材料成型基础及热处理.ppt

合集下载

材料成型

材料成型

4、汽车半轴要求具有良好的强韧性,且杆部、花键处硬度要求≥52HRC。

现选用40Cr钢制造,其工艺路线如下:下料(棒料)→锻造毛坯→热处理①→校直→粗加工→热处理②→精加工→热处理③、④→磨削。

指出其工艺过程路线中应选用的热处理方法及目的,并说明杆部、花键处的最终热处理组织。

热处理①:正火。

其目的为:消除锻造应力;调整锻后的硬度,改善切削性能;细化晶粒,为淬火作好组织准备。

热处理②:调质。

其目的为:获得良好的强韧性,即良好的综合力学性能。

热处理③:表面淬火。

其目的是:获得M,提高杆部、花键处表面硬度。

热处理③:低温回火。

其目的为:消除表面淬火应力及脆性,得到高的硬度和耐磨性表层为回火M,心部为索氏体(S)5、一般精度的GCr15滚动轴承套圈,硬度60-65HRC。

(1)压力加工成形后、切削加工之前应进行什么预备热处理?其作用是什么?(2)该零件应采用何种最终热处理?有何作用?P162(1)球化退火降低硬度,球化Fe3C,以利于切削,并为淬火作好组织准备。

(2)淬火+低温退火淬火:获得高硬度M低温退火:去除脆性、应力,稳定组织。

6、用W18Cr4V W6Mo5Cr4V2Al钢制造铣刀,其加工工艺路线为:下料→锻造毛坯→热处理①→机械加工→去应力退火→热处理②、③→磨削。

请指出其工艺过程路线中热处理方法、目的及组织。

热处理①为球化退火:消除锻造应力;降低硬度,利于切削加工;为淬火作组织准备。

组织:S+粒状碳化物热处理②为淬火:获得M。

组织:M+未溶细粒状碳化物+大量残余A热处理③为高温回火(多次):消除淬火内应力,降低淬火钢脆性;减少残余A 含量;具有二次硬化作用,提高热硬性。

最终组织:回火M+粒状合金碳化物+少量残余A7、机床床头箱传动齿轮,45钢,模锻制坯。

要求齿部表面硬度52~56HRC,齿轮心部应具有良好的综合机械性能。

其工艺路线为:下料→锻造→热处理①→机械粗加工→热处理②→机械精加工→齿部表面热处理③+低温回火→精磨。

材料成型PPT课件

材料成型PPT课件

3、铸型填充条件
• (1)铸型导热能力 铸型材料导热系数和比容↑,对合金的激冷
作用越强,合金的充型能力↓。 • (2)铸型温度
铸型温度↑,充型能力↑。 • (3)铸型的阻力
阻力↑,则充型能力↓。 (型腔越狭窄、复杂,铸型材料发气量大)
23
第23页/共42页
二、合金的收缩性
1、合金收缩的概念
• 定义:合金在浇注、凝固直至冷却到室温的过程 中
变量与深度。 柔性最好,不受复杂程度的限制。
11
第11页/共42页
第一篇 金属的铸造成形工艺
第一章 铸造成形工艺理论基础
12
第12页/共42页
§1.1 铸造成形工艺的特点和分类
• 定义:将液态金属浇入到具有与零件形状、尺寸 相适应的铸型型腔中,待其冷却凝固后,以获得 毛坯、或零件的工艺方法,称为“铸造”。 铸件:通过铸造成形得到的毛坯、零件。
4
第4页/共42页
板料成形
Sheet-Metal Forming Processes
1 应用背景
5
第5页/共42页
焊接 Welding
第6页/共42页
铸造
Casting
6
非金属材料成形
第7页/共42页
锻造 Forging
7
3、发展趋势:
(1)精密的材料成形
近无余量成形。
精铸、精密压力加工、精密焊接与切割等。
• 铸件结构复杂↑ ,铸型硬度↑ ,芯骨粗大↑ ,则收
缩阻力↑ ,收缩率↓
25
第25页/共42页
3、铸件中的缩孔与缩松 (1)缩孔与缩松的形成 液态收缩和凝固收缩、容积得不到补足。 ①缩孔的形成
液态金属充满铸型铸件外壳液面下降最后凝固部位

材料成型技术基础1-幻灯片(1)

材料成型技术基础1-幻灯片(1)

强度、硬度低,塑、韧性几乎为0
力学性能差,脆性材料
由于G片尖端相当于裂 纹,造成应力集中
优良的 减震性 优良的减摩性 灰铸铁的铸造性能好
流动性好 缩孔缩松倾向小 热裂、冷裂倾向低
灰铸铁的理想组织是什么?
基体:P 石墨:细小、均匀
1.2 影响铸铁组织和性能的因素
➢ 化学成分 C, Si, Mn, S, P 碳、硅→碳当量 C.E=C%+0.3 Si%
2. About This Curriculum
➢ Technology Basic Course ❖ 以研究常用工程材料及机器零件的成型 工艺原理为主的综合性基础课 ❖ 涉及的课程知识:材料学、传热学、力 学、冶金学、机械制图
➢ Main Topics in This Curriculum ❖ 铸造 Foundry ❖ 压力加工 Mechanical Working ❖ 焊接 Welding Fabrication
Noted:
➢ 凝固方式(the wideness of paste zone)取决于 合金的成分:freezing rang 凝固区间, 凝固范围 温度梯度temperature gradient
➢ 凝固方式决定了合金的补缩性能 feeding characters ❖ 倾向于逐层凝固的合金(灰口铸铁,近共晶点铝硅合金) 补缩性能好、铸件致密度高、不容易产生缩松 ❖ 倾向于糊状凝固的合金:锡青铜,铝青铜,球墨铸铁 补缩性能差、铸件致密度不高、不容易产生缩松
freezing rang 凝固区间, 凝固范围
纯金属及共晶点成分合 金流动性好,后者的熔 点更低,流动性更好。
铁碳合金流动性与含碳量关系p35,fig 2-2
2. 影响液态合金充型的其它因素

材料成型技术基础

材料成型技术基础

材料成型技术基础材料成型技术基础材料成型技术是现代工业的核心技术之一,是将材料加工成所需形状、结构和性能的过程。

材料成型技术分为传统成型技术和先进成型技术两种。

前者包括热加工、冷加工、焊接等,后者则包括快速成型、激光加工、注塑成型等。

无论是哪种成型技术,都需要掌握材料成型技术基础知识才能熟练地操作和完成任务。

1.材料成型技术原理材料成型技术在原理上是通过施加压力,改变材料外观和性质。

采用不同的成型方法和工艺流程,可获得所需的形态和性能。

例如,金属冷加工依靠的是材料的塑性变形,而激光切割则是利用激光的高能量和热量来割断材料。

因此,不同成型技术的原理不同,工艺流程也不同。

2.材料成型技术分类材料成型技术主要可以分为常规材料成型技术和高级材料成型技术两类。

常规材料成型技术包括热加工、冷加工、铸造、焊接、切削等。

这些技术在工业生产中应用广泛,可以制造出各种形态的零部件和产品。

高级材料成型技术是在常规成型技术基础上,运用现代科技和工程技术发展起来的成型技术。

例如,金属材料的选择性激光烧结技术(SLS)、三维打印技术、激光切割技术和注塑成型技术等。

这些技术通常被用于制造高性能、高单价、高品质的工业产品。

3.常规材料成型技术热加工热加工技术是利用高温对材料进行塑性变形的加工方式。

通过热处理,可以使金属变得更加容易软化和延展。

热加工适合于制造大量的同样尺寸和形状的零件,例如轴、齿轮等机械元件。

冷加工冷加工技术是不需要高温处理的制造加工方法。

冷加工一般用于金属加工,由于没有热变形,冷加工一般具有更好的精度和表面光洁度。

冷加工应用广泛,例如冷拔、冷轧、冷环等。

铸造铸造是利用熔化的金属,将其注入模具中成型制品的加工方法。

铸造可以生产出各种不同尺寸和形状的零件,应用范围广泛,例如钢铁、铝合金、铜、铜合金等材料。

焊接焊接是将两个物体连接在一起的加工方式。

焊接广泛应用在车辆工业、建筑工业、航空航天工业等领域,例如电弧焊、气体保护焊、激光焊等技术。

第4章塑料模具钢及其热处理

第4章塑料模具钢及其热处理

硬质聚 氯乙烯
PVC 70~90 170~190 165~180 160~170 30~60 80~130

聚丙烯
PP 80~100 200~220 180~200 160~180 80~90 70~100

聚苯乙烯
PS 60~75 170~190
— 140~160 32~65
丙烯腈-丁二烯苯乙烯
ABS 80~85 180~200 165~180 150~170 50~80
表面58~60HRC,心部27~29HRC,变形微小。 3.实际应用:用冷挤压法成形制造塑料模具
LJ钢冷成形性与工业纯铁相近,模具型腔轮廓清晰、光 洁、精度高。LJ钢主要用来替代10、20钢及工业纯铁等 冷挤压成形的精密塑料模。由于渗碳淬硬层较深,基体 硬度高,不会出现型腔表面塌陷和内壁咬伤现象,使用 效果良好。
(5)模具的制造工艺 (6)现有的设备及技术水平
PPT文档演模板
第4章塑料模具钢及其热处理
4.2.1 几种典型塑料模具材料
• 4.2.1.1渗碳型塑料模具用钢 • 4.2.1.2淬硬型塑料模具用钢 • 4.2.1.3预硬型塑料模具用钢 • 4.2.1.4时效硬化性塑料模具用钢 • 4.2.1.5耐蚀型塑料模具用钢 • 4.2.1.6调质及其他塑料模具材料
沉淀硬化不锈钢 17-7PH、PH15-7Mo、PH14-8Mo、AM-355
马氏体
PPT文档演模板
Ni18Co8Mo5TiA1、Ni20Ti2A1Nb、Ni25Ti2A1Nb、 复杂、精密、耐磨、耐腐蚀、
Cr5Ni12Mo3TiA1
超镜面的模具
第4章塑料模具钢及其热处理
4.1 塑料模具的工作条件与性能要求

常用材料介绍热处理及表面处理

常用材料介绍热处理及表面处理
1.2.2 青銅 以錫為主要元素的稱為青銅或錫青銅,還有鋁青銅,鈹青銅,硅青銅等,其中鈹青銅除鈹元素外,還添加鎳,鈦合金元素,經淬火時效后抗拉強度可達1250~1500MPa,硬度為HB350~400,接近于中強度鋼的性能,鈹青銅在淬火狀態時具有極好的塑性,可冷加工成管材,棒材,帶材等各種型材,還具有優良的抗蝕性和導電導熱性,受沖擊時不產生火花,故廣泛用作各種儀表彈簧,重要彈性元件,耐磨零件及防爆工具等。 1.2.3 鑄造銅合金 鑄造銅合金包括鑄造黃銅和鑄造青銅兩大類,鑄造銅合金是用來鑄造形狀復雜的機械配件如閥門,管配件,軸瓦,缸套,渦輪等。
3.1.1 低碳鋼 含碳量<0.25% 其特點是強度較低,塑性,韌性及焊接性能很好,切削性一般。這種鋼可以用各種冷加工或焊接的方法來制造各種受力不大,韌性要求較高且不加熱處理的機械零件或設備,不適宜退火處理。
3.1.2 中碳鋼 含碳量0.3~0.5% 其特點是強度較高而韌性稍低,一般經過淬火,回火或正火后使用。它們屬于調質鋼類,淬火溫度決定于含碳量,回火溫度取決于零件所要求的強度和韌性。這類鋼主要用來制造承受負荷較大的機器零件如直軸,曲軸等,很少用來做焊接構件。
一 常用金屬材料選型介紹
二 . 有色金屬 除了黑色金屬以外的金屬都叫有色金屬。有色純金屬分為重有色金屬 指密度大于4.5g/cm3的常見有色金屬,如銅,鎳,鈷,鉛,鋅,錫,銻,汞,鎘,鉍等 ,輕有色金屬 指密度小于4.5g/cm3的有色金屬,如鋁,鎂,鈉,鈣,鉀,鍶,鋇等 ,貴金屬 包括金,銀和鉑族元素 ,半金屬 指硅,硒,銻,砷,,鈹,鎢,鉬,釩,錸等 ;有色合金按合金系統分類,如銅合金,錫合金,鋁合金,鎂合金,鈦合金等,按用途分類,如變形合金 壓力加工用 ,鑄造合金,軸承合金,印刷合金,硬質合金等。下面介紹常用的有色金屬及其合金: 1. 有色金屬及: 碳素結構鋼可以不經過Q195~Q235A比較常用,其中Q235A強度和塑性

材料成形过程技术综合概述

材料成形过程技术综合概述
❖ 一般将焊接方法分为熔焊、压焊和钎焊三 大类。
1.2.3.1 焊接成形的基本问题
➢ (冶金)原理: 焊接热过程;物化冶金过 程;应力应变过程。
➢ 工艺及质量控制: 焊接方法的工艺特点; 工艺参数,焊接缺陷及检测。
➢ 设备与控制: 焊接电源;控制系统;配套 设备。
1.2.3.2 焊接技术的发展
真空状态)等; ⑶ 直接产生于加工材料中的质量力
实现机械基本过程的能源主要是电能源和化学能
二、 能 量 流 程 (续)
基本过程为热过程的能量流程
热基本过程所需热量通常由电能、化学能或机械能 转化而得。
热量可在加工材料内部直接产生(直接加热); 也可在加工材料外部产生,然后再通过传导、对流、 辐射等传递给加工材料(间接加热)。
1.2.1 凝固成形
凝固成形: 熔炼化学成分合格的金属,并 将熔融液态金属浇注、压射或吸入预制的型 腔中,凝固成为一定形状和性能的毛坯和零 件。凝固成形工艺有铸造、液态冲压和液态 模锻等。
铸造成形工艺的特征是质量不变过程, 它包括液态金属充填型腔和冷却凝固两个基 本过程。充填主要是机械过程,而凝固是热 过程。
1.2.2 塑 性 成 形
塑性成形:利用金属在外力作用下所产生的塑性 变形,来获得具有一定形状、尺寸和机械性能的 原材料、毛坯或零件的工艺方法。称为塑性成形, 亦称压力加工。
常见方法:轧制、挤压、拉拔、体积成形和板料 冲压等。
塑性成形属直通过程,主要基本过程是塑性 变形;能量类型主要是电能和化学能。形状信息 是由含有一定形状信息量的工模具和工模具与被 加工材料的相对运动共同产生,性能信息来自材 料自身性质和成形过程中的转变特性。
发散流程 对应于质量减少过程,其特点是零件最终的几 何形状局限在材料的初始几何形状内。也就是说,材料改变 是通过去除一部分材料形成的。相应的加工方法有传统的切 削加工,电火花加工、电解加工、热切割和冲裁等。发散流 程的材料只能是固态。

《材料成型过程控制》课件

《材料成型过程控制》课件

通过加热和冷却等手段改变材料内部结构,以获得所需性能的过程。
热处理
材料在热处理过程中发生的相的转变,如奥氏体、马氏体等。
相变
材料发生相变的温度点,是热处理过程中的关键参数。
相变温度
根据材料种类和性能要求制定的热处理工艺流程。
热处理工艺
03
CHAPTER
材料成型过程的控制要素
温度是材料成型过程中的重要参数,控制温度可以影响材料的物理和化学性质,从而影响产品的质量和性能。
铸造
通过将熔融态的金属倒入模具中,冷却凝固后形成所需形状的零件。铸造方法适用于生产大型、形状复杂的零件。
锻造
通过施加外力使金属坯料变形,以获得所需形状和性能的零件。锻造方法适用于生产中小型、高强度、高硬度的零件。
焊接
通过熔融连接金属材料,使它们结合在一起形成所需形状的构件。焊接方法适用于生产大型、复杂的结构件。
05
CHAPTER
材料成型过程的质量控制
材料成分
材料的密度、强度、塑性等物理性能需满足标准。
物理性能
尺寸精度
表面质量
01
02
04
03
产品表面应光滑、无裂纹、无气孔等缺陷。
确保材料成分符合设计要求,无杂质超标。
成型后的产品尺寸精度需符合图纸要求。
通过化学分析方法检测材料成分。
化学分析
物理性能测试
《材料成型过程控制》ppt课件
目录
材料成型的基本概念材料成型的物理与化学过程材料成型过程的控制要素材料成型过程的模拟与优化材料成型过程的质量控制材料成型过程的环保与安全
01
CHAPTER
材料成型的基本概念
01
02
材料成型过程中,需要考虑材料的性质、加工条件、工艺参数等因素,以实现产品的高质量、高效率、低成本的制造。

材料成型工艺基础(第三版) (刘建华)章 (1)

材料成型工艺基础(第三版) (刘建华)章 (1)
25
图1-7 纯金属结晶过程示意图 26
1)金属晶核形成的方式 (1)自发形核:对于很纯净的液体金属,加快其冷却速度, 使其在具有足够大的过冷度下,不断产生许多类似晶体中原子 排列的小集团,形成结晶核心,即为自发晶核。 (2)非自发形核:实际金属中往往存在异类固相质点,并 且在冷却时金属总会与铸型内壁接触,因此这些已有的固体颗 粒或表面被优先依附,从而形成晶核,这种方式称为非自发形 核。
4
1.1.1 金属的晶体结构 1.晶体和非晶体 自然界中一切物质都是由原子组成的,根据固态物质内部
原子的聚集状态,固体分为晶体和非晶体两大类。 原子无规律地堆积在一起的物质称为非晶体,如沥青、玻
璃、松香等。原子按一定几何形状作有规律地重复排列的物质 称为晶体,如冰、结晶盐、金刚石、石墨及固态金属与合金。 晶体和非晶体的原子排列不同,进而显示出不同的特性。晶体 具有固定的熔点,性能具有各向异性;而非晶体没有固定的熔 点,性能具有各向同性。
27
2)金属晶核的长大方式 晶核形成后,液相原子不断迁移到晶核表面而促使晶核长 大形成晶核。但晶核长大程度取决于液态金属的过冷度,当过 冷度很小时,晶核在长大过程中保持规则外形,直至长成晶粒 并相互接触时,规则外形才被破坏;反之,则以树枝晶形态生 长。这是因为随着过冷度的增大,具有规则外形的晶核长大时 需要将较多的结晶潜热散发掉,而其棱角部位因具有最优先的 散热条件,因而便得到优先生长,如树枝一样先长出枝干,再 长出分枝,最后把晶间填满。
金属在固态下由一种晶格类型转变为另一种晶格类型的变 化称为金属的同素异晶(构)转变。由金属的同素异晶转变所得 到的不同类型的晶体称为同素异晶体。金属的同素异晶转变也 是原子重新排列的过程,称为重结晶或二次结晶。固态下的重 结晶和液态下的结晶相似,也遵循晶体结晶的一般规律:转变 在恒温下进行,也是形核与长大的过程,也必须在一定的过冷 度下转变才能完成。

工程材料及成型工艺基础

工程材料及成型工艺基础

工程材料及成型工艺基础
工程材料
1. 金属材料
金属材料是各种工程材料中使用最广泛的一类,其具有较高的强度和
韧性,良好的导电导热性能,以及良好的可加工性。

常见的金属材料
包括钢材、铝材、铜材和锌材等。

2. 非金属材料
非金属材料的应用范围也非常广泛,包括了塑料、陶瓷、橡胶、玻璃、复合材料等。

这类材料的主要特点是密度小,比强度高,电绝缘性能好,耐腐蚀能力强。

3. 复合材料
复合材料是由两种或两种以上的不同材料组合而成的材料,常见的包
括碳纤维复合材料、玻璃纤维复合材料等。

它具有较高的强度、韧性、耐腐蚀能力以及耐磨性,但价格较高。

成型工艺
1. 焊接
焊接是两个工件通过熔化,使两个工件之间形成稳定的结合方式。


见的焊接方法包括电弧焊、气体保护焊和激光焊等。

2. 铸造
铸造是将液态金属或合金注入到预制的模具中,冷却凝固形成所需形状的成型方法。

常见的铸造形式有砂型铸造、永久模铸造和压铸等。

3. 塑料加工
塑料加工是指将塑料在加热的状态下挤压、吹塑、注塑等方式在模具中成型。

常用的加工方法有挤出成型、挤压成型以及注塑成型等。

4. 机械加工
机械加工是指通过旋转或移动切削工具对工件进行切削、加工和成型的过程。

常见的机械加工方法包括车削、铣削和钻孔等。

5. 热处理
热处理是通过加热和冷却的方式改变金属材料的组织结构和性能,可以使金属材料具有更好的耐腐蚀性、韧性和强度。

常见的热处理方法包括淬火、退火和正火等。

(完整版)工程材料及材料成型技术基础

(完整版)工程材料及材料成型技术基础
17
§1-1 材料原子(或分子)的相互作用
1、离子键 当正电性金属原子与负电性非金属
原子形成化合物时,通过外层电子的重 新分布和正、负离子间的静电作用而相 互结合,故称这种结合键为离子键。
离子晶体硬度高,强度大,脆性大。 如氯化钠,陶瓷。
18
2、共价键 当两个相同的原子或性质相差不大的
原子相互接近时,它们的原子间不会有电 子转移。此时原子间借共用电子对所产生 的力而结合,这种结合方式称为共价键。
14
3.陶瓷材料 ① 普通陶瓷—主要为硅、铝氧化物的硅酸盐材料. ② 特种陶瓷—高熔点的氧化物、碳化物、氮化物
等烧结材料。 ③ 金属陶瓷—用生产陶瓷的工艺来制取的金属与
碳化物或其它化合物的粉末制品。 4.复合材料 是由两种或两种以上的材料组合而成的材料。 ①按基体相种类分:聚合物基、金属基、 陶瓷基、 石墨基等。 ②按用途分:结构、功能、智能复合材料。
15
本部分重点
1)工程材料的概念
– 制造工程结构和机器零件使用的材料
2)工程材料的分类
• 金属材料
钢铁材料 有色金属及其合金
• 有机高分子材料
塑料 橡胶等
• 陶瓷材料 • 复合材料
16
第一章 工程材料的结构与性能
§1-1 材料原子(或分子)的相互作用
当大量原子(或分子)处于聚集状态时, 它们之间以键合方式相互作用。由于组成 不同物质的原子结构各不相同,原子间的 结合键性质和状态存在很大区别。
8
绪论
一、材料的发展史
材料(metals) 是人类用来制作各种产品的物质,是 先于人类存在的,是人类生活和生产的物质基础。 反映人类社会文明的水平。
1 . 石器时代 :古猿到原始人的漫长进化过程。原料: 燧石和石英石。 2. 新石器时代:原始社会末期开始用火烧制陶器。 3. 青铜器时代:夏(公元前2140年始)以前就开始了 4. 铁器时代:春秋战国时期(公元前770~221年)开始 大量使用铁器

材料成型基础课件

材料成型基础课件

一般合金在凝固过程中都存在液-固两相区,树枝状晶在其中 不断扩大[见图a]。枝晶长到一定程度,枝晶分叉间的熔融 合金被分离成彼此孤立的状态[见图b],它们继续凝固时也 将产生收缩,这种凝固方式称糊状凝固。这时铸件中心虽有液 体存在,但由于树枝晶的阻碍使之无法补缩,在凝固后的枝晶 分叉间就形成许多微小的孔洞(缩松)[见图c]。
2.2 液态成形理论基础
材 料 成 形 工 艺 基 础
总结:具有逐层凝固倾向的合金(如灰 铸铁、铝硅合金等) 易于铸造,应尽量 选用。当必须采用有糊状凝固倾向的合 金(如锡青铜、铝铜合金、球墨铸铁等) 时,需考虑采用适当的工艺措施,例如, 选用金属型铸造等,以减小其凝固区域。
2.2 液态成形理论基础
1.2 材料成型方法及特点
材 料 成 形 工 艺 基 础
1.材料成型方法的分类
1.3 材料成型工艺发展及概况
材 料 成 形 工 艺 基 础
古代、近代及现代的材料成形技术 材料成形技术与材料科学 我国及世界先进国家的差距
1.4 材料成型工艺的发展趋势
材 料 成 形 工 艺 基 础
每项材料成形技术都有各自发展特点,总的趋势可归纳为 : 1、成型技术精密化 2、材料制备与成型一体化 3、复合成型 4、数字化成型 5、材料成型自动化 6、绿色清洁生产
液态合金填满铸型后[见图 a],因铸型吸热,靠近型腔表面 的金属很快就降到凝固温度,凝固成一层外壳[见图b],温 度继续下降,合金逐层凝固,凝固层加厚,内部的剩余的液体, 由于液态收缩和补充凝固层的凝固收缩,体积缩减,液面下降, 铸件内部出现空隙[见图c],直到内部完全凝固,在铸件上 部形成缩孔[见图d]。已经形成缩孔的铸件继续冷却到室温 时,因固态收缩使铸件的外形轮廓尺寸略有缩小[见图e]。 合金的液态收缩和凝固收缩越大,浇注温度越高,铸件的壁越 厚,缩孔的容积就越大。

材料成型及其热处理

材料成型及其热处理

材料成型及其热处理一、引言材料成型及其热处理是现代材料工艺中非常重要的一个环节。

材料成型是指将原材料经过一系列的加工工艺,经过一定形状和尺寸的加工成形。

而热处理是指通过控制材料的温度、时间和冷却速度等参数,来改善材料的组织结构和性能。

本文将从材料成型的基本原理、成型工艺、热处理的基本原理及热处理工艺等方面进行阐述。

二、材料成型的基本原理材料成型的基本原理是通过施加外力使材料发生塑性变形,从而获得所需形状和尺寸的工件。

在材料成型的过程中,材料必须经历加热、塑性变形和冷却等阶段。

材料成型的方式主要包括锻造、压铸、冷挤压、热挤压等。

不同的成型方式对最终工件的性能有很大的影响,因此在选择成型方式时需要根据材料的类型、形状和用途进行权衡。

三、材料成型的工艺1. 锻造锻造是一种将金属材料置于模具中,然后施加压力,使其发生塑性变形而获得所需形状和尺寸的工艺。

锻造可以分为冷锻、热锻和温锻等多种方式,可以根据材料的性质和形状来选择不同的锻造方式。

锻造工艺可以提高材料的密度和强度,同时也能改善其组织结构,提高其耐磨性和抗疲劳性。

2. 压铸压铸是一种将金属液态或半固态材料通过高压射入模具,然后在特定的压力和温度下冷却凝固,获得所需形状和尺寸的工艺。

压铸工艺可以制造各种复杂形状的铸件,同时还能保持较高的表面光洁度和尺寸精度。

3. 冷挤压冷挤压是一种将金属坯料置于挤压机中,并在常温下施加高压,使其发生塑性变形而获得所需形状和尺寸的工艺。

冷挤压工艺可以制造高精度、高强度的金属零部件,同时还能提高材料的耐磨性和疲劳寿命。

4. 热挤压热挤压是一种将金属坯料置于加热的挤压机中,然后施加一定的压力使其发生塑性变形而获得所需形状和尺寸的工艺。

热挤压工艺可以降低材料的变形阻力,提高成形精度和表面质量,同时还能改善材料的组织结构和性能。

四、热处理的基本原理热处理是指通过控制材料的温度、时间和冷却速度等参数,来改善材料的组织结构和性能的工艺。

高分子材料成型加工.pptx

高分子材料成型加工.pptx
滞后效应在聚合物加工成型中是普遍存在 的,影响制品的性能(变形、收缩、内应力)。 ★措施:在Tg~Tf范围对制品进行热处理。
第31页/共32页
感谢您的观看。
第32页/共32页
24学时
挤出、注射、压制、压延、吹塑等
第三篇 高分子复合材料成型 12学时 原料、成型设备、方法
第四篇 实践课
4学时
常用高分子及复合材料制品设计
第9页/共32页
课程要求
★闭卷考试,参考平时成绩(考勤、提问、 作业、工艺设计)。 ★结合实验课、生产实践,加深认识理解。 ★理解聚合物加工的理论基础。 ★基本掌握聚合物材料的成型加工方法(以 塑料为主)。
第26页/共32页
二、聚合物的粘弹形变与加工条件的关系
E
H
V
E1
E2
1
E2
e 2
t
3
t
E 普弹形变 H 推迟高弹形变 V 粘性形变
第27页/共32页
1.与加工温度T的关系 T↑ η2↓ η3↓ γH↑ γV↑,且γH增大趋
势大于γV。 当T>Tf(或Tm)时,以粘性形变为主,
但不是纯粘性的,也表现一定的弹性。 当T<Tf时,以高弹形变为主,粘性成分减
第17页/共32页
第18页/共32页
二、聚合物的可模塑性
★定义:聚合物在温度和压力作用下形变和在 模具中模制成型的能力。
可模塑性取决于聚合物的流变性、热性 质,模塑条件和模具的结构。
第19页/共32页
★表征方法:螺旋流动试验
L 2 d
C
Pd T
2
H
C
Pd
H T
d
第20页/共32页
三、聚合物的可纺性

合金调质钢热处理ppt资料

合金调质钢热处理ppt资料
职业教育材料成型与控制技术专业教学资源库 职业教育材料成型与控制技术专业教学资源库 职业教育材料成型与控制技术专业教学资源库 最终热处理:调质,即淬火+高温回火。 职业教育材料成型与控制技术专业教学资源库 第六页,编辑于星期五:十四点 三分。 40Cr钢制造连杆螺栓的热处理工艺曲线 第六页,编辑于星期五:十四点 三分。 职业教育材料成型与控制技术专业教学资源库 职业教育材料成型与控制技术专业教学资源库 职业教育材料成型与控制技术专业教学资源库 职业教育材料成型与控制技术专业教学资源库 对于低合金钢一般采用正火或退火,对于高合金钢通常采用正火+高温回火。 对于低合金钢一般采用正火或退火,对于高合金钢通常采用正火+高温回火。 毛坯锻造 → 预先热处理 → 粗机械加工 → 调质 → 精加工 →成品检验 第六页,编辑于星期五:十四点 三分。
金属材料与热处理
第二页,编辑于星期五:十四点 三分。
职业教育材料成型与控制技术专业教学资源库
热处理:
预先热处理:正火处理或正火+高温回火
最终热处理:调质,即淬火+高温回火。对于低合金钢一般采 用正火或退火,对于高合金钢通常采用正火+高温回火。
金属材料与热处理
第三页,编辑于星期五:十四点 三分。
职业教育材料成型与控制技术专业教学资源库
连杆
组织:S回
金属材料与热处理
第四业教学资源库
热处理工艺曲线:
40Cr钢制造连杆螺栓的热处理工艺曲线
金属材料与热处理
第五页,编辑于星期五:十四点 三分。
职业教育材料成型与控制技术专业教学资源库
小结
合金调质钢热处理工艺
金属材料与热处理
第六页,编辑于星期五:十四点 三分。
谢谢观看
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档