各类梁的弯矩剪力计算汇总表78558
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表1 简单载荷下基本梁的剪力图与弯矩图
梁的简图
剪力Fs 图
弯矩M 图
1
l
a
F
s
F F l
a F l a
l -+
-
F l
a l a )
(-+
M
2
l e
M
s
F l
M e +
M
e
M +
3
l
a
e
M
s
F l
M e +
M
e M l
a
l -e M l
a +
-
4
l
q
s
F +
-2
ql 2
ql
M
8
2ql +
2
l
5
l
q
a
s
F +
-l
a l qa 2)
2(-l
qa 22
M
2
228)2(l a l qa -+
l
a l qa 2)
(2
-l
a l a 2)2(-
6
l
q
s
F +
-3
0l q 6
0l q
M
3
920l q +
3
)33(l
-
7
a
F
l
s
F F
+
Fa
-M
8
a
l
e
M
s
F
+
e
M M
9
l
q
s F ql
+
M
2
2ql -
10
l
q
s
F 2
l q +
M
6
20l q -
注:外伸梁 = 悬臂梁 + 端部作用集中力偶的简支梁
2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6
(2)悬臂梁的反力、剪力、弯矩和挠度表2-7
(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8
(4)两端固定梁的反力、剪力、弯矩和挠度表2-9
(5)外伸梁的反力、剪力、弯矩和挠度表2-10
3.等截面连续梁的内力及变形表
(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11
注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EI w 100ql 表中系数4⨯=。 2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EI
w 100Fl 表中系数3⨯=。 [例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。
[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)
=(-36.75)+(-27.64)=-64.39kN ·m
V B 左=(-0.625×11.76×5)+(-0.688×29.4)
=(-36.75)+(-20.23)=-56.98kN
[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。
[解] M1=0.080×11.76×62=33.87kN ·m 。
2)三跨等跨梁的内力和挠度系数 表2-12
注:1.在均布荷载作用下:M =表中系数×ql 2
;V =表中系数×ql ;EI w 100ql 表中系数4⨯=。 2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EI
w 100Fl 表中系数3⨯=。
3)四跨等跨连续梁内力和挠度系数表2-13
注:同三跨等跨连续梁。
4)五跨等跨连续梁内力和挠度系数表2-14
注:同三跨等跨连续梁。
(2)不等跨连续梁的内力系数(表2-15、表2-16)1)二不等跨梁的内力系数表2-15
注:1.M=表中系数×ql21;V=表中系数×ql1;2.(M max)、(V max)表示它为相应跨内的最大内力。
2)三不等跨梁内力系数表2-16
注:1.M=表中系数×ql21;V=表中系数×ql1;2.(M max)、(V max)为荷载在最不利布置时的最大内力。
4.双向板在均布荷载作用下的内力及变形系数表(表2-17~表2-22)
符号说明如下:
刚度 )1(1223
υ-=Eh K
式中 E ——弹性模量;
h ——板厚; ν——泊松比;
ω、ωmax ——分别为板中心点的挠度和最大挠度;
M x ——为平行于l x 方向板中心点的弯矩; M y ——为平行于l y 方向板中心点的弯矩; M x 0——固定边中点沿l x 方向的弯矩; M y 0——固定边中点沿l y 方向的弯矩。 正负号的规定:
弯矩——使板的受荷面受压者为正; 挠度——变位方向与荷载方向相同者为正。
四边简支 表2-17
三边简支,一边固定 表2-18