高考模拟数学试卷及答案
高考数学模拟试题含答案详解
高考数学模拟试题含答案详解一、选择题1. 已知函数 $ f(x) = x^2 4x + 3 $,求 $ f(2) $ 的值。
答案:将 $ x = 2 $ 代入函数 $ f(x) $,得 $ f(2) = 2^2 4\times 2 + 3 = 1 $。
2. 已知等差数列 $\{a_n\}$ 的首项为 $a_1 = 3$,公差为 $d = 2$,求第 $n$ 项 $a_n$ 的表达式。
答案:等差数列的通项公式为 $a_n = a_1 + (n 1)d$,代入$a_1 = 3$ 和 $d = 2$,得 $a_n = 3 + (n 1) \times 2 = 2n + 1$。
3. 已知等比数列 $\{b_n\}$ 的首项为 $b_1 = 2$,公比为 $q = 3$,求第 $n$ 项 $b_n$ 的表达式。
答案:等比数列的通项公式为 $b_n = b_1 \times q^{n1}$,代入 $b_1 = 2$ 和 $q = 3$,得 $b_n = 2 \times 3^{n1}$。
4. 已知三角形的两边长分别为 $a = 5$ 和 $b = 8$,夹角为$60^\circ$,求第三边长 $c$。
答案:利用余弦定理 $c^2 = a^2 + b^2 2ab \cos C$,代入 $a = 5$,$b = 8$,$C = 60^\circ$,得 $c^2 = 5^2 + 8^2 2 \times5 \times 8 \times \cos 60^\circ = 49$,所以 $c = 7$。
5. 已知函数 $ g(x) = \frac{1}{x} $,求 $ g(x) $ 的定义域。
答案:由于 $x$ 不能为 $0$,所以 $g(x)$ 的定义域为 $x \neq 0$。
二、填空题1. 已知函数 $ h(x) = \sqrt{4 x^2} $,求 $ h(x) $ 的定义域。
答案:由于根号内的值不能为负,所以 $4 x^2 \geq 0$,解得$2 \leq x \leq 2$。
2024年高考数学精选模拟试卷及答案
2024年高考数学精选模拟试卷及答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.现要完成下列2项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查;①东方中学共有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本. 较为合理的抽样方法是( )4.现将5个代表团人员安排至甲、乙、丙三家宾馆入住,要求同一个代表团人员住同一家宾馆,且每家宾馆至少有一个代表团入住.若这5个代表团中,A B 两个代表团已经入住甲宾馆且不再安排其他代表团入住甲宾馆,则不同的入住方案种数为( ) A .6B .12C .16D .185.下列命题中正确的个数是①命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠; ①“0a ≠”是“20a a +≠”的必要不充分条件; ①若p q ∧为假命题,则p ,q 为假命题;①若命题2000:,10p x R x x ∃∈++<,则:p x ⌝∀∈R ,210x x ++≥.二、多选题三、填空题四、解答题16.2018年茂名市举办“好心杯”少年美术书法作品比赛,某赛区收到200件参赛作品,为了解作品质量,现从这些作品中随机抽取12件作品进行试评.成绩如下:67,82,78,86,96,81,73,84,76,59,85,93. (1)求该样本的中位数和方差;(2)若把成绩不低于85分(含85分)的作品认为为优秀作品,现在从这12件作品中任意抽取3件,求抽到优秀作品的件数的分布列和期望.17.某市司法部门为了宣传《宪法》举办法律知识问答活动,随机对该市18~68岁的人群抽取一个容量为n 的样本,并将样本数据分成五组:[)1828,,[)2838,,[)3848,,[)4858,,[)5868,,再将其按从左到右的顺序分别编号为第1组,第2组,…,第5组,绘制了样本的频率分布直方图;并对回答问题情况进行统计后,结果如下表所示.(1)分别求出a,x的值;(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖概率.18.某食品公司在八月十五来临之际开发了一种月饼礼盒,礼盒中共有7个两种口味的月饼,其中4个五仁月饼和3个枣泥月饼.(1)一次取出两个月饼,求两个月饼为同一种口味的概率;(2)依次不放回地从礼盒中取2个月饼,求第1次、第2次取到的都是五仁月饼的概率;(3)依次不放回地从礼盒中取2个月饼,求第2次取到枣泥月饼的概率.19.在某项娱乐活动的海选过程中评分人员需对同批次的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于60分的选手定为合格选手,直接参加第二轮比赛,大于等于90分的选手将直接参加竞赛选拔赛.已知成绩合格的100名参赛选手成绩的60,70,80,90,90,100的频率构成等比数列.频率分布直方图如图所示,其中[)[)[](2)若试剂A在连续进行的三轮测试中,都有2X ,则认为该试剂对药品B的酸碱值检测效果是稳定的,求出出现这种现象的概率.参考答案:a4)中位数为81.5,方差为,x=9(2)。
2023年高中数学高考模拟试题3(附答案)
2023年高中数学高考模拟试题(附答案)姓名班级学号得分说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分。
考试时间90分钟。
2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。
考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)评卷人得分一、单选题(每题5分,共50分)1.(本题5分)()A.B.C.D.2.(本题5分)已知集合,,则()A.B.C.D.3.(本题5分)函数的零点个数是()A.0B.1C.2D.34.(本题5分)已知数列为递减的等比数列,,且,,则公比为()A.B. C.D.25.(本题5分)在中,已知,D为BC中点,则()A.2B.C.D.6.(本题5分)函数的单调递增区间为()A.B.C.D.7.(本题5分)已知函数,则在上()A.单调递增B.单调递减C.先增后减D.先减后增8.(本题5分)如图,在长方体中,已知,,E为的中点,则异面直线BD与CE所成角的余弦值为()A.B.C.D.9.(本题5分)在中,,且,则()A.2B.3C.D.10.(本题5分)已知函数的最小正周期为,将函数的图象向左平移个单位长度,得到图象,则()A.B.C.D.第Ⅱ卷(非选择题)评卷人得分二、填空题(共25分)11.(本题5分)定义在R上的奇函数,当x≥0时,(k为常数),则______.12.(本题5分)等差数列的前n项和为,若,则当取到最大值时n__________.13.(本题5分)已知不等式组表示的平面区域不包含点,则实数的取值范围是__________.14.(本题5分)已知双曲线的左右焦点分别是,直线与双曲线交于p,且,则双曲线C的离心率为______.15.(本题5分)设A是椭圆(φ为参数)的左焦点.p是椭圆上对应于的点,那么线段AP的长是________.如图,在斜三棱柱中,底面的正三角形,,侧棱过点的直线交曲线的垂线,垂足分别为、,判,使得四边形的对角线交于一定点18.(本题15分)已知等差数列的n前项和为,,,数列满足.(1)求数列和的通项公式;(2)若数列满足,求数列的n前项和.19.(本题15分)已知在中,,,为内角A,B,C所对的边,,且.(1)求A与C;(2)若,过A作BC边的垂线,并延长至点D,若A,B,C,D四点共圆,求的CD长.20.(本题15分)已知函数.(1)当m>0时,求函数f(x)的极值点的个数;(2)当a,b,c∈(0,+∞)时,恒成立,求m的取值范围.参考答案一、单选题第1题第2题第3题第4题第4题A A C A D第6题第7题第8题第9题第10题C D C B B二、填空题第11题:-4;第12题:6;第13题:(-∞,3]第14题:√2;第15题:5。
2024年安徽省合肥市高考数学模拟试卷+答案解析
2024年安徽省合肥市高考数学模拟试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,,则()A.B.C.D.2.已知复数z 满足,则()A.5B. C.13D.3.已知在某竞赛中,天涯队、谛听队、洪荒队单独完成某项任务的概率分别为,,,且这3个队是否完成该任务相互独立,则恰有2个队完成该任务的概率为()A.B.C.D.4.已知抛物线C :的焦点为F ,A 为x 轴上一点,若,且抛物线C 经过线段AF的中点,则()A.8B.C.4D.5.已知向量,,,若,,则在上的投影向量为()A.B.C.D.6.在长方体中,,过作平面,使得平面,若平面,则直线l 与所成角的余弦值为()A.B. C.D.7.已知函数,若,则直线与的图象的交点个数为()A.3 B.4C.5D.68.已知椭圆的左顶点为A ,左焦点为F ,P 为该椭圆上一点且在第一象限,若射线AF 上存在一点Q ,使得,线段PQ 的垂直平分线与射线AF 交于点H ,则()A.1B.2C.aD.2a二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得2分,有选错的得0分。
9.某校高一年级的某次月考中,甲、乙两个班前10名学生的物理成绩单位:分,满分100分如表所示,则甲班67727683858788888990乙班70777777818384899394A.甲班前10名学生物理成绩的众数是88B.乙班前10名学生物理成绩的极差是24C.甲班前10名学生物理成绩的平均数比乙班前10名学生物理成绩的平均数低D.乙班前10名学生物理成绩的第三四分位数是8410.已知函数其中,的部分图象如图所示,则()A.B.C.D.11.下列不等式中正确的是()A. B.C. D.三、填空题:本题共3小题,每小题5分,共15分。
12.写出一个同时具有下列性质①②③的函数______.①定义在R上的函数不是常值函数;②;③对任意的,均存在,使得成立.13.已知锐角三角形ABC的内角A,B,C的对边分别为a,b,c,若,则的取值范围是______.14.已知半径为的球O的球心到正四面体ABCD的四个面的距离都相等,若正四面体ABCD的棱与球O 的球面有公共点,则正四面体ABCD的棱长的取值范围为______.四、解答题:本题共5小题,共77分。
2024年上海市高考高三数学模拟试卷试题及答案详解
2024上海高考高三数学模拟试卷(本试卷共10页,满分150分,90分钟完成.答案一律写在答题纸上)命题:侯磊审核:杨逸峰一、填空题.(本题共12小题,前6题每小题4分;后6题每小题5分,共54分.请在横线上方填写最终的、最简的、完整的结果)1.已知集合{}()1,2,3,4,5,2,5A B ==,则A B =.2.已知圆柱底面圆的周长为2π,母线长为4,则该圆柱的体积为.3.101x x ⎛⎫+ ⎪⎝⎭的二项展开式中,2x 项的系数为.4.等比数列{}n a 的各项和为2,则首项1a 的取值范围为.5.已知平面向量()()1,2,,4a b m == ,若a 与b的夹角为锐角,则实数m 的取值范围为.6.已知复数z 满足22z z -==,则3z =.7.已知空间向量()()1,1,0,0,1,1a b == ,则b 在a方向上的投影为.8.已知()ln(4f x ax c x =++(a 、b 、c 为实数),且3(lg log 10)5f =,则(lglg3)f 的值是9.已知A B 、是抛物线24y x =上的两个不同的点,且10AB =,若点M 为线段10AB =的中点,则M 到y 轴的距离的最小值为.10.一个飞碟射击运动员练习射击,每次练习可以开2枪.当他发现飞碟后,开第一枪命中的概率为0.8;若第一枪没有命中,则开第二枪,且第二枪命中的概率为0.6;若2发子弹都没打中,该次练习就失败了.若已知在某次练习中,飞碟被击中的条件下,则飞碟是运动员开第二枪命中的概率为.11.已知ABC 中,,,A B C 为其三个内角,且tan ,tan ,tan A B C 都是整数,则tan tan tan A B C ++=.12.已实数m n 、满足221m n +≤,则2263m n m n +-+--的取值范围是.二、选择题(本题共4小题,前2题每小题4分;后2题每小题5分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的,请填写符合要求的选项前的代号)13.以下能够成为某个随机变量分布的是()A .0111⎛⎫ ⎪⎝⎭B .101111236-⎛⎫ ⎪⎝⎭C .123111248⎛⎫ ⎪ ⎝⎭D .11.222.40.50.50.30.7⎛⎫⎪-⎝⎭14.某高级中学高一年级、高二年级、高三年级分别有学生1400名、1200名、1000名,为了解学生的健康状况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,若从高三年级抽取25名学生,则n 为A .75B .85C .90D .10015.设等比数列{}n a 的前n 项和为n S ,设甲:123a a a <<,乙:{}n S 是严格增数列,则甲是乙的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件16.椭圆具有如下的声学性质:从一个焦点出发的声波经过椭圆反射后会经过另外一个焦点.有一个具有椭圆形光滑墙壁的建筑,某人站在一个焦点处大喊一声,声音向各个方向传播后经墙壁反射(不考虑能量损失),该人先后三次听到了回音,其中第一、二次的回音较弱,第三次的回音较强;记第一、二次听到回音的时间间隔为x ,第二、三次听到回音的时间间隔为y ,则椭圆的离心率为()A .2xx y+B .2x x y+C .2y x y +D .2y x y+三、解答题.(本大题共5小题,满分78分.请写出必要的证明过程或演算步骤)17.三棱柱111ABC A B C -中,1AA ⊥平面ABC ,且1AB BC ==,12,90,AA ABC D =∠=︒为1CC中点.(1)求四面体1A ABD -的体积:(2)求平面ABD 与1ACB 所成锐二面角的余弦值.18.(1)在用“五点法”作出函数[]1sin ,0,2πy x x =-∈的大致图象的过程中,第一步需要将五个关键点列表,请完成下表:x0sin x -01sin x-1(2)设实数0a >且1a ≠,求证:()ln x x a a a '=;(可以使用公式:()e e x x '=)(3)证明:等式()()()32123x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x a x x x x x x bx x x c ++=-⎧⎪++=⎨⎪=-⎩19.为帮助乡村脱贫,某勘探队计划了解当地矿脉某金属的分布情况,测得了平均金属含量y (单位:克每立方米)与样本对原点的距离x (单位:米)的数据,并作了初步处理,得到了下面的一些统计量的值.(表中9111,9i i i i u u u x ===∑).xyu921()ii x x =-∑921()i i u u =-∑921()i i y y =-∑91(())i ii x y x y =--∑91()()i ii u u y y =--∑697.900.212400.1414.1226.13 1.40-(1)利用相关系数的知识,判断y a bx =+与dy c x=+哪一个更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型;(2)根据(1)的结果建立y 关于x 的回归方程,并估计样本对原点的距离20x =米时,平均金属含量是多少?20.已知抛物线2:2(0)C y px p =>,过点()(),00M a a ≠与x 轴不垂直的直线l 与C 交于()()1122,,A x y B x y 、两点.(1)求证:OA OB ⋅是定值(O 是坐标原点);(2)AB 的垂直平分线与x 轴交于(),0N n ,求n 的取值范围;(3)设A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出定点的坐标.21.已知2()ln(1)2x f x a x x =++-,函数()y f x =的导函数为()y f x '=.(1)当1a =时,求()y f x =在2x =处的切线方程;(2)求函数()y f x =的极值点;(3)函数()y f x =的图象上是否存在一个定点(,)(.(0,))m n m n ∈+∞,使得对于定义域内的任意实数00()x x m ≠,都有000()()()2x mf x f x m n +'=-+成立?证明你的结论.1.{3,4}【分析】根据给定条件,利用交集的定义直接求解即可.【详解】集合{}()1,2,3,4,5,2,5A B ==,则{3,4}A B = .故答案为:{3,4}2.4π【分析】根据条件,直接求出1r =,再利用圆柱的体积公式,即可求出结果.【详解】设圆柱的底面半径为r ,所以2π2πr =,得到1r =,又圆柱的母线长为4l =,所以圆柱的体积为2π4πV r l ==,故答案为:4π.3.210【分析】先求出二项式展开式的通项公式,然后令x 的次数为2,求出r ,代入通项公式中可求得结果.【详解】101x x ⎛⎫+ ⎪⎝⎭的二项展开式的通项公式为10102110101C C rr r rr r T x x x --+⎛⎫=⋅⋅=⋅ ⎪⎝⎭,令1022r -=,得4r =,所以2x 项的系数为410C 210=,故答案为:2104.(0,2)(2,4)【分析】根据给定条件,利用等比数列各项和公式,结合公比的取值范围求解即得.【详解】依题意,121a q=-,10q -<<或01q <<,则12(1)a q =-,102a <<或124a <<,所以首项1a 的取值范围为(0,2)(2,4) .故答案为:(0,2)(2,4) 5.(8,2)(2,)-+∞ 【分析】根据给定条件,利用向量夹角公式结合共线向量列出不等式组求解即得.【详解】向量()()1,2,,4a b m == 的夹角为锐角,则0a b ⋅> 且a 与b不共线,因此8024m m +>⎧⎨≠⎩,解得8m >-且2m ≠,所以实数m 的取值范围为(8,2)(2,)-+∞ .故答案为:(8,2)(2,)-+∞ 6.8-【分析】设i z a b =+,根据22z z -==得到方程组,求出1,a b ==答案,从而求出3z .【详解】设i z a b =+,则22i z a b -=-+,所以()2222424a b a b ⎧+=⎪⎨-+=⎪⎩,解得1,a b ==当1,a b =1=z ,故()222113i 22z =+=++=-+,()()322126i 8z =-++=-+=-;当1,a b ==1z =-,故()222113i 22z =-=-=--,()()322126i 8z =--=-+=-故答案为:-87.11(,,0)22【分析】根据给定条件,利用投影向量的定义求解即得.【详解】向量()()1,1,0,0,1,1a b == ,则1,||a b a ⋅==,所以b 在a 方向上的投影为2111(,,0)222||a b a a a ⋅==,故答案为:11(,,0)228.3【分析】令()ln(g x ax c x =+,则()()4f x g x =+,然后判断()g x 的奇偶性,再利用函数的奇偶性求值即可【详解】令()ln(g x ax c x =+,则()()4f x g x =+,函数的定义域为R ,因为()ln(g x ax c x -=---ln ax c ⎛⎫=--(1ln ax c x -=--+(ln ax c x =--+(ln ()ax c x g x ⎡⎤=-++=-⎢⎥⎣⎦,所以()g x 为奇函数,因为3(lg log 10)5f =,所以3(lg log 10)45g +=,所以(lg lg 3)1g -=,所以(lg lg 3)1g =-,所以(lg lg3)(lg lg3)4143f g =+=-+=,故答案为:39.4【分析】求出过抛物线焦点的弦长范围,再利用抛物线定义列式求解即得.【详解】抛物线24y x =的焦点(1,0)F ,准线方程=1x -,令过点F 与抛物线交于两点的直线方程为1x ty =+,由214x ty y x=+⎧⎨=⎩消去x 得,2440y ty --=,设两个交点为1122(,),(,)P x y Q x y ,则124y y t +=,21212()242x x t y y t +=++=+,于是212||11444PQ x x t =+++=+≥,当且仅当0=t 时取等号,令点,,A B M 的横坐标分别为0,,A B x x x ,而||104AB =≥,则0111[(1)(1)]1(||||)1||142222A B A B x x x x x FA FB AB +==+++-=+-≥-=,当且仅当,,A F B 三点共线时取等号,所以M 到y 轴的距离的最小值为4.故答案为:410.323【分析】根据给定条件,利用条件概率公式计算即得.【详解】记事件A 为“运动员开第一枪命中飞碟”,B 为“运动员开第二枪命中飞碟”,C 为“飞碟被击中”,则()0.20.60.12P B =⨯=,()()()()0.80.120.92P C P A B P A P B ==+=+= ,所以飞碟是运动员开第二枪命中的概率为()()0.123(|)()()0.9223P BC P B P B C P C P C ====.故答案为:32311.6【分析】不妨令A B C ≤≤,利用正切函数的单调性,结合已知求出tan A ,再利用和角的正切公式分析求解即得.【详解】在ABC 中,不妨令A B C ≤≤,显然A 为锐角,而tan A 是整数,若πtan 2tan3A =>=,又函数tan y x =在π(0,)2上单调递增,则π3A >,此时3πA B C A ++≥>与πA B C ++=矛盾,因此tan 1A =,π3π,44A B C =+=,tan tan tan()11tan tan B CB C B C++==--,整理得(tan 1)(tan 1)2B C --=,又tan ,tan B C 都是整数,且tan tan B C ≤,因此tan 2,tan 3B C ==,所以tan tan tan 6A B C ++=.故答案为:612.[3,13]【分析】确定动点(,)P m n 的几何意义,利用直线现圆的位置关系分段讨论,结合几何意义求解即得.【详解】显然点(,)P m n 在圆22:1O x y +=及内部,直线1:630l x y --=,直线2:220l x y +-=,1=>,得直线1l与圆O相离,且|63|63m n m n--=--,由222201x yx y+-=⎧⎨+=⎩,解得3545xy⎧=⎪⎪⎨⎪=⎪⎩或1xy=⎧⎨=⎩,即直线2l与圆O交于点34(,),(1,0)55A B,①当220m n+-≥时,即点P在直线2l与圆O所围成的小弓形及内部,|22||63|226324m n m n m n m n m n+-+--=+-+--=-+,目标函数124z x y=-+,即142z x y-=-表示斜率为12,纵截距为142z-的平行直线系,画出直线0:20p x y-=,平移直线p分别到直线12,p p,当1p过点A时,142z-取得最大值,1z最小,当2p过点B时,142z-取得最小值,1z最大,因此1min34()24355z=-⨯+=,1max()12045z=-⨯+=,从而3245m n≤-+≤;②当220m n+-<时,即点P在直线2l与圆O所围成的大弓形及内部(不含直线2l上的点),|22||63|(22)63348m n m n m n m n m n+-+--=-+-+--=--+,目标函数2348z x y=--+,即2834z x y-=+表示斜率为34-,纵截距为282z-的平行直线系,画出直线0:340q x y+=,显直线q OA⊥,平移直线q分别到直线12,q q,直线12,q q与圆O分别相切于点34,(,)55A--,当1q过点A时,282z-取得最大值,2z最小,因此2min34()834355z=-⨯-⨯=,当2q过点34(,)55--时,282z-取得最小值,2z最大,因此2max34()8341355z=+⨯+⨯=,从而383413m n<--≤,所以2263m n m n+-+--的取值范围是[3,13].故答案为:[3,13]【点睛】方法点睛:求解线性规划问题的一般方法:①准确作出不等式组表示的平面区域,作图时一定要分清虚实线、准确确定区域;②根据目标函数的类型及几何意义结合图形判断目标函数在何处取得最值.13.B【分析】分布列中各项概率大于0,且概率之和为1,从而得到正确答案.【详解】由题意得,分布列中各项概率非负,且概率之和为1,显然AC 选项不满足概率之和为1,D 选项不满足各项概率大于0,B 选项满足要求.故选:B 14.C【详解】分析:由题意结合分层抽样的性质得到关于n 的方程,解方程即可求得最终结果.详解:由题意结合分层抽样的定义可得:251000140012001000n =++,解得:90n =.本题选择C 选项.点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:(1)n N =样本容量该层抽取的个体数总体的个数该层的个体数;(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.15.D【分析】举出反例得到充分性和必要性均不成立.【详解】不妨设111,2a q =-=,则2311,24a a =-=-,满足123a a a <<,但{}n S 是严格减数列,充分性不成立,当111,2a q ==时,{}n S 是严格增数列,但123a a a >>,必要性不成立,故甲是乙的既非充分又非必要条件.故选:D 16.B【分析】根据给定条件,分析听到的三次回声情况确定几个时刻声音的路程,再列出等式求解即得.【详解】依题意,令声音传播速度为v ,1t 时刻,刚刚呐喊声音传播为0,2t 时刻听到第一次回声,声音的路程为2()-a c ,即从左焦点到左顶点再次回到左焦点,3t 时刻,声音的路程为2()a c +,即从左焦点到右顶点,又从右顶点回到左焦点,4t 时刻,声音的路程为4a ,即从左焦点反射到右焦点,再反射到左焦点,因此32,2()2()x t t a c a c vx =-+--=,43,42()y t t a a c vy =--+=,即4,22c vx a c vy =-=,则2a c y c x -=,即2a c y c x -=,整理得2a y xc x+=,所以椭圆的离心率为2c xa x y=+.故选:B【点睛】关键点点睛:利用椭圆几何性质,确定听到回声的时刻,回声的路程是解题的关键.17.(1)136【分析】(1)利用等体积法11A ABD D A AB V V --=,再根据条件,即可求出结果;(2)建立空间直角坐标系,求出平面ABD 与1ACB 的法向量,再利用面面角的向量法,即可求出结果.【详解】(1)因为1AA ⊥平面ABC ,又BC ⊂面ABC ,所以1AA BC ⊥,又AB BC ⊥,1AA AB A = ,1,AA AB ⊂面11ABB A ,所以CB ⊥面11ABB A ,因为1//CC 面11ABB A ,所以D 到面11ABB A 的距离即BC ,又111112122AA B S AB AA =⋅=⨯⨯= ,1BC =,所以1111133A ABD D A AB A AB V V S CB --=== .(2)如图,建立空间直角坐标系,因为1AB BC ==,12AA =,则1(0,0,0),(0,1,0),(1,0,0),(0,0,2),(1,0,1)B AC BD ,所以1(0,1,0),(1,0,1),(0,1,2),(1,1,0)BA BD AB AC ===-=-设平面ABD 的一个法向量为(,,)n x y z =,由1100BA n BD n ⎧⋅=⎪⎨⋅=⎪⎩ ,得到00y x z =⎧⎨+=⎩,取1x =,得到0,1y z ==-,所以(1,0,1)n =- ,设平面1ACB 的一个法向量为(,,)m a b c =,则由10AC m AB m ⎧⋅=⎪⎨⋅=⎪⎩,得到020a b b c -=⎧⎨-+=⎩,取2a =,则2,1b c ==,所以(2,2,1)m = ,设平面ABD 与1ACB 所成锐二面角为θ,则cos cos ,n mn m n m θ⋅====18.(1)表格见解析;(2)证明见解析;(3)证明见解析.【分析】(1)根据给定条件,结合“五点法”作图完善表格.(2)根据给定条件,利用复合函数求导法则计算即得.(3)根据给定条件,利用恒等式成立的充要条件推理即得.【详解】(1)“五点法”作函数[]sin ,0,2πy x x =∈的图象的5个关键点的横坐标为π3π0,,π,,2π22,所以表格如下:xπ2π3π22πsin x -01-0101sin x-1121(2)实数0a >且1a ≠,则ln ln e e xx a x a a ==,因此ln ln ()(e )e (ln )ln x x a x a x a x a a a '''==⋅=,所以()ln x x a a a '=.(3)212212133)())[()])(((x x x x x x x x x x x x x x =-----++32332121212312()()x x x x x x x x x x x x x x x x =+--+-++32123122331123()()x x x x x x x x x x x x x x x =-+++++-,依题意,3212312233112332()()x x x x x x x x x x x x ax bx x x x x c -+++-+++=++对任意实数x 恒成立,因此123123122331122331123123()a x x x x x x ab x x x x x x x x x x x x bc x x x x x x c=-++++=-⎧⎧⎪⎪=++⇔++=⎨⎨⎪⎪=-=-⎩⎩,所以等式32123()()()x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x ax x x x x x b x x x c ++=-⎧⎪++=⎨⎪=-⎩.19.(1)dy c x=+更适宜作为回归方程类型;(2)10ˆ100yx=-,399.5g /m .【分析】(1)根据题意,分别求得相关系数的值,结合10.449r ≈和20.996r ≈-,结合12r r <,即可得到结论.(2)(i )根据最小二乘法,求得回归系数,进而求得回归方程;(ii )当20x =时,结合回归方程,即可求得预报值.【详解】(1)因为y a bx =+的线性相关系数91)9()(0.44iix y r x y --==≈∑,dy c x=+的线性相关系数92(0.996iiu u y r y --≈-∑,因为12r r <,所以dy c x=+更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型.(2)依题意,992110ˆ()()1(.4010.14)i ii i iu u y u u yβ==----===-∑∑,则ˆˆ97.9(10)0.21100y u αβ=-=--⨯=,于是10ˆ10010100y u x=-=-,所以y 关于x 的回归方程为10ˆ100yx=-.当20x =时,金属含量的预报值为31010099.5g /m 20ˆy=-=.20.(1)证明见解析;(2))||(,p a ++∞;(3)证明见解析,(),0a -.【分析】(1)联立直线和抛物线方程,再利用韦达定理及数量积的坐标表示计算即得..(2)求出弦AB 的中点坐标及弦AB 的中垂线方程,进而求出n ,再结合判别式求解即得.(3)设出D 点的坐标,求出直线BD 的方程211121()y y y x x y x x +=---,借助(1)的信息,推理判断即得.【详解】(1)显然直线l 不垂直于坐标轴,设过点(),0M a 的直线l 的方程为x my a =+,由22y px x my a ⎧=⎨=+⎩消去x 得:2220y pmy pa --=,22Δ480p m pa =+>,则121222y y pm y y pa +=⎧⎨⋅=-⎩,所以22212121212222y y OA OB x x y y y y a pa p p⋅=+=⋅+=- 为定值.(2)设,A B 两点的中点坐标为()33,Q x y ,则21212322x x my my x a pm a ++==+=+,1232y y y pm +==,则()2,Q pm a pm +,即AB 的垂直平分线为()2y m x pm a pm =---+,令0y =,解得2n pm a p =++,显然22480p m pa ∆=+>,当0a >时,恒有220pm a +>成立,则n p a >+,当a<0时,2pm a a +>-,则n p a >-,所以n 的取值范围为)||(,p a ++∞.(3)由A 关于x 轴的对称点为D ,得()11,D x y -,则直线BD :211121()y y y x x y x x +=---,整理得:2112212121y y x y x yy x x x x x ++=---.又()()()1221211212122x y x y y my a y my a my y a y y +=+++=++422pam pam pam =-+=-.因此直线BD 为:212122pm pam y x x x x x =+--,即()212pmy x a x x =+-过定点(),0a -,所以直线BD 过定点(),0a -.【点睛】方法点睛:求解直线过定点问题常用方法如下:①“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;②“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;③求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.21.(1)48ln 333y x =-+;(2)答案见解析;(3)不存在,理由见解析.【分析】(1)利用导数求切线斜率,再求出切点坐标,点斜式写出切线方程即可.(2)利用导数探讨单调性,进而确定函数的极值点.(3)假设存在,利用导数,将等式化简,减少变量,从而可构造适当新函数,研究新函数的性质,即可判断.【详解】(1)当1a =时,2()ln(1),(2)ln 32x f x x x f =++-=,求导得14()1,(2)13f x x f x ''=+-=+,切线方程为4ln 3(2)3y x -=-,所以所求切线方程为48ln 333y x =-+.(2)函数2()ln(1)2x f x a x x =++-的定义域为(1,)-+∞,求导得21()111a x af x x x x -+'=+-=++,令()0f x '=,即210x a -+=,即21x a =-,①当1a ≥时,函数()y f x =在定义域内严格增,无极值点;②当01a <<时,当1x -<<或x >时,()0f x '>,当x <()0f x '<,函数()y f x =在(1,-和)+∞严格增,在(严格减,此时极大值点为③当0a ≤时,当1x -<<时,()0f x '<,当x >时,()0f x '>,函数()y f x =在(-严格减,在)+∞严格增的,所以当1a ≥时,函数()y f x =无极值点;当01a <<时,函数()y f x =极大值点为当0a ≤时,函数()y f x =.(3)假设存在定点(,)m n 满足条件,由000()()()2x mf x f x m n +'=-+得:000)(2()f x n x m f x m -+'=-,又点(,)m n 在曲线()f x 上,则2()ln(1)2mn f m a m m ==++,于是220000001[ln(1)ln(1)])()()(2a x m x m x m f x n x mx m+-++----=--000[ln(1)ln(1)]12a x m x mx m +-++=+--,而()11a f x x x '=+-+,于是000002()1=1222212x m x m x m a af x m x m +++'=+-+-++++,因此000ln(1)ln(1)22x m x m x m +-+=-++,变形得00012(1)11ln 1111x x m x m m +-++=++++,令01(0)1x t t m +=>+,则2(1)ln 1t t t -=+,令函数22()ln ,01t g t t t t -=->+,求导得22214(1)()0(1)(1)t g t t t t t '-=-=≥++,则()g t 在(0,)+∞单调递增,又(1)0g =,于是()0g t =只有唯一解1t =,即0111x m +=+,又0m x ≠,则1t ≠,故不存在定点(,)m n 满足条件.【点睛】结论点睛:函数y =f (x )是区间D 上的可导函数,则曲线y =f (x )在点00(,())x f x 0()x D ∈处的切线方程为:000()()()y f x f x x x '-=-.。
2024年高考数学全真模拟试卷六(新高考、新结构)(全解全析)
2024年高考数学全真模拟试卷六(新高考、新结构)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a b ∈R ,,i (3i )i a b -=-(i 为虚数单位),则()A .1a =,3b =-B .1a =-,3b =C .1a =-,3b =-D .1a =,3b =【答案】A【解析】因为3i (i)i 1i a b b -=-=+,所以1,3a b ==-.故选A2.已知{}n a 为等差数列,n S 为其前n 项和.若122a a =,公差0,0m d S ≠=,则m 的值为()A .4B .5C .6D .7【答案】B【解析】由已知()12122a a a d ==+,得12a d =-,又()()1112022m m m m m S ma d md d --=+=-+=,又0d ≠,所以()1202m m m --+=,解得5m =或0m =(舍去),故选B.3.纯电动汽车是以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆,它使用存储在电池中的电来发动.因其对环境影响较小,逐渐成为当今世界的乘用车的发展方向.研究发现电池的容量随放电电流的大小而改变,1898年Peukert 提出铅酸电池的容量C 、放电时间t 和放电电流I 之间关系的经验公式:C I t λ=,其中λ为与蓄电池结构有关的常数(称为Peukert 常数),在电池容量不变的条件下,当放电电流为7.5A 时,放电时间为60h ;当放电电流为25A 时,放电时间为15h ,则该蓄电池的Peukert 常数λ约为(参考数据:lg 20.301≈,lg 30.477≈)()A .1.12B .1.13C .1.14D .1.15【答案】D【解析】由题意知7.5602515C λλ=⨯=⨯,所以410325607.515λλ⎛⎫= ⎪⎝⎭⎛⎫== ⎪⎝⎭,两边取以10为底的对数,得10lg2lg 23λ=,所以2lg 220.301 1.151lg310.477λ⨯=≈≈--,故选D.4.已知向量,a b 满足||2,(2,0)a b ==,且||2a b += ,则,a b 〈〉= ()A .π6B .π3C .2π3D .5π6【答案】C【解析】由已知||2,2a b == ,所以()22224222cos ,44a ba b a b a b +=+⋅+=+⨯⨯⨯〈〉+=r r r r r r r r,得1cos ,2a b 〈〉=- ,又[],0,πa b 〈〉∈ ,所以2π,3a b 〈〉= .故选C.5.在平面直角坐标系xOy 中,已知()()3,0,1,0,A B P -为圆22:(3)(3)1C x y -+-=上动点,则22PA PB +的最小值为()A .34B .40C .44D .48【答案】B【解析】设(),P x y ,则()()222222223122410PA PB x y x y x y x +=+++-+=+++()22218x y ⎡⎤=+++⎣⎦,即22PA PB +等价于点P 到点()1,0Q -的距离的平方的两倍加8,又1PQ QC PC ≥-=514=-=,即22224840PA PB +≥⨯+=.故选B.6.如图,四棱锥A BCDE -是棱长均为2的正四棱锥,三棱锥A CDF -是正四面体,G 为BE 的中点,则下列结论错误的是()A .点,,,ABC F 共面B .平面ABE 平面CDF C .FG CD ⊥D .FG ⊥平面ACD【答案】D【解析】选项A :如图,取CD 中点H ,连接GH ,FH ,AG ,AH ,因为A BCDE -是正四棱锥,A CDF -是正四面体,G 为BE 的中点,所以CD GH ⊥,CD AH ⊥,CD FH ⊥,因为GH AH H = ,,GH AH ⊂平面AGH ,所以CD ⊥平面AGH ,因为AH FH H = ,,AH FH ⊂平面AFH ,所以CD ⊥平面AFH ,所以,,,A G H F 四点共面,由题意知3AG HF ==2GH AF ==,所以四边形AGHF是平行四边形,所以GH AF ∥,因为BC GH ∥,所以BC AF ∥,所以,,,A B C F 四点共面,故A 说法正确;选项B :由选项A 知AG FH ∥,又AG ⊄平面CDF ,FH ⊂平面CDF ,所以AG 平面CDF ,因为CD BE ∥,且BE ⊄平面CDF ,CD ⊂平面CDF ,所以BE 平面CDF ,又AG ⊂平面ABE ,BE ⊂平面ABE ,且AG BE G = ,所以平面ABE 平面CDF ,故B 说法正确;C 选项:由选项A 可得CD ⊥平面AGHF ,又FG ⊂平面AGHF ,所以FG CD ⊥,故C 说法正确;D 选项:假设FG ⊥平面ACD ,因为AH ⊂平面ACD ,则FG AH ⊥,由选项A 知四边形AGHF 是平行四边形,所以四边形AGHF 是菱形,与3AG =2GH =矛盾,故D 说法错误;故选D7.甲、乙两人进行一场友谊比赛,赛前每人记入3分.一局比赛后,若决出胜负,则胜的一方得1分,负的一方得1-分;若平局,则双方各得0分.若干局比赛后,当一方累计得分为6时比赛结束且该方最终获胜.令i P 表示在甲的累计得分为i 时,最终甲获胜的概率,若在一局中甲获胜的概率为0.5,乙获胜的概率为0.3,则1P =()A .555535-B .666535-C .5662553⨯-D .677553-【答案】C【解析】由题意可知:i 的取值集合为{}0,1,2,3,4,5,6,且060,1P P ==,在甲累计得分为1时,下局甲胜且最终甲获胜的概率为20.5P ,在甲累计得分为1时,下局平局且最终甲获胜的概率为10.2P ,在甲累计得分为1时,下局甲败且最终甲获胜的概率为00.3P ,根据全概率公式可得12100.50.20.3P P P P =++,整理得2108355P P P =-,变形得()211035P P P P -=-,因为100P P ->,则211035P P P P -=-,同理可得324354652132435435P P P P P P P P P P P P P P P P ----====----,所以{}()10,1,2,,5i i P P i +-= 是公比为35的等比数列,所以()()11030,1,2,,55i i i P P P P i +⎛⎫-=-= ⎪⎝⎭ ,各项求和得()()551101135i i i i i P P P P +==⎡⎤⎛⎫-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦∑∑,则()661103355315P P P P ⎛⎫- ⎪⎝⎭-=-⋅-,即61133551315P P ⎛⎫- ⎪⎝⎭-=⋅-,解得51662553P ⨯=-.故选C.8.已知0,2a b c <<>,且12212,e (1),2ln2bab c c a==+=,则()A .b a c <-<B .a b c -<<C .c a b <-<D .b c a<<-【答案】B 【解析】令1t a=,则22t t =,令()22,0t f t t t =-<,则()2ln 220t f t t '=->在(),0t ∈-∞上恒成立,故()22t f t t =-在(),0t ∈-∞上单调递增,且()11102f -=-<,110224f ⎛⎫-=-> ⎪⎝⎭,故112t -<<-,故()1,2a -∈,令()()2e 1x g x x =-+,0x >,则()()e 21x g x x '=-+,令()()e 21x q x x =-+,则()e 2x q x '=-,令()0q x '>得ln 2x >,令()0q x '<得0ln 2x <<,故()()e 21xq x x =-+在()0,ln 2上单调递减,在()ln 2,+∞上单调递增,则()()ln 222ln 210q =-+<,()22e 60q =->,由零点存在性定理可得,存在()0ln 2,2x ∈,使得()00q x =,且()()2e 1x g x x =-+在()00,x 上单调递减,在()0,x +∞上单调递增,又()00g =,故()()000g x g <=,又()22e 90g =-<,()33e 160g =->,故()2,3b ∈,令()2ln 2,2h x x x x =->,则()21h x x'=-,当2x >时,()0h x '>,故()2ln 2h x x x =-在()2,+∞上单调递增,又因为()446ln 20h =-<,()552ln100h =->,故()4,5c ∈,综上,a b c -<<.故选B二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知()()1,1,2,1AB AC =-= ,则下列结论正确的是()A .()3,0BC =B .()25AB BC AC ⋅-=C.cos ,AB AC = D .若()3,1AB AC λμμλ+=+,则2μλ-=【答案】ACD【解析】对于A ,()3,0BC AC AB =-= ,故A 正确;对于B ,因为()24,1BC AC -=-,所以()25AB BC AC ⋅-=- ,故B 错误;对于C,因为1,AB AC AB AC ⋅=-==所以cos ,10AB AC ==,故C 正确;对于D ,()()2,3,1AB AC λμμλμλμλ+=-+=+ ,所以231μλμμλλ-=⎧⎨+=+⎩,解得1,1λμ=-=,则2μλ-=,故D 正确.故选ACD.10.关于方程[]()22cos 10,πx y αα+=∈表示的曲线Γ,下列说法正确的是()A .Γ可以表示两条平行的直线,且这两条直线的距离为2B .若Γ为双曲线,则α为钝角C .若α为锐角,则Γ为焦点在y 轴上的椭圆D .若Γ为椭圆,P 为椭圆Γ上不与长轴顶点,A B 重合的点,则cos PA PB k k α⋅=-【答案】AD【解析】对于A 项,当cos 0α=,即π2α=时,方程为21y =,解得1y =±,因此Γ可以表示两条平行的直线,且这两条直线的距离为2,故A 选项正确;对于B 项,若Γ为双曲线,则cos 0α<,即ππ2α<≤,故α为钝角或平角,故B 选项错误;对于C 项,若α为锐角,则0cos 1α<<,即11cos α>.将原方程化为标准方程为2211cos x y α+=⎛⎫⎪⎝⎭,因此Γ为焦点在x 轴上的椭圆,故C 选项错误;对于D 项,若Γ为椭圆,则α为锐角,设椭圆方程为()222210x y a b a b+=>>,则221,1cos a b α==,不妨设()()()00,0,,0,,A a B a P x y -,将点P 的坐标代入椭圆方程得2200cos 1x y α+=,即22001cos y x α=-,故22000022200001cos cos 1cos PA PBy y y x k k x a x a x a x ααα-⋅=⋅===-+---,故D 选项正确.故选AD .11.对于集合A 中的任意两个元素,x y ,若实数(),d x y 同时满足以下三个条件:①“(),0d x y =”的充要条件为“x y =”;②()(),,d x y d y x =;③z A ∀∈,都有()()(),,,d x y d x z d y z ≤+.则称(),d x y 为集合A 上的距离,记为A d .则下列说法正确的是()A .(),d x y x y =-为d RB .(),sin sin d x y x y =-为d RC .若()0,A =+∞,则(),ln ln d x y x y =-为Ad D .若d 为R d ,则1e d -也为R d (e 为自然对数的底数)【答案】AC【解析】对于A ,(),d x y x y =-,即x y =,①,(),0d x y =,即(),0d x y x y =-=,即x y =,若x y =,则(),0d x y x y x x =-=-=,所以“(),0d x y =”的充要条件为“x y =”.②,()(),,d x y x y y x d y x =-=-=,成立,③,,,R x y z ∀∈,()()x y x z z y x z z y -=-+-≤-+-,故A 正确;对于B ,(),sin sin d x y x y =-,①,(),0d x y =,即(),sin sin 0d x y x y =-=,即sin sin x y =,此时若0,πx y ==,则x y ≠,故B 错误;对于C ,(),ln ln d x y x y =-,①,(),0d x y =即ln ln ln0xx y y-==,即1x y =,得x y =,若x y =,则(),ln ln ln ln 0d x y x y x x =-=-=,所以“(),0d x y =”的充要条件为“x y =”.②,()(),ln ln ln ln ,d x y x y y x d y x =-=-=,成立;③,()()(),ln ln ln ln ln ln d x y x y x z z y =-=-+-()()ln ln ln ln ,,x z z y d x z d y z ≤-+-=+,故成立,故C 正确;对于D ,设,x y ∀∈R ,(),d x y x y =-,则()1,1e e x y d x y ---=,①,若(),0d x y =,则0x y -=,即x y =,111e e 0x y d e ----==≠,故D 错误.故选AC.三、填空题:本题共3小题,每小题5分,共15分.12.函数()()2312(2)log 22x f x x a +=+-+是偶函数,则=a .【答案】38【解析】因为()()2312(2)log 22x f x x a +=+-+是偶函数,可得()()()31231228log 83022x x f x f x ax a x +-++--=-=-=+,所以38a =.13.《九章算术》中记录的“羡除”是算学和建筑学术语,指的是一段类似隧道形状的几何体,如图,羡除ABCDEF 中,底面ABCD 是正方形,//EF 平面ABCD ,ADE V 和BCF △均为等边三角形,且26EF AB ==.则这个几何体的外接球的体积为.【答案】36π【解析】连接BD ,分别取EF 、BD 、AD 中点G 、H 、I ,连接GH 、HI 、EI ,由底面ABCD 是正方形,//EF 平面ABCD ,ADE V 和BCF △均为等边三角形,故//EG IH ,GH ⊥底面ABCD ,又26EF AB ==,故3EG AD AB ===,则22EI AD ==,故2GH ==,由H 为底面正方形中心,HG IH ⊥,故羡除ABCDEF 外接球球心O 在直线GH 上,连接OI 、OE 、OA ,设半径为r ,OH a =,则==OA OE r ,由GH ⊥底面ABCD ,AD ⊂平面ABCD ,故GH AD ⊥,又AD IH ⊥,IH 、GH Ì平面IOH ,故AD ⊥平面IOH ,又IO ⊂平面IOH ,故AD IO ⊥,故2222232IO r AI r ⎛⎫=-=- ⎪⎝⎭,又222223+2IO OH IH a ⎛⎫=+= ⎪⎝⎭,故有222233+22r a ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,即229+2r a =,又2222227322EO r a a ⎛⎫==-+=-+ ⎪ ⎪⎝⎭,故有22279+22a a -+=,解得2a =,故22999+9222r a ==+=,即3r =,则这个几何体的外接球的体积为34π36π3V r ==.14.已知函数π2cos (0)4y x ωω⎛⎫=-> ⎪⎝⎭在区间ππ,42⎛⎫⎪⎝⎭上有且仅有一个零点,则ω的取值范围为.【答案】371115(3)(][7]2222,,, 【解析】由题意知函数π2cos (0)4y x ωω⎛⎫=-> ⎪⎝⎭在区间ππ,42⎛⎫⎪⎝⎭上有且仅有一个零点,故函数的最小正周期πππ2ππ082444T ,,ωω≥-=∴≥∴<≤,又ππ,42x ⎛⎫∈ ⎪⎝⎭,则πππππ44424x ωωω-<-<-,而πππ7π4444ω-<-≤,当ππππ4442ω-<-<时,即03ω<<时,需有πππ3π2242ω<-≤,即3722ω<≤,此时3(3)2,ω∈;当πππ442ω-=时,即3ω=时,ππ5π244ω-=,此时函数在π5π(,24)上无零点,不合题意;当πππ3π2442ω<-<时,即37ω<<时,需有3πππ5π2242ω<-≤,即71122ω<≤,此时711(]22,ω∈;当ππ3π442ω-=时,即7ω=时,ππ13π244ω-=,此时函数在3π13π(,)24上有一零点5π2,符合题意;当3πππ7π2444ω<-≤时,即78ω<≤时,需有5πππ7π2242ω<-≤,即111522ω<≤,此时15(7]2,ω∈;综合上述,得ω的取值范围为371115(3)(][7]2222,,, 三、解答题:本题共5小题,共77分,解答应写出文字说明,证明过程和解题步骤.15.(13分)近年来“天宫课堂”受到广大中小学生欢迎,激发了同学们对科学知识的探索欲望和对我国航天事业成就的自豪.为领悟航天精神,感受中国梦想,某校组织了一次“寻梦天宫”航天知识竞赛(满分100分),各年级学生踊跃参加.校团委为了比较高一、高二学生这次竞赛的成绩,从两个年级的答卷中各随机选取了50份,将成绩进行统计得到以下频数分布表:成绩[)60,70[)70,80[)80,90[]90,100高一学生人数1551515高二学生人数10102010试利用样本估计总体的思想,解决下列问题:(1)从平均数与方差的角度分析哪个年级学生这次竞赛成绩更好(同一组中的数据用该组区间的中点值为代表)?(2)校后勤部决定对参与这次竞赛的学生给予一定的奖励,奖励方案有以下两种:方案一:记学生得分为x ,当70x <时,奖励该学生10元食堂代金券;当7090x ≤<时,奖励该学生25元食堂代金券;当90x ≥时,奖励该学生35元食堂代金券;方案二:得分低于样本中位数的每位学生奖励10元食堂代金券;得分不低于中位数的每位学生奖励30元食堂代金券.若高一年级组长希望本年级学生获得多于高二年级的奖励,则他应该选择哪种方案?解:(1)设高一年级学生竞赛成绩的平均数为x ,方差为21s .高二年级学生竞赛成绩的平均数为y ,方差为22s .则6515755851595158150x ⨯+⨯+⨯+⨯==,(1分)2222211[15(6581)5(7581)15(8581)15(9581)]144,50s =⨯-+⨯-+⨯-+⨯-=(3分)1(6510751085209510)8150y =⨯+⨯+⨯+⨯=,(4分)2222221[10(6581)10(7581)20(8581)10(9581)]161.650s =⨯-+⨯-+⨯-+⨯-=,(6分)因x y =2212s s <,故高一年级学生这次竞赛成绩比较稳定集中,成绩更好;(7分)(2)按照方案一,高一年级学生获得奖励为:1510(515)2515351175⨯++⨯+⨯=元,而高二年级学生获得奖励为:1010(1020)2510351200⨯++⨯+⨯=元,即按照方案一,高一年级获得奖励少于高二;(9分)按照方案二,依题意,所抽取的100名参加竞赛学生的成绩中位数为90806801082357-+⨯=,则样本中,高一年级学生成绩低于中位数的人数约为682807155152410-++⨯≈人,则高一年级获得奖励为:241026301020⨯+⨯=元;高二年级学生成绩低于中位数的人数约为6828071010202610-++⨯≈人,则高二年级获得奖励为:26102430980⨯+⨯=元.(11分)因1020980>,即按照方案二,高一年级获得奖励多于高二.故若高一年级组长希望本年级学生获得多于高二年级的奖励,则他应该选择方案二.(13分)16.(15分)已知在四边形ABCD 中,ABD △为锐角三角形,对角线AC 与BD 相交于点O,π2,4,4AD AC BD ABD ∠====.(1)求AB ;(2)求四边形ABCD 面积的最大值.解:(1)由余弦定理可得2222πcos 42AB BD AD AB BD +-=⋅,化简为220AB -+=,解得1AB =1,(4分)当1=AB时,因为2146cos 0BAD +-∠=<,与ABD △为锐角三角形不符合,故1AB =.(7分)(2)作,AE CF 垂直BD 于,E F ,设1AOB ∠=∠,(9分)则()1111sin 1sin 1sin 12222ABCD ABD CBD S S S BD AE BD CF BD AO CO BD AC =+=⋅+⋅=∠+∠=⋅∠ ,当sin 11190AC BD ∠=⇒∠=︒⇒⊥,四边形面积最大,最大面积为146262⨯=(15分)17.(15分)如图,在几何体111B C D ABCD -中,平面111//B C D 平面ABCD ,四边形ABCD 为正方形,四边形11BB D D 为平行四边形,四边形11D DCC 为菱形,112,22,120,DC AC D DC E ︒==∠=为棱11C D 的中点,点F 在棱1CC 上,//AE 平面BDF .(1)证明DE ⊥平面ABCD ;(2)求平面1AB D 与平面BDF 夹角的余弦值.解:(1)如图,连接DC 1,因为四边形11D DCC 为菱形,1120︒∠=D DC ,所以160DCC ︒∠=,所以12DC =,因为12,22AD DC AC ===22211AD DC AC +=,所以1AD DC ⊥,又11,,,AD DC DC DC D DC DC ⊂⊥= 平面11CDD C ,所以AD ⊥平面11CDD C ,所以,AD DE AD DC ⊥⊥,(3分)因为四边形11D DCC 为菱形,且1120︒∠=D DC ,所以1111DD DC D C ==,因为E 为棱11C D 的中点,所以11DE C D ⊥,又11//C D CD ,所以DE CD ⊥,(5分)因为,,,DE AD AD DC D AD DC ⊥=⊂ 平面ABCD ,所以DE ⊥平面ABCD .(7分)(2)以D 为坐标原点,,,DA DC DE分别为x 轴、y 轴、z 轴正方向,建立如图所示的空间直角坐标系D xyz -.易知3DE =所以()0,0,0,(2,0,0),(2,2,0),(0,2,0),3)D A B C E ,113),(0,3)C D -,所以1(0,3),(0,2,0),(2,0,3),(2,2,0),(2,0,0)CC DC AE DB DA =-==-== ,1(0,3)DD -= ,设()10,3(01)CF tCC t t t ==-≤≤ ,则(0,2,3)DF DC CF t t =+=- ,(9分)因为//AE 平面BDF ,所以存在唯一的,R λμ∈,使得(2,2,0)(0,2,3)(2,22,3)AE DB DF t t t λμλμλλμμμ=+=+-=+- .所以22,220,33t t λλμμμ=-+-==23t =,所以111114230,,,(2,1,3)33DF DB DD D B DD DB ⎛⎫==+=+= ⎪ ⎪⎝⎭,(11分)设平面BDF 的法向量为()111,,x n y z = ,则00DF n DB n ⎧⋅=⎪⎨⋅=⎪⎩ ,所以1111423033220y x y ⎧=⎪⎨⎪+=⎩,取13y =-,则113,23x z ==,故(3,3,23)n =- ,设平面1AB D 的法向量为()222,,m x y z = ,则100DA m DB m ⎧⋅=⎪⎨⋅=⎪⎩ ,所以222220230x x y z =⎧⎪⎨+=⎪⎩,取23y =,则220,3x z ==-(0,3,3)m =- ,(13分)设平面1AB D 与平面BDF 的夹角为θ,则10cos cos ,43023m n m n m nθ⋅=〈〉===⨯ ,故平面1AB D 与平面BDF 104(15分)18.(17分)已知抛物线C :()2205y px p =<<上一点M 的纵坐标为3,点M 到焦点距离为5.(1)求抛物线C 的方程:(2)过点()1,0作直线交C 于A ,B 两点,过点A ,B 分别作C 的切线1l 与2l ,1l 与2l 相交于点D ,过点A 作直线3l 垂直于1l ,过点B 作直线4l 垂直于2l ,3l 与4l 相交于点E ,1l 、2l 、3l 、4l 分别与x 轴交于点P 、Q 、R 、S .记DPQ V 、DAB 、ABE 、ERS △的面积分别为1S 、2S 、3S 、4S .若3412S S S S λ=,求实数λ的取值范围.解:(1)设(),3M t ,由题意可得9252pt p t =⎧⎪⎨+=⎪⎩,即9522p p +=,(2分)解得1p =或9p =(舍去),所以抛物线C 的方程为22y x =.(4分)(2)如图,设经过()11,A x y ,()22,B x y 两点的直线方程为AB l :1x my =+(m ∈R ,0m ≠),与抛物线方程22y x =联立可得222y my =+,即2220y my --=,2480m ∆=+>∴122y y m +=,122y y =-.∵22y x =,则y =∴'1y y=,(6分)∴过点A 作C 的切线1l 方程为()11111112y y x x y x y y =-+=+,令0y =,得212y x =-,即21,02y P ⎛⎫- ⎪⎝⎭.同理,过点B 作C 的切线2l 方程为2212y y x y =+,令0y =,得222y x =-,即22,02y Q ⎛⎫- ⎪⎝⎭.∴222122y y PQ =-.(8分)联立两直线方程11221212y y x y y y x y ⎧=+⎪⎪⎨⎪=+⎪⎩,解得1212122y y x y y y m ⎧==-⎪⎪⎨+⎪==⎪⎩,即()1,D m -,则D 到直线AB l的距离2D AB d -==又∵过点A 作直线3l 垂直于1l ,直线3l 的方程为311111112y y y x x y y y x y =-++=-++,令0y =,得2112y x =+,即211,02y R ⎛⎫+ ⎪⎝⎭.(10分)同理,直线4l 的方程为32222y y y x y =-++,令0y =,得2212y x =+,即221,02y S ⎛⎫+ ⎪⎝⎭.∴222122y y RS =-.联立两直线方程3111322222y y y x y y y y x y ⎧=-++⎪⎪⎨⎪=-++⎪⎩,解得()2212121212122y y y y x y y y y y ⎧++=+⎪⎪⎨+⎪=-⎪⎩,整理后可得2222x m y m⎧=+⎨=⎩,即()222,2E m m +,则E 到直线AB l的距离E AB d -==.(13分)由上可得22211112222D y y S PQ y m =⋅=-,212d AB S AB d -=⋅=,312E AB S AB d -=⋅=,222141122222E y y S RS y m =⋅=-,(15分)∴2123422S S m S S +==,得2212m λ=<+,故λ的取值范围为()0,1.(17分)19.(17分)超越数得名于欧拉,它的存在是法国数学家刘维尔(Joseph Liouville )最早证明的.一个超越数不是任何一个如下形式的整系数多项式方程的根:11100n n n n a x a x a x a --++++= (0a ,1a ,…,n a ∈Z ,0n a ≠).数学家证明了自然对数的底数e 与圆周率π是超越数.回答下列问题:已知函数()e x n n n f x b x =-(*n ∈N )只有一个正零点.(1)求数列{}n b 的通项公式;(2)(ⅰ)构造整系数方程00n n a x a +=,证明:若N m ∈,则e m 为有理数当且仅当0m =.(ⅱ)数列{}n b 中是否存在不同的三项构成等比数列?若存在,求出这三项的值;否则说明理由.解:(1)若()e x n n n f x b x =-只有一个正零点,可得e ,e 1,x n n x n n b x b x -==(1分)令()e n x g x x -=,()11()e e e n x n x n x g x nx x x n x -----=-=-',令()0g x '<,(,)x n ∈+∞,令()0g x '>,(0,)x n ∈,故()g x 在(0,)n 上单调递增,在(,)n +∞上单调递减,可得()g x 在x n =处取得最大值,且最大值为()e n n g n x -=,(4分)而当0x →时,()0g x →,当x →+∞时,()0g x →,由题意得,当()g x 最大时,符合题意,故e 1n n n b n -=,即e n n n b n -=⋅.(6分)(2)(ⅰ)若0m =,则e 1m =为有理数;若m 正整数,假设e m 为有理数,则e ,,,0m p y p q q q==∈≠Z ,则方程0q y p ⋅-=的根中有有理数,又在方程0m q x p ⋅-=中,发现e x =是它的根,(8分)而已知e 是超越数,故e 不是方程的根,与0q y p ⋅-=矛盾,即e m 不为有理数;综上所述:m ∈N ,e m 为有理数当且仅当0m =;(10分)(ⅱ)若数列{}n b 中存在不同的三项构成等比数列,则()2e e e e m m n n l l m n ---⋅⋅⋅=⋅,可得22e m n l m n l m n l +--=⋅⋅,由方程右边是有理数知左边是有理数,由上问知当且仅当2m n l +=时成立,故2m n l m n m n l l l ⋅==⋅,则()()1m n m n l l ⋅=,设1m x l-=,则(1)m l x =-,(1)n l x =+,则()()111m n x x -⋅+=,将(1)m l x =-,(1)n l x =+代入进行化简,可得()()(1)111l x l x x x -+-⋅+=,故()()11111l x x x x -+⎡⎤-⋅+=⎣⎦,故()()11111x x x x -+-⋅+=,(14分)构造函数()()()()()1ln 11ln 1f x x x x x =--+++,而()()2ln 10f x x ='-<,知()f x 在其定义域内单调递减,又()00f =,故若()()11111x x x x -+-⋅+=,则有0x =,即2m n l m n l ⋅=成立,当且仅当m n l ==时成立.即数列{}n b 中不存在不同的三项构成等比数列.(17分)。
2024年山东潍坊市高三三模数学高考试卷试题(含答案详解)
潍坊市高考模拟考试(潍坊三模)数学2024.5一、选择题:本题共8小题,每小题5分,共40分.每小题只有一个选项符合题目要求.1.设复数πsin 2i 4z θ⎛⎫=++ ⎪⎝⎭是纯虚数,则θ的值可以为()A .π4B .5π4C .2023π4D .2025π42.已知集合{}{}3,2,1,0,1,2,3,|3,Z A B x x n n =---==∈,则A B ⋂的子集个数是()A .3个B .4个C .8个D .16个3.如图,半径为1的圆M 与x 轴相切于原点O ,切点处有一个标志,该圆沿x 轴向右滚动,当圆M 滚动到与出发位置时的圆相外切时(记此时圆心为N ),标志位于点A 处,圆N 与x 轴相切于点B ,则阴影部分的面积是()A .2B .1C .π3D .π44.某同学在劳动课上做了一个木制陀螺,该陀螺是由两个底面重合的圆锥组成.已知该陀螺上、下两圆锥的体积之比为1:2,上圆锥的高与底面半径相等,则上、下两圆锥的母线长之比为()A B .12C .2D 5.牛顿迭代法是求方程近似解的一种方法.如图,方程()0f x =的根就是函数()f x 的零点r ,取初始值()0,x f x 的图象在点()()00,x f x 处的切线与x 轴的交点的横坐标为()1,x f x 的图象在点()()11,x f x 处的切线与x 轴的交点的横坐标为2x ,一直继续下去,得到12,,,n x x x ,它们越来越接近r .设函数()2f x x bx =+,02x =,用牛顿迭代法得到11619x =,则实数b =()A .1B .12C .23D .346.已知1F ,2F 分别为椭圆C :22162x y+=的左、右焦点,点()00,P x y 在C 上,若12F PF ∠大于π3,则0x 的取值范围是()A .(),-∞+∞B .(C .(),-∞+∞D .(7.已知函数()f x 的导函数为()f x ',且()1e f =,当0x >时,()1e xf x x<'+,则不等式()ln 1e xf x x ->的解集为()A .()0,1B .()0,∞+C .()1,∞+D .()()0,11,∞⋃+8.已知()()()()()()828901289321111x x a a x a x a x a x ++=+++++++++ ,则8a =()A .8B .10C .82D .92二、多项选择题:本大题共3个小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错的得0分.9.在棱长为1的正方体1111ABCD A B C D -中,M N ,分别为棱111,C D C C 的中点,则()A .直线BN 与1MB 是异面直线B .直线MN 与AC 所成的角是3πC .直线MN ⊥平面ADND .平面BMN 截正方体所得的截面面积为98.10.下列说法正确的是()A .从装有2个红球和2个黑球的口袋内任取2个球,事件“至少有一个黑球”与事件“至少有一个红球”是互斥事件B .掷一枚质地均匀的骰子两次,“第一次向上的点数是1”与“两次向上的点数之和是7”是相互独立事件C .若123452,,,,,x x x x x 的平均数是7,方差是6,则12345,,,,x x x x x 的方差是65D .某人在10次射击中,设击中目标的次数为X ,且()10,0.8B X ,则8X =的概率最大11.已知12F F ,双曲线()222:104x y C b b-=>的左、右焦点,点P 在C 上,设12PF F △的内切圆圆心为I ,半径为r ,直线PI 交12F F 于Q ,若53PQ PI = ,1215PI PF t PF =+,R t ∈则()A .25t =B .圆心I 的横坐标为1C .5r =D .C 的离心率为2三、填空题:本大题共3个小题,每小题5分,共15分.12.已知向量()()()1,2,4,2,1,a b c λ==-=,若()20c a b ⋅+= ,则实数λ=13.已知关于x 的方程()()2cos 0x k ωϕω+=≠的所有正实根从小到大排列构成等差数列,请写出实数k 的一个取值为14.已知,,a b c 均为正实数,函数()()22ln f x x a b x x =+++.(1)若()f x 的图象过点()1,2,则12a b+的最小值为;(2)若()f x 的图象过点(),ln c ab c +,且()3a b t c +≥恒成立,则实数t 的最小值为.四、解答题:本大题共5小题,共77分.解答应写出文字说明、说明过程或演算步骤.15.如图,在直三棱柱111ABC A B C -中,1,2AB AC AB AC AA ⊥==,E 是棱BC的中点.(1)求证:1//A C 平面1AB E ;(2)求二面角11A B E A --的大小.16.已知正项等差数列{}n a 的公差为2,前n 项和为n S ,且12311S S S ++,,成等比数列.(1)求数列{}n a 的通项公式n a ;(2)若()1,1sin ,2nn n n S b n S n π⎧⎪⎪=⎨-⎪⋅⎪⎩为奇数,为偶数,求数列{}n b 的前4n 项和.17.在平面直角坐标系中,O 为坐标原点,E 为直线:1l y =-上一点,动点F 满足FE l ⊥,OF OE ⊥ .(1)求动点F 的轨迹C 的方程;(2)若过点1,02T ⎛⎫⎪⎝⎭作直线与C 交于不同的两点,M N ,点()1,1P ,过点M 作y 轴的垂线分别与直线,OP ON 交于点,A B .证明:A 为线段BM 的中点.18.某高校为了提升学校餐厅的服务水平,组织4000名师生对学校餐厅满意度进行评分调查,按照分层抽样方法,抽取200位师生的评分(满分100分)作为样本,绘制如图所示的频率分布直方图,并将分数从低到高分为四个等级:满意度评分[0,60)[60,80)[80,90)[]90100,满意度等级不满意基本满意满意非常满意(1)求图中a 的值,并估计满意度评分的25%分位数;(2)若样本中男性师生比为1:4,且男教师评分为80分以上的概率为0.8,男学生评分为80分以上的概率0.55,现从男性师生中随机抽取一人,其评分为80分以上的概率为多少?(3)设在样本中,学生、教师的人数分别为()1200m n n m ≤≤≤,,记所有学生的评分为12,,m x x x ,,其平均数为x ,方差为2x s ,所有教师的评分为12,,n y y y ,,其平均数为y ,方差为2y s ,总样本的平均数为z ,方差为2s ,若245x y x y s s s ==,试求m 的最小值.19.一个完美均匀且灵活的项链的两端被悬挂,并只受重力的影响,这个项链形成的曲线形状被称为悬链线.1691年,莱布尼茨、惠根斯和约翰・伯努利等得到“悬链线”方程e e 2x xccc y -⎛⎫+ ⎪⎝⎭=,其中c 为参数.当1c =时,就是双曲余弦函数()e e ch 2x x x -+=,类似地双曲正弦函数()e e sh 2x xx --=,它们与正、余弦函数有许多类似的性质.(1)类比三角函数的三个性质:①倍角公式sin22sin cos x x x =;②平方关系22sin cos 1x x +=;③求导公式()()''sin cos cos sin x x x x ⎧=⎪⎨=-⎪⎩,写出双曲正弦和双曲余弦函数的一个正确的性质并证明;(2)当0x >时,双曲正弦函数()sh y x =图象总在直线y kx =的上方,求实数k 的取值范围;(3)若1200x x >>,,证明:()()()()()2221112121ch sh 1ch sh sin sin cos .x x x x x x x x x x ⎡⎤⎡⎤+--⋅+>+--⎣⎦⎣⎦1.C【分析】根据题意得到πsin 04θ⎛⎫+= ⎪⎝⎭,将四个选项代入检验,得到答案.【详解】由题意得πsin 04θ⎛⎫+= ⎪⎝⎭,A 选项,当π4θ=时,ππsin 144⎛⎫+= ⎪⎝⎭,不合题意,A 错误;B 选项,当5π4θ=时,5ππsin 144⎛⎫+=- ⎪⎝⎭,不合要求,B 错误;C 选项,当2023π4θ=时,2023ππsin sin 506π044⎛⎫+==⎪⎝⎭,故C 正确;D 选项,当2025π4θ=时,2025ππsin 144⎛⎫+=⎝⎭,D 错误.故选:C 2.C【分析】由交集的定义求得A B ⋂,根据子集个数的计算方法即可求解.【详解】由题意得,{3,0,3}A B ⋂=-,则A B ⋂的子集有328=个,故选:C .3.B【分析】根据给定条件,求出劣弧AB 的长,再利用扇形面积公式计算即得.【详解】由圆M 与圆N 外切,得2MN =,又圆M ,圆N 与x 轴分别相切于原点O 和点B ,则2OB MN ==,所以劣弧AB 长等于2OB =,所以劣弧AB 对应的扇形面积为12112⨯⨯=.故选:B 4.A【分析】由圆锥的体积公式及圆锥高、半径与母线的关系计算即可.【详解】设上、下两圆锥的底面半径为r ,高分别为12,h h ,体积分别为12,V V ,因为上圆锥的高与底面半径相等,所以1h r =,则2111222221π1312π3r h V h r V h h r h ====得,22h r =,=,5=,故选:A .5.D【分析】求得()f x 在()()22f ,的切线方程,代入16,019⎛⎫⎪⎝⎭求解即可.【详解】()2f x x b '=+,(2)4f b '=+,()242f b =+,则()f x 在()()22f ,处的切线方程为()()()4242y b b x -+=+-,由题意得,切线过16,019⎛⎫⎪⎝⎭代入得,()()16424219b b ⎛⎫-+=+- ⎪⎝⎭,解得34b =,故选:D .6.D【分析】由已知可知1PF ,2PF的坐标和模,由向量数量积的定义及坐标运算可得关于0x 的不等关系,即可求解.【详解】因为椭圆C :22162x y +=,所以26a =,22b =,所以2224c a b =-=,所以()12,0F -,()22,0F ,因为点()00,P x y 在C 上,所以2200162x y +=,所以2200123y x =-,0x <<,又()1002,PF x y =--- ,()2002,PF x y =-- ,所以222120002423PF PF x y x ⋅=+-=- ,又)10033PF x ==+=+ ,)2003PF x x ==-=- ,所以121212cos PF PF PF PF F PF ⋅=⋅∠ ,因为12F PF ∠大于π3,所以121212πcos cos 3PF PF F PF PF PF ⋅∠<⋅ ,所以()()2000221233332x x x -<+⋅-⋅,解得0x <<所以0x 的取值范围是(.故选:D .7.A【分析】由不等式化简构造新函数,利用导数求得新函数的单调性,即可求解原不等式.【详解】不等式()ln 1exf x x->等价于()e ln x f x x >+,即()e ln 0x f x x -+>,构造函数()()e ln ,0x g x f x x x =-+>,所以1()()e xg x f x x''=--,因为0x >时,()1e xf x x<'+,所以()0g x '<对(0,)∀∈+∞x 恒成立,所以()g x 在(0,)+∞单调递减,又因为(1)(1)e ln10g f =--=,所以不等式()e ln 0x f x x -+>等价于()(1)g x g >,所以01x <<,即()ln 1exf x x->的解集为()0,1.故选:A.8.B【分析】由()()()()88321211x x x x ⎡⎤⎡⎤++=++++⎣⎦⎣⎦,利用二项式定理求解指定项的系数.【详解】()()()()88321211x x x x ⎡⎤⎡⎤++=++++⎣⎦⎣⎦,其中()811x ⎡⎤++⎣⎦展开式的通项为()()88188C 11C 1rrr r rr T x x --+=+⋅=+,N r ∈且8r ≤,当0r =时,()()8818C 11T x x =+=+,此时只需乘以第一个因式()12x ⎡⎤++⎣⎦中的2,可得()821x +;当1r =时,()()77128C 181T x x =+=+,此时只需乘以第一个因式()12x ⎡⎤++⎣⎦中的()1x +,可得()881x +.所以82810a =+=.故选:B【点睛】关键点点睛:本题的关键点是把()()832x x ++表示成()()81211x x ⎡⎤⎡⎤++++⎣⎦⎣⎦,利用即可二项式定理求解.9.ABD【分析】根据异面直线成角,线面垂直的判定定理,梯形面积公式逐项判断即可.【详解】对于A ,由于BN ⊂平面11BB C C ,1MB 平面1111BB C C B ,B BN =∉,故直线BN 与1MB 是异面直线,故A 正确;对于B ,如图,连接1CD ,因为M N ,分别为棱111C D C C ,的中点,所以1∥MN CD ,所以直线MN 与AC 所成的角即为直线1CD 与AC 所成的角,又因为1ACD △是等边三角形,所以直线1CD 与AC 所成的角为π3,故直线MN 与AC 所成的角是π3,故B 正确;对于C ,如图,假设直线MN ⊥平面ADN ,又因为DN ⊂平面ADN ,所以MN DN ⊥,而222MN DN DM ===,这三边不能构成直角三角形,所以DN 与MN 不垂直,故假设错误,故C 错误;对于D ,如图,连接11,A B A M ,因为111,A B CD CD MN ∥∥,所以1//A B MN ,所以平面BMN 截正方体所得的截面为梯形1A BNM ,且11,2MN A B A M BN ====4,所以截面面积为19(2248⨯+⨯=,故D 正确.故选:ABD.10.BCD【分析】由互斥事件的定义即可判断A ;由独立事件的乘法公式验证即可判断B ;由平均值及方差的公式即可判断C ;由二项分布的概率公式即可判断D .【详解】对于A ,事件“至少有一个黑球”与事件“至少有一个红球”可以同时发生,所以不是互斥事件,故A 错误;对于B ,设A =“第一次向上的点数是1”,B =“两次向上的点数之和是7”,则()16P A =,()61366P B ==,()136P AB =,因为()()()P AB P A P B =⋅,所以事件A 与B 互相独立,故B 正确;对于C ,由123452,,,,,x x x x x 的平均数是7,得12345,,,,x x x x x 的平均数为8,由123452,,,,,x x x x x 方差是6,则()()222222123451234514752536xx x x x x x x x x ++++-+++++⨯+=,所以()()222222123451234516856x x x x x x x x x x ++++-+++++⨯=,所以12345,,,,x x x x x 的方差()()22222212345123451685655xx x x x x x x x x ++++-+++++⨯=,故C 正确;对于D ,由()10,0.8B X 得,当()110,Z x r r r =≤≤∈时,()101041C 55rrr P x r -⎛⎫⎛⎫==⋅ ⎪⎪⎝⎭⎝⎭,当2r ≥时,令()()()101011111041C 411551141C 55r rr r r r P x r r P x r k ----⎛⎫⎛⎫⋅ ⎪ ⎪=-⎝⎭⎝⎭==≥=-⎛⎫⎛⎫⋅ ⎪ ⎝⎭⎝⎭,即445r ≤,令()()()10101911041C 1551141041C 55r rrr r r P x r r P x r k -+-+⎛⎫⎛⎫⋅ ⎪ ⎪=+⎝⎭⎝⎭==≥=+-⎛⎫⎛⎫⋅ ⎪ ⎪⎝⎭⎝⎭,解得395r ≥,即394455r ≤≤,所以当8r =时,()8P X =最大,故D 正确,故选:BCD .11.ACD【分析】由121533PQ PF t PF =+ ,且12,,F Q F 三点共线,得到25t =,可判定A 正确;根据双曲线的定义和122EF EF c +=,求得12,EF a c EF c a =+=-,可判定B 错误;利用角平分线定理得到11222PF QF PF QF ==,结合三角形的面积公式,分别求得,c r 的值,可判定C 正确;结合离心率的定义和求法,可判定D 正确.【详解】对于A 中,因为12515333PQ PI PF t PF ==+,且12,,F Q F 三点共线,所以15133t +=,可得25t =,所以A 正确;对于B 中,设切点分别为,,E F G ,则12122EF EF PF PF a -=-=,又因为122EF EF c +=,所以12,EF a c EF c a =+=-,所以点E 为右顶点,圆心I 的横坐标为2,所以B 错误;对于C 中,因为121233PQ PF PF =+ ,所以122QF QF =,由角平分线定理,得11222PF QF PF QF ==,又因为1224PF PF a -==,所以128,4PF PF ==,由53PQ PI = 可得52P y r =,所以()121152122222PF F S c r c r =+⋅=⨯⨯ ,可得4c =,所以128F F =,则12PF F △为等腰三角形,所以1211(812)422PF F S r =+⋅=⨯⨯ 5r =,所以C 正确;对于D 中,由离心率422c e a ===,所以D 正确.【点睛】方法点拨:对于双曲线的综合问题的求解策略:1、与双曲线的两焦点有关的问题,在“焦点三角形”中,常利用正弦定理、余弦定理,结合122PF PF a -=,运用平方的方法,建立12PF PF ⋅的联系;2、当与直线有关的问题,常常联立直线与双曲线的方程,消元后利用一元二次方程的判别式,根与系数的关系构造相关变量关系式进行求解;3、当与向量有关相结合时,注意运用向量的坐标运算,将向量间的关系转化为点的坐标问题,再根据与系数的关系,将所求问题与条件建立联系求解.12.3-【分析】根据向量线性运算和数量积公式得到方程,求出答案.【详解】()()()22,44,26,2a b +=+-=,()()()21,6,2620c a b λλ⋅+=⋅=+=,解得3λ=-.故答案为:3-13.10,,12(答案不唯一,填写其中一个即可)【分析】根据三角降幂公式化简,再结合图象求得k 的取值即可.【详解】因为()()2cos 0x k ωϕω+=≠,所以cos 2()12x k ωϕ++=,即cos 2()21x k ωϕ+=-,要想方程所有正实根从小到大排列构成等差数列,则需要210k -=或1±,所以10,1,2k =.故答案为:10,,12(答案不唯一,填写其中一个即可).14.9113【分析】(1)由()f x 的图象过点()1,2得21a b +=,根据基本不等式“1”的妙用计算即可;(2)由()f x 的图象过点(),ln c ab c +得()22c ac b a c +=-,进而得出22c ac b a c+=-,利用换元法及基本不等式即可求得3ca b+的最大值,即可得出t 的最小值.【详解】(1)由()f x 的图象过点()1,2得,(1)122f a b =++=,即21a b +=,所以()12222559b a a b a b a b ⎛⎫++=++≥+ ⎪⎝⎭,当且仅当22b a a b =,即13a b ==时等号成立.由()3a b t c +≥恒成立得,3ct a b≥+,(2)因为()f x 的图象过点(),ln c ab c +,则()()22ln ln f c c a b c c ab c =+++=+,即()22c ac b a c +=-,当2a c =时,0c =不合题意舍,所以2a c ≠,即2a c ≠,则22c acb a c+=-,则由0b >得2a c >,所以222222233533512ac c c ac a ac c c a b a ac c a a a c c c --===+-+⎛⎫+-+ ⎪⎝⎭+-,设20am c-=>,所以()()222237332521351a m m c m m a a m m c c -==+++-++⎛⎫-+ ⎪⎝⎭1131337m m =≤++,当且仅当33m m=,即1m =,则3,4a c b c ==时,等号成立,故答案为:9;113.【点睛】方法点睛:第二空由()f x 的图象过点(),ln c ab c +得出22c acb a c+=-,代入消元得出关于,a c 的齐次式,换元后根据基本不等式计算可得.15.(1)证明见解析(2)30︒【分析】(1)取11B C 的中点D ,连接1,,A D CD DE ,先得出平面1//A DC 平面1AB E ,由面面平行证明线面平行即可;(2)建立空间直角坐标系,根据面面夹角的向量公式计算即可.【详解】(1)取11B C 的中点D ,连接1,,A D CD DE ,由直三棱柱111ABC A B C -得,1111,//B C BC B C BC =,1111,//AA BB AA BB =,因为E 是棱BC 的中点,点D 是11B C 的中点,所以1B D CE =,所以四边形1ECDB 为平行四边形,所以1//CD B E ,同理可得四边形1BEDB 为平行四边形,所以11,//,BB DE BB DE =所以11,//AA DE AA DE =,所以四边形1AEDA 为平行四边形,所以1//A D AE ,因为AE ⊂平面1AB E ,1A D ⊄平面1AB E ,所以1A D //平面1AB E ,同理可得//CD 平面1AB E ,又1A D CD D = ,1,A D CD ⊂平面1A DC ,所以平面1//A DC 平面1AB E ,又1AC ⊂平面1A DC ,所以1//A C 平面1AB E .(2)设122AB AC AA ===,以A 为原点,分别以1,,AB AC AA 所在直线为,,x y z 轴建立空间直角坐标系,如图所示,则()()()()110,0,0,0,0,1,2,0,1,1,1,0A A B E ,所以()()()()11111,1,0,2,0,1,2,0,0,1,1,1AE AB A B EA ====--,设平面1AEB 的一个法向量为()1111,,n x y z =,由11100AE n AB n ⎧⋅=⎪⎨⋅=⎪⎩ 得,1111020x y x z +=⎧⎨+=⎩,取11x =,的()11,1,2n =-- ,设平面11A EB 的一个法向量为()2222,,n x y z =,由112120A B n EA n ⎧⋅=⎪⎨⋅=⎪⎩ 得,2222200x x y z =⎧⎨--+=⎩,取21y =,的()20,1,1n = ,设平面1AEB 与平面11A EB 的夹角为θ,则1212cos n n n n θ⋅===由图可知二面角11A B E A --为锐角,则二面角11A B E A --的大小为30︒.16.(1)21n a n =+(2)28(1)41nn n n -++【分析】(1)根据12311S S S ++,,成等比数列求得1a ,即可求得{}n a 的通项公式.(2)根据{}n a 的通项公式求得n S ,分奇偶项分别求出n b 再求和,即可求得{}n b 的前4n 项和.【详解】(1)因为2213(1)(1)S S S =++,所以2111(22)(1)(37)a a a +=++,即11(1)(3)0a a +-=,解得11a =-或3,又因为0n a >,所以13a =,所以32(1)21n a n n =+-=+.(2)1()(2)2n n n a a S n n +==+,所以1111()22nS n n =-+,所以n 为奇数时,1341134111111111111(1()()2323524141n n b b b S S S n n --+++=+=-+-++--+ 11(1)241n =-+,n 为偶数时,424424(42)44(42)16n n n n b b S S n n n n n--+=-=-⨯-⨯+=-24416(12)8(1)n b b b n n n +++=-+++=-+ ,所以前4n 项和4112(1)8(1)8(1)24141n nT n n n n n n =--+=-+++.17.(1)2y x =(2)证明见详解.【分析】(1)设动点F 的坐标为(),x y ,直接利用题中的条件列式并化简,从而求出动点F 的轨迹方程;(2)要证A 为线段BM 的中点,只需证12A B x x x =+即可,设直线的方程为12x my =+,设点()11,M x y ,()22,N x y ,()1,A A x y ,()1,B B x y ,联立直线与曲线的方程,列出韦达定理,由直线OP ,ON 可求得点,A B ,计算120B A x x x +-=即可证.【详解】(1)设点(),F x y ,则(),1E x -,因为OF OE ⊥,所以0OF OE =⋅ ,所以20x y -=,即2x y =,所以动点F 的轨迹方程为:2y x =;(2)因为BM y ⊥轴,所以设()11,M x y ,()22,N x y ,()1,A A x y ,()1,B B x y ,若要证A 为线段BM 的中点,只需证12A B x x x =+即可,当直线MN 斜率不存在或斜率为0时,与抛物线只有一个交点,不满足题意,所以直线MN 斜率存在且不为0,12120x x y y ≠,设直线MN :12x my =+,0m ≠,由212x my y x⎧=+⎪⎨⎪=⎩得22210mx x -+=,442148m m ∆=-⨯⨯=-,由题意可知,直线MN 与抛物线C 有两个交点,所以0∆>,即480m ->,所以12m <,由根与系数的关系得,121x x m +=,1212x x m=,由题意得,直线OP 方程y x =,所以()11,A y y ,直线ON 方程22y y x x =,所以2112,x y B y y ⎛⎫⎪⎝⎭,所以22212111111111222222212B A x y x x x x x x x y x x x x y x x ⎛⎫⋅+-=+-=+-=+- ⎪⎝⎭()121211112122222112202x x x x x x x x x x x x x x m m +-⎛⎫=⋅=+-=-⨯= ⎪⎝⎭,所以A 为线段BM 的中点.18.(1)0.035a =;72.5(2)0.6(3)160【分析】(1)由频率分布直方图的概率和为1,列出方程,求得0.035a =,再利用百分位数的计算方法,即可求解;(2)设“抽到男学生”为事件A ,“评分80分以上”为事件B ,结合全概率公式,即可求解;(3)根据题意,利用方差的计算公式,求得245x y s s s =,得到160y x y x s s m n s s +=,令x y s t s =,得到160n my t +=,利用基本不等式求得nmy t+≥200n m =-,得出不等式160≥m 的范围,即可求解.【详解】(1)解:由频率分布直方图的性质,可得:(0.0020.0040.00140.00200.0025)101a +++++⨯=,解得0.035a =,设25%分位数为0x ,由分布直方图得0.020,040.140.2++=,所以0700.05100.2x -=,解得072.5x =.(2)解:设“抽到男学生”为事件A ,“评分80分以上”为事件B ,可得()0.8,(|)0.55,()0.2,(|)0.8P A P B A P A P B A ====,由全概率公式得()()(|)()(|)0.80.550.20.80.6P B P A P B A P A P B A =⋅+⋅=⨯+⨯=.(3)解:由x y =,可得mx n yz x m n+==+,所以22222111111[()()][()()]200200m n m ni i i i i j i j s x z y z x x y y =====-+-=-+-∑∑∑∑2214()2005x y x y ms ns s s =+=,所以22160x y x y ms ns s s +=,即160y xy xs s mn s s +=,令x y s t s =,则160nmy t+=,由于n my t +≥=n my t =时,等号成立,又因为200n m =-,可得160≥=220064000m m -+≥,解得40m ≤或160m ≥,因为1200n m ≤≤≤且200m n +=,所以160m ≥,所以实数m 的最大值为160.19.(1)答案见解析,证明见解析(2)(],1-∞(3)证明见解析【分析】(1)类比,写出平方关系,倍角关系和导数关系,并进行证明;(2)构造函数()()sh F x x kx =-,()0,x ∞∈+,求导,分1k ≤和1k >两种情况,结合基本不等式,隐零点,得到函数单调性,进而得到答案;(3)结合新定义将所证变为()()121112121e sin e sin e cos x x x x x x x x x +-+>-+-,设函数()=e sin x f x x -,即证()()()12121f x x f x x f x >+'+,先利用导数求得()=e cos x f x x -'在()0,∞+上单调递增,再设()()()()()111,0h x f x x f x xf x x =+-->',利用导数得其单调性及()0h x >,从而()()()111f x x f x xf x >+'+,得证.【详解】(1)平方关系:()()22chsh 1x x -=;倍角公式:()()()sh 22sh ch x x x =;导数:()()sh()ch()ch()sh()x x x x ''⎧=⎪⎨=⎪⎩.理由如下:平方关系,()()2222e e e e ch sh 22x x x x x x --⎛⎫⎛⎫+--=- ⎪ ⎪⎝⎭⎝⎭2222e e e e 12244x x x x --++=--=+;倍角公式:()()()()()22e e e e e e sh 22sh ch 22x x x x x x x x x ----+-===;导数:()()e e ee sh()ch 22x xxxx x --'--+===,()e e ch()sh 2x x x x -'-==;以上三个结论,证对一个即可.(2)构造函数()()sh F x x kx =-,()0,x ∞∈+,由(1)可知()()ch F x x k ='-,①当1k ≤时,由e e ch()12x xx -+=≥,又因为0x >,故e e x x -≠,等号不成立,所以()()ch 0F x x k '=->,故()F x 为严格增函数,此时()(0)0F x F >=,故对任意0x >,()sh x kx >恒成立,满足题意;②当1k >时,令()()(),0,G x F x x ∞∈'=+,则()()sh 0G x x ='>,可知()G x 是严格增函数,答案第15页,共15页由(0)10G k =-<与1(ln 2)04G k k=>可知,存在唯一0(0,ln 2)x k ∈,使得0()0G x =,故当0(0,)x x ∈时,0()()()0F x G x G x =<=',则()F x 在0(0,)x 上为严格减函数,故对任意0(0,)x x ∈,()()00F x F <=,即()sh x kx >,矛盾;综上所述,实数k 的取值范围为(],1-∞;(3)因为()()ch sh e xx x +=,所以原式变为()()21212121e 1e sin sin cos x x x x x x x x --⋅>+--,即证()()121112121e sin e sin e cos x x x x x x x x x +-+>-+-,设函数()=e sin x f x x -,即证()()()12121f x x f x x f x >+'+,()=e cos x f x x -',设()()=e cos x t x f x x =-',()e sin x t x x '=+,0x >时()0t x '>,()t x 在()0,∞+上单调递增,即()=e cos x f x x -'在()0,∞+上单调递增,设()()()()()111,0h x f x x f x xf x x =+-->',则()()()11h x f x x f x =+'-'',由于()=e cos x f x x -'在()0,∞+上单调递增,11x x x +>,所以()()11f x x f x +>'',即()0h x '>,故()h x 在()0,∞+上单调递增,又()00h =,所以0x >时,()0h x >,所以()()()1110f x x f x xf x +-->',即()()()111f x x f x xf x >+'+,因此()()()12121f x x f x x f x >+'+恒成立,所以原不等式成立,得证.【点睛】思路点睛:对新定义的题型要注意一下几点:(1)读懂定义所给的主要信息筛选出重要的关键点(2)利用好定义所给的表达式以及相关的条件(3)含有参数是要注意分类讨论的思想.。
(完整word版)高考数学模拟试题及答案
高考数学模拟试题 (一)一、选择题(本题共12个小题,每题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的,请把符合要求一项的字母代号填在题后括号内.)1.已知集合M={x∣-3x -28 ≤0},N = {x|-x-6>0},则M∩N 为()A.{x| 4≤x<-2或3<x≤7}B. {x|-4<x≤-2或3≤x<7 }C.{x|x≤-2或x>3 }D. {x|x<-2或x≥3}2.在映射f的作用下对应为,求-1+2i的原象()A.2-iB.-2+iC.iD.23.若,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a4.要得到函数y=sin2x的图像,可以把函数的图像()A.向左平移个单位B. 向右平移个单位C.向左平移个单位D. 向右平移个单位5. 如图,是一程序框图,则输出结果中()A. B.C. D.6.平面的一个充分不必要条件是()A.存在一条直线B.存在一个平面C.存在一个平面D.存在一条直线7.已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线有且仅有一个交点,则椭圆的长轴长为()A. B. C. D.8.O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足,则p的轨迹一定通过△ABC的()A.外心B. 重心C.内心D. 垂心9.设{a n}是等差数列,从{a1,a2,a3,…,a20}中任取3个不同的数,使这3个数仍成等差数列,则这样不同的等差数列最多有()A.90个 B.120个C.180个 D.200个10.下列说法正确的是 ( )A.“x2=1”是“x=1”的充分不必要条件B.“x=-1”是“x2-5x-6=0”的必要不充分条件C.命题“使得”的否定是:“均有”D.命题“若α=β,则sinα=sinβ”的逆否命题为真命题11.设等比数列的公比q=2,前n项和为,则()A. 2B. 4C.D.12.设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.-2 C. D.二、填空题(本大题共4小题,每小题5分,满分20分.把答案直接填在题中的横线上.)13. 已知,,则的最小值.14. 如图是一个几何体的三视图,根据图中数据可得几何体的表面积为.15. 已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n=a0+a1x+a2x+…+a n x n,若a1+a2+…+a n-1=29-n,则自然数n等于.16.有以下几个命题:①曲线x2-(y+1)2=1按a=(-1,2)平移可得曲线(x+1)2-(y+3)2=1②与直线相交,所得弦长为2③设A、B为两个定点,m为常数,,则动点P的轨迹为椭圆④若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,则点F2关于∠F1PF2的外角平分线的对称点M的轨迹是圆其中真命题的序号为(写出所有真命题的序号).三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)求函数y=7-4sinxcosx+4cos2x-4cos4x的最大值与最小值.18.(本小题满分12分)同时抛掷3个正方体骰子,各个面上分别标以数(1,2,3,4,5,6),出现向上的三个数的积被4整除的事件记为A.(1)求事件A发生的概率P(A);(2)这个试验重复做3次,求事件A至少发生2次的概率;(3)这个试验反复做6次,求事件A发生次数ξ的数学期望.19.(本小题满分12分)如图所示,已知四棱锥P-ABCD的底面是直角梯形, ∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,O是BC的中点,AO交BD于E.(1)求证:PA⊥BD;(2)求证:平面PAD⊥平面PAB;(3)求二面角P-DC-B.20. (本小题满分12分)如图,M是抛物线y2=x上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB.(1)若M为定点,证明直线EF的斜率为定值;(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹方程.21.(本小题满分12分)已知函数的图象与直线相切,切点的横坐标为1.(1)求函数f(x)的表达式和直线的方程;(2)求函数f(x)的单调区间;(3)若不等式f(x)≥2x+m对f(x)定义域内的任意x恒成立,求实数m的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)[几何证明选讲]如图,E是圆内两弦AB和CD的交点,直线EF//CB,交AD的延长线于F,FG切圆于G,求证:(1)∽;(2)EF=FG.23.[选修4-4:坐标系与参数方程]已知曲线C:(t为参数), C:(为参数).(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;(2)若C上的点P对应的参数为,Q为C上的动点,求PQ中点M到直线(t为参数)距离的最小值.24.【不等式选讲】解不等式:参考答案1.A2.D3.A4.A5.D6.D7.C8.B9.C 10.D 11.C 12.B13. 3 14. 12π15.4 16.④17.解:y=7-4sinxcosx+4cos2x-4cos4x=7-2sin2x+4cos2x(1-cos2x)=7-2sin2x+4cos2xsin2x=7-2sin2x+sin22x=(1-sin2x)2+6.由于函数z=(u-1)2+6在[-1,1]中的最大值为z max=(-1-1)2+6=10,最小值为z min=(1-1)2+6=6,故当sin2x=-1时y取得最大值10,当sin2x=1时y取得最小值6.18.解:(1)解法1先考虑事件A的对立事件,共两种情况:①3个都是奇数;②只有一个是2或6,另两个都是奇数,.解法2 事件的发生有以下五种情况:三个整数都是4:;有两个整数是4,另一个不是4:;只有一个数是4,另两个不是4:;三个数都是2或6:;有两个数是2或6,另一个数是奇数:故得.(2).(3).19.解法一:(1)证明:∵PB=PC,∴PO⊥BC.又∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,∴PO⊥平面ABCD.在梯形ABCD中,可得Rt△ABO≌Rt△BCD,∴∠BEO=∠OAB+∠DBA=∠DBC+∠DBA=90°,即AO⊥BD.∵PA在平面ABCD内的射影为AO,∴PA⊥BD.(2)证明:取PB的中点N,连接CN.∵PC=BC, ∴CN⊥PB.①∴AB⊥BC,且平面PBC⊥平面ABCD.∴AB⊥平面PBC.∵AB平面PAB,∴平面PBC⊥平面PAB.②由①、②知CN⊥平面PAB,连接DM、MN,则由MN∥AB∥CD,得四边形MNCD为平行四边形,∴DM⊥平面PAB.∵DC⊥BC,且平面PBC⊥平面ABCD,∴DC⊥平面PBC,∵PC平面PBC.∴DC⊥PC.∴∠PCB为二面角P-DC-B的平面角.∵三角形PBC是等边三角形,∴∠PCB=60°,即二面角P-DC-B的大小为60°.∵DM平面PAD,∴平面PAD⊥平面PAB.解法二:取BC的中点O,因为三角形PBC是等边三角形,由侧面PBC⊥底面ABCD,得PO⊥底面ABCD.以BC中点O为原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,建立空间直角坐标系O-xyz.(1)证明:∵C D=1,则在直角梯形中,AB=BC=2,在等边三角形PBC中,.(2)证明:,(3)显然所夹角等于所示二面角的平面角.20. 解:(1)设M(y02,y0),直线ME的斜率为k(k>0),则直线MF的斜率为-k,所以直线ME的方程为y-y0=k(x-y02).....所以直线EF的斜率为定值.(2)当∠EMF=90°时,∠MAB=45°,所以k=1.∴直线ME的方程为:y-y0=x-y02..同理可得.设重心消去得21.解:(1). ∴f(1)=1.∴节点为(1,1).∴1=-2×1+c.∴c=3.∴直线l的方程为y=-2x+3.(2).(3)令,由得,在上是减函数,在上是增函数...22.解: EF//CB,∽.FG是圆的切线.故FG=EF.23.解:(Ⅰ).为圆心是,半径是1的圆,为中心是坐标原点,焦点在轴上,长半轴长是8,短半轴长是3的椭圆.(Ⅱ)当时,,故,为直线.M到的距离 .从而当时,d取得最小值.24.解:(1)时,得,解得,所以,;(2)时,得,解得,所以,;(3)时,得,解得,所以,无解.综上,不等式的解集为.。
2024年河北高考数学模拟试卷及答案
2024年河北高考数学模拟试卷及答案(一)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知抛物线C :212y x = ,则C 的准线方程为 A . 18x =B .1-8x =C .18y =D .1-8y = 2.已知复数121z i=+ ,复数22z i =,则21z z -=A .1BC ..10 3.已知命题:(0,)ln xp x e x ∀∈+∞>,,则 A .p 是假命题,:(-)ln xp x e x ⌝∃∈∞≤,0,B .p 是假命题, :(0+)ln xp x e x ⌝∃∈∞≤,,C .p 是真命题,:(-)ln xp x e x ⌝∃∈∞≤,0,D .p 是真命题,:(0+)ln xp x e x ⌝∃∈∞≤,,4.已知圆台1O O 上下底面圆的半径分别为1,3,母线长为4,则该圆台的侧面积为 A .8πB .16πC .26πD .32π5.下列不等式成立的是A.66log 0.5log 0.7>B. 0.50.60.6log 0.5>C.65log 0.6log 0.5>D. 0.60.50.60.6>6.某校为了解本校高一男生身高和体重的相关关系,在该校高一年级随机抽取了7名男生,测量了他们的身高和体重得下表:由上表制作成如图所示的散点图:由最小二乘法计算得到经验回归直线1l 的方程为11ˆˆˆy b x a =+,其相关系数为1r ;经过残差分析,点(167,90)对应残差过大,把它去掉后,再用剩下的6组数据计算得到经验回归直线2l 的方程为22ˆˆˆy b x a =+,相关系数为2r .则下列选项正确的是 A .121212ˆˆˆˆ,,b b a a r r <>< B .121212ˆˆˆˆ,,b b a a r r <<> C .121212ˆˆˆˆ,,b b a a r r ><> D .121212ˆˆˆˆ,,b b a a r r >>< 7.函数()y f x =的导数()y f x '=仍是x 的函数,通常把导函数()y f x '=的导数叫做函数的二阶导数,记作()y f x ''=,类似地,二阶导数的导数叫做三阶导数,三阶导数的导数叫做四阶导数一般地,n-1阶导数的导数叫做 n 阶导数,函数()y f x =的n 阶导数记为()n y fx =(),例如xy e =的n 阶导数()()n xx ee =.若()cos 2xf x xe x =+,则()500f =()A .49492+B .49C .50D .50502-8.已知函数()cos()f x x ωϕ=+的部分图象如下,12y =与其交于A ,B 两点. 若3AB π=,则ω=A .1B .2C .3D .4二、选择题:本题共3小题,每小题6分,共18分。
2023年普通高等学校招生全国统一考试模拟测试(新高考)数学试题及答案
2023年普通高等学校招生全国统一考试模拟测试(新高考)数学试题及答案一、单选题(20分)请从每题的选项中选择一个最符合题意的答案,并在答题卡上将相应的字母涂黑。
1.若函数f(x)在区间[-1,3]上连续,则其必定是 A. 递减函数 B. 倒U型函数 C. 奇函数 D. 偶函数2.已知三角形ABC,AB=AC,角A=40°,则角B的度数等于 A. 40° B. 70° C. 80° D. 100°3.设a,b都是正数,且logₐ1/3=log₃b/2,则a/b的值等于 A. 1/4 B. 1/3 C. 1/2 D. 24.若a,b>0,且a+b=1,则a²+b²的最小值是 A. 1/2 B.1/√2 C. 1/4 D. 15.若直线y=mx+2与曲线y=4x²-3x-1有两个公共点,则m的取值范围是 A. (-∞,1/8) B. (-∞,0)∪(0,1/8) C. (-∞,1/8]∪[0,+∞) D. (-∞,0)二、多选题(20分)请从每题的选项中选择一个或多个最符合题意的答案,并在答题卡上将相应的字母涂黑。
6.设实数x满足条件|x-3| < 2,下列等式成立的是 A.x > 5 B. x < 1 C. x ≠ 3 D. x > 17.在直角坐标系中,下列函数中具有对称中心为(2,-1)的是 A. y=x-1 B. y=-(x-2)²-1 C. y=√(x²-4x+4) D. y=1/x-38.设集合A={a, a², a³},则以下命题成立的是 A. 若a>1,则a>1/a² B. 若a<0,则a³<0 C. 若a=1, 则A={1} D. 若a=0,则A={0}9.已知函数f(x)=x³+ax²+bx+c,若它与y=x+3有恰有一个交点,并且这个交点横纵坐标都是正数,则以下命题成立的是 A. a+b = -1 B. a+c = -3 C. a+c > 0 D. a+b+c > 010.设集合A={x | x=x²-2x-3, x∈R},B={x | x²+x-6=0,x∈R},则以下命题成立的是A. A⊂B B. A∩B=∅ C. B⊆A D.B∪A=∅三、填空题(20分)请根据题目要求填写空缺,并在答题卡上写出完整的答案。
2024年高考数学模拟试题及答案
2024年高考数学模拟试题及答案2024年高考数学模拟试题及答案一、选择题1、下列函数中,既是偶函数又在区间(0, ∞)上单调递增的是()。
A. y = |x|B. y = x^3C. y = log2xD. y = sinx2、已知平面向量a,b满足|a|=1,|b|=2,且a与b的夹角为120°,则(2a-b)·(a+3b)=()。
A. -7 B. -5 C. 1 D. 93、已知函数f(x)=ax^7+bx^5+cx^3+dx+5,且f(-5)=3,则f(5)=()。
A. -7 B. -3 C. 3 D. 7二、填空题1、若等差数列{an}的前n项和为Sn,且a1=4,S4=28,则{an}的通项公式为。
2、已知球O的半径为4,则球O的内接正方体的棱长为。
3、若函数f(x)=log2x,则f(4)的值是。
三、解答题1、已知向量a=(1,2),b=(cosθ,sinθ),设向量ma+b与向量a-mb平行,求tanθ的值。
2、已知函数f(x)=|x-1|+|x-2|+|x-3|+…+|x-9|,当且仅当x=5时取得最小值,求最小的m和最大的n,使得当x∈[m, n]时,函数f(x)取得最小值。
3、已知正四棱柱ABCD-A1B1C1D1的侧棱长为3,底面边长为2,E为BC中点。
求点B1到平面BDE的距离。
四、选做题1、选修4-1:几何证明选讲在△ABC中,D是BC的中点,E是AD上一点。
求证:EB=EC。
2、选修4-4:坐标系与参数方程在平面直角坐标系xOy中,以原点O为圆心、半径为r的圆与直线x=π/2相切。
求圆上点到直线x=π的距离的最大值和最小值。
3、选修4-5:不等式选讲已知a、b、c均为正数,且a+b+c=1。
求证:(1/a)+(1/b)+(1/c)≥9。
五、附加题1、某中学共有学生2000人,其中高一年级共有学生900人,男生500人,女生400人。
高二年级共有学生1100人,男生600人,女生500人。
高考数学模拟试题含答案
高考数学模拟试题 (一)一、选择题(本题共12个小题,每题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的,请把符合要求一项的字母代号填在题后括号内.)1.已知集合M={x∣-3x -28 ≤0},N = {x|-x-6>0},则M∩N 为()A.{x| 4≤x<-2或3<x≤7}B. {x|-4<x≤-2或3≤x<7 }C.{x|x≤-2或x>3 }D. {x|x<-2或x≥3}2.在映射f的作用下对应为,求-1+2i的原象()A.2-iB.-2+iC.iD.23.若,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a4.要得到函数y=sin2x的图像,可以把函数的图像()A.向左平移个单位B. 向右平移个单位C.向左平移个单位D. 向右平移个单位5. 如图,是一程序框图,则输出结果中()A. B.C. D.6.平面的一个充分不必要条件是()A.存在一条直线B.存在一个平面C.存在一个平面D.存在一条直线7.已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线有且仅有一个交点,则椭圆的长轴长为()A. B. C. D.8.O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足,则p的轨迹一定通过△ABC的()A.外心B. 重心C.内心D. 垂心9.设{a n}是等差数列,从{a1,a2,a3,…,a20}中任取3个不同的数,使这3个数仍成等差数列,则这样不同的等差数列最多有()A.90个 B.120个C.180个 D.200个10.下列说法正确的是 ( )A.“x2=1”是“x=1”的充分不必要条件B.“x=-1”是“x2-5x-6=0”的必要不充分条件C.命题“使得”的否定是:“均有”D.命题“若α=β,则sinα=sinβ”的逆否命题为真命题11.设等比数列的公比q=2,前n项和为,则()A. 2B. 4C.D.12.设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.-2 C. D.二、填空题(本大题共4小题,每小题5分,满分20分.把答案直接填在题中的横线上.)13. 已知,,则的最小值.14. 如图是一个几何体的三视图,根据图中数据可得几何体的表面积为.15. 已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n=a0+a1x+a2x+…+a n x n,若a1+a2+…+a n-1=29-n,则自然数n等于.16.有以下几个命题:①曲线x2-(y+1)2=1按a=(-1,2)平移可得曲线(x+1)2-(y+3)2=1②与直线相交,所得弦长为2③设A、B为两个定点,m为常数,,则动点P的轨迹为椭圆④若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,则点F2关于∠F1PF2的外角平分线的对称点M的轨迹是圆其中真命题的序号为(写出所有真命题的序号).三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)求函数y=7-4sinxcosx+4cos2x-4cos4x的最大值与最小值.18.(本小题满分12分)同时抛掷3个正方体骰子,各个面上分别标以数(1,2,3,4,5,6),出现向上的三个数的积被4整除的事件记为A.(1)求事件A发生的概率P(A);(2)这个试验重复做3次,求事件A至少发生2次的概率;(3)这个试验反复做6次,求事件A发生次数ξ的数学期望.19.(本小题满分12分)如图所示,已知四棱锥P-ABCD的底面是直角梯形, ∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,O是BC的中点,AO交BD于E.(1)求证:PA⊥BD;(2)求证:平面PAD⊥平面PAB;(3)求二面角P-DC-B.20. (本小题满分12分)如图,M是抛物线y2=x上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB.(1)若M为定点,证明直线EF的斜率为定值;(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹方程.21.(本小题满分12分)已知函数的图象与直线相切,切点的横坐标为1.(1)求函数f(x)的表达式和直线的方程;(2)求函数f(x)的单调区间;(3)若不等式f(x)≥2x+m对f(x)定义域内的任意x恒成立,求实数m的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)[几何证明选讲]如图,E是圆内两弦AB和CD的交点,直线EF//CB,交AD的延长线于F,FG切圆于G,求证:(1)∽;(2)EF=FG.23.[选修4-4:坐标系与参数方程]已知曲线C:(t为参数), C:(为参数).(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;(2)若C上的点P对应的参数为,Q为C上的动点,求PQ中点M到直线(t为参数)距离的最小值.24.【不等式选讲】解不等式:参考答案1.A2.D3.A4.A5.D6.D7.C8.B9.C 10.D 11.C 12.B13. 3 14. 12π15.4 16.④17.解:y=7-4sinxcosx+4cos2x-4cos4x=7-2sin2x+4cos2x(1-cos2x)=7-2sin2x+4cos2xsin2x=7-2sin2x+sin22x=(1-sin2x)2+6.由于函数z=(u-1)2+6在[-1,1]中的最大值为z max=(-1-1)2+6=10,最小值为z min=(1-1)2+6=6,故当sin2x=-1时y取得最大值10,当sin2x=1时y取得最小值6.18.解:(1)解法1先考虑事件A的对立事件,共两种情况:①3个都是奇数;②只有一个是2或6,另两个都是奇数,.解法2 事件的发生有以下五种情况:三个整数都是4:;有两个整数是4,另一个不是4:;只有一个数是4,另两个不是4:;三个数都是2或6:;有两个数是2或6,另一个数是奇数:故得.(2).(3).19.解法一:(1)证明:∵PB=PC,∴PO⊥BC.又∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,∴PO⊥平面ABCD.在梯形ABCD中,可得Rt△ABO≌Rt△BCD,∴∠BEO=∠OAB+∠DBA=∠DBC+∠DBA=90°,即AO⊥BD.∵PA在平面ABCD内的射影为AO,∴PA⊥BD.(2)证明:取PB的中点N,连接CN.∵PC=BC, ∴CN⊥PB.①∴AB⊥BC,且平面PBC⊥平面ABCD.∴AB⊥平面PBC.∵AB平面PAB,∴平面PBC⊥平面PAB.②由①、②知CN⊥平面PAB,连接DM、MN,则由MN∥AB∥CD,得四边形MNCD为平行四边形,∴DM⊥平面PAB.∵DC⊥BC,且平面PBC⊥平面ABCD,∴DC⊥平面PBC,∵PC平面PBC.∴DC⊥PC.∴∠PCB为二面角P-DC-B的平面角.∵三角形PBC是等边三角形,∴∠PCB=60°,即二面角P-DC-B的大小为60°.∵DM平面PAD,∴平面PAD⊥平面PAB.解法二:取BC的中点O,因为三角形PBC是等边三角形,由侧面PBC⊥底面ABCD,得PO⊥底面ABCD.以BC中点O为原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,建立空间直角坐标系O-xyz.(1)证明:∵CD=1,则在直角梯形中,AB=BC=2,在等边三角形PBC中,.(2)证明:,(3)显然所夹角等于所示二面角的平面角.20. 解:(1)设M(y02,y0),直线ME的斜率为k(k>0),则直线MF的斜率为-k,所以直线ME的方程为y-y0=k(x-y02).....所以直线EF的斜率为定值.(2)当∠EMF=90°时,∠MAB=45°,所以k=1.∴直线ME的方程为:y-y0=x-y02..同理可得.设重心消去得21.解:(1). ∴f(1)=1.∴节点为(1,1).∴1=-2×1+c.∴c=3.∴直线l的方程为y=-2x+3.(2).(3)令,由得,在上是减函数,在上是增函数...22.解: EF//CB,∽.FG是圆的切线.故FG=EF.23.解:(Ⅰ).为圆心是,半径是1的圆,为中心是坐标原点,焦点在轴上,长半轴长是8,短半轴长是3的椭圆.(Ⅱ)当时,,故,为直线.精品文档. M到的距离 .从而当时,d取得最小值.24.解:(1)时,得,解得,所以,;(2)时,得,解得,所以,;(3)时,得,解得,所以,无解.综上,不等式的解集为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学模拟试卷
数 学
第I 卷(客观题共60分)
一、选择题(共12题,每题5分,共60分)
1、已知集合{}{}
12,03A x x B x x =-<=<<,则A B =
( )
A .{}
13x x -<< B .{}
03x x <<
C .{
}
12x x -<<
D .{
}
23x x <<
2、已知}5,53,2{2+-=a a M
,}3,106,1{2+-=a a N ,且}3,2{=⋂N M ,则a 的值( )
A .1或2
B .2或4
C .2
D .1
3、设集合{|32}M m m =∈-<<Z ,{|13}N
n n M
N =∈-=Z 则,≤≤ ( )
A .
{}01,
B .
{}101-,, C .{}01
2,, D .{}1012-,,, 4、若复数z 与其共轭复数z 满足:i z z 2+=,则复数z 的虚部为 ( )
A .1
B .i
C .2
D .-1
5、在复平面内,复数
2
1i
-对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6、复数的1
1
Z i =
-模为 ( )
A .
12 B .
2
C D .2
7、设i 是虚数单位,若复数10
()3a a R i
-
∈-是纯虚数,则a 的值为 ( )
A .-3
B .-1
C .1
D .3
8、下列命题中的真命题是( )
A.若,,d c b a >>则bd ac >
B.若,||b a >则2
2
b a > C.若,b a >则2
2
b a > D.若|,|b a >则2
2
b a >
9.下面程序框图所表示的算法的功能是( ).
A .计算1111......2349+++
的值 B .计算111
1......3549+++的值 C .计算11113599++++的值 D .计算111
1 (2399)
+++的值
10.以下给出的是计算111
13519
++++的值的一个程序框图,判断框内应填入的条件是( ).
A .10k ≤
B .10k <
C .19k ≤
D .19k <
11、如果执行下面的程序框图,输入n =6,m =4,那么输出的p 等于( )
A .720
B .360
C .240
D .120
12、如果执行下面的程序框图,那么输出的S 等于( )
A .10
B .22
C .46
D .94
第II 卷(主观题共90分)
二、填空题(共4个,每个5分,共20分)
13、设复数z 满足i z i 23)1(+-=+,则z 的虚部是 。
14、已知
i a i
i 31)1(3
+=+-,则__________=a 。
15、若}4,3,2,2{-=A ,},|{2A t t x x B
∈==,用列举法表示B= .
16、设y x ,满足约束条件⎪⎩⎪⎨⎧≤--≥-≥,
022,0,
0y x y x x 则y x z 23-=的最大值为 .
三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~20题为必考题,每个试题考生都必须作答。
第21、22题为选考题,考生根据要求作答。
(一)必考题17~21:每小题12分,共60分。
17、如果集合A={x |ax 2
+2x +1=0}中只有一个元素,求a 的值
18、若()34i x yi i +=+,,x y R ∈,求复数x yi +的模.
19、设m ∈R ,(
)
2
2
21i m m m +-+-是纯虚数,其中i 是虚数单位,求m.
20、求不等式组⎩⎨⎧<-<-0
30
122x x x 的解集.
(二)选考题:共10分。
请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
21.求不等式|x-1|-|x-5|<2的解集.
22.已知函数f(x)=|x-3|+|x-2|,求不等式f(x)≥3的解集.
1b4. a 6B 7D 9c10a11B12C
13.3; 14.i 32--15. 18. D 192m =-。