格与布尔代数试题
离散数学答案 第十章 格和布尔代数
第十章格和布尔代数习题10.1 1.解 ⑴不是,因为L 中的元素对{2,3}没有最小上界;⑵是,因为L={1,2,3,4,6,9,12,18,36}任何一对元素a ,b ,都有最小上界和最大下界;⑶是,与⑵同理;⑷不是,因为L 中的元素对{6,7}没有最小上界不存在最小上界。
2.证明 ⑴因为,a ≤b,所以,a ∨b=b ;又因为,b ≤c,所以,b ∧c=b 。
故a ∨b=b ∧c ;⑵因为,a ≤b ≤c,所以,a ∧b=a,b ∧c=b,而a ∨b=b ,因此,(a ∧b )∨(b ∧c )=b ;又a ∨b=b,b ∨c=c,而b ∧c=b, 因此,(a ∨b )∧(b ∨c )=b 。
即(a ∧b)∨(b ∧c)=(a ∨b)∧(b ∨c)。
习题10.21.解 由图1知:<S 1,≤>不是<L,≤>的子格,这是因为,e ∨f=g ∉S 1;<S 2,≤>不是<L,≤>的子格, ∵e ∧f=c ∉S 2;<S 3,≤>是<L,≤>的子格.2.解 S 24的包含5个元素的子格有如下的8个:S 1={1,3,6,12,24}, S 2={1,2,6,12,24}, S 3={1,2,4,12,24}, S 4={1,2,4,8,24},S 5={1,2,3,6,12}, S 6={1,2,4,6,12}, S 7={2,4,6,12,24}, S 7={2,4,8,12,24}.3.证明 因为,一条线上的任何两个元素都有(偏序)关系,所以,都有最大下界和最小上界,故它是格,又因为它是<L ,∨,∧>的子集,即是<L ,∨,∧>的子代数,故是子格。
4.证明 由(10-4)有,a ∧b ≤a ,由已知a ≤c ,由偏序关系的传递性有,a ∧b ≤c ;同理 a ∧b ≤d 。
由(10-5)和以上两式有,a ∧b ≤c ∧d .5.证明 因为由(10-4)有,a ∧b ≤a ,因此,(a ∧b )∨(c ∧d )≤a ∨(c ∧d ) ①由分配不等式有,a ∨(c ∧d )≤(a ∨c )∧(a ∨d ) ②再由由(10-4)有,(a ∨c )∧(a ∨d ) ≤a ∨c ③由偏序关系的传递性和①②③则有,(a ∧b )∨(c ∧d )≤a ∨c同理 (a ∧b )∨(c ∧d )≤b ∨d因此有, (a ∧b )∨(c ∧d )≤(a ∨c ) ∧(b ∨d )。
离散数学第6章 格与布尔代数
6-1 格的概念
5)下面证明 a∧b=aa∨b=b 若a∧b=a 则 a∨b=(a∧b)∨b=b 反之,若a∨b=b 则 a∧b=a∧(a∨b)=a
b用a∨b代替(∵两式中b是相互独立的) ∴a∨(a∧(a∨b))=a 即 a∨a=a. (2)格的等价定理:〈A,∨,∧〉代数系统,∨.∧满足交换性, 结合性,吸收性,则A上存在偏序关系≤,使〈A,≤〉是一个格
从格可引出代数系统〈A,∨,∧〉; 而从满足三个条件的〈A,∨,∧〉也可导出格〈A,≤〉 证明见书:(格中⑻⑼⑾三个性质很重要,决定了格)
(11) 要证 a≤a∨(a∧b) 第一式显然成立
a∨(a∧b)≤a
a≤a
a∧b≤a
∴a∨(a∧b) ≤a
∴a=a∨(a∧b)
6-1 格的概念
6、格的等价原理:格〈A,≤〉 (1)引理6-1.1:〈A,∨,∧〉代数系统,若∨, ∧满足吸收性,
则∨, ∧满足幂等性 证:a,b∈A. a∨(a∧b)=a a∧(a∨b)=a.
第六章 格与布尔代数
格论是近代数学的一个重要分支,由它所引出的布尔 代数在计算机科学中有很多直接应用。
格的概念 分配格 有补格 布尔代数 布尔表达式
6-1 格的概念
1、回忆偏序集〈A,≤〉,≤偏序关系:满足自反性,反对称性, 传递性。有限集合上的偏序集可用哈斯图来表示:
COV (A) {a,c, b,c, c, d, d,e, d, f }
∧也易求得 ∴ A,∨,∧〉是格〈A,|〉 诱导的代数系统
6-1 格的概念
山东大学离散数学题库及答案(计本)
《离散数学》题库答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q →P (2)⌝Q=>P →Q (3)P=>P →Q (4)⌝P ∧(P ∨Q)=>⌝P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P ∧Q)→(Q →⌝R) (2)P →(Q →Q) (3)(P ∧Q)→P (4)P →(P ∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P ∧Q (2) P ∧Q=>P (3) P ∧Q=>P ∨Q(4)P ∧(P →Q)=>Q (5) ⌝(P →Q)=>P (6) ⌝P ∧(P ∨Q)=>⌝P答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y ,x))∧ ∃z C(y ,z))→D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z5、判断下列语句是不是命题。
若是,给出命题的真值。
( )(1) 北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。
(5) 前进! (6) 给我一杯水吧!答:(1) 是,T (2) 是,F (3) 不是(4) 是,T (5) 不是 (6) 不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是()。
答:所有人都不是大学生,有些人不会死7、设P :我生病,Q :我去学校,则下列命题可符号化为( )。
(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1) P Q →⌝ (2) Q P ⌝→ (3) Q P ⌝↔ (4)Q P →⌝8、设个体域为整数集,则下列公式的意义是( )。
(1) ∀x ∃y(x+y=0) (2) ∃y ∀x(x+y=0)答:(1)对任一整数x 存在整数 y 满足x+y=0(2)存在整数y 对任一整数x 满足x+y=09、设全体域D 是正整数集合,确定下列命题的真值:(1) ∀x ∃y (xy=y) ( ) (2) ∃x ∀y(x+y=y) ( )(3) ∃x ∀y(x+y=x) ( ) (4) ∀x ∃y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x 是奇数,Q(x):x 是偶数,谓词公式 ∃x(P(x)∨Q(x))在哪个个体域中为真?() (1) 自然数 (2) 实数 (3) 复数 (4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是( )。
09-格与布尔代数-8.2
第三节 子布尔代数、积布尔代数、布尔代数同态
定义:给定布尔代数<B, , *, ’ , 0, 1>,≠T B
2015年6月6日星期六
若T对 、* 和 ’ 是封闭的,且:0, 1 T
称<T, , *, ’ , 0, 1>是<B, , *, ’ , 0, 1>的子布尔代 数 显然:<{0, 1}, , *, ’ , 0, 1>和<B, , *, ’ , 0, 1> 都是<B, , *, ’ , 0, 1>的(平凡)子布尔代数
则:<f(B),∨,∧, , f(0), f(1)>是布尔代数 (证明参见教材P170 —— 利用布尔代数的定义证明)
布尔代数同态
结论:
2015年6月6日星期六
若 f 是从布尔代数<B, , *, ’ , 0, 1>到格<S,∨,∧>的 格同态映射,且f是满射的,
则:<S,∨,∧>是布尔代数
并且可以用基本公式来定义布尔代数
布尔代数的定义 从这4个定律,可以推出所有布尔代数的公式
有兴趣的同学可以参阅 R. L. 古德斯坦因 著的
对于a, b B , 有 定义:设<B, , *, ’ >是一个代数结构,其中:
2015年6月6日星期六
和 * 是B上的二元运算,’ 是B上的一元运算,且 0, 1 B
例9.15:设Bn是由0和1形成的n元组集合,且
2015年6月6日星期六
a = <a1, a2, …, an>,b = <b1, b2, …, bn> 0n = <0, 0, …, 0> , 1n = <1, 1, …, 1> 对任意 a, b Bn,定义: a b = < a1∨b1, a2∨b2 , …, an∨bn > a * b = < a1∧b1, a2∧b2 , …, an∧bn > a’ = < a1, a2, …, an> < Bn,∨,∧, , F, T>是布尔代数(开关代数)
离散数学第五章格与布尔代数2
§2.布尔代数
•布尔代数的定义 •布尔代数的性质 •布尔代数中的宏运算 •有限布尔代数的原子表示 •布尔函数与布尔表达式 •布尔环与布尔代数
2021/5/22
1
离散数学
§2. 布尔代数
定义1.布尔代数(Boolean algebra) 有补的分配格(B,≼, , , , 0, 1) 称为布尔代数。
(S, ,, , , 0, 1) 是布尔代数
这里:S={0,1},00, 01, 11,其运算表如下:
2021/5/22
3
x
离散数学
x y xy 00 0 01 0 10 0
11 1
xy 0 1 1
1
xx
01 10
表2
通过变元代换,显见表2与表1是完全相同的。即,令
h:S 2X , h (0)= , h (1)= X (这里:X={a})
16
离散数学
[证].布尔代数中的对偶原理实质上来源于两个二元运 算 和 所具有的结合律、交换律、幂等律、吸收律、 分配律的对称性,半序关系≼和其逆关系≽的对称性; 最小元0和最大元1的对称性;以及任何元素x与其补元 x的对称性。
注:•布尔代数(B, ≽ , , , ,1 , 0)称为原布尔代数 (B , ≼ , , , , 0 , 1)的对偶布尔代数。实际上,它们互为对偶;
P Q = (P1 Q1, P2 Q2, , Pn Qn)
P = (P1 , P2 , , Pn) 即n元命题代数的序关系、运算、最小元和最大元的定 义都归结为一元命题代数(ℙ, ≼ , , , , F, T) 。
仿例5我们易证:
(ℙn, ≼ , , , , F, T)≅ (2X, ,, , , , X ) 这里:X={a1, a2, , an},即 n元命题代数与n元集合代数是同构的。
(优选)第篇格与布尔代数
第2式证明由对偶原理从上式直接可得。
定理15-1.6 设<A, >是一个格,那么,对于任意的 a,bA, 都有:
ab(a∧b)=a(a∨b)=b
ab(a∧b)证明思路:
(1)先证 ab (a∧b)=a
由ab和a a ,根据定理15-1.2得 a a∧b
又根据a∧b的定义, 有
a∧b a
由二元关系的反对称性得 :
(优选)第篇格与布尔代数
通常用a∨b 表示{a,b}的上确界,用a∧b 表示{a, b}的下确界,∨和∧分别称为保联(join)和保交(meet) 运算。由于对任何a,b,a∨b及a∧b都是A 中确定 的成员,因此 ∨,∧均为A上的运算。
例3 设S={a,b} , (S) ={, {a},{b},{a,b}} 由格< (S), >诱导的代数系统为< (S),∨,∧> 。 其中∨为集合的并运算和∧为集合的交运算。
a∧b = a
(2) 再证 (a∧b)=a ab
设a∧b=a,则a =a∧bb ,这就证明了
(a∧b)=a ab
综合(1)和(2)得: ab(a∧b)
定理15-1.7 设<A, >是一个格,那么,对于任意的
a,b,cA, 都有: aca∨(b∧c) (a∨b)∧c
证明思路: (1)先证 ac a∨(b∧c) (a∨b)∧c 根据定理15-1.6有 ac (a∨c)=c 根据定理15-1.5有a∨(b∧c)(a∨b)∧(a∨c)
可以证明,若<A,>是格,则<A,R>也是格。 称R是的逆关系。记为。
格对偶原理可以叙述为:设P是对任意格都真的命题, 如果在命题P中把换成 ,∨换成∧,∧换成∨,就
地六章-格和布尔代数(1)
定义6.7 集合 L 中的偏序关系 R 与其逆关系 R1,称为互 相对偶的两个关系。 对任意 x, y∈L,xR1y yRx。 6.1.1 节例 6.4 中的 关系即为蕴涵关系 的逆关系。 因此,对任意 P, Q∈S, (P Q) (Q P)
【例6.7】设 n 是一个正整数,Sn 是 n 的所有因数的集合, 两个正整数的最大公因数 ,最小公倍数 可看作是 Sn 上两个代数运算,于是,(Sn, , ) 是一个格。
定理6.1 关于格的两种定义(以对应一个代数格;任意一个代 数格也都可以对应一个偏序格。
定义中没有要求 , 运算满足等幂律,实际上由 , 满足吸收律即可推出它们一定满足等幂律。任取 L 中元素
a,由 , 满足吸收律知
a(aa)=a
a(aa)=a
故
aa=a(a(aa))
aa=a(a(aa))
又由 , 满足吸收律知,上面两式的等式右端都等于 a。
因此,
aa=a
aa=a
即定义 6.3 中的 , 运算亦满足等幂律。
【例6.4】设 S 是所有的命题集合,定义 “” 关系如下: A B 当且仅当 B 蕴涵 A
则 (S, ) 是一个格。对 A, B∈S, sup{A, B}=A∧B∈S inf{A, B}=A∨B∈S
定义6.2 若格 L 的一个子集 M≠Ф 对于运算 和 封闭, 则 M 称作子格。
例如:a 是格 L 的一个固定元素,则使 X≥a(或 X≤a) 的 L 中元素 X 的集合,显然是一个子格。若 a≥b,则使 a≥X≥b 的 L 中元素 X 的集合是一个子格,这样的子格 叫作一个闭区间(商),记作 M(a,b)。
例如,S6={1, 2, 3, 6}, S24={1, 2, 3, 4, 6, 8, 12, 24}。
6.3格与布尔代数
格的性质(续)
6)、保序性:如果b≤c,那么a∧b≤a∧c a ∨ b≤a∨c 7)、分配不等式: •
a∨(b∧c)≤(a∨b)∧(a∨c); a∧(b∨c)≥(a∧b)∨(a∧c); 8)、模不等式: a≤b a∨(b∧c) ≤b∧(a∨c)
下一页
证明: (a∨b)∨c=a∨(b∨c)
先证: (a∨b)∨c ≤ a∨(b∨c) ∵ a ≤ a∨(b∨c) b ≤ b∨c ≤a∨(b∨c) ∴a∨b≤ a∨(b∨c) 又:c ≤ a∨(b∨c) 从而, (a∨b)∨c ≤ a∨(b∨c) 同理有 a∨(b∨c) ≤(a∨b)∨c , 由偏序的反传递性知,(a∨b)∨c=a∨(b∨c)
5的补元是2和3。
例:在<S24,|> 中
24 12 6 4 2 1 S24 8
最大元为24,最小元为1, 1和24互为补元, 3和8互为补元,
3
2,4,6,12均不存在补元。
例:
1 在如上图有界格中0和1互为补 a b c d 元而 a,b,c,d的补元均有三个, 譬如,a的补元是b,c,d。 0 1 a c 0 b 在下图中的有界格中,0和1互 为补元, 但a,b,c均不存在补元。
返回
代数格
定义10:设L是一个非空集合,∧,∨是L中的两 个二元运算,两个运算还满足a,b,c∈L (1)交换律 (2)结合律 a∧b=b∧a,a∨b=b∨a; (a∧b)∧c= a∧(b∧c), (a∨b)∨c=a∨ (b∨c); (3)吸收律 a∧(b∨c)= a, a∨(b∧c)= a
例1:
记作(L,≤,1,0)或记(L,∧,0,0,1)
例:(Sn,|)是格,则其是有界格,其中最大元是n,最小元 是1,因x∈Sn,1|x,x|n。
离散数学9-格与布尔代数
17
定理4: 设<A, ∨, ∧>是格,对任意a, b, cA,有 (1)若a≤b和c≤d,则a∧c≤b∧d,a∨c≤b∨d (2)若a≤b,则a∧c≤b∧c,a∨c≤b∨c
18
证明:(1)如果a≤b,又b≤b∨d, 由传递性得 a≤b∨d, 类似由c≤d, d≤b∨d,由传递性得 c≤b∨d,这说明b∨d是{a, c}的上界,而a∨c是{a, c}的最小上界,所以a∨c≤b∨d。类似可证 a∧c≤b∧d。
则称b是a的补元,记为a′。若b是a的补元,则a也是b的补 元,即a与b互为补元。 一般说来,一个元素可以有其补元 ,未必唯一,也可能无补元。0′=1和1′=0。
37
定义12: 在有界格中,如果每个元素都有补元,则称格是有 补格。
由于补元的定义是在有界格中给出的,可知,有补格一定是 有界格。
38
定理11: 在有界分配格中,如果某元素有补元,则补元是唯 一的。
34
定理9: 设<A, ∧,∨, 0, 1>是有界格,则对于A中任意元素 a 都有 a∨1 = 1 a∧1 = a a∨0 = a a∧0 = 0
1称为全上界或最大元,0称为全下界或最小元。
图9-6中(a)(b)(c)都有最大元和最小元,所以都是有界格。
35
定理10: 有限格必定是有界格。
36
定义11: 设<A,∨,∧>是有界格,aA,如果存在bA使得 a∨b = 1 a∧b = 0
31
定义8: 设<A,∨,∧>是格,如果A中存在元素a,使得对于A中 任意元素x 都有a≼x,则称a为格(A , ≤)的全下界,用0表 示。如果L中存在元素 a, 使得对于L中任意元素 x 都有 x≼a则称a为格(A , ≤)的全上界,用1表示。全下界即是格 的最小元,是唯一的。全上界即是格的最大元,是唯一的 。
(完整版)布尔函数参考答案
湖北大学研究生课程考试参考答案及评分标准一、概念题参考答案及评分标准:1.设2F 是二元有限域,n 为正整数,n F 2是2F 上的n 维向量空间,从n F 2到2F 的映射:22:F F f n →称为n 元布尔函数.一个n 元布尔函数f 可以表示为2F 上的含n 个变元的多项式:∑∈++++++=2)1()1)(1)(,,(),,(22112121F a n n nn i a x a xa x a a a f x x x f ΛK Kn i an aaF a n x x x a a a f ΛK 2122121),,(∑∈=.这里()11ni i i x a =++∏表示2F 中的加法运算,即模2的加法运算.形如上式的表示称为布尔函数f 的小项表示.若将小项表示展开并合并同类项,则会得到如下形式的一个多项式:n n nj i i i i i nj i j ij i ni i i n x x a x x ax x ax a a x x x f d dK ΛΛΛK K ΛK 1,11,1,102111),,(+++++=∑∑∑≤<<≤≤<≤=这里系数∈j i a K ,2F .评分标准:答出n 元布尔函数的定义得5分,答出其多项式表示得5分.2布尔函数的安全性指标主要有:平衡性、代数次数、差分均匀度、非线性度、相关免疫阶、弹性阶和代数免疫度等等.平衡性:一个n 元布尔函数是平衡的,当且仅当其真值表中0和1的个数相同,也就是该布尔函数的Hamming 重量为12n -.代数次数:密码体制中使用的布尔函数通常具有高的代数次数. 差分均匀度:设是一个n 元布尔函数,其差分均匀度定义为2220max max {|()()}n n f F a F x F f x a f x βδβ∈≠∈=∈+-=.非线性度:f 的非线性度()NL f 定义为f 和所有仿射函数的最小Hamming 距离:()min (,)min ()nnl A l A NL f d f l wt f l ∈∈==-.相关免疫阶:设是一个n 元布尔函数,其中是上独立且均匀分布的随机变量,如果与中任意个变元统计独立,则称是m 阶相关免疫函数。
离散数学 格与布尔代数
P’: a∨b≥a
{a,b}的最大下界≤a {a,b}的最小上界≥a
三. 格的性质
<A,∨,∧>是由格<A,≤>诱导的代数系统。a,b,c,d∈A 1. a≤a∨b b≤a∨b a∧b≤a a∧b≤b
此性质由运算∨和∧的定义直接得证。 2.如果a≤b,c≤d,则 a∨c≤b∨d,a∧c≤b∧d。 证明:如果a≤b,又b≤b∨d,由传递性得 a≤b∨d, 类似由c≤d, d≤b∨d,由传递性得 c≤b∨d, 这说明b∨d是 {a,c} 的一个上界,而a∨c是 {a,c} 的最小上
可见它们同构。
格同构,它们的哈斯图的形状一定相同。
具有1、2、3个元素的格分别同构于含有一、二、三 个
元素的链。
a
a
a
b
b c
具有4个元素的格分别同构a 于下面两种格形 a式之一:
b
c
b
c
d
d
具有5个素的格分别同构于下面五种格形式之一:
a b c b
d
e
a c d b e
a c b
d e
a
c
d
c
e
a b
d e
2. 格同态的保序性
定理:设f是格<A1,≤1> 到<A2, ≤2> 的同态映射,则对任 何a,b∈A1,如果a≤1b,则 f(a)≤2f(b)。 证明:令<A1,∨1,∧1>和 <A2,∨2,∧2>是格<A1,≤1> 和
<A2, ≤2>诱导的代数系统,任取a,b∈A1,设a≤1b, 则 a∧1b=a f(a∧1b)=f(a) 即 f(a)∧2f(b)=f(a) 而 f(a)∧2f(b) ≤2f(b) 所以 f(a)≤2f(b). 3. 格同构的保序性
离散数学第七章格与布尔代数
contents
目录
• 格的概述 • 布尔代数 • 格与布尔代数的应用 • 格与布尔代数的关系 • 格与布尔代数的扩展知识
01
CATALOGUE
格的概述
格的定义与性质
定义
格是一个有序的二元组(L,≤),其中L 是非空集合,≤是L上的二元关系, 满足自反性、反对称性和传递性。
布尔代数性质
布尔代数具有一些基本性质,如交换 律、结合律、吸收律等,这些性质使 得布尔代数成为逻辑推理和电路设计 等领域的重要工具。
布尔代数的运算
逻辑与运算
逻辑与运算用符号"∧"表示,表示两个逻辑量同时 为真时结果才为真。
逻辑或运算
逻辑或运算用符号"∨"表示,表示两个逻辑量至少 有一个为真时结果才为真。
布尔代数的扩展运算
布尔函数的复合
01
通过将两个或多个布尔函数连接在一起,形成更复杂的布尔函
数。
布尔函数的展开
02
将一个复杂的布尔函数分解为简单的布尔函数,以便更好地理
解和分析。
布尔函数的化简
03
通过消除冗余的输入和输出,简化布尔函数的表示。
格与布尔代数在其他领域的应用
计算机科学
01
格与布尔代数在计算机科学中有着广泛的应用,例如
布尔代数用于描述命题逻辑和谓词逻辑中的各种关系和运算,而格理论则用于描述集合论和集合运算。
格与布尔代数的理论框架为逻辑推理提供了数学基础,有助于深入研究和理解逻辑推理的本质和规律。
计算机科学中的应用
01 02 03 04
计算机科学是离散数学的另一个重要应用领域,其中格与布尔代数在 计算机算法、数据结构和程序设计语言等方面有广泛应用。
离散数学习题解答(第五章)格与布尔代数
离散数学习题解答习题五(第五章 格与布尔代数)1.设〈L ,≼〉是半序集,≼是L 上的整除关系。
问当L 取下列集合时,〈L ,≼〉是否是格。
a) L={1,2,3,4,6,12}b) L={1,2,3,4,6,8,12}c) L={1,2,3,4,5,6,8,9,10}[解] a) 〈L ,≼〉是格,因为L 中任两个元素都有上、下确界。
b) 〈L ,≼〉不是格。
因为L 中存在着两个元素没有上确界。
例如:812=LUB{8,12}不存在。
126312 4c) 〈L ,≼〉不是格。
因为L 中存在着两个元素没有上确界。
倒例如:46=LUB{4,6}不存在。
2.设A ,B 是两个集合,f 是从A 到B 的映射。
证明:〈S ,⊆〉是〈2B,⊆〉的子格。
其中S={y|y=f (x),x ∈2A }[证] 对于任何B 1∈S ,存在着A 1∈2A ,使B 1=f (A 1),由于f(A 1)={y|y ∈B ∧(x)(x 863 124 12 10 84 2 6 973 1 5 10∈A1∧f (x)=y)}⊆B 所以B1∈2B,故此S⊆2B;又B0=f (A)∈S (因为A∈2A),所以S非空;对于任何B1,B2∈S,存在着A1,A2∈2A,使得B1=f (A1),B2=f (A2),从而L∪B{B1,B2}=B1∪B2=f (A1)f (A2)=f (A1∪A2) (习题三的8的1))由于A1∪A2⊆A,即A1∪A2∈2A,因此f (A1∪A2)∈S,即上确界L∪B{B1,B2}存在。
对于任何B1,B2∈S,定义A1=f –1(B1)={x|x∈A∧f (x)∈B1},A2=f-1(B2)={x|x∈A∧f (x)∈B2},则A1,A2∈2A,且显然B1=f (A1),B2=f (A2),于是GLB{B1,B2}=B1∩B2=f (A1)∩f (A2)⊇f (A1∩A2) (习题三的8的2))又若y∈B1∩B2,则y∈B,且y∈B2。
习题与解答(代数系统) 离散答案
第十章
15、17、18、21、22、24、27、28、29。
2
15、设 G 为群,若 x ∈G 有 x =e, 证明 G 为交换群 证明: a, b ∈G 由条件 x ∈G 有 x =e
2
所以 a =e ,b =e (ab) =e ,即(ab)(ab)=e 所以 a =a, b =b, ba= a b
下面证明 φ(G1)是是循环群 y∈f(G1), x ∈G1 , 使得 f(x)=y. 而 G1=<a> 所以 存在 r 使得 x= a
r r
则 y = f(x) = f(a ) = f(a)f(a)……f(a) =(f(a)) 这证明了 f(a)为 f(G1)的生成元。即 f(G1)=< f(a)> 所以 f(G1)为循环群。 28、设 G=<a>是 15 阶循环群。 (1) 求出 G 的所有的生成元。 (2) 求出 G 的所有子群。 解:(1) 生成元为: a,a ,a ,a ,a ,a ,a ,a (2) G 的所有子群: 共 4 个子群 <e>, <a >={e,a ,a ,a ,a },
-1 -1
21、设 G 为群,a 是 G 中给定元素,a 的正规化子 N(a)表示 G 中与 a 可交换的元素构成的集合,即 N(a)={x| x∈G∧xa=ax } 证明:N(a)是 G 的子群 证明: (1) a∈N(a), 所以 N(a)非空(因为 a∈G∧aa=aa) (2) x,y ∈N(a) 则 xa=ax ya=ay
-1
-1
-1
=-a
-1 -1
-1
(2) 由于 (ab)(b a )= a(bb )a = aa = 1 所以 (ab)
第五章习题几个典型的代数系统
第五章习题几个典型的代数系统.设A={0,1},试给出半群<A A,>的运算表,其中为函数的复合运算。
.设G={a+bi|a,b∈Z},i为虚数单位,即i2=-1.验证G关于复数加法构成群。
.设Z为整数集合,在Z上定义二元运算如下:x,y∈Z,x y=x+y-2问Z关于运算能否构成群为什么.设A={x|x∈R∧x≠0,1}.在A上定义六个函数如下:f 1(x)=x,f2(x)=x-1,f3(x)=1-x,f 4(x)=(1-x)-1,f5(x)=(x-1)x-1, f6(x)=x(x-1)-1令F为这六个函数构成的集合,运算为函数的复合运算。
(1) 给出运算的运算表。
(2) 验证<F,>是一个群。
.设G为群,且存在a∈G,使得 G={a k|k∈Z}, 证明G是交换群。
.证明群中运算满足消去律..设G为群,若x∈G有x2=e,证明G为交换群。
.设G为群,证明e为G中唯一的幂等元。
.证明4阶群必含2阶元。
设A={a+bi|a,b∈Z,i2=-1},证明A关于复数的加法和乘法构成环,称为高斯整数环。
.(1) 设R1,R2是环,证明R1与R2的直积R1×R2也是环。
(2) 若R1和R2为交换环和含幺环,证明R1×R2也是交换环和含幺环。
. 判断下列集合和给定运算是否构成环、整环和域,如果不能构成,说明理由。
(1) A={a+bi|a,b∈Z},其中i2=-1,运算为复数的加法和乘法。
(2) A={-1,0,1},运算为普通加法和乘法。
(3) A=M(Z),2阶整数矩阵的集合,运算为矩阵加法和乘法。
2(4) A是非零有理数集合Q*,运算为普通加法和乘法。
.设G是非阿贝尔群,证明G中存在元素a和b,a≠b,且ab=ba..设H是群G的子群,x∈G,令xHx-1={xhx-1|h∈H},证明xHx-1是G的子群,称为H的共轭子群。
.设(1) G上的二元运算为矩阵乘法,给出G的运算表(2) 试找出G的所有子群(3) 证明G的所有子群都是正规子群。
第十五章 格与布尔代数
性质2:每个链<L,≤>都是分配格。 链
(|L|≥3)链
例:试判断下面两个哈斯图是否表示的是分配格?
a
a
b
c
bc d
d
e
e
(1)
(2)
显然(1)是格,但因为b(cd)= ba=b,而 (bc)(bd)=ee=e,故它不是分配格;显然(2)也是格 ,但因为c(bd)= ca=c,而(cb)(cd)=ed=d,故 它也不是分配格,
a
a
b
c
bc
d
d
e
e
(1)
(2)
a
b
c
e
d
f
g
(3)
例:证明<Sn,≤>是一个分配格。 证:设∧和∨分别为Sn上的交(或积)和并 (或和)运算,对于任意a,b,c∈Sn,有 a∨(b∧c)=lcm(a, gcd(b, c)) =gcd(lcm(a, b),lcm(a, c))=(a∨b∧(a∨c) a∧(b∨c)=gcd(a, lcm(b, c)) =lcm(gcd(a, b),gcd(a, c))=(a∧b)∨(a∧c) (事实上,上面是利用“最大公约数对最小公 倍数是分配的,最小公倍数对最大公约数也是分
显然,对于ab,有:
①ab≤a和ab≤b,则表明ab是a和b的下 界。
②若c≤a和c≤b,则c≤ab,这表明ab是a和 b的最大下界。
对于ab,有:
①a≤ab和b≤ab,则表明ab是a和b的上 界。
②若a≤c,且b≤c,则ab≤c,这表明ab是a 和b的最小上界。
例 设n为正整数,Sn为n的正因子的集合 ,≤为整除关系,则<Sn,≤>构成格。
解:a)的最小元是a,无最大元。b)既无最大元也 无最小元。c)无最小元,最大元是d。d)的最小元 是a,最大元是d。
习题与解答(代数系统)
同理可证:|bca|=|cab|
所以 |abc|=|bca|=|cab|
18、证明偶数阶群必含 2 阶元
证明:设偶数阶群为 G,不妨设|G|=2n
下面按元素的阶进行划分:
① 元素的阶为 1,只有单位元 e ,所以个数为 1 。
② 元素的阶为 2,设其构成的集合为:A
③ 元素的阶大于 2,设其构成的集合为:B
有逆元。 (4) 格与布尔代数。两个运算满足交换、相互分配、同一律、补元
律。 (5) 环与域,{0,1}关于模 2 加法构成交换群、{1}关于模 2 乘法构
成交换群,模 2 乘法关于模 2 加法有分配律。 13、设 B 是布尔代数, B 中的表达式 f 是
(a∧b)∨(a∧b∧c)∨(b∧c) (1) 化简 f.
首先由定理群在同态映射下的像仍是群,
所以 f(G1)是群。
下面证明 φ(G1)是是循环群
y∈f(G1), x ∈G1 , 使得 f(x)=y. 而 G1=<a>
r
所以 存在 r 使得 x= a 则 y = f(x) = f(ar) = f(a)f(a)……f(a) =(f(a))r 这证明了 f(a)为 f(G1)的生成元。即 f(G1)=< f(a)>
14、下面各集合都是 N 的子集,它们能否构成代数系统 V=<N,+>的子代数: (1) {x|x∈N∧x 可以被 16 整除} (2) {x|x∈N∧x 与 8 互质}
(3) {x|x∈N∧x 是 40 的因子} (4) {x|x∈N∧x 是 30 的倍数}
解:(1)是 (2)不是 (3)不是 (4)是 16、设 V=<Z,+,·>,其中+和·分别代表普通加法和乘法,对下面给定的每
布尔代数习题附标准答案
练习8.11.证明在布尔代数中a∨(a’∧b)=a∨b, a∧(a’∨b)=a∧b证明:a∨(a’∧b)=(a∨a’)∧(a∨b) 分配律=1∧(a∨b) 布尔代数的定义=a∨b 布尔代数的定义第二个式子是第一个式子的对偶式,对第一个式子用对偶原理即可得到。
2.证明:(1) (a∨b)∧(c∨d)=(a∧c)∨(b∧c)∨(a∧d)∨(b∧d)(2)(a∧b)∨(c∧d)=(a∨c)∧(b∨c)∧(a∨d)∧(b∨d)并推广到一般情况。
证明:只需证明第一式,用对偶原理即得第二式。
(a∨b)∧(c∨d)=((a∨b)∧c)∨((a∨b)∧d) 分配律=((a∧c)∨(b∧c))∨((a∧d)∨(b∧d)) 分配律= (a∧c)∨(b∧c)∨(a∧d)∨(b∧d) 结合律推广到一般情况:(1) (a1∨a2∨…∨an)∧(b1∨b2∨…∨bn)=(a1∧b1)∨(a1∧b2)∨…∨(a1∧bn)∨(a2∧b1)∨(a2∧b2)∨…∨(a2∧bn)∨…∨(an∧b1)∨(an∧b2)∨…∨(an∧bn)∨(2) (a1∧a2∧…∧an)∨(b1∧b2∧…∧bn)=(a1∨b1)∧(a1∨b2)∧…∧(a1∨bn)∧(a2∨b1)∧(a2∨b2)∧…∧(a2∨bn)∧…∧(an∨b1)∧(an∨b2)∧…∧(an∨bn)3. 证明:(1) (a’∧c’)∨(b∧c)∨(a∧b’)=(a’∧b)∨(a∧c)∨(b’∧c’)证明:左式=(a’∧c’)∨(b∧c)∨(a∧b’)=(((a’∧c’) ∨b) ∧((a’∧c’) ∨c) )∨(a∧b’) 分配律=((a’∨b)∧(c’∨b) ∧(a’∨c)∧(c’∨c))∨(a∧b’)分配律=((a’∨b)∧(c’∨b) ∧(a’∨c))∨(a∧b’)分配律= ((a’∨b)∧(c’∨b) ∧(a’∨c))∨(a∧b’)分配律=(((a’∨b)∧(c’∨b) ∧(a’∨c))∨a)∧(((a’∨b)∧(c’∨b) ∧(a’∨c))∨b’) 分配律= ((a’∨b∨a)∧(c’∨b∨a) ∧(a’∨c∨a))∧((a’∨b∨b’)∧(c’∨b∨b’) ∧(a’∨c∨b’))分配律= (c’∨b∨a)∧(a’∨c∨b’)布尔代数的定义右式=(a’∧b)∨(a∧c)∨(b’∧c’)=(((a’∧b) ∨a)∧((a’∧b)∨ c)))∨(b’∧c’) 分配律=(((a’∨a)∧(b∨a))∧((a’∨ c)∧(b∨ c)))∨(b’∧c’) 分配律=((b∨a)∧(a’∨ c)∧(b∨ c))∨(b’∧c’) 分配律=(((b∨a)∧(a’∨ c)∧(b∨ c))∨b’)∧(((b∨a)∧(a’∨ c)∧(b∨ c))∨c’)) 分配律=(((b∨a∨b’)∧(a’∨ c∨b’)∧(b∨ c∨b’)))∧(((b∨a∨c’)∧(a’∨ c∨c’)∧(b∨ c∨c’)))) 分配律=(a’∨ c∨b’)∧(b∨a∨c’)布尔代数的定义所以,左式=右式,即原式成立。
应用离散数学代数结构格和布尔代数题库试卷习题及答案
§4.7 格和布尔代数习题4.71.确定具有如图4.4所示哈斯图的偏序集是否为格。
图4.4 习题1的图解图(a)不是格,图(b)是格,图(c)是格。
2.证明每个有限格都有一个最小元素和一个最大元素。
证明:用反证法,假设某有限格中没有最大元素,只有极大元,则这几个极大元之间没有上确界,与格的定义矛盾,从而有限格中都有最大元素。
同理可证明有最小元素。
3.给出一个无限格的例子,使得(1)既没有最小元素也没有最大元素。
(2)有最小元素但没有最大元素。
(3)有最大元素但没有最小元素。
(4)有最小元素也有最大元素。
解:(1)对于偏序集<R,≤>,既没有最小元素也没有最大元素。
(2)对于偏序集<N,≤>,有最小元素0,但没有最大元素。
(3)对于偏序集<Z-,≤>,有最大元素-1,但没有最小元素。
(4)对于偏序集<[1,2],≤>,有最大元素2,有最小元素1。
4.给出一个有限格的例子,其中至少1个元素有多于1个的补元,且至少1个元素没有补元。
解如下哈斯图所示的偏序集是一个格,元素e有补元a和d,元素a有补元e和d,元素d有补元a和e,但元素b和c都没有补元。
1bd5.设是有界格,证明:(1)若≥2,则中不存在以自身为补元的元素。
(2)若≥3,且是链(全序集),则不是有补格。
证明:(1) 用反证法,假设L 中存在一个元素a 以自身为补元,所以a -1=a.据有界格的定义,则a ⨁a =a =1,a ⨂a =a =0显然,二者矛盾。
因此若≥2,则中不存在以自身为补元的元素。
(2) 用反证法,假设L 是有补格,则L 中每个元素都是有补元的。
若a 和b 是补格, 则需要满足a ⨁b =1,a ⨂b =0,但是a,b 间不一定可以比较,也就是说不一定是全序集,与条件矛盾。
6.格是分配格吗?试分析之。
解:不是分配格,例如有三个数,c|a,b 与c,a 都不具有整除关系,但是,但,不满足分配律,所以不是分配格。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、N是自然数集, 是小于等于关系,
则N,是(C)。
(A)有界格
(B)
有补格
(C)分配格(D)
2、在有界格中,若只有一个元素有补元,
有补分配格
则补元(
C)
(A)必唯
(B)
不唯
(C)不一定唯
(D)
可能唯
3、
F面是一些偏序集的哈斯图,判断哪一个为格(
C)
d
c
e
e
e
cDLeabharlann ACBD)
(A)分配格
(B)有补格
(C)布尔格
(D)有界格
6设L,是一条链,其中L
-3,贝U L,(C)
(A)不是格
(B)是有补格
5、只含有有限个元素的格称为有限格,
有限格必是(
7、 设A为一个集合,P(A),为有补格,P(A)中每个元素的补元(A)
(A)存在且唯一(B)不存在
(C)存在但不唯一(D)可能存在
8、设 代 是一个有界格,若它也是有补格,只要满足(B)
(A)每个元素都有一个补元(B)每个元素都至少有一个补元