重庆大学自控原理课程设计实验报告
自动控制原理的实训报告
一、实训目的本次实训旨在通过实际操作和实验,加深对自动控制原理的理解,掌握控制系统分析和设计的基本方法,提高动手能力和分析问题、解决问题的能力。
通过实训,使学生能够:1. 理解自动控制系统的基本组成和原理;2. 掌握典型控制系统的时域响应和频域响应分析方法;3. 学会使用实验设备进行控制系统实验,并能够分析实验结果;4. 培养团队协作和沟通能力。
二、实训仪器与设备1. 自动控制原理实验台;2. 信号发生器;3. 数据采集器;4. 计算机;5. 控制系统模拟软件。
三、实训内容1. 控制系统结构分析通过实验台搭建一个典型的控制系统,分析其结构,包括各个环节的功能和相互关系。
2. 时域响应实验对搭建的控制系统进行阶跃响应实验,记录并分析系统的输出波形,计算超调量、上升时间、调节时间等性能指标。
3. 频域响应实验对搭建的控制系统进行频率特性实验,记录并分析系统的幅频特性、相频特性,绘制Bode图。
4. 控制系统设计根据实验结果,对控制系统进行设计,包括PID参数整定、控制器设计等。
四、实验过程1. 搭建控制系统根据实验要求,搭建一个典型的控制系统,包括控制器、执行器、被控对象等环节。
2. 进行阶跃响应实验使用信号发生器产生阶跃信号,输入到控制系统中,记录输出波形,并计算超调量、上升时间、调节时间等性能指标。
3. 进行频率特性实验使用信号发生器产生不同频率的正弦信号,输入到控制系统中,记录输出波形,并绘制Bode图。
4. 控制系统设计根据实验结果,对控制系统进行设计,包括PID参数整定、控制器设计等。
五、实验结果与分析1. 阶跃响应实验通过阶跃响应实验,可以分析系统的稳定性和动态性能。
例如,超调量反映了系统的振荡程度,上升时间反映了系统的响应速度,调节时间反映了系统达到稳态所需的时间。
2. 频率特性实验通过频率特性实验,可以分析系统的频率响应特性。
例如,幅频特性反映了系统对不同频率信号的放大倍数,相频特性反映了系统对不同频率信号的相位延迟。
自动控制原理实验报告(一、二阶系统的电子模拟及时域响应的动态测试等三个实验)
自动控制原理实验报告作者姓名学科专业机械工程及自动化班级学号X X年10月27日实验一一、二阶系统的电子模拟及时域响应的动态测试一、实验目的1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。
2、学习在电子模拟机上建立典型环节系统模型的方法。
3、学习阶跃响应的测试方法。
二、实验内容1、建立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线,并测定其过渡过程时间TS。
2、建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间TS。
三、实验原理1、一阶系统阶跃响应性能指标的测试系统的传递函数为:()s()1C s KR s Ts φ=+()=模拟运算电路如下图:其中21R K R =,2T R C =;在实验中,始终保持21,R R =即1K =,通过调节2R 和C 的不同取值,使得T 的值分别为0.25,0.5,1。
记录实验数据,测量过度过程的性能指标,其中按照经验公式取3s t T=2、二阶系统阶跃响应性能指标的测试系统传递函数为:令ωn=1弧度/秒,则系统结构如下图:二阶系统的模拟电路图如下:在实验过程中,取22321,1R C R C ==,则442312R R C R ζ==,即4212R C ζ=;在实验当中取123121,1R R R M C C F μ===Ω==,通过调整4R 取不同的值,使得ζ分别为0.25,0.5,1;记录所测得的实验数据以及其性能指标,其中经验公式为3.5%100%,s net σζω=⨯=.四、试验设备:1、HHMN-1型电子模拟机一台。
2、PC机一台。
3、数字万用表一块。
4、导线若干。
五、实验步骤:1、熟悉电子模拟机的使用,将各运算放大器接成比例器,通电调零。
2、断开电源,按照实验说明书上的条件和要求,计算电阻和电容的取值,按照模拟线路图搭接线路,不用的运算放大器接成比例器。
3、将D/A输出端与系统输入端Ui连接,将A/D1与系统输出端UO连接(此处连接必须谨慎,不可接错)。
重庆大学自控原理课程设计实验报告
自动控制理论课程设计倒立摆系统的控制器设计学生姓名:张萌指导教师:谢昭莉班级:自动化3班重庆大学自动化学院二O一六年十二月课程设计指导教师评定成绩表指导教师评定成绩:指导教师签名:年月日重庆大学本科学生课程设计任务书摘要....................................................................... 错误!未定义书签。
倒立摆系统的概述 (2)2 数学模型的建立 (4)2.1小车倒立摆物理模型的建立 (4)2.2小车倒立摆实际数学模型的建立 (7)3 开环响应分析 (8)4 根轨迹法设计 (10)4.1 未校正系统根轨迹分析 (10)4.2根轨迹矫正及仿真 (11)4.2.1根轨迹矫正 (11)4.2.2Matlab计算和仿真 (12)5 频域法设计 (14)5.1未校正的bode图与奈奎斯特分析 (14)5.2 频域法矫正 (15)5.2.1 控制目标要求 (16)5.2.2 矫正步骤 (16)5.3 用Matlab进行阶跃响应仿真 (18)6 PID控制器设计 (19)6.1 控制器设计过程 (20)7 课程设计总结 (23)8参考资料 (24)摘要通过对一级倒立摆系统进行数学建模,得到摆杆角度和小车加速度之间的传递函数:()()()22s mlV s I ml s mglΦ=+- 首先从时域角度着手,分析直线一级倒立摆的开环单位阶跃响应和单位脉冲响应,得出该系统的开环响应是发散的这一结论。
利用根轨迹分析法,并借助Matlab 一级其中的Simulink 仿真系统辅助分析。
通过加入超前校正校正环节,得到系统的校正函数,并且校正后的系统满足课设的要求,即最大超调量:%10%p σ≤,调整时间:0.5(2%s t s =误差带)。
同样,利用频域分析法也得到校正环节的传递函数。
对系统进行校正系统的静态位置误差函数常数为10,相位裕量为50,增益裕量等于或大于10dB 。
重庆大学 自动控制原理课程设计
目录1 实验背景 (2)2 实验介绍 (3)3 微分方程和传递函数 (6)1 实验背景在现代科学技术的众多领域中,自动控制技术起着越来越重要的作用。
自动控制原理是相对于人工控制概念而言的,自动控制是指在没有人直接参与的情况下,利用外加的设备或装置(称控制装置或控制器),使机器,设备或生产过程(统称被控对象)的某个工作状态或参数(即被控制量)自动地按照预定的规律运行。
在自动控制原理【1】中提出,20世纪50年代末60年代初,由于空间技术发展的需要,对自动控制的精密性和经济指标,提出了极其严格的要求;同时,由于数字计算机,特别是微型机的迅速发展,为控制理论的发展提供了有力的工具。
在他们的推动下,控制理论有了重大发展,如庞特里亚金的极大值原理,贝尔曼的动态规划理论。
卡尔曼的能控性能观测性和最优滤波理论等,这些都标志着控制理论已从经典控制理论发展到现代控制理论的阶段。
现代控制理论的特点。
是采用状态空间法(时域方法),研究“多输入-多输出”控制系统、时变和非线性控制系统的分析和设计。
现在,随着技术革命和大规模复杂系统的发展,已促使控制理论开始向第三个发展阶段即第三代控制理论——大系统理论和智能控制理论发展。
在其他文献中也有所述及(如下):至今自动控制已经经历了五代的发展:第一代过程控制体系是150年前基于5-13psi的气动信号标准(气动控制系统PCS,Pneumatic Control System)。
简单的就地操作模式,控制理论初步形成,尚未有控制室的概念。
第二代过程控制体系(模拟式或ACS,Analog Control System)是基于0-10mA或4-20mA 的电流模拟信号,这一明显的进步,在整整25年内牢牢地统治了整个自动控制领域。
它标志了电气自动控制时代的到来。
控制理论有了重大发展,三大控制论的确立奠定了现代控制的基础;控制室的设立,控制功能分离的模式一直沿用至今。
第三代过程控制体系(CCS,Computer Control System).70年代开始了数字计算机的应用,产生了巨大的技术优势,人们在测量,模拟和逻辑控制领域率先使用,从而产生了第三代过程控制体系(CCS,Computer Control System)。
自控原理实验报告
一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。
2. 掌握典型环节的数学模型及其在控制系统中的应用。
3. 熟悉控制系统的时间响应和频率响应分析方法。
4. 培养实验操作技能和数据处理能力。
二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。
本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。
2. 控制系统:开环控制系统和闭环控制系统。
3. 时间响应:阶跃响应、斜坡响应、正弦响应等。
4. 频率响应:幅频特性、相频特性等。
三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用示波器观察并记录各个环节的阶跃响应曲线。
- 分析并比较各个环节的阶跃响应曲线,得出结论。
2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。
- 分析并比较各个环节的频率响应特性,得出结论。
3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。
- 使用示波器观察并记录二阶系统的阶跃响应曲线。
- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。
4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。
- 使用示波器观察并记录系统的稳态响应曲线。
- 计算并分析系统的稳态误差。
五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。
- 积分环节:K=1,阶跃响应曲线如图2所示。
自控原理课程实验报告
一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。
2. 熟悉自动控制系统的典型环节,包括比例环节、积分环节、比例积分环节、惯性环节、比例微分环节和比例积分微分环节。
3. 通过实验,验证自动控制理论在实践中的应用,提高分析问题和解决问题的能力。
二、实验原理自动控制原理是研究自动控制系统动态和稳态性能的学科。
本实验主要围绕以下几个方面展开:1. 典型环节:通过搭建模拟电路,研究典型环节的阶跃响应、频率响应等特性。
2. 系统校正:通过在系统中加入校正环节,改善系统的性能,使其满足设计要求。
3. 系统仿真:利用MATLAB等仿真软件,对自动控制系统进行建模和仿真,分析系统的动态和稳态性能。
三、实验内容1. 典型环节实验(1)比例环节:搭建比例环节模拟电路,观察其阶跃响应,分析比例系数对系统性能的影响。
(2)积分环节:搭建积分环节模拟电路,观察其阶跃响应,分析积分时间常数对系统性能的影响。
(3)比例积分环节:搭建比例积分环节模拟电路,观察其阶跃响应,分析比例系数和积分时间常数对系统性能的影响。
(4)惯性环节:搭建惯性环节模拟电路,观察其阶跃响应,分析时间常数对系统性能的影响。
(5)比例微分环节:搭建比例微分环节模拟电路,观察其阶跃响应,分析比例系数和微分时间常数对系统性能的影响。
(6)比例积分微分环节:搭建比例积分微分环节模拟电路,观察其阶跃响应,分析比例系数、积分时间常数和微分时间常数对系统性能的影响。
2. 系统校正实验(1)串联校正:在系统中加入串联校正环节,改善系统的性能,使其满足设计要求。
(2)反馈校正:在系统中加入反馈校正环节,改善系统的性能,使其满足设计要求。
3. 系统仿真实验(1)利用MATLAB等仿真软件,对自动控制系统进行建模和仿真,分析系统的动态和稳态性能。
(2)根据仿真结果,优化系统参数,提高系统性能。
四、实验步骤1. 搭建模拟电路:根据实验内容,搭建相应的模拟电路,并连接好测试设备。
自控原理实验报告实验一
自控原理实验报告实验一
《自控原理实验报告实验一》
自控原理是一种重要的控制理论,它在工程、生物学、心理学等领域都有着广
泛的应用。
在本次实验中,我们将通过实验一来探索自控原理的基本概念和应用。
实验一的目的是通过控制系统的搭建和实验验证,来理解自控原理的基本原理。
在实验中,我们将使用一台简单的控制系统,通过调节输入信号和反馈信号的
关系,来实现对系统的自控。
首先,我们搭建了一个简单的控制系统,包括一个输入信号发生器、一个控制
器和一个被控对象。
通过调节输入信号发生器的输出信号,我们可以改变被控
对象的状态。
而控制器则根据被控对象的状态和预设的目标状态,来调节输入
信号的大小,从而实现对被控对象的自控。
在实验过程中,我们进行了多组实验,通过改变输入信号的频率、幅值和相位
等参数,来观察被控对象的响应。
同时,我们也调节了控制器的参数,来验证
自控原理的稳定性和鲁棒性。
通过实验一的实验结果,我们得出了一些结论。
首先,我们发现控制系统的稳
定性和鲁棒性与控制器的参数设置有着密切的关系。
合理的参数设置可以使控
制系统更加稳定和鲁棒。
其次,我们也验证了自控原理中的负反馈和正反馈的
概念,并通过实验结果来解释这些概念的作用和影响。
总的来说,实验一为我们提供了一个很好的机会来理解自控原理的基本概念和
应用。
通过实验,我们不仅加深了对自控原理的理解,同时也学会了如何通过
控制系统来实现对被控对象的自控。
这对于我们今后在工程、生物学、心理学
等领域的研究和应用都具有着重要的意义。
自控原理实验报告 实验一
自动控制原理实验报告一、二阶系统的电子模拟及时域响应的动态测试学院姓名班级学号日期一、实验目的1. 了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。
2. 学习在电子模拟机上建立典型环节系统模型的方法。
3. 学习阶跃响应的测试方法。
二、实验内容1. 建立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线,并测定其过渡过程时间Ts。
2. 建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间Ts。
三、实验原理1.一阶系统:系统传递函数为:∅(S)=C(S)R(S)=KTS+1模拟运算电路如图1- 1所示:图1- 1由图1-1得U0(S)U i(S)=R2/R1R2CS+1=KTS+1在实验当中始终取R2= R1,则K=1,T= R2C取不同的时间常数T分别为:0.25s、0.5s、1s2.二阶系统:其传递函数为:ϕ(S)=C(S)R(S)=ωn2S+2ζωn S+ωn令ωn=1弧度/秒,则系统结构如图1-2所示:图1-2根据结构图,建立的二阶系统模拟线路如图1-3所示:图1-3取R2C1=1 ,R3C2 =1,则R 4R 3=R 4C 2=12ξ及 ξ=12R 4C 2s T 理论及σ%理论由公式21-e %ξπξσ-=和)(8.05.3T ns <=ξξω及)(8.07.145.6T ns ≥-=ξωξ计算得到。
ζ取不同的值ζ=0.25 , ζ=0.5 , ζ=1,ζ=0.707四、实验步骤1. 确定已断开电子模拟机的电源,按照实验说明书的条件和要求,根据计算的电阻电容值,搭接模拟线路;2. 将系统输入端 与D/A1相连,将系统输出端 与A/D1相;3. 检查线路正确后,模拟机可通电;4. 双击桌面的“自控原理实验”图标后进入实验软件系统。
5. 在系统菜单中选择“项目”——“典型环节实验”;在弹出的对话框中阶跃信号幅值选1伏,单击按钮“硬件参数设置”,弹出“典型环节参数设置”对话框,采用默认值即可。
自动控制原理课程设计报告
课题:课题十六专业:电气工程及其自动化班级:六班姓名学号:罗一航(12153505)刘梁国(12155618)指导教师:贾渭娟设计日期:2014.12.22~2014.12.29 成绩:重庆大学城市科技学院电气信息学院目录1 设计目的 (2)2 设计要求 (2)3 实现过程 (3)3.1设计题目 (3)3.2 计算过程 (3)3.2.1 计算根轨迹图 (3)3.2.2 计算Bode图 (6)3.2.3 设计系统的串联校正装置 (8)3.2.4 给出校正装置的传递函数 (9)3.2.5 画出校正前,校正后幅频特性图 (9)3.2.6 画出校正前、后开环系统的奈奎斯特图 (10)3.2.7 校正器对系统性能的影响 (12)4 总结 (13)参考文献 (13)自动控制原理课程设计任务书1 设计目的1)掌握控制系统设计与校正的步骤和方法。
(2)掌握对控制系统相角裕度、稳态误差、剪切频率、相角穿越频率以及增益裕度的求取方法。
(3)掌握利用Matlab对控制系统分析的技能。
熟悉MATLAB这一解决具体工程问题的标准软件,能熟练地应用MATLAB软件解决控制理论中的复杂和工程实际问题,并给以后的模糊控制理论、最优控制理论和多变量控制理论等奠定基础。
(4)提高控制系统设计和分析能力。
(5)所谓校正就是在系统不可变部分的基础上,加入适当的校正元部件,使系统满足给定的性能指标。
校正方案主要有串联校正、并联校正、反馈校正和前馈校正。
确定校正装置的结构和参数的方法主要有两类,分析法和综合法。
分析法是针对被校正系统的性能和给定的性能指标,首先选择合适的校正环节的结构,然后用校正方法确定校正环节的参数。
在用分析法进行串联校正时,校正环节的结构通常采用超前校正、滞后校正和滞后-超前校正这三种类型。
超前校正通常可以改善控制系统的快速性和超调量,但增加了带宽,而滞后校正可以改善超调量及相对稳定度,但往往会因带宽减小而使快速性下降。
自动控制原理实验报告(实验一,二,三)分析
自动控制原理实验报告实验名称:线性系统的时域分析线性系统的频域分析线性系统的校正与状态反馈班级:学号:姓名:指导老师:2013 年12 月15日典型环节的模拟研究一. 实验目的1.了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式2.观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响二.实验内容及步骤观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响.。
改变被测环节的各项电路参数,画出模拟电路图,阶跃响应曲线,观测结果,填入实验报告运行LABACT 程序,选择自动控制菜单下的线性系统的时域分析下的典型环节的模拟研究中的相应实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。
具体用法参见用户手册中的示波器部分1).观察比例环节的阶跃响应曲线典型比例环节模拟电路如图3-1-1所示。
图3-1-1 典型比例环节模拟电路传递函数:01(S)(S)(S)R R K KU U G i O === ; 单位阶跃响应: K )t (U = 实验步骤:注:‘S ST ’用短路套短接!(1)将函数发生器(B5)所产生的周期性矩形波信号(OUT ),作为系统的信号输入(Ui );该信号为零输出时,将自动对模拟电路锁零。
① 在显示与功能选择(D1)单元中,通过波形选择按键选中矩形波’(矩形波指示灯亮)。
② 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度>1秒(D1单元左显示)。
③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 4V (D1单元‘右显示)。
(2)构造模拟电路:按图3-1-1安置短路套及测孔联线,表如下。
(a )安置短路套 (b )测孔联线(3)运行、观察、记录:打开虚拟示波器的界面,点击开始,按下信号发生器(B1)阶跃信号按钮(0→+4V 阶跃),观测A5B 输出端(Uo )的实际响应曲线。
自控原理实验报告
自控原理实验报告自控原理实验报告引言:自控原理是现代控制工程的基础理论之一,它研究的是如何通过控制器对系统进行调节,使得系统能够在给定的条件下稳定运行。
本实验旨在通过实际操作,验证自控原理的有效性,并探究其在工程领域的应用。
一、实验目的本实验的主要目的是通过搭建一个简单的自控系统,观察和分析系统的动态响应,并根据实验结果验证自控原理的有效性。
同时,通过实际操作,掌握自控系统的调节方法和技巧。
二、实验装置和原理本实验所使用的装置主要包括一个控制器、一个传感器和一个执行器。
控制器负责接收传感器采集到的数据,并根据预设的控制算法计算出控制信号,然后将控制信号发送给执行器,从而调节系统的输出。
传感器用于采集系统的实时数据,执行器则根据控制信号调节系统的输出。
三、实验步骤1. 首先,将传感器与控制器连接,并将控制器与执行器连接。
2. 打开控制器,设置控制算法和控制参数。
3. 对系统进行初始状态调整,使其达到稳定状态。
4. 改变系统的输入,观察系统的动态响应。
5. 根据观察到的动态响应,调整控制参数,使系统的输出达到预期要求。
6. 重复步骤4和步骤5,直到系统的输出稳定在预期范围内。
四、实验结果与分析在实验过程中,我们观察到系统的输出随着输入的改变而发生变化。
通过调整控制参数,我们成功地将系统的输出稳定在预期范围内。
这表明自控原理在控制系统中具有重要的应用价值。
五、实验总结通过本次实验,我们深入了解了自控原理的基本概念和应用方法。
通过实际操作,我们掌握了自控系统的调节技巧,并验证了自控原理的有效性。
自控原理在工程领域具有广泛的应用,可以用于控制各种系统的稳定性和性能。
在今后的学习和工作中,我们将继续深入研究自控原理,并将其应用于实际工程中。
六、参考文献[1] 李晓明. 自控原理及其应用[M]. 电子工业出版社, 2010.[2] 王志勇. 自控原理与控制工程实践[M]. 机械工业出版社, 2015.结语:通过本次实验,我们对自控原理有了更深入的了解,并学会了如何应用自控原理进行系统控制。
自动控制原理实验报告
一、实验目的1. 理解自动控制原理的基本概念,掌握自动控制系统的组成和基本工作原理。
2. 熟悉自动控制实验设备,学会使用相关仪器进行实验操作。
3. 通过实验验证自动控制理论在实际系统中的应用,加深对理论知识的理解。
二、实验原理自动控制原理是研究自动控制系统动态过程及其控制规律的科学。
实验主要验证以下原理:1. 线性时不变系统:系统在任意时刻的输入与输出之间关系可用线性方程表示,且系统参数不随时间变化。
2. 稳定性:系统在受到扰动后,能够逐渐恢复到稳定状态。
3. 控制器设计:通过控制器的设计,使系统满足预定的性能指标。
三、实验设备1. 自动控制实验台2. 计算机及控制软件3. 测量仪器(如示波器、信号发生器、数据采集器等)四、实验内容1. 线性时不变系统阶跃响应实验2. 线性时不变系统频率响应实验3. 控制器设计实验五、实验步骤1. 线性时不变系统阶跃响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为阶跃信号,观察并记录输出信号;(3)分析阶跃响应曲线,计算系统动态性能指标。
2. 线性时不变系统频率响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为正弦信号,改变频率,观察并记录输出信号;(3)分析频率响应曲线,计算系统频率特性指标。
3. 控制器设计实验(1)根据系统性能指标,选择合适的控制器类型;(2)搭建实验电路,连接好相关仪器;(3)调整控制器参数,观察并记录输出信号;(4)分析控制器效果,验证系统性能指标。
六、实验结果与分析1. 线性时不变系统阶跃响应实验(1)实验结果:绘制阶跃响应曲线,计算系统动态性能指标;(2)分析:与理论值进行对比,验证系统动态性能。
2. 线性时不变系统频率响应实验(1)实验结果:绘制频率响应曲线,计算系统频率特性指标;(2)分析:与理论值进行对比,验证系统频率特性。
3. 控制器设计实验(1)实验结果:调整控制器参数,观察并记录输出信号;(2)分析:验证系统性能指标,评估控制器效果。
自动控制原理课程设计实验报告
目录0 绪论 (1)1系统分析和模型建立 (1)1.1 背景知识 (1)1.2 模型建立 (1)1.3性能指标分析 (2)1.3.1 典型的闭环频率特性 (2)1.3.2 二阶系统闭环幅频特性与时域指标的关系 (2)1.3.3 高阶闭环系统与二阶系统的关系 (3)2系统校正 (3)2.1 基于根轨迹法系统校正 (3)2.2 基于频率法的系统校正 (8)2.2.1 电流环校正分析 (8)2.2.2 速度环校正分析 (9)2.2.3 位置环校正分析 (11)2.2.4 前馈控制 (15)3系统仿真检验 (16)3.1 基于根轨迹法校正的系统仿真检验 (16)3.2 基于频率法校正的系统仿真检验 (18)3.3 饱和环节对输出的影响 (24)4电路实现 (27)4.1 比例放大环节电路实现 (27)4.2 串联超前校正装置的实现 (27)4.3 前馈校正装置的实现 (29)5总结 (31)5.1 设计总结 (31)5.2 心得体会 (31)0绪论直流电动机以其良好的控制特性得到了广泛的应用。
本次设计正是以直流电机为模型,基于控制系统常用的性能指标,提出合理的设计方案。
本次设计是对前边所学课程的综合应用,也是与工程实践相结合的一个良好范本。
本次设计,旨在加深对自动控制原理和元件等知识的深入理解,也为后继课程的学习奠定基础。
1系统分析和模型建立1.1背景知识标准直流电机控制系统的基本方框图如图1-1所示。
图1- 11.2模型建立根据题给条件,对参数进行求取。
其中转动惯量又由力矩系数,知反电势系数。
,,求得,。
则电机的模型如图1-2所示。
1图1- 21.3性能指标分析1.3.1典型的闭环频率特性对于典型的单位反馈闭环系统,闭环幅频特性具有以下特点:(1)若开环传递函数含有串联积分环节,则闭环幅频特性在处。
否则(2)在低频段,闭环幅频特性变化缓慢,比较平滑。
(3)随着增大,闭环幅频特性会出现谐振峰,谐振峰对应的角频率成为谐振频率。
《自动控制原理》课程实验报告(范例)
《自动控制原理》课程实验报告姓名: 班级: 学号: 实验时间: 实验成绩: 一、 实验目的:1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。
2.通过响应曲线观测特征参量ζ和ωn 对二阶系统性能的影响。
3.熟练掌握系统的稳定性的判断方法。
二、 实验要求:1.根据实验步骤,写出调试好的MATLAB 语言程序,及对应的MATLAB 运算结果。
2.记录各种输出波形,根据实验结果分析参数变化对系统的影响。
3.总结判断闭环系统稳定的方法,说明增益K 对系统稳定性的影响。
三、 实验步骤:1.观察函数step( )函数和impulse( )的调用格式,假设系统的传递函数模型为146473)(2342++++++=s s s s s s s G ,可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。
2.对典型二阶系统2222)(nn ns s s G ωζωω++= 1)分别绘制出ωn =2(rad/s),ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响。
2)绘制出当ζ=0.25,ωn 分别取1,2,4,6时单位阶跃响应曲线,分析参数ωn 对系统的影响。
3.单位负反馈系统的开环模型为)256)(4)(2()(2++++=s s s s Ks G ,试判断系统的稳定性,并求出使得闭环系统稳定的K 值范围四、 实验结果与结论时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。
为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。
本次实验从分析系统的性能指标出发,给出了在MATLAB 环境下获取系统时域响应和分析系统的动态性能和稳态性能的方法。
1.用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分别以s 的降幂排列写为两个数组num 、den 。
自控实验报告终极版
自动控制原理课程设计实验报告一、 实验目的1、了解自动控制原理的数学和系统稳定验证的方法。
2、了解自动控制系统的放大系数对系统的稳态误差和稳定性的影响。
3、 熟悉MABLAB 系统仿真的应用,加强对MABLAB 软件应用的认识。
二、 实验内容1、设单位反馈控制系统的开环传递函数如下,试用MATLAB 绘制闭环根轨迹图。
33*)2()1()(++=s s K s G2、两个系统的传递函数分别为:)65)(1)(254()144)(3(50)()()1(2232++-++++-=s s s s s s s s s s H s G )1)(2)(6())(133(3)()()2(2222323+++-+++++=s s s s s s s s s s s s H s G 计算上述所给系统在2=ω和20=ω时的幅频特性)(ωA ,对数幅频特性)(ωL 以及相频特性)(ωϕ。
(用MATLAB 验证) 3、设单位反馈的开环传递函数为)15.0)(1()(0++=s s s Ks G要求设计一串联校正网络,使校正后系统的开环增益K=5,相角裕度不低于40°,幅值裕度不小于10dB.(用MATLAB 验证)三、实验步骤及MATLAB 验证仿真1、设单位反馈控制系统的开环传递函数如下,试用MATLAB 绘制闭环根轨迹图。
33*)2()1()(++=s s K s G 解:33*)2()1()(++=s s K s G用MATLAB 绘制闭环根轨迹图如下:程序:num=conv([1 1],conv([1 1],[1 1])); den=conv([1 2],conv([1 2],[1 2])); sys=tf(num,den); rlocus(sys); grid on其闭环根轨迹图如下:2、两个系统的传递函数分别为:)65)(1)(254()144)(3(50)()()1(2232++-++++-=s s s s s s s s s s H s G )1)(2)(6())(133(3)()()2(2222323+++-+++++=s s s s s s s s s s s s H s G(1) 解:)(lg 20)(3462541)14(5094116)25()14(950)()()()3)(2)(1)(425()12)(3(50))H(j ()3)(2)(1)(254()12)(3(50)()(42222222222222222ωωωωωωωωωωωωωωωωωωωωωωωωωωωωωA L j H j G A j j j j j j j j G s s s s s s s s s H s G =+-+++=++++-++==++-+-+-=+--+++-=当ω<5时,o2o2o o 90)2arctan()arctan()254arctan()2arctan(2)32arctan(-)3arctan()2arctan())arctan(180(254arctan90)2arctan(2)3arctan(-180)(--+--+-=---+----++=ωωωωωωωωωωωωωωϕ当ω>5时,o2o2o o 270)2arctan()arctan()254arctan()2arctan(2)32arctan(-)3arctan()2arctan())arctan(180(254arctan90)2arctan(2)3arctan(-180)(--+--+-=---+----++=ωωωωωωωωωωωωωωϕ当ω=2时,87.7904543.6385.2093.15138.6790)22arctan()2arctan()22524arctan()42arctan()322arctan()2(513.999.2lg 20)2lgA(20)2L(99.224346254414214450)2(o o24-=--+-+-=--+-⨯-+-=≈==≈+⨯-+++⨯⨯=ϕ)(A当ω=20时,9. 24027029.8414.8704.1214.17793. 162270)220arctan()20arctan()2025204arctan()402arctan()3202arctan( )20(7.31026.0lg20)20lgA(20)20L(026.0204003462544001400 201400450) 20 (o o2 4-=--+++-=--+-⨯-+-=-≈==≈+⨯-+++⨯⨯=ϕ)(A用MATLAB验证如下:程序:num=conv(50,conv([1 -3],[4 4 1]));den=conv([1 4 25 0],conv([1 -1],[1 5 6]));sys=tf(num,den);margin(sys);grid on其MABLAB验证图如下:由计算值和MATLAB 验证可知,当ω=2时,()()%032.0%100)2()2()2(:16.8251.92L ,87.7)2(513.9)2(99.2)2()2(≈⨯'-=-='='-===L L L L A L δϕϕ故其误差值分别为,,仿真值:,,理论值:%68.3%100)22()2()2(-≈⨯'-=()ϕϕϕδϕ当时20=ω理论值:()(),)(,, 9.240207.3120L 026.020A -=-≈≈ϕ仿真值:()(),, 241207.3120L -='-='ϕ故其误差值分别为:()()()()()()%04.0%1002020200%10020L 20L 20L 2020L -≈⨯'-==⨯'-=ϕϕϕδδϕ)()((2)解:)1)(2)(2)(3()1(3)1)(2)(6())(133(3)()(242222323+++-++=+++-+++++=s s s s s s s s s s s s s s s s s s s H s G )1)(2)(2)(3()1(3)()(24ωωωωωωωωωj j j j j j j H j G +-+-++=422222222222221)4(9)1(3)1(449)1(3|)()(|)(ωωωωωωωωωωωωωωωω+-+++=+-++++==j H j G A )(lg 20)(ωβωA L =()()()()()05.027087.247.8155.34827020120arctan 320arctan 20arctan 42077.908.3lg 2020lg 202008.320201420920120203)20(,2026.162702arctan 4270212arctan 32arctan 2arctan 4)2(18.35275lg 20)2(lg 20)2(44.1221)42(92)12(23)2(,22701arctan3arctan arctan 4)1arctan 180(2arctan )]7arctan(180[3arctan arctan 490)(,1242222242222222-=-+-≈----=≈==≈+-+++⨯⨯==-≈-=----====≈+-+++⨯⨯==----=-+---+--+=>ϕωϕωωωωωωωωωωωωϕωA L A A L A 时当时当时当用MATLAB 验证如下:程序:num=conv(3,conv([1 3 3 1],[1 1 0 0])); den=conv([1 1 -6],conv([1 2 0],[1 1 1])); sys=tf(num,den); margin(sys); grid on其MATLAB 验证图如下:(下一页)由计算值和MATLAB 验证可知; 当时,2=ω理论值:()()() 26.162,18.32,44.12-≈=≈ϕL A 验证值:()() 2.162,17.32-='='ϕL 故其误差值分别为:()%14.3%100)2()2(2)2(≈⨯'-=L L L L δ%37.0%100)2()2()2()2(≈⨯'-=ϕϕϕδϕ当时,20=ω理论值:()()() 05.02077.920L 08.320A -=≈≈ϕ,, 验证值:()() 0512.02041.920L -='='ϕ, 故其误差值分别为:()()()()%68.3%10020L 20L 2020L ≈⨯'-=L δ()()()%4.2%10020202020-=⨯'-=ϕϕϕδϕ)(3、设单位反馈的开环传递函数为)15.0)(1()(0++=s s s Ks G要求设计一串联校正网络,使校正后系统的开环增益K=5,相角裕度不低于40°,幅值裕度不小于10dB.(用MATLAB 验证)解:设校正后c ω截止频率为r c ''",ω为指标求值,通过串联滞后校正,设滞后校正传递函数为()sss G c 71671++=()()())12)(1(1015.01++=++=s s s s s s s s G()()()12110++=ωωωωj j j j G()2110lg2022++=ωωωωL() 902arctanarctan ---=ωωωψ由()()c c c r r ωψω''+''''='' ,且()c c ωψ''取为 14- ,得()() 541440=+=''-''=''''c r c r ωψω由()()c c r ''+=''''ωψω 180得 () 126180540-=-=''x ωψ通过Bode 图得 442.0="c ω程序: num=[10]; den=[1,3,2,0]; G=tf(num,den); margin(G); grid on其MATLAB 伯德图如下:则()1.202442.01442.0442.010log20442.02≈++='=⎪⎭⎫ ⎝⎛"'L L c ω所以有:()()()()()ss s s s s s s s s s G s G s G c 266.30449.45383.1501083.15083.1501083.15115.0152340++++=++⋅++=⋅=程序:num1=[10];den1=[1,3,2,0]; num2=[150.83,10];den2=[150.83,453.49,304.66,2,0]; G1=tf(num1,den1); margin(G1); hold onG2=tf(num2,den2); margin(G2); bode(G1,':'); grid on其MATLAB 验证图如下()sss G T b bTl b c cc 83.1501083.15183.1501.015.010lg 20++=⎩⎨⎧==⎪⎩⎪⎨⎧''==⎪⎭⎫ ⎝⎛"'+得ωω校正前系统阶跃响应如下:程序:num=[10];den=[1,3,2,0];G=tf(num,den);figure(1);step(feedback(G,1,-1));grid on其MATLAB验证图如下校正后系统阶跃响应如下:程序:num=[150.83,10];den=[150.83,453.49,304.66,2,0]; G=tf(num,den);figure(1);step(feedback(G,1,-1));grid on其MATLAB验证图如下校正方法分析:ω附近很窄的频率范围内在此题中,采用相位超前校正是不怎么有效的,此例在c对数幅频和相频特性衰减很快,若采用相位超前校正,虽然校正环节可提供超前相角,ω右移,又将使系统的相位产生较大的滞后量,而使系统的相位裕量不会有但又会使c明显的改善。
自动控制原理实验报告
自动控制原理实验报告摘要:本实验通过对自动控制原理的研究与实践,旨在深入了解自动控制系统的基本原理,以及相关的实验应用。
通过实验的设计与实施,我们在实践中学习了控制系统的结构、传递函数、稳定性、稳态误差等内容,并通过使用PID控制器对物理实验系统进行控制,从而对自动控制系统有了更加深入的理解。
引言:自动控制原理是现代工程控制领域的基础理论之一,在工业、交通、通信等领域都有广泛的应用。
自动控制原理实验是培养学生工程实践能力和动手能力的重要实践环节。
本实验通过对自动控制原理相关实验的设计与实践,让我们深入了解了自动控制系统的基本原理,并通过实际操作对理论知识进行了实际应用。
实验目的:1. 了解自动控制系统的基本结构和原理;2. 学习如何建立传递函数,并分析系统的稳定性;3. 熟悉PID控制器的参数调节方法;4. 掌握如何利用PID控制器对物理实验系统进行控制。
实验原理与方法:1. 实验装置搭建:我们搭建了一个简单的电路系统,包括输入信号源、控制器、执行器和输出传感器。
通过控制器对执行器的控制,实现对输出信号的调节。
2. 传递函数建立:使用系统辨识方法,通过对输入和输出信号的采集,建立系统的传递函数。
经过数据处理和分析,得到系统的传递函数表达式。
3. 稳定性分析:对系统的传递函数进行稳定性分析,包括零极点分析和Nyquist稳定性判据。
根据分析结果,判断系统的稳定性。
4. PID参数调节:根据传递函数和系统要求,使用PID控制器对系统进行调节。
根据实际情况进行参数调节,使得系统的响应达到要求。
实验结果与讨论:我们通过以上方法,成功地建立了控制系统的传递函数,并进行了稳定性分析。
通过对PID控制器参数的调节,使系统的稳态误差达到了要求。
通过实验,我们深刻理解了自动控制系统的基本原理,并学会了如何应用具体方法进行实际操作。
实验结论:通过自动控制原理的实验研究,我们对控制系统的基本原理有了更加深入的了解。
实践中,我们通过搭建实验装置、建立传递函数、进行稳定性分析和PID参数调节等实验操作,使得理论知识得到了更加全面的应用和巩固。
自动控制原理实验报告(自动化专业电子版)
精心整理自动控制原理实验报告课程编号:ME3121023专业班级实验目的和要求:通过自动控制原理实验牢固地掌握《自动控制原理》课的基本分析方法和实验测试手段。
能应用运算放大器建立各种控制系统的数学模型,掌握系统校正的常用方法,掌握系统性能指标同系统结构和参数之间的基本关系。
通过大量实验,提高动手、动脑、理论结合实际的能力,提高从事数据采集与调试的能力,为构建系统打下坚实的基础。
一、12341分环节和比例积分微分环节。
2、在阶跃输入信号作用下,记录各环节的输出波形,写出输入输出之间的时域数学关系。
3、在运算放大器上实现各环节的参数变化。
(三)、实验要求:1、仔细阅读自动控制实验装置布局图和计算机虚拟测量软件的使用说明书。
2、做好预习,根据实验内容中的原理图及相应参数,写出其传递函数的表达式,并计算各典型环节的时域输出响应和相应参数(K、T)。
3、分别画出各典型环节的理论波形。
5、输入阶跃信号,测量各典型环节的输入和输出波形及相关参数。
(四)、实验原理:实验原理及实验设计:1.2.3.时域输出响应:4.比例积分环节:Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:5.比例微分环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:6.123、123的原因。
(七)、记录实验数据:、实测实验二二阶系统的性能研究(一)、实验目的:通过实验加深理解二阶系统的性能指标同系统参数的关系。
(二)、实验内容:1、二阶系统的时域动态性能研究;(三)、实验要求:1、做好预习,根据实验原理图所示相应参数,写出系统的开环,闭环传递函数。
(八)、思考与讨论:将实验结果与理论知识作对比,并进行讨论。
实验三系统时域分析实验(一)、实验目的:1、深入掌握二阶系统的性能指标同系统闭环极点位置的关系。
2、掌握高阶系统性能指标的估算方法及开环零、极点同闭环零、极点的关系。
3、能运用根轨迹分析法由开环零极点的位置确定闭环零极点的位置。
自动控制原理_实验报告
一、实验目的1. 理解自动控制系统的基本概念和组成;2. 掌握典型环节的传递函数和响应特性;3. 熟悉PID控制器的原理和参数整定方法;4. 通过实验验证理论知识的正确性,提高实际操作能力。
二、实验设备1. 自动控制原理实验箱;2. 示波器;3. 数字多用表;4. 个人电脑;5. 实验指导书。
三、实验原理自动控制系统是一种根据给定输入信号自动调节输出信号的系统。
它主要由控制器、被控对象和反馈环节组成。
控制器根据被控对象的输出信号与给定信号的偏差,通过调节控制器的输出信号来改变被控对象的输入信号,从而实现对被控对象的控制。
1. 典型环节(1)比例环节:比例环节的传递函数为G(s) = K,其中K为比例系数。
比例环节的响应特性为输出信号与输入信号成线性关系。
(2)积分环节:积分环节的传递函数为G(s) = 1/s,其中s为复频域变量。
积分环节的响应特性为输出信号随时间逐渐逼近输入信号。
(3)比例积分环节:比例积分环节的传递函数为G(s) = K(1 + 1/s),其中K为比例系数。
比例积分环节的响应特性为输出信号在比例环节的基础上,逐渐逼近输入信号。
2. PID控制器PID控制器是一种常用的控制器,其传递函数为G(s) = Kp + Ki/s + Kd(s/s^2),其中Kp、Ki、Kd分别为比例系数、积分系数和微分系数。
PID控制器可以实现对系统的快速、稳定和精确控制。
四、实验内容及步骤1. 实验一:典型环节的阶跃响应(1)搭建比例环节电路,观察并记录输出信号随时间的变化曲线;(2)搭建积分环节电路,观察并记录输出信号随时间的变化曲线;(3)搭建比例积分环节电路,观察并记录输出信号随时间的变化曲线。
2. 实验二:PID控制器参数整定(1)搭建PID控制器电路,观察并记录输出信号随时间的变化曲线;(2)通过改变PID控制器参数,观察并分析系统响应特性;(3)根据系统响应特性,整定PID控制器参数,使系统达到期望的响应特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计的工作计划:
1、布置课程设计任务;消化课程设计内容,查阅并参考相关资料,进行初步设计(3天);
2、按课程设计的要求进行详细设计(3天);
3、进行实时控制实验,并按课程设计的规范要求撰写设计报告(3天);
4、课程设计答辩,实时控制验证(1天)。
7、完成课程设计报告。
参考资料:
1、固高科技有限公司.直线倒立摆安装与使用手册R1.0,2005
2、固高科技有限公司.固高MATLAB实时控制软件用户手册,2005
3、Matlab/Simulink相关资料
4、谢昭莉,李良筑,杨欣.自动控制原理(上).北京:机械工业出版社,2012
5、胡寿松.自动控制原理(第五版).北京:科学出版社,2007
学习态度尚可,动手能力一般,能遵守组பைடு நூலகம்纪律,能按期完成任务
学习马虎,纪律涣散,动手能力较差,工作作风不严谨,不能保证设计时间和进度
报告技术水平与撰写质量
50
设计合理、理论分析与计算正确,实验数据准确,文献查阅能力强、引用合理、调查调研非常合理、可信。报告结构严谨,逻辑性强,层次清晰,语言准确,文字流畅,完全符合规范化要求,图纸非常工整、清晰
任务下达日期2015年12月29日
完成日期2016年12月30日
指导教师(签名)
学生(签名)
摘要
通过对一级倒立摆系统进行数学建模,得到摆杆角度和小车加速度之间的传递函数:
首先从时域角度着手,分析直线一级倒立摆的开环单位阶跃响应和单位脉冲响应,得出该系统的开环响应是发散的这一结论。
利用根轨迹分析法,并借助Matlab一级其中的Simulink仿真系统辅助分析。通过加入超前校正校正环节,得到系统的校正函数,并且校正后的系统满足课设的要求,即最大超调量: ,调整时间: 。同样,利用频域分析法也得到校正环节的传递函数。对系统进行校正系统的静态位置误差函数常数为10,相位裕量为 ,增益裕量等于或大于 。最后利用PID控制器设计出校正函数,并且也满足最大超调量: ,调节时间: 。
学生应完成的工作:
1、利用设计指示书中的实际参数,通过机理推导,建立倒立摆系统的实际数学模型。
2、进行开环系统的时域分析。
3、利用根轨迹法设计控制器,进行闭环系统的仿真分析。
4、利用频域法设计控制器,进行闭环系统的仿真分析。
5、设计或调整PID控制器参数,进行闭环系统的仿真分析。
6、将所设计的控制器在倒立摆系统上进行实时控制实验。
参考标准
学习态度
20
学习态度认真,科学作风严谨,有很强的实际动手能力和计算机应用能力,严格保证设计时间并按任务书中规定的进度开展各项工作
学习态度比较认真,科学作风良好,有较强的实际动手能力和计算机应用能力,能按期圆满完成任务书规定的任务
学习态度尚好,遵守组织纪律,有一定的实际动手能力,基本保证设计时间,按期完成各项工作
答辩时,能大致地阐述自己设计的主要内容和完成的主要工作;能比较恰当地回答问题,对主要问题回答基本正确,有一定的表达能力,对相关知识理解无大错。
答辩时,阐述不清设计(论文)的主要内容,基本概念糊涂,对主要问题回答有错误,或回答不出。
指导教师评定成绩:
指导教师签名:年月日
重庆大学本科学生课程设计任务书
课程设计题目
设计基本合理,理论分析与计算无大错,实验数据无大错。报告结构基本合理,逻辑基本清楚,文字尚通顺,勉强达到规范化要求;图纸比较工整
设计不合理,理论分析与计算有原则错误,实验数据不可靠,文献引用、调查调研有较大的问题。报告内容空泛,结构混乱,达不到规范化要求;图纸不工整或不清晰
答辩表现
30
答辩时,能简明扼要地阐述自己设计的主要内容和完成的主要工作;思路清晰;表达能力强;回答问题正确,有理论根据,基本要领清楚,对相关知识掌握好。
设计合理、理论分析与计算正确,实验数据比较准确,文献引用、调查调研比较合理、可信。报告结构合理,符合逻辑,文章层次分明,语言准确,文字流畅,符合规范化要求,图纸工整、清晰
设计合理,理论分析与计算基本正确,实验数据比较准确,主要文献引用、调查调研比较可信。报告结构合理,层次较为分明,文理通顺,基本达到规范化要求,图纸比较工整、清晰
答辩时,能比较清晰流利地阐述自己设计的主要内容和完成的主要工作;思路清晰;表达能力较强;回答问题正确,有理论根据,基本要领清楚,对相关知识掌握较好。
答辩时,能比较清晰流利地阐述自己设计的主要内容和完成的主要工作;能比较恰当地回答问题,对主要问题回答正确,并有一定的理论依据,有一定的表达能力,对相关知识有一定的理解和掌握。
2、利用根轨迹法设计控制器,使得校正后系统的性能指标满足:
调整时间
最大超调量
3、利用频率特性法设计控制器,使得校正后系统的性能指标满足:
(1)系统的静态位置误差常数为10;
(2)相位裕量为50;
(3)增益裕量等于或大于10dB。
4、设计或调整PID控制器参数,使得校正后系统的性能指标满足:
调整时间
最大超调量
通过以上的设计,得到一级倒立摆的控制器,对倒立摆进行有目的的控制,从而达到预期的效果。
关键字:倒立摆根轨迹分析法频域分析法PID
倒立摆系统的概述
倒立摆的种类:悬挂式、直线、环形、平面倒立摆等。一级、二级、三级、四级乃至多级倒立摆。
系统的组成:倒立摆系统由倒立摆本体,电控箱以及控制平台(包括运动控制卡和PC机)三大部分组成。
倒立摆系统的控制器设计
学院
自动化学院
专业
自动化
年级
2014级
1、已知参数和设计要求:
M:小车质量1.096kg
m:摆杆质量0.109kg
b:小车摩擦系数0.1N/sec
l:摆杆转动轴心到杆质心的长度0.25m
I:摆杆惯量0.0034kgm2
建立以小车加速度为系统输入,以摆杆角度为系统输出的被控对象数学模型。分别用根轨迹法、频率特性法设计控制器使闭环系统满足要求的性能指标;调整PID控制器参数,使闭环系统满足要求的性能指标。
自动控制理论课程设计
倒立摆系统的控制器设计
学生姓名:张萌
指导教师:谢昭莉
班级:自动化3班
重庆大学自动化学院
二O一六年十二月
课程设计指导教师评定成绩表
项目
分值
优秀
(100>x≥90)
良好
(90>x≥80)
中等
(80>x≥70)
及格
(70>x≥60)
不及格(x<60)
评分
参考标准
参考标准
参考标准
参考标准