k的一元一次方程,求出方程的解即可.【解答】把x=1代入方程x−2k3=12−32x得:1−2k3=12−32×1,解得:k=2,2.【答案】B【考点】一元一次方程的应用——打折销售问题【解析】此题暂无解析【解答】解:设该商品原价为:x元,∵ 某商品打七折后价格为a元,∵ 0.7x=a,则x=107a(元),故选B.3.【答案】B方程的定义【解析】方程是含有未知数的等式,是等式但不含未知数不是方程,含未知数不是等式也不是方程.【解答】(1)2x+1,含未知数但不是等式,所以不是方程.(2)1+7=15−8+1,是等式但不含未知数,所以不是方程.x=x−1,是含有未知数的等式,所以是方程.(3)1−12(4)x+2y=3,是含有未知数的等式,所以是方程.故有所有式子中有2个是方程.故选:B.4.【答案】D【考点】方程的解【解析】此题暂无解析【解答】解:∵ x=0是方程3x+(2a+1)=x−(3a+2)的解,∵ 2a+1=−(3a+2),,解得:a=−35故选D.5.【答案】B【考点】一元一次方程的应用——其他问题列代数式根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.【解答】解:∵ 原正方形的周长为acm,cm,∵ 原正方形的边长为a4∵ 将它按图的方式向外等距扩1cm,+2)cm,∵ 新正方形的边长为(a4+2)=(a+8)(cm),则新正方形的周长为4(a4因此需要增加的长度为a+8−a=8(cm).故选B.6.【答案】B【考点】由实际问题抽象出一元一次方程【解析】设只会下围棋的有x人,则只会下象棋的有(x+5)人,根据该班有30人会下象棋或围棋且两种棋都会下的有17人,即可得出关于x的一元一次方程,此题得解.【解答】设只会下围棋的有x人,则只会下象棋的有(x+5)人,依题意,得:x+(x+5)+17=30.7.【答案】B【考点】一元一次方程的应用——其他问题解一元一次方程【解析】可设中间的数为x,根据竖列上相邻的数相隔7可得其余2个数,相加等于各选项中数字求解即可.【解答】解:A、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=39,解得:x=13,故此选项错误;B、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=43,解得:x=433,故此选项符合题意;C、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=57,解得:x=19,故此选项错误;D、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=66,解得:x=22,故此选项错误;故选B.8.【答案】D【考点】解一元一次方程【解析】方程两边乘以6去分母得到结果,即可做出判断.【解答】解:方程x3−x−12=1,等式两边同时乘6得:2x−3(x−1)=6.故选D.9.【答案】B【考点】等式的性质【解析】利用等式的性质对每个等式进行变形即可找出答案.【解答】解:A、利用等式性质1,两边都加c,得到a+c=b+c,所以A不成立,故A选项错误;B、利用等式性质2,两边都乘以c,得到a=b,所以B成立,故B选项正确;C、成立的条件c≠0,故C选项错误;D、成立的条件a≠0,故D选项错误.故选B.10.【答案】A【考点】解一元一次方程【解析】把X=2代入方程得到一个关于m的方程,求出方程的解即可【解答】解得:m=2,故选A.二、填空题(本题共计 4 小题,每题 4 分,共计16分)11.【答案】5【考点】解一元一次方程【解析】此题暂无解析【解答】解:由已知得:2x−2=3+x,移项合并得:x=5,故答案为:5.12.【答案】m≠2【考点】一元一次方程的定义【解析】依据一元一次方程的定义可知m−2≠0,从而可求得m的取值范围.【解答】解:∵ (m−2)x−1=0是关于x的一元一次方程,∵ m−2=0.∵ m≠2.故答案为:m≠2.13.【答案】9x+8,等式的性质1【考点】等式的性质【解析】根据等式的基本性质即可解答.【解答】解:两边同时加上9x得:5x+9x−8=7,两边再同时加上8得:14x=5,故5x−8=7−9x两边同时加上9x+8,得到14x=15,根据是:等式的性质1.故答案是:9x+8,等式的性质1.14.【答案】6【考点】一元一次方程的应用——工程进度问题【解析】可设甲种蔬菜种植了x亩,则乙种蔬菜种植了(10−x)亩,等量关系为:甲种蔬菜总获利+乙种蔬菜总获利=18000.【解答】解:设甲种蔬菜种植了x亩,则乙种蔬菜种植了(10−x)亩,依题意得2000x+1500(10−x)=18000,解得x=6,答:甲种蔬菜种植了6亩.故答案为6.三、解答题(本题共计 5 小题,共计74分)15.【答案】去括号得:8a+8−6a+8=13,移项得:8a−6a=13−8−8,合并得:2a=−3,解得:a=−1.5;去分母得:2(2x−1)=2x+1−6,去括号得:4x−2=2x+1−6,移项得:4x−2x=1−6+2,合并得:2x=−3,解得:x=−1.5;去分母得:10y−5(y−1)=20−2(y+2),去括号得:10y−5y+5=20−2y−4,移项得:10y−5y+2y=20−4−5,合并得:7y=11,解得:y=117;方程整理得:20x3+83=7−15x,去分母得:20x+8=21−45x,移项得:20x+45x=21−8,合并得:65x=13,解得:x=0.2.【考点】解一元一次方程【解析】(1)方程去括号,移项合并,把a系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把y系数化为1,即可求出解;(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】去括号得:8a+8−6a+8=13,移项得:8a−6a=13−8−8,合并得:2a=−3,解得:a=−1.5;去分母得:2(2x−1)=2x+1−6,去括号得:4x−2=2x+1−6,移项得:4x−2x=1−6+2,合并得:2x=−3,解得:x=−1.5;去分母得:10y−5(y−1)=20−2(y+2),去括号得:10y−5y+5=20−2y−4,移项得:10y−5y+2y=20−4−5,合并得:7y=11,解得:y=117;方程整理得:20x3+83=7−15x,去分母得:20x+8=21−45x,移项得:20x+45x=21−8,合并得:65x=13,解得:x=0.2.16.【答案】解:(1)设从甲班调x人到乙班,则:58−x=46+x;(2)设卖出全部商品共得到x元,则:25x=400.【考点】由实际问题抽象出一元一次方程【解析】(1)根据要使甲、乙两班的人数相等,表示出两班的人数即可得出等式;后,得到400元”,得出等式即可.(2)根据“卖出全部商品的25【解答】解:(1)设从甲班调x人到乙班,则:58−x=46+x;(2)设卖出全部商品共得到x元,则:2x=400.517.【答案】解:设该电器的成本价为x元,依题意有x(1+30%)×80%=2080.【考点】由实际问题抽象出一元一次方程【解析】设该电器的成本价为x元,根据成本价×(1+30%)×80%=售价为2080元可列出方程.【解答】解:设该电器的成本价为x元,依题意有x(1+30%)×80%=2080.18.【答案】长方形的长为10cm,宽为4cm.【考点】一元一次方程的应用——工程进度问题【解析】设长方形的长是xcm,根据正方形的边长相等即可列出方程求解.【解答】解:设长方形的长是xcm,则宽为(14−x)cm,根据题意得:x−2=(14−x)+4,解得:x=10,14−x=14−10=4.19.【解析】(1)根据题意得出两个班联合购票比分别购票的差值即可;(2)设(1)班有xx人,根据题意列出方程解答即可.【解答】解:(1)(1)1320−102×10=1320−102×10=300300(元)答:两个班联合购票比分别购票要省300300元.(2)(2)设(1)(1)班有xx人,因为(1)(1)班有4040多人,不足5050人,所以(2)(2)班人数必定大于5050,则:14x+12(102−x)=132014x+12(102−x)=1320,解得:x=48x=48,102−48=54102−48=54.答:(1)(1)班有4848人,(2)(2)班有5454人.【答案】解:(1)(1)1320−102×10=1320−102×10=300300(元)答:两个班联合购票比分别购票要省300300元.(2)(2)设(1)(1)班有xx人,因为(1)(1)班有4040多人,不足5050人,所以(2)(2)班人数必定大于5050,则:14x+12(102−x)=132014x+12(102−x)=1320,解得:x=48x=48,102−48=54102−48=54.答:(1)(1)班有4848人,(2)(2)班有5454人.。

人教版七年级数学第三章《一元一次方程》单元测试带答案解析

人教版七年级数学第三章《一元一次方程》单元测试带答案解析
根据题意得: ( ) .
故选:A.
【点睛】本题考查了一元一次方程的应用,找准等量关系是解题的关键.
10.C
【分析】要求他一次性购买以上两次相同的商品,应付款多少元,就要先求出两次一共实际买了多少元,第一次购物显然没有超过100,即是80元,第二次就有两种情况,一种是超过100元但不超过300元一律9折;一种是购物超过300元一律8折,依这两种计算出它购买的实际款数,再按第三种方案计算即是他应付款数.
7.D
【分析】根据等式的基本性质可判断出选项正确与否;等式的基本性质:①等式两边同时加上(或减去)同一个整式,等式仍然成立;②等式两边同时乘或除以同一个不为0的整式,等式仍然成立.
【详解】解:A.根据等式性质,a=b两边都加c,即可得到a+c=b+c,故选项错误,不符合题意;
B.如果 ,那么a+c−c=b−c-c,即a=b-2c,故选项错误,不符合题意;
C.如果 ,那么 成立的条件是c≠0,原变形错误,故选项错误,不符合题意;
D.如果 ,那么a=b,故选项正确,符合题意;
故选:D.
【点睛】此题考查了等式的基本性质,解题的关键是熟练运用等式的基本性质.
8.C
【分析】设十字框最中间的数为x,表示出其余数字,根据之和为选项中的数字求出x的值,x的值符合题意即可.
人教版七年级数学第三章《一元一次方程》单元测试
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.若关于x的方程 的解是 ,则a的值为()
A. B.9C. D.1
2.如图为某披萨店的公告.某会员购买一个榴莲披萨付款83.6元,则一个榴莲披萨调价前的原价为()

新人教版 七年级(上)数学 第3章 一元一次方程 单元测试卷 (解析版)

新人教版 七年级(上)数学 第3章 一元一次方程 单元测试卷 (解析版)

第3章一元一次方程单元测试卷一、选择题(共10小题).1.(3分)下列方程中,不是一元一次方程的为()A.3x+2=6 B.4x﹣2=x+1 C.x+1=0 D.5x+6y=12.(3分)解方程2(3x﹣1)﹣(x﹣4)=1时,去括号正确的是()A.6x﹣1﹣x﹣4=1 B.6x﹣1﹣x+4=1 C.6x﹣2﹣x﹣4=1 D.6x﹣2﹣x+4=1 3.(3分)要将等式﹣x=1进行一次变形,得到x=﹣2,下列做法正确的是()A.等式两边同时加B.等式两边同时乘以2C.等式两边同时除以﹣2 D.等式两边同时乘以﹣24.(3分)小明和小亮两人在长为50m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点……若小明跑步的速度为5m/s,小亮跑步的速度为4m/s,则起跑后60s内,两人相遇的次数为()A.3 B.4 C.5 D.65.(3分)某超市以同样的价格卖出甲、乙两件商品,其中甲商品获利20%,乙商品亏损20%,若甲商品的成本价是80元,则乙商品的成本价是()A.90元B.72元C.120元D.80元6.(3分)若x=3是关于x的方程2x﹣k+1=0的解,则k的值()A.﹣7 B.4 C.7 D.57.(3分)下列等式变形错误的是()A.若a=b,则B.若a=b,则3a=3bC.若a=b,则ax=bxD.若a=b,则8.(3分)一项工程甲单独做要40天完成,乙单独做需要60天完成,甲先单独做4天,然后甲乙两人合作x天完成这项工程,则可以列的方程是()A.B.C.D.9.(3分)解方程5x﹣3=2x+2,移项正确的是()A.5x﹣2x=3+2 B.5x+2x=3+2 C.5x﹣2x=2﹣3 D.5x+2x=2﹣3 10.(3分)定义运算“*”,其规则为a*b=,则方程4*x=4的解为()A.x=﹣3 B.x=3 C.x=2 D.x=4二.填空题11.(3分)把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为.12.(3分)已知x=3是关于x的方程ax+2x﹣3=0的解,则a的值为.13.(3分)A、B、C三地依次在同一直线上,B,C两地相距560千米,甲、乙两车分别从B,C两地同时出发,相向匀速行驶.行驶4小时两车相遇,再经过3小时,甲车到达C地,然后立即调头,并将速度提高10%后与乙车同向行驶,经过一段时间后两车同时到达A地,则A,B两地相距千米.14.(3分)一元一次方程﹣y=﹣1的解为.15.(3分)若x3n﹣5+5=0是关于x的一元一次方程,则n=.三.解答题16.解下列方程.(1)2y+3=11﹣6y(2)x﹣1=+317.已知y1=6﹣x,y2=2+7x,解答下列问题:(1)当y1=2y2时,求x的值;(2)当x取何值时,y1比y2小﹣3.18.列方程解应用题:冬季来临,某电器商城试销A,B两种型号的电暖器,两周内共销售50台,销售收入14400元,A型号电暖器每台300元,B型号电暖器每台280元.试销期间A,B两种型号的电暖器各销售了多少台?19.设x、y是任意两个有理数,规定x与y之间的一种运算“⊕”为:x⊕y=(1)求1⊕(﹣1)的值;(2)若(m﹣2)⊕(m+3)=2,求m的值.20.下面是小明解方程7(x﹣1)﹣3x=2(x+3)﹣3的过程,请你仔细阅读,并解答所提出的问题:解:去括号,得7x﹣7﹣3x=2x+3﹣3.(第一步)移项,得7x﹣3x﹣2x=7+3﹣3.(第二步)合并同类项,得2x=7.(第三步)系数化为1,得x=.(第四步)(1)该同学解答过程从第步开始出错,错误原因是;(2)写出正确的解答过程.参考答案一.选择题1.(3分)下列方程中,不是一元一次方程的为()A.3x+2=6 B.4x﹣2=x+1 C.x+1=0 D.5x+6y=1解:A.3x+2=6是一元一次方程;B.4x﹣2=x+1是一元一次方程;C.x+1=0是一元一次方程;D.5x+6y=1含有2个未知数,不是一元一次方程;故选:D.2.(3分)解方程2(3x﹣1)﹣(x﹣4)=1时,去括号正确的是()A.6x﹣1﹣x﹣4=1 B.6x﹣1﹣x+4=1 C.6x﹣2﹣x﹣4=1 D.6x﹣2﹣x+4=1 解:去括号得:6x﹣2﹣x+4=1,故选:D.3.(3分)要将等式﹣x=1进行一次变形,得到x=﹣2,下列做法正确的是()A.等式两边同时加B.等式两边同时乘以2C.等式两边同时除以﹣2 D.等式两边同时乘以﹣2解:将等式﹣x=1进行一次变形,等式两边同时乘以﹣2,得到x=﹣2.故选:D.4.(3分)小明和小亮两人在长为50m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点……若小明跑步的速度为5m/s,小亮跑步的速度为4m/s,则起跑后60s内,两人相遇的次数为()A.3 B.4 C.5 D.6解:设两人起跑后60s内,两人相遇的次数为x次,依题意得;每次相遇间隔时间t,A、B两地相距为S,V甲、V乙分别表示小明和小亮两人的速度,则有:(V甲+V乙)t=2S,则t==,则x=60,解得:x=5.4,∵x是正整数,且只能取整,∴x=5.故选:C.5.(3分)某超市以同样的价格卖出甲、乙两件商品,其中甲商品获利20%,乙商品亏损20%,若甲商品的成本价是80元,则乙商品的成本价是()A.90元B.72元C.120元D.80元解:设两件商品以x元出售,由题意可知:×100%=20%,解得:x=96,设乙商品的成本价为y元,∴96﹣y=﹣20%×y,解得:y=120,故选:C.6.(3分)若x=3是关于x的方程2x﹣k+1=0的解,则k的值()A.﹣7 B.4 C.7 D.5解:将x=3代入2x﹣k+1=0,∴6﹣k+1=0,∴k=7,故选:C.7.(3分)下列等式变形错误的是()A.若a=b,则B.若a=b,则3a=3bC.若a=b,则ax=bxD.若a=b,则解:根据等式的性质可知:A.若a=b,则=.正确;B.若a=b,则3a=3b,正确;C.若a=b,则ax=bx,正确;D.若a=b,则=(m≠0),所以原式错误.故选:D.8.(3分)一项工程甲单独做要40天完成,乙单独做需要60天完成,甲先单独做4天,然后甲乙两人合作x天完成这项工程,则可以列的方程是()A.B.C.D.解:设整个工程为1,根据关系式甲完成的部分+两人共同完成的部分=1列出方程式为:.故选:C.9.(3分)解方程5x﹣3=2x+2,移项正确的是()A.5x﹣2x=3+2 B.5x+2x=3+2 C.5x﹣2x=2﹣3 D.5x+2x=2﹣3 解:移项得:5x﹣2x=2+3,故选:A.10.(3分)定义运算“*”,其规则为a*b=,则方程4*x=4的解为()A.x=﹣3 B.x=3 C.x=2 D.x=4解:根据题中的新定义化简得:=4,去分母得:8+x=12,解得:x=4,故选:D.二.填空题11.(3分)把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为12.解:设小长方形卡片的长为2m,则宽为m,依题意,得:2m+2m=4,解得:m=1,∴2m=2.再设盒子底部长方形的另一边长为x,依题意,得:2(4+x﹣2):2×2(2+x﹣2)=5:6,整理,得:10x=12+6x,解得:x=3,∴盒子底部长方形的面积=4×3=12.故答案为:12.12.(3分)已知x=3是关于x的方程ax+2x﹣3=0的解,则a的值为﹣1.解:将x=3代入方程得:3a+2×3﹣3=0,解得:a=﹣1.故答案为:﹣1.13.(3分)A、B、C三地依次在同一直线上,B,C两地相距560千米,甲、乙两车分别从B,C两地同时出发,相向匀速行驶.行驶4小时两车相遇,再经过3小时,甲车到达C地,然后立即调头,并将速度提高10%后与乙车同向行驶,经过一段时间后两车同时到达A地,则A,B两地相距760千米.解:设乙车的平均速度是x千米/时,则4(+x)=560.解得x=60即乙车的平均速度是60千米/时.设甲车从C地到A地需要t小时,则乙车从C地到A地需要(t+7)小时,则80(1+10%)t=60(7+t)解得t=15.所以60(7+t)﹣560=760(千米)故答案是:760.14.(3分)一元一次方程﹣y=﹣1的解为y=2.解:方程﹣y=﹣1,解得:y=2.故答案为:y=2.15.(3分)若x3n﹣5+5=0是关于x的一元一次方程,则n=2.解:∵x3n﹣5+5=0是关于x的一元一次方程,∴3n﹣5=1,解得:n=2,故答案为:2.三.解答题16.解下列方程.(1)2y+3=11﹣6y(2)x﹣1=+3解:(1)移项合并得:8x=8,解得:y=1;(2)去分母得:4x﹣6=3x+18,移项合并得:x=24.17.已知y1=6﹣x,y2=2+7x,解答下列问题:(1)当y1=2y2时,求x的值;(2)当x取何值时,y1比y2小﹣3.解:(1)由题意得:6﹣x=2(2+7x).∴x=.(2)由题意得:2+7x﹣(6﹣x)=﹣3,∴x=.18.列方程解应用题:冬季来临,某电器商城试销A,B两种型号的电暖器,两周内共销售50台,销售收入14400元,A型号电暖器每台300元,B型号电暖器每台280元.试销期间A,B两种型号的电暖器各销售了多少台?解:设A型号的电暖器销售了x台,则B型号的电暖器销售了(50﹣x)台,依题意有300x+280(50﹣x)=14400,解得x=20,50﹣x=50﹣20=30.故A型号的电暖器销售了20台,B型号的电暖器销售了30台.19.设x、y是任意两个有理数,规定x与y之间的一种运算“⊕”为:x⊕y=(1)求1⊕(﹣1)的值;(2)若(m﹣2)⊕(m+3)=2,求m的值.解:(1)根据题中的新定义得:原式=3×1+4×(﹣1)﹣5=3﹣4﹣5=﹣6;(2)显然m﹣2<m+3,利用题中的新定义化简已知等式得:4(m﹣2)+3(m+3)﹣5=2,去括号得:4m﹣8+3m+9﹣5=2,移项合并得:7m=6,解得:m=.20.下面是小明解方程7(x﹣1)﹣3x=2(x+3)﹣3的过程,请你仔细阅读,并解答所提出的问题:解:去括号,得7x﹣7﹣3x=2x+3﹣3.(第一步)移项,得7x﹣3x﹣2x=7+3﹣3.(第二步)合并同类项,得2x=7.(第三步)系数化为1,得x=.(第四步)(1)该同学解答过程从第一步开始出错,错误原因是去括号时,3没乘以2;(2)写出正确的解答过程.解:(1)该同学解答过程从第一步开始出错,错误原因是去括号时,3没乘以2,故答案为:一;去括号时,3没乘以2;(2)正确的解答过程为:去括号得:7x﹣7﹣3x=2x+6﹣3,移项得:7x﹣3x﹣2x=6﹣3+7,合并得:2x=10,系数化为1,得x=5.。

人教版七年级数学上册第三章《一元一次方程》单元测试题(含答案)

人教版七年级数学上册第三章《一元一次方程》单元测试题(含答案)

人教版七年级数学上册第三章《一元一次方程》单元测试题(含答案)一、单选题1.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利20元C .亏损10元D .亏损30元2.下列方程中,一元一次方程一共有( )①9x+2;②12x =;③(1-x)(1+x)=3;④()1113352x x x -=- A .1个 B .2个 C .3个 D .4个3.(古代数学问题)今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?设有x 人,则根据题意列出方程正确的是( ) A .8x+3=7x ﹣4B .8x ﹣3=7x+4C .8x ﹣3=7x ﹣4D .8x+3=7x+44.下图是某超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请帮忙第一算,该洗发水的原价是:( )A .22元B .23元C .24元D .25元5.若关于x 的方程321(32)x a x a ++=-+的解是0,则a 的值为( )A .15B .35C .15- D .356.下列方程:21126740.343492x x x x x x x +=-=+=-=①;②;③;④;0x =⑤;328x y -=⑥;112x =⑦;12x=⑧中是一元一次方程的个数是( ) A .6个 B .5个 C .4个 D .3个7.下列运用等式的性质,变形正确的是( )A .若x ﹣m =y +m ,则x =yB .若a =b ,则ac =bcC .若x =y ,则x ﹣m =y +mD .若ac =bc ,则a =b8. 下列方程中,属于一元一次方程的是( ).A .021=+xB .2y 432=+x C .22x 3x =+x D .x 31232=++x x9.某书店把一本新书按标价的八折出售,仍获利20%,若该书进价为20元,则标价( ) A .24元 B .26元 C .28元 D .30元10.方程3x ﹣6=0的解是( )A .x =3B .x =﹣3C .x =2D .x =﹣2第II 卷(非选择题)二、填空题11.关于x 的方程a 2x+x=1的解是__.12.某学校组织八年级6个班参加足球比赛,如果采用单循环制,一共安排______场比赛 13.某商品进价为40元,若按标价的8折出售仍可获利20%,则按标价出售可获利______元.14.当x=4时,式子5(x+b )﹣10与bx+4x 的值相等,则b=_____.15.我国古代数学著作《孙子算经》中记载了这样一个有趣的数学问题“今有五等诸侯,共分橘子60颗,人别加三颗,问五人各得几何?”题目大意是:诸侯5人,共同分60个橘子,若后面的人总比前一个人多分3个,问每个人各分得多少个橘子?若设中间的那个人分得x 个,依题意可列方程得_____.16.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数是____.17.若293x +=2,且x y =94,则x =______,y =_______. 18.当a =____时,关于x 的方程314x -=-与方程562a x -=-的解相同.三、解答题19.解方程:x ﹣3=﹣12x ﹣4. 20.解方程:(1)5(x-1)+2=3-x(2)2121 1=63x x-+ -21.某纺织厂收购某种特色棉花,若直接转卖这种特色棉花,则每吨可获得的利润为500元.若经过B级加工再转卖,则每吨可获得的利润为1000元;若经过A级加工再转卖,则每吨可获得的利润为2000元.已知该纺织厂对棉花进行B级加工,每天可加工16吨;进行A级加工,每天可加工6吨,且这两种等级的加工不能同时进行.若该纺织厂收购了140吨这种特色棉花,决定15天内加工完,且有如下三种可行方案:方案一:将所收购的特色棉花直接转卖.方案二:将尽可能多的特色棉花进行A级加工,余下的部分直接转卖.方案三:一部分进行A级加工,另一部分进行B级加工,恰好15天完成.若你是该纺织厂负责人,想要获利最多,你决定使用哪套方案?请说明理由.22.一列客车和一列货车同时从甲、乙两个城市相对开出,已知客车每小时行55千米,客车速度与货车速度的比是11:9,两车开出后5小时相遇,甲、乙两城市间的铁路长多少千米?23.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是(A,B)的好点.例如,如图1,点A表示的数为-1,点B表示的数为2,表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的好点,但点D是(B,A)的好点.知识运用:(1)如图2,M,N为数轴上两点,点M所表示的数为-2,点N所表示的数为4.①在点M和点N中间,数_______所表示的点是(M,N)的好点:②在数轴上,数________和数_________所表示的点都是(N,M)的好点;(2)如图3,A、B为数轴上两点,点A所表示的数为-20,点B所表示的数为40,现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止,当t为何值时,P,A和B中恰有一个点为其余两点的好点?24.某电影院某日某场电影的票价是:成人票30元,学生票15元,满40人可以购买团体票(不足40人可按40人计算,票价打9折).某班在4位老师带领下去电影院看电影,学生人数为x人.(1)若学生人数为31人,该班买票至少应付多少元?(2)若学生人数为32人,该班买票至少应付多少元?(3)请用含x的代数式表示该班买票至少应付多少元.25.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了______条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.26.一队学生去校外进行军事野营训练,他们以6千米/时的速度行进,在他们走了一段时间后,学校要将一个紧急通知传给队长,通讯员从学校出发,以10千米/时的速度按原路追上去,用了15分钟追上了学生队伍,问通讯员出发前,学生走了多少时间?27.如图,已知A、B、C是数轴上的三点,点C表示的数为6,BC=4,AB=14,动点P、Q分别从A、C同时出发,点P以每秒3个单位的速度沿数轴向右匀速运动,点Q以每秒1个单位的速度沿数轴向左匀速运动,M为AP的中点,点N在线段CQ上,且CQ=3CN.设运动的时间为t(t>0)秒.(1)写出点A表示的数,点B表示的数;(2)求MN的长(用含t的式子表示);(3)t为何值时,原点O恰为线段PQ的中点.参考答案1.C2.A3.B4.C5.D6.C7.B8.C9.D10.C11.211a.12.1513.2014.615.(x﹣6)+(x﹣3)+x+(x+3)+(x+6)=60.16.45.17.-32218.-319.x=-2320.(1)x=1;(2)x=5621.选方案二.理由见解析22.500.23.①2,②0或-8;(2)10秒、15秒或20秒24.(1)585;(2)594;(3)若0<x≤31时,该班买票至少应付(120+15x)元;若32≤x≤36时,该班买票至少应付594元;若x>36时,该班买票至少应付(108+13.5x)元.25.(1)8;(2)答案见解析:(3)200000立方厘米26.1627.(1)A:-12,B:2;(2) 18−116t;。

人教版七年级数学上册第三单元测试题及答案(第三章 一元一次方程)

人教版七年级数学上册第三单元测试题及答案(第三章 一元一次方程)

人教版七年级数学上册第三单元测试卷(第三章 一元一次方程)(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列方程中,是一元一次方程的是( D )A .5x -2y =9B .x 2-5x +4=0 C.5x +3=0 D.x 5-1=32.当1-(3m -5)2取得最大值时,关于x 的方程5m -4=3x +2的解是( A ) A.79 B.97 C .-79 D .-973.下列方程变形中,正确的是( D )A .方程3x -2=2x +1,移项,得3x -2x =-1+2B .方程3-x =2-5(x -1),去括号,得3-x =2-5x -1C .方程23t =32,未知数系数化为1,得t =1D .方程x -10.2-x0.5=1化成3x =6 4.用“”“”“”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“”的个数为( A )A .5个B .4个C .3个D .2个5.将方程0.9+0.5x -0.20.2=1.5-5x0.5变形正确的是( D )A .9+5x -22=15-50x 5B .0.9+5x -22=15-5x5C .9+5x -22=15-5x 5D .0.9+5x -22=3-10x6.下列运用等式的性质,变形不正确的是( D )A .若x =y ,则x +5=y +5B .若a =b ,则ac =bcC .若a c =b c ,则a =bD .若x =y ,则x a =y a7.已知关于x 的方程(2a +b)x -1=0无解,那么ab 的值是( D ) A .负数 B .正数 C .非负数 D .非正数8.超市店庆促销,某种书包原价每个x 元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( A )A .0.8x -10=90B .0.08x -10=90C .90-0.8x =10D .x -0.8x -10=909.当x =1时,代数式12ax 3-3bx +4的值是7,则当x =-1时,这个代数式的值是( C )A .7B .3C .1D .-710.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则只有1人不能上车.有下列四个等式:①40m +10=43m -1;②n +1040=n +143;③n -1040=n -143;④40m +10=43m +1.其中正确的是( D )A .①②B .②④C .②③D .③④ 二、填空题(每小题3分,共24分)11.方程(a -2)x |a|-1+3=0是关于x 的一元一次方程,则a =__-2__. 12.已知x -2y +3=0,则代数式-2x +4y +2017的值为__2023__.13.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/小时,水速为2千米/小时,则A 港和B 港相距__504__千米.14.已知x -42与25互为倒数,则x 等于__9__.15.王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2千克,则甲种药材买了__5__千克.16.已知a 5=b 7=c8,且3a -2b +c =9,则2a +4b -3c =__14__.17.对于实数a ,b ,c ,d ,规定一种数的运算:错误!))=ad -bc ,那么当错误!))=10时,x =__-1__.18.某车间原计划13小时生产一批零件,后来每小时多生产了10件,用了12小时不但完成了任务,而且还多生产了60件.设原计划每小时生产y 个零件,则可列方程为__12(y +10)=13y +60__.三、解答题(共66分) 19.(10分)解下列方程:(1)x -12=4x 3+1; (2)0.1x -0.20.02-x +10.5=3.解:x =-95解:x =520.(8分)已知方程2-3(x +1)=0的解与关于x 的方程k +x2-3k -2=2x 的解互为倒数,求k 的值.解:解方程2-3(x +1)=0,得x =-13,则k +x 2-3k -2=2x 的解为x =-3,代入得k -32-3k -2=-6,解得k =121.(8分)已知x =3是方程3[(x 3+1)+m (x -1)4]=2的解,m ,n 满足关系式|2n +m|=1,求m +n的值.解:把x =3代入方程3[(x3+1)+m (x -1)4]=2,得m =-83,将m =-83代入|2n +m|=1,得|2n -83|=1,解得n =116或56,所以m +n =-56或-11622.(8分)小明在做家庭作业时发现练习册上一道解方程的题目被墨水污染了:x +12-5x -□3=-12,“□”是被污染的数,他很着急,翻开书后面的答案,这道题的解是x =2,你能帮他补上“□”的数吗?解:设“□”的数为m ,因为所给方程的解是x =2,所以2+12-5×2-m 3=-12,解得m =4.所以“□”的数为423.(10分)甲、乙两人同时从相距25千米的A 地去B 地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B 地停留40分钟,然后从B 地返回A 地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?解:设乙的速度为x 千米/小时,则甲的速度为3x 千米/小时,依题意得(3-4060)×3x +3x =25×2,解得x =5,所以3x =15,答:甲、乙两人的速度分别为15千米/小时和5千米/小时24.(10分)某工厂第一车间人数比第二车间人数的45少30人,如果从第二车间调10人到第一车间,那么第一车间人数就是第二车间人数的34,求原来每个车间的人数.解:设原来第二车间有x 人,则第一车间有(45x -30)人,依题意得45x -30+10=34(x -10),解得x =250,所以45x -30=170,答:原来第一车间有170人,第二车间有250人25.(12分)“中国竹乡”安吉县有着丰富的毛竹资源,某企业已收购毛竹52.5吨.根据市场信息,将毛竹直接销售,每吨可获得100元;如果对毛竹进行粗加工,每天可加工8吨,每吨可获得1000元;如果进行精加工,每天可加工0.5吨,每吨可获得5000元.由于受条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售.为此研究了两种方案:方案一:将毛竹全部粗加工后销售,则可获利__1000×52.5=52500__元;方案二:30天时间都进行精加工,未来得及加工的毛竹,在市场上直接销售,则可获利__0.5×30×5000+(52.5-0.5×30)×100=78750__元.问:是否存在第三种方案,将部分毛竹精加工,其余毛竹粗加工,并且恰好在30天内完成?若存在,求销售后所获利润;若不存在,请说明理由.解:存在,方案三:设粗加工x天,则精加工(30-x)天,依题意得8x+0.5(30-x)=52.5,解得x =5,所以30-x=25,则1000×5×8+5000×25×0.5=102500(元),答:销售后所获利润为102500元人教版七年级数学上册第四单元测试卷(第四章几何图形初步)(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是( C)2.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB 的度数为( C)A.69° B.111° C.141° D.159°,第2题图) ,第3题图),第4题图)3.如图,点A,B,C顺次在直线l上,点M是线段AC的中点,点N是线段BC的中点,若想求出MN 的长度,那么只需条件( A)A.AB=12 B.BC=4 C.AM=5 D.CN=24.如图,将4×3的网格图剪去5个小正方形后,图中还剩下7个小正方形,为了使余下的部分 (小正方形之间至少有一条边相连)恰好能折成一个正方体,需要再剪去1个小正方形,则应剪去的小正方形的编号是( C)A.7 B.6 C.5 D.45.如图,点O在直线l上,∠1与∠2互余,∠α=116°,则∠β的度数是( C)A.144° B.164° C.154° D.150°,第5题图) ,第6题图) ,第7题图)6.(2016·凉山州)如图,是由若干个大小相同的正方体搭成的几何体,从不同方向看所得到的平面图形,该几何体所用的正方体的个数是( A)A.6个 B.4个 C.3个 D.2个7.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( D)A.垂线段最短 B.经过一点有无数条直线C.经过两点,有且仅有一条直线 D.两点之间,线段最短8.已知线段AB=10 cm,点C是直线AB上一点,BC=4 cm,若M是AC的中点,N是BC的中点,则线段MN的长度是( D)A.7 cm B.3 cm C.7 cm或3 cm D.5 cm9.钟表在8:25时,时针与分针的夹角是( B)度.A.101.5 B.102.5 C.120 D.12510.如果∠1与∠2互补,∠2与∠3互余,那么∠1与∠3的关系是( C)A.∠1=∠3 B.∠1=180°-∠3 C.∠1=90°+∠3 D.以上都不对二、填空题(每小题3分,共24分)11.用“度分秒”来表示:8.31度=__8__度__18__分__36__秒.12.一个角的余角比这个角的补角的一半小40°,则这个角为__80__度.13.已知A,B,C三点在同一条直线上,M,N分别为线段AB,BC的中点,且AB=60,BC=40,则MN 的长为__50或10__.14.如图,点O在直线AB上,射线OC平分∠DOB,若∠COB=35°,则∠AOD=__110__°.,第14题图) ,第15题图) ,第17题图) ,第18题图)15.如图,两块三角板的直角顶点O重叠在一起,且OB恰好平分∠COD,则∠AOD的度数是__135__度.16.平面内三条直线两两相交,最多有a个交点,最少有b个交点,则a+b=__4__.17.把一张长方形纸条按如图的方式折叠后,量得∠AOB′=110°,则∠B′OC=__35°__.18.如图,OA的方向是北偏东15°,OC的方向是北偏西40°,若∠AOC=∠AOB,则OB的方向是__北偏东70°__.三、解答题(共66分)19.(8分)根据下列语句,画出图形.已知四点A,B,C,D.①画直线AB;②连接AC,BD,相交于点O;③画射线AD,BC,交于点P.解:略20.(8分)一个角的余角比这个角的12少30°,请你计算出这个角的大小.解:设这个角为x ,则它的余角为(90°-x ),依题意得12x -(90°-x )=30°,解得x =80°,答:这个角是80°21.(8分)如图,点M 是线段AC 的中点,点B 在线段AC 上,且AB =4 cm ,BC =2AB ,求线段MC 和线段BM 的长.解:因为AB =4 cm ,BC =2AB ,所以BC =8 cm ,所以AC =AB +BC =12 cm ,因为M 是线段AC 中点,所以MC =AM =12AC =6 cm ,所以BM =AM -AB =2 cm22.(8分)如图,已知线段AB 和CD 的公共部分BD =13AB =14CD ,线段AB ,CD 的中点E ,F 之间的距离是10 cm ,求AB ,CD 的长.解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm ,因为点E ,F 分别为AB ,CD 的中点,所以AE =12AB =1.5x cm ,CF =12CD =2x cm ,所以EF =AC -AE -CF =6x -1.5x -2x =2.5x (cm ),因为EF =10 cm ,所以2.5x =10,解得x =4,所以AB =12 cm ,CD =16 cm23.(10分)如图,已知直线AB 和CD 相交于点O ,∠COE 是直角,OF 平分∠AOE ,∠COF =34°,求∠BOD 的度数.解:因为∠COE 是直角,∠COF =34°,所以∠EOF =56°,又因为OF 平分∠AOE ,所以∠AOF =∠EOF =56°.因为∠COF =34°,所以∠AOC =∠AOF -∠COF =22°,所以∠BOD =∠AOC =22°24.(12分)如图,点C 在线段AB 上,AC =8 cm ,CB =6 cm ,点M ,N 分别是AC ,BC 的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任意一点,满足AC +CB =a cm ,其他条件不变,你能猜想出MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC -CB =b cm ,点M ,N 分别为AC ,BC 的中点,你能猜想出MN 的长度吗?请画出图形,写出你的结论,并说明理由.解:(1)因为点M ,N 分别是AC ,BC 的中点,所以MC =12AC =4 cm ,NC =12BC =3 cm ,所以MN =MC +NC =7 cm (2)MN =MC +NC =12AC +12BC =12AB =12a cm (3)图略,MN =12b cm.理由:MN =MC -NC =12AC -12BC =12(AC -BC )=12b cm25.(12分)如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.(1)如图①,当∠AOB 是直角,∠BOC =60°时,∠MON 的度数是多少? (2)如图②,当∠AOB =α,∠BOC =60°时,猜想∠MON 与α的数量关系;(3)如图③,当∠AOB =α,∠BOC =β时,猜想∠MON 与α,β有数量关系吗?如果有,写出你的结论,并说明理由.解:(1)∠MON =∠MOC -∠NOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC )=12∠AOB =45° (2)∠MON =∠MOC -∠NOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC )=12∠AOB =12α (3)∠MON =12α.理由:∠MON =∠MOC-∠NOC =12(α+β)-12β=12α。

北师大版七年级上册数学第三章《整式及其加减》单元综合测试卷(含答案)

北师大版七年级上册数学第三章《整式及其加减》单元综合测试卷(含答案)

北师大版七年级上册数学第三章《整式及其加减》单元综合测试卷(含答案)一、选择题(每题3分,共30分)1.下列式子符合书写规范的是( )A .-1xB .115xyC .0.3÷xD .-52a 2.下列各式中,是单项式的是( )A .x 2-1B .a 2b C.πa +b D.x -y 3 3.单项式-π3a 2b 的系数和次数分别是( ) A .π3,3 B .-π3,3 C .-13,4 D.13,4 4.下列单项式中,与a 2b 是同类项的是( )A .2a 2bB .a 2b 2C .ab 2D .3ab5.如果多项式(a -2)x 4-12x b +x 2-3是关于x 的三次多项式,那么( ) A .a =0,b =3 B .a =1,b =3 C .a =2,b =3 D .a =2,b =16.下列去括号正确的是( )A .(a -b )-(c -d )=a -b -c -dB .-a -2(b -c )=-a -2b +2cC .-(a -b )+c =-a -b +cD .-2(a -b )-c =-2a +b -c7.【2021·台州】将x 克含糖10%的糖水与y 克含糖30%的糖水混合,混合后的糖水含糖( )A.20% B.x+y2×100% C.x+3y20×100% D.x+3y10x+10y×100%8.如图①是一个长为2m、宽为2n的长方形,其中m>n,先用剪刀沿图中虚线(对称轴)剪开,将它分成四个形状和大小都一样的小长方形,再将这四个小长方形拼成一个如图②的正方形,则中间空白部分的面积是( )A.2mn B.(m+n)2 C.(m-n)2 D.m2-n29.代数式2a2+3a+1的值是6,那么代数式6a2+9a+5的值是( ) A.20 B.18 C.16 D.1510.【教材P104复习题T16变式】【2020·德州】如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为( )A.148 B.152 C.174 D.202二、填空题(每题3分,共24分)11.用代数式表示“比a的平方的一半小1的数”是____________.12.若单项式-2x3yn与4x m+2y5合并后的结果还是单项式,则m+n=________.13.【教材P101复习题T2变式】按照如图所示的步骤操作,若输入x的值为-4,则输出的值为________.14.在山东部分地区,大年初一常常包上几个装有硬币的饺子,吃到“钱馅”饺子的人,寓意新的一年财源滚滚、大吉大利.因为怕弄坏牙齿,朵朵的奶奶就把花生放在饺子里代替硬币,朵朵家有6口人,奶奶按照每人n 粒花生的规则包饺子(每个饺子包1粒),那么有花生的饺子有________个.15.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含x 2项,则m =________.16.某同学计算一个多项式加上xy -3yz -2xz 时,误认为减去此式,计算出的错误结果为xy -2yz +3xz ,则正确的结果是__________.17.已知有理数a ,b ,c 在数轴上对应点的位置如图所示,化简|a +c |-|c -b |-|a +b |的结果为________.18.【2021·怀化】观察等式:2+22=23-2,2+22+23=24-2,2+22+23+24=25-2……已知按一定规律排列的一组数:2100,2101,2102,…,2199,若2100=m ,用含m 的代数式表示这组数的和是__________.三、解答题(19,21,22题每题10分,其余每题12分,共66分)19.先去括号,再合并同类项:(1)2a -(5a -3b )+(4a -b ); (2)3x 2y -⎣⎢⎡⎦⎥⎤2xy 2-2⎝ ⎛⎭⎪⎫xy -32x 2y +xy +3xy 2.20.先化简,再求值:(1)7a 2b +(-4a 2b )-(2a 2b -2ab ),其中a =-2,b =1;(2)2x 2-⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫-13x 2+23xy -2y 2-2(x 2-xy +2y 2),其中x =12,y =-1.21.【教材P 102复习题T 9变式】已知代数式A =2x 2+3xy -2x -1,B =-x 2+xy -1.(1)当x =y =-1时,求2A +4B 的值;(2)若2A +4B 的值与x 的取值无关,求y 的值.22.如图,某纪念馆要在两块紧挨在一起的长方形荒地上修建一个半圆形花圃,尺寸如图所示(单位:m).(1)求阴影部分的面积(用含x的代数式表示);(2)当x=9,π取3时,求阴影部分的面积.23.比较两个数的大小时,我们可以用“作差法”.它的基本思路是求a与b两数的差,当a-b>0时,a>b;当a-b<0时,a<b;当a-b=0时,a=b.试运用“作差法”解决下列问题:(1)比较2a+1与2(a+1)的大小;(2)比较a+b与a-b的大小.24.某家具厂生产一种课桌和椅子,课桌每张定价200元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子;方案二:课桌和椅子都按定价的80%付款.某校计划添置100张课桌和x把椅子.(1)若x=100,请计算哪种方案划算;(2)若x>100,请用含x的代数式分别把两种方案的费用表示出来;(3)若x=300,如果两种方案可以同时使用,请帮助学校设计一种最省钱的方案.参考答案一、1.D 2.B 3.B 4.A 5.C 6.B 7.D8.C 9.A10.C点思路:根据图案知,第1个图案有12个棋子,第2个图案有22个棋子,第3个图案有34个棋子,…第n 个图案有2[1+2+…+(n +1)+(n +2)]+2(n -1)=(n +2)(n +3)+2(n -1)(个)棋子.故第10个这样的图案需要黑色棋子的个数为(10+2)(10+3)+2×(10-1)=174.二、11.12a 2-1 12.6 13.-6 14.6n 15.4 16.3xy -8yz -xz 点拨:由题意可知原多项式为(xy -2yz +3xz )+(xy -3yz-2xz )=2xy -5yz +xz ,则正确的结果为(2xy -5yz +xz )+(xy -3yz -2xz)=3xy -8yz -xz .17.2b -2c 点拨:由题图可知a +c <0,c -b >0,a +b <0,所以原式=-(a+c)-(c -b)-[-(a +b)]=-a -c -c +b +a +b =2b -2c.18.m 2-m点技巧:由题中规律,得2100+2101+2102+…+2199=(2+22+23+...+2199)-(2+22+23+ (299)=(2200-2)-(2100-2)=(2100)2-2100.因为2100=m ,所以原式=m 2-m .三、19.解:(1)原式=2a -5a +3b +4a -b =a +2b ;(2)原式=3x 2y -(2xy 2-2xy +3x 2y +xy )+3xy 2=3x 2y -2xy 2+2xy -3x 2y -xy +3xy 2=xy +xy 2.20.解:(1)7a 2b +(-4a 2b )-(2a 2b -2ab )=7a 2b -4a 2b -2a 2b +2ab =a 2b +2ab .把a =-2,b =1代入,得原式=(-2)2×1+2×(-2)×1=0.(2)2x 2-[3(-13x 2+23xy )-2y 2]-2(x 2-xy +2y 2)=2x 2-(-x 2+2xy -2y 2)-(2x 2-2xy +4y 2)=2x 2+x 2-2xy +2y 2-2x 2+2xy -4y 2=x 2-2y 2.把x =12,y =-1代入,得原式=⎝ ⎛⎭⎪⎫122-2×(-1)2=-74. 21.解:(1)2A +4B =2(2x 2+3xy -2x -1)+4(-x 2+xy -1)=4x 2+6xy -4x -2-4x 2+4xy -4=10xy -4x -6.当x =y =-1时,原式=10×(-1)×(-1)-4×(-1)-6=10+4-6=8.(2)2A +4B =10xy -4x -6=(10y -4)x -6.因为2A +4B 的值与x 的取值无关,所以10y -4=0,解得y =0.4.22.解:(1)由题图中各个部分面积之间的关系可得,阴影部分的面积=2(x -2)+4(x -2-2)-12π·⎝ ⎛⎭⎪⎫2+422=2x -4+4x -16-92π=⎝ ⎛⎭⎪⎫6x -20-92πm 2. (2)当x =9,π取3时,阴影部分的面积为54-20-272=412(m 2). 23.解:(1)因为2a +1-2(a +1)=2a +1-2a -2=-1<0,所以2a +1<2(a +1).(2)(a+b)-(a-b)=a+b-a+b=2b.①当b>0时,a+b>a-b;②当b<0时,a+b<a-b;③当b=0时,a+b=a-b.24.解:(1)当x=100时,方案一:100×200=20 000(元);方案二:100×(200+80)×80%=22 400(元).因为20 000<22 400,所以方案一划算.(2)当x>100时,方案一:100×200+80(x-100)=80x+12 000(元);方案二:(100×200+80x)×80%=64x+16 000(元).(3)当x=300时,①按方案一购买:80×300+12 000=36 000(元);②按方案二购买:64×300+16 000=35 200(元);③先按方案一购买100张课桌,同时送100把椅子,再按方案二购买200把椅子:100×200+80×200×80%=32 800(元),36 000>35 200>32 800,即先按方案一购买100张课桌,同时送100把椅子,再按方案二购买200把椅子最省钱。

七年级上册数学第三单元测试卷及答案

七年级上册数学第三单元测试卷及答案

七年级上册数学第三单元测试卷及答案人教版七年级数学上册第三单元测试题一、填空题(每题2分,共32分)1.在① ;② ;③ ;④ 中,等式有_______,方程有_______.(填入式子的序号)2.如果,那么a=,其根据是.3.方程的解是 _______.4.当x=时,代数式的值是 .5.已知等式是关于x的一元一次方程,则m=____________.6.当x=时,代数式与代数式的值相等.7.根据“ 的倍与的和比的小”,可列方程为______ _.8.若与有相同的解,那么 _______.9.关于方程的解为___________________________.10.若关于x的方程的解是,则代数式的值是_________.11.代数式与互为相反数,则 .12.已知三个连续奇数的和是,则中间的那个数是_______.13.某工厂引进了一批设备,使今年单位成品的成本较去年降低了 .已知今年单位成品的成本为元,则去年单位成品的成本为_______元.14.小李在解方程 (x为未知数)时,误将看作,解得方程的解,则原方程的解为___________________________.15.假定每人的工作效率都相同,如果个人天做个玩具熊,那么个人做个玩具熊需要______天.16.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距______千米.二、解答题(共68分)17.解下列方程(每题2分,共8分)(1) ;Com](2)(3)(4)18.(6分)老师在黑板上出了一道解方程的题,小明马上举手,要求到黑板上做,他是这样做的:…………………①………………………②………………………③…………………………………④…………………………………⑤老师说:小明解一元一次方程的一般步骤都知道却没有掌握好,因此解题时有一步出现了错误,请你指出他错在_________(填编号);然后,你自己细心地解下面的方程:(1) (2)19.(3分)如果方程的解是,求的值.20. (3分)已知等式是关于的一元一次方程(即未知),求这个方程的解.21.(4分)初一学生王马虎同学在做作业时,不慎将墨水瓶打翻,使一道作业只能看到:甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,_________________________________?请你将这道作业题补充完整并列出方程解答.22.( 4分)某人共收集邮票若干张,其中是2000年以前的国内外发行的邮票,是2001年国内发行的,是2002年国内发行的,此外尚有不足100张的国外邮票.求该人共有多少张邮票.23.(4分)某商场在元旦期间,开展商品促销活动.将某型号的电视机按进价提高后,打折另送元路费的方式销售,结果每台电视机仍获利元,问每台电视机的进价是多少元?24.(6分)某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,筹出票款6920元,且每张成人票8元,学生票5元.(1)问成人票与学生票各售出多少张?(2)若票价不变,仍售出1000张票,所得的票款可能是7290元吗?为什么?25.(6分)你坐过出租车吗?请你帮小明算一算.杭州市出租车收费标准是:起步价( 千米以内) 元,超过千米的部分每千米元,小明乘坐了千米的路程.(1)请写出他应该去付费用的表达式;(2)若他支付的费用是元,你能算出他乘坐的路程吗?26.(6分)公园门票价格规定如下表:购票张数 1~50张 51~100张 100张以上每张票的价格 13元 11元 9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足5 0人.]经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?27.(9分)有一些相同的房间需要粉刷,一天3傅去粉刷8个房间,结果其中有40m2墙面未来得及刷;同样的时间内5名徒弟粉刷了9个房间的墙面.每傅比徒弟一天多刷30m2的墙面.(1)求每个房间需要粉刷的墙面面积;(2)张老板现有36个这样的房间需要粉刷,若请1傅带2名徒弟去,需要几天完成?(3)已知每傅,徒弟每天的工资分别是85元,65元,张老板要求在3天内完成,问如何在这8个人中雇用人员,才合算呢?28.(9分)某原料供应商对购买其原料的顾客实行如下优惠办法:(1)一次购买金额不超过1万元,不予优惠;(2)一次购买金额超过1万元,但不超过3万元,全部9折优惠;(3)一次购买的超过3万元,其中3万元9折优惠,超过3万元的部分8折优惠.某人因库容原因,第一次在供应商处购买原料付7800元,第二次购买付款26100元,如果他是一次购买同样数量的原料,则应付款多少元?可少付款多少元?人教版七年级数学上册第三单元测试题参考答案一、填空题1.②③④,②④2.,等号两边同时加3,等式仍然成立3.4.25.6.7.8.9.或10.11.12.1713.9.614.15.16.21二、解答题17.(1);(2);(3);(4)18.①,(1);(2)19.720.21.略22.152张23.1200元24.(1)成人票640张,学生票360张;(2)不可能25.(1);(2)13千米26:(1):初一(1)班48人,初一(2)班56人;(2):304元;(3):多买3张27.(1)50平方米;(2)5天;(3)师傅2人,徒弟6人28.应付32440元,少付1460元。

人教版七年级数学上册《第三章代数式》单元测试卷-附答案

人教版七年级数学上册《第三章代数式》单元测试卷-附答案

人教版七年级数学上册《第三章代数式》单元测试卷-附答案一、单选题1.下列各式中,符合代数式书写规则的是( )A .5x ⨯B .112xy C .2.5t D .1x y -÷2.当2m =-,5n =时,代数式()3m n -+的值是( )A .6B .6-C .9D .9-3.代数式()55y -的正确含义是( )A .5乘y 减5B .y 的5倍减去5C .y 与5的差的5倍D .5与y 的积减去54.小明家距离学校m p ,小明从家出发骑车h t 可到学校,若要提前1h 到校(1t >),则每小时需行驶( )A .1m p t ⎛⎫+ ⎪⎝⎭B .1m pt ⎛⎫- ⎪⎝⎭ C .m 1pt - D .m 1pt +5.已知5x =,2y =且x y x y +=--,则x y -的值为( )A .3±B .3±或7±C .3-或7D .3-或7-6.当2x =时,代数式31px qx ++的值为2024,则当2x =-时,代数式31px qx ++的值为( ) A .2022 B .2022- C .2021 D .2021-7.按如图所示的运算程序,能使运算输出的结果为1的是( )A .3x = 4y =B .=1x - 1y =-C .2x = 1y =-D .2x =- 3y =8.已知x ,y ()22310x y --=,则下列式子的值最大的是( ).A .x y +B .x y -C .xyD .y x9.如图所示的正方形是由四个等腰直角三角形拼成的,则阴影部分的面积为( )A .22m n +B .22m n -C .2mnD .4mn10.已知四个不同的整数a b c d 、、、满足等式()()()()2015122479a b c d ----=,则+++a b c d 的值为( )A .0B .2015C .2058D .2067二、填空题11.小明买单价p 元的商品3件,给卖家q 元,应找回 元.12.设a b 、互为相反数,、c d 互为倒数,则()2024a b cd +-值是 .13.学校买来20个足球,每个a 元,又买来b 个篮球,每个58元.2058a b +表示 ;当45a = 10b = 则2058a b += 元.14.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的 .三、解答题15.线段AB 上有一点C ,AC 的长度是BC 的3倍少2,若BC 的长度用x 表示,则表示出AB 的长度.16.已知有理数a ,b ,c ,d ,e 其中a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,求1325c d ab e +++的值.17.若||2a =,b 既不是正数也不是负数,c 是最大的负整数.(1)分别求出a 、b 、c 的值;(2)求2022a b c +-的值.18.如图,是由长方形、正方形、三角形及圆组成的图形(长度单位:m ).(1)用式子表示图中阴影部分的面积:(2)按照图所示的尺寸设计并画出一个新的图形,使其面积等于参考答案1.C2.D3.C4.C5.D6.B7.D8.A9.C10.C11.()3q p -12.1-13. 买20个足球和b 个篮球一共的价钱 1480 14.a a b +/a b a + 15.42x -16.162或152- 17.(1)2a =± 0b = 1c =-;(2)3或1 18.(1)(2)。

七年级上册数学 第三章 代数式 单元测试卷

七年级上册数学   第三章   代数式   单元测试卷

七年级上册数学第三章代数式单元测试卷一.选择题1.下列代数式符合规范书写要求的是()A.-1x B.116xy C.0.8÷x D.−72a2.“m与n差的3倍”用代数式可以表示成()A.3m−n B.m−3n C.3(n−m)D.3(m−n)3.若a+3b−2=0,则代数式1+2a+6b的值是()A.5B.4C.3D.24.某校购进价格a元的排球100个,价格b元的篮球50个,则该校一共需支付()元.A.100a+50b B.100a−50b C.50a−100b D.50a+100b5.一个两位数,十位上的数为a,个位上的数为b,若把这个两位数的十位上的数和个位上的数交换位置,计算所得的数和原数的和,用a,b可以表示为()A.11a+11b B.11ab C.10a+10b D.10ab6.已知a1=3,a2=11−a1,a3=11−a2,a4=11−a3,⋅⋅⋅,依此类推,则a2024等于()A.−12B.12C.23D.33,则输出的数为()A.−16B.92C.−92D.1168.如果a=2,b2=9,且a<b,那么a−b的值为()A.1或5B.1或−5C.−1或−5D.−1或5二.填空题9.用已知3m2−2m=1,则代数式9m2−6m−5的值是.10.代数式表示“x的2倍与y的差”为.11.某种商品原价每件a元,现打6折出售,这时的售价是元.12.已知a2=4,|b|=5,ab>0,那么a+b=.13.2023长春马拉松于5月21日在南岭体场鸣枪开跑,某同学参加了7.5公里健康跑项目.他从起点开始以平均每分钟x公里的速度跑了10分钟,此时他离健康跑终点的路程为公里.(用含x的代数式表示)三.计算题14.当a=6,b=-2时,求下列代数式的值.(1)a2+2ab+b2(2)2ab四.解答题15.按如图所示方式摆放桌子和椅子,照这样的方式继续排列桌子,摆4张桌子可坐多少人?摆n张桌子呢?摆100张桌子呢?16.已知a和b互为相反数,c与d互为倒数,m的绝对值为2023,求代数式|a+b|m−cd−m的值.17.某医药公司有一种药品共300箱,将其分配给批发部和零售部销售,批发部经理对零售部经理说:“如果把你们分到的药品让我们卖,可卖得3500元”零售部经理对批发部经理说:“如果把你们分到的药品让我们卖,可卖得7500元”若假设零售部分到的药品是a箱,则:(1)该药品的零售价和批发价分别是每箱多少元?(2)若a=100,则这批药品一共能卖多少元?。

七年级数学上册第三章 代数式 单元测试卷(人教版 2024年秋)

七年级数学上册第三章 代数式  单元测试卷(人教版 2024年秋)

七年级数学上册第三章代数式单元测试卷(人教版2024年秋)一、选择题(每题3分,共30分)1.下列代数式书写规范的是()A.b×12B.4÷(a+b)C.225xD.3n 2.[母题教材P71例2]用语言叙述式子“a-12b”所表示的数量关系,下列说法正确的是()A.a与b的差的12B.a与b的一半的积C.a与b的12的差D.a比b大123.[2024·成都武侯区期末]某商店举办促销活动.促销的方法是将原价为x元/-7元/-7的含义的描述正确的是()A.原价打8折后再减去7元B.原价减去7元后再打8折C.原价减去7元后再打2折D.原价打2折后再减去7元4.当a=-1,b=3时,式子2a2+ab+b的值是()A.-5B.-2C.2D.65.[母题教材P75练习T2]下列各说法中的两个量之间的关系属于反比例关系的有()①当路程一定时,汽车行驶的平均速度与行驶时间之间的关系;②当商品的进价一定时,利润与售价之间的关系;③当长方形的面积一定时,长方形的长与宽之间的关系;④计划从A地到B地铺设一段2400米长的铁轨,每日铺设长度与铺设天数之间的关系.A.1个B.2个C.3个D.4个6.某商品原来的价格为a元,前期在销售时连续两次降价10%.后期由于成本价格上涨,商店决定在两次降价的基础上提价20%,提价后商品的价格为()A.a元B.0.918a元C.0.972a元D.0.96a元7.[2023·雅安]若m2+2m-1=0,则2m2+4m-3的值是()A.-1B.-5C.5D.-38.学校礼堂的房间窗户装饰物如图所示,该装饰物由两个四分之一圆组成(半径相同),则窗户中能射进阳光的部分的面积为()A.ab-π16b2B.ab-π8b2C.ab-π4b2D.ab-π2b29.[新视角·2023·济宁改编·规律探究题]已知一列均不为1的数a1,a2,a3,…,a n满足如下关系:a2=1+11-1,a3=1+21-2,a4=1+31-3,…,a n+1=1+1-,若a1=2,则a2025的值是()A.-12B.13C.-3D.210.如图,下面图形是用棋子按照一定规律摆成的,按照这种摆法,第n个图形中共有棋子()A.2n枚B.(n2+1)枚C.n(n-1)枚D.n(n+1)枚二、填空题(每题3分,共18分)11.下列各式中,是代数式的是.(填序号)①2x-1;②a=1;③S=πR2;④π;⑤72m;⑥12>13. 12.[新视角·2024·北京丰台区期末·结论开放题]对于式子“m+n”可以赋予其实际意义:一个篮球的价格是m元,一个足球的价格是n 元,体育老师购买一个篮球和一个足球共需要付款(m+n)元,请你给式子“2a”赋予一个实际意义:.13.[情境题生活应用]房间面积一定时,每块砖的面积和铺砖的块数(填“满足”或“不满足”)反比例关系.14.把一个两位数m放在一个三位数n的前面,组成一个五位数,这个五位数可表示为.15.[2024·南京期末]如果|m|=2,那么代数式1-m+2m2的值为.16.将长为30cm的长方形白纸,按如图所示的方法黏合起来,黏合部分的宽为2cm.(1)3张白纸黏合后的总长度为cm;(2)x张白纸黏合后的总长度为cm.(用含x的代数式表示)三、解答题(共72分)17.(6分)用代数式表示:(1)m的3倍与n的一半的和;(2)比a与b的积的2倍小5的数;(3)x,y两数的平方和减去它们积的2倍.18.(8分)已知a,b互为相反数,c,d互为倒数,m的绝对值等于3,求+2+cd-m的值.19.(10分)列式表示并求值.(1)超市购进一批上衣,标价为a元/件,后降价20%进行销售,小明购买了2件该上衣,一共花费了多少元?当a=120时,小明一共花费了多少元?(2)甲、乙两地相距b km,一辆汽车以v km/h的速度从甲地向乙地行驶,行驶t h后,汽车与乙地之间的距离为多少千米?当b=200,v=80,t=1.5时,汽车与乙地之间的距离为多少千米?20.(10分)一个水池内原有水500升,现在以20升/分钟的速度向水池内注水,35分钟可注满水池.(1)水池的容积是多少升?(2)若水池为空的,用Q(单位:升/分钟)表示注水的速度,用T表示注满水池需要的时间,用式子表示T与Q的关系,T与Q成什么比例关系?21.(12分)[2024·扬州江都区期中]如图,在一块长为3x,宽为y(3x >y)的长方形铁皮的四个角上,分别截去半径都为2的圆的14.(1)试计算剩余铁皮的面积(阴影部分面积).(2)当x=4,y=8时,剩余铁皮的面积是多少?(π取3)22.(12分)某种杯子的高度是15cm,两个以及三个这样的杯子叠放时的高度如图所示.(1)n个这样的杯子叠放在一起的高度是cm.(用含n的式子表示)(2)20个这样的杯子叠放在一起的高度是多少?23.(14分)[立德树人节约资源]为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的.该市自来水收费的价目表如下(注:水费按月份结算):每月用水量单价不超出6m3的部分2元/m3超出6m3不超出10m3的部分4元/m3超出10m3的部分8元/m3已知李老师家某月用水量为x m3.(1)若6<x≤10,则李老师当月应交水费多少元?(用含x的式子表示,并化简)(2)若x>10,则李老师当月应交水费多少元?(用含x的式子表示,并化简)答案一、1.D 2.C 3.A4.C 【点拨】因为a =-1,b =3,所以2a 2+ab +b =2×(-1)2+(-1)×3+3=2.5.C6.C 【点拨】由题意得提价后商品的价格为a (1-10%)×(1-10%)(1+20%)=a ×0.9×0.9×1.2=0.972a (元).7.A 【点拨】因为m 2+2m -1=0,所以m 2+2m =1.所以2m 2+4m =2.所以2m 2+4m -3=2-3=-1.8.B 【点拨】由题意得窗户中能射进阳光的部分的面积为ab -2×14π×=ab -π8b 2.9.D 【点拨】因为a 1=2,所以a 2=1+21-2=-3,所以a 3=1-31+3=-12,所以a 4=1-121+12=13a 5=1+131-13=2,…,由此可得这列数按2,-3,-12,13循环出现.因为2025÷4=506……1,所以a 2025=a 1=2.10.D 【点拨】第1个图形中有2枚棋子,2=1×2;第2个图形中有6枚棋子,6=2×3;第3个图形中有12枚棋子,12=3×4;第4个图形中有20枚棋子,20=4×5;…,所以第n 个图形中有n (n +1)枚棋子.二、11.①④⑤12.一个篮球的价格是a 元,购买2个篮球共需付款2a 元(答案不唯一)13.满足14.1000m+n15.7或11【点拨】因为|m|=2,所以m=±2.当m=2时,1-m+2m2=1-2+2×22=7;当m=-2时,1-m+2m2=1-(-2)+2×(-2)2=11.综上所述,代数式1-m+2m2的值为7或11.16.(1)86(2)(28x+2)三、17.【解】(1)3m+12n.(2)2ab-5.(3)x2+y2-2xy.18.【解】根据题意,得a+b=0,cd=1,m=±3,当m=3时,+2+cd-m=032+1-3=-2,当m=-3时,+2+cd-m=0(−3)2+1-(-3)=4.综上,+2+cd-m的值为-2或4.19.【解】(1)一共花费了2a(1-20%)=1.6a(元).当a=120时,1.6a=1.6×120=192.故当a=120时,小明一共花费了192元.(2)汽车与乙地之间的距离为(b-vt)km.当b=200,v=80,t=1.5时,b-vt=200-80×1.5=80.故当b=200,v=80,t=1.5时,汽车与乙地之间的距离为80km.20.【解】(1)水池的容积是500+20×35=1200(升).(2)依题意得TQ=1200或T=1200,T与Q成反比例关系.21.【解】(1)由题意可知S阴影=3xy-=3xy-π4y2,所以剩余铁皮的面积是3xy-π4y2.(2)当x=4,y=8时,S阴影=3×4×8-34×82=48.答:当x=4,y=8时,剩余铁皮的面积是48.22.【解】(1)(3n+12)(2)当n=20时,3n+12=3×20+12=72.答:20个这样的杯子叠放在一起的高度是72cm.23.【解】(1)若6<x≤10,则李老师当月应交水费2×6+(x-6)×4=12+4(x-6)=4x-12(元).(2)若x>10,则李老师当月应交水费2×6+4×(10-6)+(x-10)×8=12+16+8(x-10)=28+8(x-10)=8x-52(元).。

七年级数学上册--第三章-整式及其加减---单元测试卷

七年级数学上册--第三章-整式及其加减---单元测试卷

七年级数学上册第三章 《整式及其加减》 单元测试题一、选择题:1.下列代数式中222331,3,,,,3,22m n b ab x y ab c x +-+-中,单项式共有( )A .6个B .5个C .4个D .3个2.下列各组式子中,不是同类项的是( ) A .312x y 和312y x - B .2a -和18a C .2025和5-D .32a y -和352ya -3.下列合并同类项的结果中,正确的是( ) A .330ab ab --= B .2233a a -= C .336235m m m += D .32y y y -=-4.下列添括号正确的是( ) A .()a b c a b c -+=-+ B .()a b c a b c -+=--- C .()a b c a b c -+=-- D .()a b c a b c -+=--+5.下列说法正确的是( ) A .219x π-的系数是19- B .23xy 的次数是2 C .20.5x 与25x -不是同类项D .2431x x +-是二次三项式6.若关于x 的多项式()21472x mx x ⎛⎫++- ⎪⎝⎭中不含一次项,则m 的值是( )A .4B .2C .4-D .4或4-7.若a ﹣5=6b ,则(a +2b )﹣2(a ﹣2b )的值为( ) A .5B .﹣5C .10D .﹣108.设A =x 2﹣5x ﹣3,B =2x 2﹣5x +1,则A 与B 的大小关系是( ) A .A =BB .A >BC .A <BD .无法比较9.已知M =a 2﹣3b 2+5,N =a 2﹣4b 2﹣6,则M 与N 的大小关系是( ) A .M ≥NB .M >NC .M ≤ND .M <N10.甲、乙、丙三家超市为了促销一种定价为m 元的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%.那么顾客购买这种商品最合算的超市是 ( )A.甲B.乙C.丙D.一样11.如图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个,若这样铺成一个10×10的正方形图案,则其中完整的圆共有( )10.A .145个B .146个C .180个D .181个12. 在解决数学问题时,常常需要建立数学模型,如图,用大小相同的圆点摆成的图案,按照这样的规律摆放,则第7个图案中共有圆点的个数是( )A .37B .49C .50D .51二、填空题:13.单项式 2325x y - 的系数与次数的乘积为 .14.若27m n a b -+与443a b -是同类项,则m n -的值为15.写出一个含有,x y 的五次三项式 ,其中最高次项的系数为2-,常数项为6.16.若多项式72222346n x y x y x y +-+-是按字母x 降幂排列的,则整数n 的值可以是 (写出一个即可)17.a 是不为2的有理数,我们把22a-称为a 的“哈利数”.如:3的哈利数”是2223=--,2-的“哈利数”是21222=--(),已知13a =,2a 是1a 的“哈利数”,3a 是2a 的“哈利数”,4a 是3a 的“哈利数”,…,依此类推,则2024a = .18.把六张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为cm y ,宽为cm x )的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分周长的和是 cm .(用含x 或y 的代数式来表示)三、解答题: 19.化简:(1)22368p pq p pq +--+; (2)()()223246x xy x xy --+-.20.先化简,再求值:22212232233x x xy y xy ⎡⎤⎛⎫-----+ ⎪⎢⎥⎝⎭⎣⎦,其中21102x y ⎛⎫-++= ⎪⎝⎭.21.化简()()222212132a b a b ab ⎡⎤----+⎣⎦,下面是甲、乙两同学的部分运算过程:(1)甲同学解法的依据是 ;乙同学解法的依据是 ;(填序号)①加法结合律; ②加法分配律; ③乘法分配律; ④乘法交换律. (2)请选择一种解法,写出完整的解答过程:22.如果两个关于x 、y 的单项式122a mx y +与324nx y -是同类项(其中0xy ≠). (1)求a 的值.(2)如果这两个单项式的和为零,求()202121m n --的值.23. 已知2231A x xy y =++-,2B x xy =-. (1)化简2A B -;(2)若24A B -的值与y 的值无关,求x 的值.24.如图,公园有一块长为()21a -米,宽为a 米的长方形土地(一边靠着墙),现将三面留出宽都是b 米的小路,余下部分设计成花圃ABCD ,并用篱笆把花圃不靠墙的三边围起来.(1)花圃的宽AB 为______米,花圃的长BC 为______米;(用含a b ,的式子表示) (2)求篱笆的总长度;(用含a b ,的式子表示)(3)若305a b ==,,篱笆的单价为60元/米,请计算篱笆的总价.。

人教版七年级数学上册《第三章一元一次方程》单元测试题(有答案)

人教版七年级数学上册《第三章一元一次方程》单元测试题(有答案)

人教版七年级数学上册《第三章一元一次方程》单元测试题一.选择题(共10小题)1.下列方程中,不是一元一次方程的为()A.3x+2=6B.4x﹣2=x+1C.x+1=0D.5x+6y=12.若(m﹣2)x|2m﹣3|=6是一元一次方程,则m等于()A.1B.2C.1或2D.任何数3.把方程﹣=1去分母后,正确的是()A.3x﹣2(x﹣1)=1B.3x﹣2(x﹣1)=6C.3x﹣2x﹣1=12D.3x﹣2(x﹣1)=124.为了提倡节约用水,采用“阶梯水价”收费办法:每户用水不超过5方,每方水费x元,超过5方,超过部分每方加收2元,小张家今年3月份用水11方共交水费56元,根据题意列出关于x的方程,正确的是()A.5x+6(x﹣2)=56B.5x+6(x+2)=56C.11(x+2)=56D.11(x+2)﹣6×2=565.关于x的一元一次方程2x a﹣2+m=4的解为x=1,则a+m的值为()A.9B.8C.5D.46.下列等式变形错误的是()A.若a=b,则B.若a=b,则3a=3bC.若a=b,则ax=bxD.若a=b,则7.下列解方程去分母正确的是()A.由,得2x﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2 y﹣15=3yD.由,得3(y+1)=2 y+68.已知某座桥长800米,现有一列火车从桥上通过,测得火车从开始上桥到完全通过共用了1分钟,这列火车完全在桥上的时间为40秒,则火车的速度和车长分别是()A.20米/秒,200米B.18米/秒,180米C.16米/秒,160米D.15米/秒,150米9.某品牌服装店一次同时售出两件上衣,每件售价都是135元,若按成本计算,其中一件盈利25%,另一件亏损25%,则这家商店在这次销售过程中()A.盈利为0B.盈利为9元C.亏损为8元D.亏损为18元10.甲车队有汽车100辆,乙车队有汽车68辆,根据情况需要甲车队的汽车是乙车队的汽车的两倍,则需要从乙队调x辆汽车到甲队,由此可列方程为()A.100﹣x=2(68+x)B.2(100﹣x)=68+xC.100+x=2(68﹣x)D.2(100+x)=68﹣x二.填空题(共8小题)11.已知3m﹣11与5m﹣7是互为相反数,则m=.12.对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).我们规定:(a,b)※(c,d)=ac﹣bd.例如:(1,2)※(3,4)=1×3﹣2×4=﹣5.若有理数对(2x,﹣3)※(1,x+1)=8,则x=.13.当x时,式子x+1与2x+5的值互为相反数.14.已知x=3是关于x方程mx﹣8=10的解,则m=.15.若关于x的方程(m﹣4)x|m|﹣3﹣2=0是一元一次方程,则m=.16.从一个内径为12cm的圆柱形茶壶向一个内径为6cm、内高为12cm的圆柱形茶杯中倒水,茶杯中的水满后,茶壶中的水下降了cm.17.五一期间,青年旅行社组织一个团;老师和学生共50人组成的旅行团到凤凰古城旅游,景区门票售票标准是:成人门票50元/张,学生门票20元/张,该旅行团购买门票共花费1800元,若设该团购买成人门票x张,则可列方程为:.18.有2020个数排成行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是0,这2020个数的和是.三.解答题(共8小题)19.解方程(1)x﹣2(x﹣4)=3(1﹣x)(2)1﹣=20.有一组互相咬合的齿轮.(1)大齿轮有140个齿,小齿轮齿数是大齿轮齿数的,小齿轮有多少个齿?(2)大齿轮每分钟转80周,比小齿轮每分钟转的周数少,小齿轮每分钟转多少周?21.已知(m2﹣1)x2﹣(m﹣1)x+8=0是一元一次方程.(1)求代数式200(m+x)(x﹣2m)﹣18m的值;(2)求关于y的方程m|y﹣2|=x的解.22.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?23.定义:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”,例如:2x=﹣4的解为x=﹣2,且﹣2=﹣4+2,则该方程2x=﹣4是和解方程.(1)判断﹣3x=是否是和解方程,说明理由;(2)若关于x的一元一次方程5x=m﹣2是和解方程,求m的值.24.列方程解应用题(1)某车间有24名工人,每人每天平均生产螺栓12个或螺母18个,两个螺栓配三个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺栓,多少名工人生产螺母?(2)某校举行元旦汇演,七(01)、七(02)班各需购买贺卡70张,已知贺卡的价格如下:购买贺卡数不超过30张30张以上不超过50张50张以上每张价格3元 2.5元2元(ⅰ)若七(01)班分两次购买,第一次购买24张,第二次购买46张,七(02)班一次性购买贺卡70张,则七(01)班、七(02)班购买贺卡费用各是多少元?哪个班费用更节省?省多少元?(ⅱ)若七(01)班分两次购买贺卡共70张(第二次多于第一次),共付费150元,则第一次、第二次分别购买贺卡多少张?25.为了鼓励节约用电,电业局规定:如果每月每户用电不超过150度,那么每度电0.5元;如果该月用电超过150度,那么超过部分每度电0.8元.(1)如果小明家一个月用电128度,那么这个月应缴纳电费多少元?(2)如果小明家一个月用电a度(a>150),那么这个月应缴纳电费多少元?(用含a 的代数式表示)(3)如果这个月小明家缴纳电费为87.8元,那么他们家这个月用电多少度?26.如图1,数轴上点A分别表示的数为﹣3,点B表示的数为3,若在数轴上存在点P,使得AP+BP=m,则称点P为点A和B的“m级精致点”,例如,原点O表示的数为0,则AO+BO=3+3=6,则称点O为点A和点B的“6级精致点”,根据上述规定,解答下列问题:(1)若点C在数轴上表示的数为﹣5,点C为点A和点B的“m级精致点”,则m=;(2)若点D是数轴上点A和点B的“8级精致点”,求点D表示的数;(3)如图2,数轴上点E和点F分别表示的数是﹣2和4,若点G是点E和点F的“m 级精致点”,且满足GE=3GF,求m的值.参考答案与试题解析一.选择题(共10小题)1.解:A.3x+2=6是一元一次方程;B.4x﹣2=x+1是一元一次方程;C.x+1=0是一元一次方程;D.5x+6y=1含有2个未知数,不是一元一次方程;故选:D.2.解:根据一元一次方程的特点可得,解得m=1.故选:A.3.解:去分母得:3x﹣2(x﹣1)=12,故选:D.4.解:依题意,得:5x+(11﹣5)×(x+2)=56,即5x+6(x+2)=56.故选:B.5.解:因为关于x的一元一次方程2x a﹣2+m=4的解为x=1,可得:a﹣2=1,2+m=4,解得:a=3,m=2,所以a+m=3+2=5,故选:C.6.解:根据等式的性质可知:A.若a=b,则=.正确;B.若a=b,则3a=3b,正确;C.若a=b,则ax=bx,正确;D.若a=b,则=(m≠0),所以原式错误.故选:D.7.解:A、由,得2x﹣6=3﹣3x,此选项错误;B、由,得2x﹣4﹣x=﹣4,此选项错误;C、由,得5y﹣15=3y,此选项错误;D、由,得3(y+1)=2y+6,此选项正确;故选:D.8.解:设火车的速度是x米/秒,根据题意得:800﹣40x=60x﹣800,解得:x=16,即火车的速度是16米/秒,火车的车长是:60×16﹣800=160(米),故选:C.9.解:设盈利的那件上衣的成本价为x元,亏损的那件上衣的成本为y元,依题意,得:135﹣x=25%x,135﹣y=﹣25%y,解得:x=108,y=180,∴(135﹣x)+(135﹣y)=(135﹣108)+(135﹣180)=﹣18(元).故选:D.10.解:设需要从乙队调x辆汽车到甲队,由题意得100+x=2(68﹣x),故选:C.二.填空题(共8小题)11.解:根据题意,得:3m﹣11+5m﹣7=0,则3m+5m=11+7,∴8m=18,解得m=,故答案为:.12.解:根据题中的新定义得:2x+3(x+1)=8,去括号得:2x+3x+3=8,解得:x=1,故答案为:113.解:根据题意得:x+1+2x+5=0,解得:x=﹣2,即当x=﹣2时,式子x+1与2x+5的值互为相反数,故答案为:=﹣2.14.解:将x=3代入mx﹣8=10,∴3m=18,∴m=6,故答案为:615.解:∵关于x的方程(m﹣4)x|m|﹣3﹣2=0是一元一次方程,∴|m|﹣3=1且m﹣4≠0,解得:m=﹣4.故答案为:﹣4.16.解:设茶壶中水的高度下降了xcm.9π×12=36π×x,解得x=3,∴茶壶中水的高度下降了3cm.故答案为:3.17.解:设该团购买成人门票x张,由题意得:50x+20(50﹣x)=1800,故答案为:50x+20(50﹣x)=1800.18.解:由题意可得,这列数为:0,1,1,0,﹣1,﹣1,0,1,1,…,∴前6个数的和是:0+1+1+0+(﹣1)+(﹣1)=0,∵2020÷6=336…4,∴这2020个数的和是:0×336+(0+1+1+0)=2,故答案为:2.三.解答题(共8小题)19.解:(1)去括号得:x﹣2x+8=3﹣3x,移项合并得:2x=﹣5,解得:x=﹣2.5;(2)去分母得:4﹣3x+1=6+2x,移项合并得:﹣5x=1,解得:x=﹣0.2.20.解:(1)140×=28(个),答:小齿轮有28个;(2)设小齿轮每分钟转x周,x(1﹣)=80,解得,x=400答:小齿轮每分钟转400周.21.解:(1)由题意可知:m2﹣1=0,m﹣1≠0,∴m=﹣1,将m=﹣1代入原方程可得:2x+8=0,∴x=﹣4,(1)将x=﹣4,m=﹣1代入原式可得:原式=200×(﹣5)×2﹣18×(﹣1)=2018.(2)当m=﹣1,x=﹣4时,∴﹣1|y﹣2|=﹣4,∴y=6或y=﹣2.22.解:(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.23.解:(1)∵﹣3x=,∴x=﹣,∵﹣3=﹣,∴﹣3x=是和解方程;(2)∵关于x的一元一次方程5x=m﹣2是和解方程,∴m﹣2+5=,解得:m=﹣.故m的值为﹣.24.解:(1)设分配x名工人生产螺栓,则分配(24﹣x)名工人生产螺母,依题意,得:=,解得:x=12,∴24﹣x=12.答:应该分配12名工人生产螺栓,12名工人生产螺母.(2)(i)七(01)班购买贺卡费用为3×24+2.5×46=187(元),七(02)班购买贺卡费用为2×70=140(元).187>140,187﹣140=47(元).答:七(01)班购买贺卡费用为187元,七(02)班购买贺卡费用为140元,七(02)班费用更节省,省47元.(ii)设第一次购买贺卡m张,则第二次购买贺卡(70﹣m)张.当0<m<20时,3m+2(70﹣m)=150,解得:m=10;当20<m≤30时,3m+2.5(70﹣m)=150,解得:m=﹣50(不合题意,舍去);当30<m<35时,2.5m+2.5(70﹣m)=175≠150,无解.答:第一次购买贺卡10张,第二次购买贺卡60张.25.解:(1)0.5×128=64(元)答:这个月应缴纳电费64元;(2)0.5×150+0.8(a﹣150)=75+0.8a﹣120=0.8a﹣45答:这个月应缴纳电费(0.8a﹣45)元;(3)∵87.8>150×0.5∴所用的电超过了150度设此时用电a度,根据题意得:0.5×150+0.8(a﹣150)=87.8∴75+0.8a﹣120=87.8∴a=166答:他们家这个月用电166度.26.解:(1)∵A表示的数为﹣3,B表示的数为3,点C在数轴上表示的数为﹣5,∴AC=﹣3﹣(﹣5)=2,BC=3﹣(﹣5)=8,∴m=AC+BC=2+8=10.(2)如图所示:∵点D是数轴上点A和点B的“8级精致点”,∴AD+BD=8,∵AB=3﹣(﹣3)=6,∴D在点A的左侧或在点A的右侧,设点D表示的数为x,则AD+BD=8,∴﹣3﹣x+3﹣x=8或x﹣3+x﹣(﹣3)=8,x=﹣4或4,∴点D表示的数为﹣4或4;(3)分三种情况:①当点G在FE延长线上时,∵不能满足GE=3GF,∴该情况不符合题意,舍去;②当点G在线段EF上时,可以满足GE=3GF,如下图,m=EG+FG=EF=4﹣(﹣2)=6;③当点G在EF延长线上时,∵GE=3GF,∴FG=EF=3,∴点E表示的数为7,∴n=EG+FG=9+3=12,综上所述:m的值为6或12.故答案为:10.11。

人教版七年级数学上册第三章一元一次方程单元测试 (含答案)

人教版七年级数学上册第三章一元一次方程单元测试 (含答案)

人教版七年级数学上册第三章一元一次方程单元测试 (含答案)一、单选题 1.若()1280m m x -++=是一元一次方程,则m 为( )A .2B .2-C .2±D .1-2.若是方程的解,则代数式的值为( )A.-5B.-1C.1D.53.下列方程中是一元一次方程的是( ) A.B.C.D.4.下列解方程过程中,变形正确的是( ) A.由5x ﹣1=3,得5x=3﹣1B.由,得C.由,得D.由,得2x ﹣3x=15.方程23x +=的解是( ) A .1x =;B .1x =-;C .3x =;D .3x =-.6.若代数式32x +与代数式510x -的值互为相反数,则x 的值为( ) A.1B.0C.-1D.27.若 x =0 是方程 3x -2m =1 的解,则 m 的值是( ) A.-B.2C.-2D.08.根据下列条件可列出一元一次方程的是( ) A .a 与l 的和的3倍 B .甲数的2倍与乙数的3倍的和 C .a 与b 的差的20%D .一个数的3倍是59.有一道数学的题目如图所示,两个天平都平衡,则三个球体的重量等于几个正方体的重量?( )A.2B.3C.4D.510.解方程5x-3=2x+2,移项正确的是( ) A.5x-2x=3+2 B.5x+2x=3+2 C.5x-2x=2-3D.5x+2x=2-311.一辆汽车从山南泽当饭店出发开往拉萨布达拉宫.如果汽车每小时行使千米,则小时可以到达,如果汽车每小时行使千米,那么可以提前到达布达拉宫的时间是( )小时. A.B.C.D.12.小明和爸爸妈妈三人玩跷跷板.三人的体重一共为千克,爸爸坐在跷跷板的一端,体重只有妈妈一半的小明和妈妈一同坐在跷跷板的另一端,这时爸爸那端仍然着地.那么小明的体重可能是( )A.千克B.千克C.千克D.千克二、填空题 13.已知()1240a a x--+=是关于x 的一元一次方程,则a =______.14.一列方程如下排列:1142x x -+=的解是2x =, 2162x x -+=的解是3x =, 3182x x -+=的解是4x =. ……根据观察所得到的规律,请你写出其中解是2019x =的方程是______.15.甲、乙、丙三数之比是2:3:4,甲、乙两数之和比乙、丙两数之和大30,则甲、乙、丙分别为________________________。

人教版七年级上册数学 第三章 单元测试卷(附答案)

人教版七年级上册数学  第三章 单元测试卷(附答案)

人教版七年级上册数学第三章单元测试卷满分100分建议时间:80分钟姓名:___________班级:___________学号:___________一.选择题(共10小题,满分30分,每小题3分)1.解方程时,去分母得()A.2(x+1)﹣3(2x﹣1)=6 B.3(x+1)﹣2(2x﹣1)=1C.3(x+1)﹣2(2x﹣1)=6 D.3(x+1)﹣2×2x﹣1=62.把方程x=1变形为x=2,其依据是()A.等式的性质1 B.等式的性质2 C.乘法结合律 D.乘法分配律3.下列解方程移项正确的是()A.由3x﹣2=2x﹣1,得3x+2x=1+2 B.由2x﹣1=3x﹣2,得2x﹣3x=1﹣2C.由x﹣1=2x+2,得x﹣2x=2﹣1 D.由2x+1=3﹣x,得2x+x=3+14.方程﹣2x=1的解是()A.﹣2 B.﹣C.2 D.5.解方程=12时,应在方程两边()A.同时乘B.同时乘4 C.同时除以D.同时除以6.下列是一元一次方程的是()A.2x+1 B.3+2=5 C.x+2=3 D.x2=07.一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早1h经过B地.设A、B两地间的路程是xkm,由题意可得方程()A.70x﹣60x=1 B.﹣=1 C.﹣=1 D.60x﹣70x=18.已知a为整数,关于x的一元一次方程的解也为整数,则所有满足条件的数a的和为()A.0 B.24 C.36 D.489.一个乒乓球的价钱是一个羽毛球的价钱的,一个羽毛球的价钱是一个网球的价钱的,一个网球的价钱是16元,则一个乒乓球的价钱是()A.2元B.4元C.5元D.6元10.若x=1是方程﹣2mx+n﹣1=0的解,则2019+n﹣2m的值为()A.2018 B.2019 C.2020 D.2019或2020二.填空题(共6小题,满分18分,每小题3分)11.已知x=2是方程10﹣2x=ax的解,则a=.12.已知方程2x m+1+3=0是关于x的一元一次方程,则m的值是.13.解方程=2﹣,有下列步骤:①7x=16,②9x+3=12﹣2x+1,③9x﹣2x=12+1+3,④3(3x+1)=12﹣(2x﹣1),⑤x=,其中首先发生错误的一步是.14.若2x﹣3和1﹣4x互为相反数,则x的值是.15.若关于x的方程9x﹣14=ax+3的解为整数,那么满足条件的所有整数a的和为.16.某校组织七年级学生参加研学活动,如果单独租用45座车若干辆,则刚好坐满;如果单独租用60座客车,则可少租2辆,并且剩余15座.该校参加研学活动的有人.三.解答题(共7小题,满分52分)17.(6分)解方程:(1)(2)4x﹣3(20﹣x)+4=0.18.(6分)学校为给学生营造良好舒适的休息环境,决定改造校园内的一小花园,如图是该花园的平面示意图,它是由6个正方形拼成的长方形用以种植六种不同的植物,已知中间最小的正方形A的边长是2米,正方形C、D边长相等.请根据图形特点求出该花园的总面积.19.(6分)已知关于x的方程(m+3)x m﹣1+5=0是一元一次方程.(1)求m的值;(2)若原方程(m+3)x m﹣1+5=0的解也是关于x的方程的解,求n的值.20.(7分)已知a,b,c,d都是有理数,现规定一种新的运算:,例如:(1)计算;(2)若,求x的值.21.(9分)“水是生命之源”,某市自来水公司为了鼓励居民节约用水,规定按以下标准收取水费:用水量/月单价(元/m3)不超过20m3 2.8超过20m3的部分 3.8另:每立方米用水加收0.2元的城市污水处理费(1)根据上表,用水量每月不超过20m3,实际每立方米收水费元;如果1月份某用户用水量为19m3,那么该用户1月份应该缴纳水费元;(2)某用户2月份共缴纳水费80元,那么该用户2月份用水多少m3?(3)若该用户水表3月份出了故障,只有70%的用水量记入水表中,这样该用户在3月份只缴纳了58.8元水费,问该用户3月份实际应该缴纳水费多少元?22.(9分)如图,长方形ABCD中,AB=4cm,BC=8cm.点P从点A出发,沿AB匀速运动;点Q从点C出发,沿C→B→A→D→C的路径匀速运动.两点同时出发,在B点处首次相遇后,点P的运动速度每秒提高了3cm,并沿B→C→D→A的路径匀速运动;点Q保持速度不变,继续沿原路径匀速运动,3s后两点在长方形ABCD某一边上的E点处第二次相遇后停止运动.设点P原来的速度为xcm/s.(1)点Q的速度为cm/s(用含x的代数式表示);(2)求点P原来的速度.(3)判断E点的位置并求线段DE的长.23.(9分)已知,数轴上点A、C对应的数分别为a、c,且满足|a+7|+(c﹣1)2020=0,点B对应点的数为﹣3.(1)a=,c=;(2)若动点P、Q分别从A、B同时出发向右运动,点P的速度为3个单位长度/秒;点Q的速度为1个单位长度/秒,求经过多长时间P、Q两点的距离为;(3)在(2)的条件下,若点Q运动到点C立刻原速返回,到达点B后停止运动,点P运动至点C处又以原速返回,到达点A后又折返向C运动,当点Q停止运动点P随之停止运动.求在整个运动过程中,两点P,Q同时到达的点在数轴上表示的数.答案一.选择题1.C.2.B.3.B.4.B.5.D.6.C.7.C.8.C.9.A.10.D.二.填空题(共6小题,满分18分,每小题3分)11.3.12.0.13.③.14.﹣1.15.36.16.405.三.解答题(共7小题,满分52分)17.解:(1)去分母,可得:x﹣1﹣2(x+2)=3,去括号,可得:x﹣1﹣2x﹣4=3,移项,合并同类项,可得:x=﹣8.(2)去括号,可得:4x﹣60+3x+4=0,移项,合并同类项,可得:7x=56,系数化为1,可得:x=8.18.解:设图中最大正方形B的边长是x米,∵最小的正方形的边长是2米,∴正方形F的边长为(x﹣2)米,正方形E的边长为(x﹣4)米,正方形C的边长为米.∵MQ=PN,∴x﹣2+x﹣4=x+米,解得:x=14.则QM=12+10=22(米),PQ=12+14=26(米)故该花园的总面积=22×26=572(平方米).答:该花园的总面积是572平方米.19.解:(1)∵关于x的方程(m+3)x m﹣1+5=0是一元一次方程,∴m﹣1=1,解得:m=2;(2)把m=2代入原方程,得:5x+5=0,解得:x=﹣1,把x=﹣1代入方程﹣=1得:﹣=1,去分母得:2(﹣5+2n)﹣3(﹣n﹣3)=6,去括号得:﹣10+4n+3n+9=6,移项合并得:7n=7,解得:n=1.20.解:(1)根据题中的新定义得:原式=﹣2×5﹣3×5=﹣10﹣15=﹣25;(2)由题中的新定义化简得:2x﹣(﹣3)×(1﹣x)=6,去括号得:2x+3﹣3x=6,移项合并得:﹣x=3,解得:x=﹣3.21.解:(1)因为每立方米用水加收0.2元的城市污水处理费,则不超过20m3的水费为3元/m3,超过20m3的部分水费为4元/m3.如果1月份某用户用水量为19m3,那么该用户1月份应该缴纳水费3×19=57(元),故答案为:3、57;(2)设该用户2月份用水xm3,根据题意,得:20×3+(x﹣20)×4=80,解得:x=25,答:该用户2月份用水25m3.(3)设该用户3月份实际用水ym3,因为58.8<20×3,所以该用户上交水费的单价为3元/m3,由题意:70%y×3=58.8,解得y=28,所以该用户3月份实际应缴纳水费:20×3+4×(28﹣20)=92元,答:该用户3月份实际应该缴水费92元.22.解:(1)2x.故答案是:2x;(2)根据题意得:3(x+3)+3×2x=24(5分)解得x=答:点P原来的速度为cm/s;(3)此时点E在AD边上,且DE=2.23.解:(1)由非负数的性质可得:,∴a=﹣7,c=1,故答案为:﹣7,1.(2)设经过t秒两点的距离为由题意得:,解得或,答:经过秒或秒P,Q两点的距离为.(3)点P未运动到点C时,设经过x秒P,Q相遇,由题意得:3x=x+4,∴x=2,表示的数为:﹣7+3×2=﹣1,点P运动到点C返回时,设经过y秒P,Q相遇,由题意得:3y+y+4=2[1﹣(﹣7)],∴y=3,表示的数是:﹣3+3=0,当点P返回到点A时,用时秒,此时点Q所在位置表示的数是,设再经过z秒相遇,由题意得:,∴,∵+=<4+4,∴此时点P、Q均未停止运动,故z=还是符合题意.此时表示的数是:,答:在整个运动过程中,两点P,Q同时到达的点在数轴上表示的数分别是﹣1,0,﹣2.。

人教版七年级数学上册第三章 一元一次方程 单元综合测试【含答案】

人教版七年级数学上册第三章 一元一次方程 单元综合测试【含答案】
图5
21.(本小题满分 6 分)试根据图 6 中的信息,解答下列问题: (1)购买 5 根跳绳需 元,购买 15 根跳绳需 元; (2)小红比小明多买了 2 根跳绳,付款时小红反而比小明少付 5 元,则小红买了多少根跳绳?
图6
22.(本小题满分 7 分)列方程解应用题: 亲近科学,感受科技魅力.学校组织七年级学生走进科技馆,来到科技馆大厅,同学们就被大厅 里会“跳舞”的“小球矩阵”吸引住了(如图 7(1)).白色小球全部由计算机精准控制,每一 只小球可以“悬浮”在大厅上空的不同位置,演绎着曲线、曲面、平面、文字和三维图案等 各种动态造型.已知每个小球分别由独立的电机控制.图(2),图(3)分别是 9 个小球可构成的 两个造型,在每个造型中,相邻小球的高度差均为 a.为了使小球从造型一(如图(2))变到造型 二(如图(3)),控制电机使造型一中的②③④⑥⑦⑧号小球同时运动,②③④号小球向下运动, 运动速度均为 3 米/秒;⑥⑦⑧号小球向上运动,运动速度均为 2 米/秒,当每个小球到达造型 二的相应位置时就停止运动.已知⑦号小球比②号小球晚秒到达相应位置,则②号小球运动了 多少米?
方案二:乙工程队每天的工作量为 7×150+70=1120(m2),粉刷完成所用时间为 6720÷1120=6(天),所需支付人工费用为 6×4×90=2160(元). 因为 2100<2160, 所以若要使总人工费用最少,该中学应选择方案一.
(1)求每个办公室需要粉刷的墙面面积.
(2)已知学校每天需要支付给每名一级技工 100 元,每名二级技工 90 元.该中学有 40 个办公 室的墙面和 720 m2 的展览墙需要粉刷.现有甲、乙两支工程队供选择,甲工程队有 3 名一级 技工,乙工程队有 4 名二级技工.该中学有两个选择方案,方案一:全部由甲工程队粉刷;方案 二:全部由乙工程队粉刷.若要使总人工费用最少,该中学应如何选择?请通过计算说明.

七年级数学上册《第三章代数式》单元测试卷及答案

七年级数学上册《第三章代数式》单元测试卷及答案

七年级数学上册《第三章代数式》单元测试卷及答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各式符合代数式书写规范的是( )A .a bB .1a -C .2y x ÷D .3123xy 2.a 是一个两位数,b 是一个三位数,如果把b 放在a 的左边组成一个五位数,这个五位数是( ) A .ba B .b a + C .100b a + D .1000b a +3.一个矩形的周长为30,若矩形的一边长用字母x 表示,则此矩形的面积为( )A .(15)x x -B .(30)x x -C .(302)x x -D .(15)x x +4.c 是a 的16,c 是b 的18,那么a 与b 的比是( ) A .11:68 B .4:3 C .3:4 D .5:75.已知5m +和52n -互为相反数,则2m n +的值为( ) A .5- B .52- C .52 D .06.已知关于y 的多项式237n y y -+与3245my y +-的次数相同,那么25n -的值是( )A .80B .80-C .80-或54-D .45-或20- 7.如果()32a =--,()33b =-和223c ⎛⎫=- ⎪⎝⎭,那么a bc +的值为( ) A .4- B .4C .20D .20-8.如图,将第1个图中的正方形剪开得到第2个图,第2个图中共有4个正方形;将第2个图中一个正方形剪开得到第3个图,第3个图中共有7个正方形;将第3个图中一个正方形剪开得到第4个图,第4个图中共有10个正方形……如此下去,则第2024个图中共有正方形的个数为( )A .2024B .2022C .6069D .60709.某学校楼阶梯教室,第一排有m 个座位,后面每一排都比前面一排多2个座位,则第n 排座位数是( ) A .2m + B .2(1)m n +- C .2(1)n m +- D .2m n +10.根据图中数字的列规律,在第⑥个图中,a b c --的值是( )A .190-B .66-C .62D .34-二、填空题11.a 的15%减去70可以表示为 .12.某淘宝网店去年的营业额为m 万元,今年比去年增加15%,今年的营业额是 万元. 13.从大拇指开始,按照大拇指→食指→中指→无名指→小指→无名指→中指→食指→大拇指→食指……的顺序,依次数整数1,2,3,4,5,6,7,……当数到2022时,对应的手指为 ;当第n 次数到食指时,数到的数是 (用含n 的代数式表示).14.已知||5a =,||3b =且||a b b a -=-,则a b += .15.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是40km/h ,水流速度是km/h a ,则2h 后两船相距 千米.三、解答题16.下列表述中,字母各表示什么?(1)正方形的周长为4a ;(2)买单价为5元的毛巾,花了5a 元钱;(3)某班女生比男生多1人,女生共有(x +1)人.17.已知:()21102a b -++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c ,d 的值:(2)试求代数式()()328b a c d -+-的值.18.渠县同心百货、繁鑫文印两家惠民文具商店出售同样的毛笔和宣纸,毛笔每支20元,宣纸每张4元.为促销,同心百货商店推出的优惠方案是:买1支毛笔送2张宜纸,繁鑫文印商店的优惠方案是:按总价的九折优惠.小丽同学想购买5支毛笔,x 张宜纸()10x ≥.(1)用含x 的代数式填空:①若到同心百货商店购买,应付_______元;①若到繁鑫文印商店购买,应付______元;(2)若小丽同学要买50张宣纸,选择哪家文具商店购买更划算?请说明理由.若购买200张呢? 19.点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b .(1)把,,,a b a b -这四个数用“<”连接起来: ;(2)用“>”或“<”填空:a b +______0,a b -______0;(3)化简:a b a b +--= ;(4)若3,4,2a b c d ==、互为相反数,m n 、互为倒数,求()22023c d mn a b +-++的值.20.111111111111,,,122232334344545=-=-=-=-=⨯⨯⨯⨯(1)第5个式子是_______;第n 个式子是_______.(2)从计算结果中找规律,利用规律计算:111111223344520202021+++++=⨯⨯⨯⨯⨯_______; (3)计算:(由此拓展写出具体过程): ①111113355799101++++⨯⨯⨯⨯; ①1111126129900-----. 21.学校需要到印刷厂印刷x 份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收400元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费.(1)两印刷厂的收费各是多少元?(用含x 的代数式表示)(2)学校要印刷2400份材料,不考虑其他因素,选择哪家印刷厂比较合算?试说明理由.22.如图是一组有规律的图案,它们是由边长相等的等边三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…照此规律摆下去:(1)照此规律,摆成第5个图案需要_____________个三角形;(2)照此规律,摆成第n 个图案需要_____________个三角形(用含n 的代数式表示);(3)照此规律,摆成第2021个图案需要几个三角形?23.若干个1与1-排成一行:1,1,1,1,1,1,1,1,1,------规则是:先写一行1,再在第k 个1与第1k +个1之间插入k 个()11,2,3,k -=.(1)第2012个数是1还是1-?(2)前2012个数的和是多少?参考答案1.A【分析】本题考查了代数式.根据书写规则,数字应在字母前面,分数不能为假分数,不能出现除号,对各项的代数式进行判定,即可求出答案.【详解】解:A 、a b书写形式正确,故本选项符合题意; B 、正确书写形式为a -,故本选项不符合题意;C 、正确书写形式为2y x个,故本选项不符合题意; D 、正确书写形式为373xy ,故本选项不符合题意. 故选:A .2.C【分析】本题考查列代数式,由题意得,把新的五位数中b 扩大100倍,即可求解.【详解】解:由题意得,这个五位数是100b a +故选:C .3.A【分析】根据已知表示出矩形的另一边长,进而利用矩形面积求法得出答案.此题主要考查了列代数式,根据题意表示出矩形的另一边长是解题关键.【详解】解:一个矩形的周长为30,矩形的一边长为x∴矩形另一边长为:15x -故此矩形的面积为:(15)x x -.故选:A .4.C【分析】本题考查了比的代数式表示式,根据题意将a 与b 转化为c 的倍数,相比即可解题.【详解】解:c 是a 的16,c 是b 的18 6a c ∴= 8b c =:6:83:4a b c c ∴==故选:C .5.D【分析】本题主要考查了绝对值的非负性、相反数的定义、代数式求值等知识点,根据绝对值的非负性和相反数的定义求出m 与n 的值成为解题的关键.根据绝对值的非负性和相反数的定义求出m 与n 的值,再代入2m n +计算即可.【详解】解:①5m +和52n -互为相反数 ①5025m n ++-= 又①50m +≥502n -≥ ①50m += 502n -= ①552m n =-=, ①2550m n +=-+=故选:D .6.D【分析】本题考查多项式的次数,多项式的每一项都有次数,其中次数最高的项的次数,就是这个多项式的次数,分0m =与0m ≠两种情况,根据两个多项式的次数相同,求出n 的值,代入求解即可. 【详解】解:当0m =时3224545my y y +-=-,次数为2;当0m ≠时3245my y +-次数为3;多项式237n y y -+的次数为n多项式237n y y -+与3245my y +-的次数相同∴当0m =时 2n = 2255220n -=-⨯=-当0m ≠时 3n = 2255345n -=-⨯=-∴25n -的值是45-或20-.故选D .7.A【分析】本题考查有理数的乘方,有理数的混合运算,求代数式的值,分别求出a 、b 、c 并代入a bc +计算即可.掌握相应的运算法则是解题的关键.【详解】解:①()328a =--=()3327b =-=-①()827481249a bc ⨯=-+=+=-- ①a bc +的值为4-.故选:A .8.D 【分析】本题主要考查图形规律,由前4个图形总结得到第n 的图形的规律,即可得到第2024个图形含有的正方形数量.【详解】解:第1个图中有正方形1个第2个图中有正方形413=+个第3个图中有正方形7123=+⨯个第4个图中有正方形10133=+⨯个所以第n 个图中有正方形13(1)(32)n n +-=-个.当2024n =时,图中有3 2 02426070⨯-=个正方形.故选:D .9.B【分析】本题主要考查了列代数式,理解题意是解题的关键.根据题意列出代数式即可.【详解】解:由题意可知,第一排有m 个座位第二排有(21)m +⨯个座位第三排有(22)m +⨯个座位第四排有(23)m +⨯个座位...故第n 排座位数是2(1)m n +-故选B .10.D【分析】本题考查了图形中有关数字的变化规律,通过观察图形,得到()1?2n n a =- ()1?22nn b =-+ ()11?22n n c =⨯- 把6n =代入求出a b c 、、的值,再把a b c 、、的值代入到a b c --计算即可求解,仔细观察图形找到规律是解题的关键.【详解】解:通过观察可得规律:左边三角形上的数字 ()1?2n n a =- 右边三角形上的数字()1?22n n b =-+ 下面三角形上的数字()11?22n n c =⨯- ①当6n =时()661?264a =-= 64266b =+= 164322c =⨯= ①64663234a b c --=--=-故选:D .11.0.1570a -/15%70a -【分析】由已知,先列出a 的15%为0.15a ,再表示它减70即可.【详解】解:a 的15%为0.15a ,再减70则表示为0.1570a -.故答案为:0.1570a -.【点睛】此题是考查学生列代数式为题.值得注意的是a 的15%应列为0.15a ,要求规范列代数式. 12.1.15m【分析】本题考查了列代数式,根据今年的营业额()115%=+⨯去年的营业额列式求解即可.【详解】解:根据题意,得:今年的营业额是()115% 1.15m m +=故答案为:1.15m .13. 无名指 ()812n -+或()818n -+【分析】本题考查规律型数字的变化类问题,解题的关键是从一般到特殊探究规律、发现规律、利用规律解决问题,属于中考常考题型.先探究规律,发现规律后利用规律即可解决问题.【详解】解:如题意可知,八次为一个循环体重复出现202282526÷=⋯⋯当数到2022时,对应的手指与第6次对应的一样为:无名指;第一个循环体出现食指时,数到的数是:()8112-+ ()8118-+;第二个循环体出现食指时,数到的数是:()8212-+ ()8218-+;第三个循环体出现食指时,数到的数是:()8312-+ ()8318-+;⋯当第n 次数到食指时,数到的数是()812n -+ ()818n -+故答案为:无名指,()812n -+或()818n -+.14.8-或2-/−2或−8【分析】本题考查代数式求值,绝对值的意义,根据绝对值的意义,得到0a b -<,进而求出,a b 的值,再代入代数式计算即可.【详解】解:①||5a = ||3b =①5,3a b ①||a b b a -=-①0a b -<①5,3a b =-=±①538a b +=--=-或532a b +=-+=-;故答案为:8-或2-.15.160【分析】本题主要考查列代数式,根据:2h 后甲、乙间的距离=甲船行驶的路程+乙船行驶的路程即可得,掌握船顺流航行时的速度与逆流航行的速度公式是解题的关键.【详解】解:解:2h 后两船间的距离为:2(40)2(40)160a a ++-=千米;故答案为:16016.(1)a 表示正方形的边长(2)a 表示毛巾的数量(3)x 表示男生的人数【分析】(1)根据正方形的周长=边长×4即可得出答案;(2)根据总价=单价×数量即可得出答案;(3)根据女生比男生多1人即可得出答案.【详解】(1)解:根据题意可得,a 表示正方形的边长;(2)解:根据题意可得,a 表示毛巾的数量;(3)解:根据题意可得,x 表示男生的人数.【点睛】本题考查了代数式,熟练掌握各代数式的意义是解题的关键.17.(1)11,2a b ==- 0,1c d ==- (2)8-【分析】本题考查了非负数的性质和求代数式的值,解题关键是根据题意求出字母的值.(1)根据非负数的性质及有理数相关概念求出a 、b 、c 、d 的值即可;(2)将求出的a 、b 、c 、d 的值代入代数式求值即可.【详解】(1)解:21102a b 110,02a b 11,2a b c 是最小的自然数,d 是最大负整数0,1c d ;(2)解:11,2a b0,1c d ==- 328b a c d 32181012 18118 9818918=-.18.(1)()460x + ()3.690x +(2)若小丽同学要买50张宣纸,选择同心商店购买更划算;若小丽同学要买50张宣纸,选择繁鑫文印商店购买更划算,理由见解析:【分析】(1)根据所给的两个商店的优惠标准列式求解即可;(2)根据(1)所求分别代入50x =,200x =求出两个商店的费用即可得到答案.【详解】(1)解:由题意得,若到同心百货商店购买,应付()()520410460x x ⨯+-=+元;若到繁鑫文印商店购买,应付()()95204 3.69010x x ⨯+⨯=+ 故答案为:()460x + ()3.690x +;(2)解:若小丽同学要买50张宣纸,选择同心商店购买更划算;若小丽同学要买200张宣纸,选择繁鑫文印商店购买更划算,理由如下:当50x =时46045060260x +=⨯+= 3.690 3.65090270x +=⨯+=①260270<①若小丽同学要买50张宣纸,选择同心商店购买更划算;当200x =时460420060860x +=⨯+= 3.690 3.620090810x +=⨯+=①810860<①若小丽同学要买200张宣纸,选择繁鑫文印商店购买更划算.【点睛】本题主要考查了列代数式和代数式求值,正确理解题意是解题的关键.19.(1)b a a b <-<<(2)<,>(3)2a - (4)214【分析】(1)由数轴可知3,3,03,3,30b b a a a -<<<-<-<,即可解答;(2)由数轴可知3,3,03,b b a a b -<<<,进而完成解答;(3)先利用(2)的结论去绝对值,然后再运算即可;(4)由数轴可知0,0b a <>从而确定a 、b 的值,再根据相反数、倒数的性质代入计算即可.【详解】(1)解:由数轴可知3,3,03,3,30b b a a a -<<<-<-<,即b a a b <-<<. 故答案为:b a a b <-<<.(2)解:由数轴可得:3,3,03,b b a a b -<<<,则0a b 0a b -.故答案为:<,>(3)解:①0a b 0a b -①()()2a b a b a b a b a b a b a +--=-+--=---+=-.故答案为:2a -.(4)解:由数轴可知0,0b a <>①3,4,2a b c d ==、互为相反数,m n 、互为倒数 ①3,4,0,12a b c d mn ==-+== ①()22203525211411202320232244c d mn a b +⎛⎫⎛⎫-++=-+-=-+-=-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了数轴、去绝对值、相反数、倒数代数式求值等知识点,掌握数轴的应用成为解题的关键.20.(1)1115656=-⨯;()111n n 1n n 1=-++ (2)20202021(3)①50101;①1100【分析】此题主要考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.(1)观察一系列等式得到一般性规律,写出第5个式子与第n 个式子即可;(2)原式利用得出的规律化简,计算即可得到结果;(3)①原式变形为9139111111123501⎛⎫-+-+⋯+- ⎪⎝⎭,利用得出的规律化简,计算即可得到结果; ①原式变形为1223349910011111-----⨯⨯⨯⨯,利用得出的规律化简,计算即可得到结果. 【详解】(1)解:①111122=-⨯ 1112323=-⨯ 1113434=-⨯ 1114545=-⨯ ①第5个式子是:1115656=-⨯; 第n 个式子是()111n n 1n n 1=-++; 故答案为:1115656=-⨯ ()111n n 1n n 1=-++; (2)解:111111223344520202021+++++⨯⨯⨯⨯⨯ 111111112233420202021⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋯+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111111112233420202021=-+-+-+⋯+-112021=- 20202021=; (3)解:①111113355799101++++⨯⨯⨯⨯ 1111111233599101⎛⎫=-+-+⋯+- ⎪⎝⎭ 1112101⎛⎫=- ⎪⎝⎭50101=. ①1111126129900----- 0111122334911190=⨯---⨯-⨯-⨯ 1112233499101110⎛⎫=⎪++- ⨯⨯++⨯⨯⎝⎭ 1111111122334199100⎛⎫=⎪-+-+-++-- ⎝⎭ 111100⎛⎫=-- ⎪⎝⎭111100=-+1100=. 21.(1)甲:()0.2400x +元,乙:0.4x 元(2)选择甲印刷厂比较合算,见解析【分析】本题考查了列代数式、求代数式的值,理解题意,正确列出代数式是解此题的关键. (1)根据甲、乙两厂的收费方式列出代数式即可;(2)把2400x =代入(1)中所求的代数式,分别计算出甲、乙两厂的费用,比较即可得出答案.【详解】(1)解:由题意得:甲印刷厂的收费为:()0.2400x +元乙印刷厂的收费为:0.4x 元;(2)解:当2400x =时甲印刷厂的收费为:0.24000.22400400880x +=⨯+=(元).乙印刷厂的收费为:0.40.42400960x =⨯=(元)因为880960<所以选择甲印刷厂比较合算.22.(1)16(2)31n +(3)6064【分析】本题考查了规律型:图形的变化类以及列代数式,根据各图案所需三角形个数的变化,找出变化规律“31n a n =+”是解题的关键.(1)根据前4个图案所需三角形的个数,可得出每个图案所需三角形的个数比前一个图形多3个,再结合4a 的值即可求出5a 的值;(2)由(1)的结论“每个图案所需三角形的个数比前一个图形多3个”,可得出21324311()()()()31n n n a a a a a a a a a a n -=-+-+-+⋯+-+=+;(3)代入2021n =即可求出结论.【详解】(1)解:设摆成第n (n 为正整数)个图案需要n a 个三角形.①1234471013a a a a ====,,,①2132433a a a a a a -=-=-=①54316a a =+=.故答案为:16;(2)解:由(1)可知:21324311()()()()31n n n a a a a a a a a a a n -=-+-+-+⋯+-+=+.故答案为:31n +;(3)解:当2021n =时20213202116064a =⨯+=①摆成第2021个图案需要6064个三角形.23.(1)第2012个数为1-.(2)1888-【分析】本题主要考查了数字规律,理解并应用数字规律是解题的关键.(1)根据规则可知第1k -行共有数字个数为()()()21111122k k k k k +--++-=-,由于62k =时,数字个数为1953个,63k =时,数字个数为2016个,从而得出第2012个数;(2)由(1)可知2012个数在62行,则共有62个1,其余均为1-,然后据此求和即可.【详解】(1)解:排列规律如下:1行:1,1-2行:1,1,1--3行:1,1,1,1---………k 行①到第1k -行共有数字个数为()212341122k k k k k +++++⋯+=-=- 由于62k =时219532k k +=,63k =时220162k k +=. ①第2012个数为1-.(2)解:设前2012个数的和为S由(1)可得:2012个数在62行,则共有62个1,其余均为1-.则()()62112012621888S =⨯+-⨯-=-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上第三章单元测试卷
(时间:90分钟 满分:100分)
一、选择题(每题3分,共24分)
1.下列各组单项式中,不是同类项的是 ( ) A .-2与
1
2
B .2m 与2n
C .-2a 2b 与a 2b
D .-x 2y 2与2212
x y 2.给出下列判断:
①在数轴上,原点两旁的两个点所表示的数都是互为相反数; ②任何正数必定大于它的倒数; ③5ab,
12x +,4
a
都是整式; ④x 2-xy+y 2是2次3项式.
其中判断正确的是 ( ) A .①② B .②③ C .③④ D .①④ 3.下列式子中正确的是 ( ) A .5a+2b=7ab B .7ab -7ba=0 C .4x 2y -5xy 2=-x 2y D .3x 2+5x 3=8x 5
4.一个长方形的周长为6a+8b,其一边长为2a+3b,则另一边长为 ( ) A .4a+5b B .a+b C .a+2b D .a+7b
5.某商场上月的营业额是a 万元,本月比上月增长了15%,那么本月的营业额是 ( ) A .(a+1)·15%万元 B .15%·a 万元 C .(1+15%)a 万元 D .(1+15%) 2 a 万元
6.化简2a -2(a+1)的结果是 ( ) A .-2 B .2 C .-1 D .1 7.已知代数式3y 2-2y+6的值为8那么代数式
2
312
y y -+的值为 ( ) A .1 B .2 C .3 D .4
8.如图,是某同学在沙滩上用小石子摆成的三个图案.观察图形的变化规律,如果摆第20个图案,则需要用小石子数量是( )
A.30个B.60个C.90个D.120个
二、填空题(每题3分,共30分)
9.写出一个系数是-2010,并且只含x、y两个字母的三次单项式:___________.10.若5x2y和-x m y n是同类项,则2m-5n=_________.
11.一个两位数,个位上是a,十位上是b,用代数式表示这个两位数为_________.
12.若a-b=1,则代数式a-(b-2)=________;若a+b=1,则代数式5-a-b=_________.13.试写一个含x的代数式:当x=2时,它的值为-5,这个代数式可以是_______.14.请举一个生活中的实例,使得这个实例所表示的量,能用代数式3x+5y来表示:___________________________________________________________________.15.一个多项式加上-3+x-2x2得到x2-1,这个多项式是__________.
16.礼堂第一排有a个座位,后面每排都比前一排多1个座位,则第n排座位有______个.17.“圆形方孔钱”是中国古钱币的突出代表.如图,一枚圆形方孔钱的外圆直径为a,中间方孔边长为b,则图示阴影部分面积为________.
18.按下列图示的程序计算,若开始输入的值为x=3,则最后输出的结果是_______-.
三、解答题(共46分)
19.(每题4分,共8分)去括号合并同类项:
(1)2(a-b)-(2a+3b) (2)4(2x2-xy)-(x2+xy-6)
20.(6分)先化简,再求值:5a2-[3a-(2a-3)+4a2],其中a=-2.
21.(8分)观察图形回答下列问题:
(1)用代数式表示图中阴影部分的面积.
(2)当a=6,b=2时,求阴影部分的面积.
22.(8分)已知多项式-2x2+3与A的2倍的差是2x2+2x-7,
(1)求多项式A.
(2)当x=-1时,求A的值.
23.(8分)在边长为16 cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.
(1)如果剪去的小正方形的边长为x cm,请用x来表示这个无盖长方体的容积.
(2)当剪去的小正方形的边长x的值分别为3 cm和3.5 cm时,比较折成的无盖长方体
的容积的大小.
24.(8分)如图,正方形ABCD内部有若干个点,用这些点以及正方形ABCD的顶点A、B、
C、D把原正方形割成一些三角形(互相不重叠):
(1)填写下表:
正方形ABCD 内点的个数 1 2 3 4 … n 分割成的三角形的个数
4
6

(2)原正方形能否被分割成2010 个三角形?若能,求此时正方形ABCD 内部的点的个数;若不能,请说明理由.
参考答案
1.B 2.C 3.B 4.B 5.C 6.A 7.B 8.B 9.-2010x 2y,或-2010xy 2 10.-1 11.10b+a 12.3 4
13.答案不唯一,如:2x -9,-5x+5等. 14.答案不唯一,如:苹果单价x 元/千克,梨单价y 元/千克,买3千克苹果和5千克梨共需(3x+5y)元. 15.3x 2-x+2
16.a+(n -1) 17.2
22a b π⎛⎫
- ⎪⎝⎭
18.231
19.(1)原式=2a -2b -2a -3b=-5b . (2)原式=8x 2-4xy -x 2-xy+6=7x 2-5xy+6. 20.原式=5a 2-(3a -2a+3+4a 2)=5a 2-(4a 2 +a+3)=a 2-a -3.当a=-2时,原式=(-2) 2-(-2)-3=4+2-3=3.
21.(1)()2
2
2
1
4222
a b a b a ab b -⨯-=-+.
(2)当a=6,b=2时,()()2
2
114642622022
a b a b -⨯-=-⨯⨯⨯-=.
22.(1)2A=(-2x 2+3)-(2x 2+2x -7)=-4x 2-2x+10,所以A=-2x 2-x+5. (2)当x=-1时,A=-2×(-1) 2-(-1)+5=4.
23.(1)x ·(16-2x) 2cm 3 (2)当x=3时,x(16-2x) 2=3×(16-2×3) 2=3×100=300(cm 3);当x=3.5时,x(16-2x) 2=3.5×(16-2×3.5) 2=3.5×81=283.5(cm 3).即剪去的小正方形边长为3 cm 折成的长方体容积较大.
24.(1)8 10 4+2(n -1)或2n+2 (2)能.当2n+2=2010时,2008
10042
n ==,是整数.。

相关文档
最新文档