自控原理实验报告(2)
实验报告-自动控制原理
________________________________________________________________________________
〖分析பைடு நூலகம்:______________________________________________________________________
_______________________________________________________________________________
说明:特征参数为比例增益K和微分时间常数T。
1)R2=R1=100KΩ, C2=0.01µF,C1=1µF;特征参数实际值:K=______,T=________。
波形如下所示:
2)R2=R1=100KΩ, C2=0.01µF,C1=0.1µF;特征参数实际值:K= 1,T=0.01。
波形如下所示:
四、实验心得体会
实验报告
班级
姓名
学号
所属课程
《自动控制原理》
课时
2
实践环节
实验3控制系统的稳定性分析
地点
实字4#318
所需设备
电脑、工具箱
一、实验目的
1.观察系统的不稳定现象。
2.研究系统开环增益和时间常数对稳定性的影响
3.学习用MATLAB仿真软件对实验内容中的电路进行仿真。
2、实验步骤
_______________________________________________________________________________
自控原理实验报告
一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。
2. 掌握典型环节的数学模型及其在控制系统中的应用。
3. 熟悉控制系统的时间响应和频率响应分析方法。
4. 培养实验操作技能和数据处理能力。
二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。
本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。
2. 控制系统:开环控制系统和闭环控制系统。
3. 时间响应:阶跃响应、斜坡响应、正弦响应等。
4. 频率响应:幅频特性、相频特性等。
三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用示波器观察并记录各个环节的阶跃响应曲线。
- 分析并比较各个环节的阶跃响应曲线,得出结论。
2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。
- 分析并比较各个环节的频率响应特性,得出结论。
3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。
- 使用示波器观察并记录二阶系统的阶跃响应曲线。
- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。
4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。
- 使用示波器观察并记录系统的稳态响应曲线。
- 计算并分析系统的稳态误差。
五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。
- 积分环节:K=1,阶跃响应曲线如图2所示。
自控原理课程实验报告
一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。
2. 熟悉自动控制系统的典型环节,包括比例环节、积分环节、比例积分环节、惯性环节、比例微分环节和比例积分微分环节。
3. 通过实验,验证自动控制理论在实践中的应用,提高分析问题和解决问题的能力。
二、实验原理自动控制原理是研究自动控制系统动态和稳态性能的学科。
本实验主要围绕以下几个方面展开:1. 典型环节:通过搭建模拟电路,研究典型环节的阶跃响应、频率响应等特性。
2. 系统校正:通过在系统中加入校正环节,改善系统的性能,使其满足设计要求。
3. 系统仿真:利用MATLAB等仿真软件,对自动控制系统进行建模和仿真,分析系统的动态和稳态性能。
三、实验内容1. 典型环节实验(1)比例环节:搭建比例环节模拟电路,观察其阶跃响应,分析比例系数对系统性能的影响。
(2)积分环节:搭建积分环节模拟电路,观察其阶跃响应,分析积分时间常数对系统性能的影响。
(3)比例积分环节:搭建比例积分环节模拟电路,观察其阶跃响应,分析比例系数和积分时间常数对系统性能的影响。
(4)惯性环节:搭建惯性环节模拟电路,观察其阶跃响应,分析时间常数对系统性能的影响。
(5)比例微分环节:搭建比例微分环节模拟电路,观察其阶跃响应,分析比例系数和微分时间常数对系统性能的影响。
(6)比例积分微分环节:搭建比例积分微分环节模拟电路,观察其阶跃响应,分析比例系数、积分时间常数和微分时间常数对系统性能的影响。
2. 系统校正实验(1)串联校正:在系统中加入串联校正环节,改善系统的性能,使其满足设计要求。
(2)反馈校正:在系统中加入反馈校正环节,改善系统的性能,使其满足设计要求。
3. 系统仿真实验(1)利用MATLAB等仿真软件,对自动控制系统进行建模和仿真,分析系统的动态和稳态性能。
(2)根据仿真结果,优化系统参数,提高系统性能。
四、实验步骤1. 搭建模拟电路:根据实验内容,搭建相应的模拟电路,并连接好测试设备。
自动控制原理实验报告
学生实验报告PID 控制器是一种线性控制器,它根据给定值()t r 与实际输出值()t y 构成控制偏差()t e()()()t y t r t e -=(2.2.1)将偏差的比例()P 、积分()I 和微分()D 通过线性组合构成控制量,对被控对象进行控制,故称PID 控制器。
其控制规律为()()()()⎥⎦⎤⎢⎣⎡++=⎰dt t de T dt t e T t e K t u D tp 011(2.2.2)或写成传递函数的形式()()()⎪⎪⎭⎫ ⎝⎛++==s T s T K s E s U s G D p 111(2.2.3) 式中:p K ——比例系数;I T ——积分时间常数;D T ——微分时间常数。
在控制系统设计和仿真中,也将传递函数写成()()()sK s K s K s K s K K s E s U s G I p D D Ip ++=++==2(2.2.4) 式中:P K ——比例系数;I K ——积分系数;D K ——微分系数。
上式从根轨迹角度看,相当于给系统增加了一个位于原点的极点和两个位置可变的零点。
简单说来,PID 控制器各校正环节的作用如下:A 、比例环节:成比例地反映控制系统的偏差信号()t e ,偏差一旦产生,控制器立即产生控制作用,以减少偏差。
B 、积分环节:主要用于消除稳态误差,提高系统的型别。
积分作用的强弱取决于积分时间常数I T ,I T 越大,积分作用越弱,反之则越强。
C 、微分环节:反映偏差信号的变化趋势(变化速率),并能在偏差信号值变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减小调节时间。
2、 PID 参数的确定方法 (1) 根轨迹法确定PID 参数 PID 的数学模型可化为:()s K s K s K s G IP D ++=2从仿真曲线看出未校正系统震荡不稳定。
设球杆系统PID 校正的结构图为如图2.2.5 示:要求采用凑试法设计PID校正环节,使系统性能指标达到调节时间小于令Kp=2.5,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:令Kp=2,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:令Kp=2.1,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:令Kp=2.4,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:令Kp=2.5,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:令Kp=2.6,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:PID参数整定:Time Offset(s) Kp Ki Kd SampleTime sT(s) %5 2.5 0.9 1.5 -1 23 4%学生实验报告从仿真曲线看出未校正系统震荡不稳定。
自控实验报告实验二
自控实验报告实验二一、实验目的本次自控实验的目的在于深入理解和掌握控制系统的性能指标以及相关参数对系统性能的影响。
通过实验操作和数据分析,提高我们对自控原理的实际应用能力,培养解决实际问题的思维和方法。
二、实验设备本次实验所使用的设备主要包括:计算机一台、自控实验箱一套、示波器一台、信号发生器一台以及相关的连接导线若干。
三、实验原理在本次实验中,我们主要研究的是典型的控制系统,如一阶系统和二阶系统。
一阶系统的传递函数通常表示为 G(s) = K /(Ts + 1),其中 K 为增益,T 为时间常数。
二阶系统的传递函数则可以表示为 G(s) =ωn² /(s²+2ζωn s +ωn²),其中ωn 为无阻尼自然频率,ζ 为阻尼比。
通过改变系统的参数,如增益、时间常数、阻尼比等,观察系统的输出响应,从而分析系统的稳定性、快速性和准确性等性能指标。
四、实验内容与步骤1、一阶系统的阶跃响应实验按照实验电路图连接好实验设备。
设置不同的时间常数 T 和增益 K,通过信号发生器输入阶跃信号。
使用示波器观察并记录系统的输出响应。
2、二阶系统的阶跃响应实验同样按照电路图连接好设备。
改变阻尼比ζ 和无阻尼自然频率ωn,输入阶跃信号。
用示波器记录输出响应。
五、实验数据记录与分析1、一阶系统当时间常数 T = 1s,增益 K = 1 时,系统的输出响应呈现出一定的上升时间和稳态误差。
随着时间的推移,输出逐渐稳定在一个固定值。
当 T 增大为 2s,K 不变时,上升时间明显变长,系统的响应速度变慢,但稳态误差基本不变。
2、二阶系统当阻尼比ζ = 05,无阻尼自然频率ωn = 1rad/s 时,系统的输出响应呈现出较为平稳的过渡过程,没有明显的超调。
当ζ 减小为 02,ωn 不变时,系统出现了较大的超调,调整时间也相应变长。
通过对实验数据的分析,我们可以得出以下结论:对于一阶系统,时间常数 T 越大,系统的响应速度越慢;增益 K 主要影响系统的稳态误差。
自控实验报告实验二
实验二 线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。
2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。
3.熟练掌握系统的稳定性的判断方法。
二、实验内容1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为146473)(2342++++++=s s s s s s s G可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。
2.对典型二阶系统2222)(nn n s s s G ωζωω++= 1)分别绘出)/(2s rad n =ω,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标ss s p r p e t t t ,,,,σ。
2)绘制出当ζ=0.25, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数nω对系统的影响。
3.单位负反馈系统的开环模型为)256)(4)(2()(2++++=s s s s Ks G试判断系统的稳定性,并求出使得闭环系统稳定的K 值范围。
三、实验报告1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为146473)(2342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。
1) 程序代码如下: >> num=[1 3 7];den=[1 4 6 4 1 0]; impulse(num,den) grid曲线如下:2) 程序代码如下:num=[1 3 7 0]; den=[1 4 6 4 1 0]; step(num,den) grid曲线如下:2.对典型二阶系统2222)(nn n s s s G ωζωω++= 1)分别绘出)/(2s rad n =ω,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标ss s p r p e t t t ,,,,σ。
自动控制原理实验报告
电气学科大类2012 级《信号与控制综合实验》课程实验报告(基本实验二:自动控制原理基本实验)姓名学号专业班号同组者1 学号专业班号同组者2 学号专业班号指导教师日期实验成绩评阅人实验评分表目录实验十一:二阶系统的模拟与动态性能研究 (1)一、实验目的 (1)二、实验原理 (1)三、实验内容 (2)四、实验设备 (2)五、实验步骤 (2)六、实验结果与分析 (2)七、思考题 (7)八、实验心得与自我评价 (9)实验十二:二阶系统的稳态性能研究 (10)一、实验目的 (10)二、实验原理 (10)三、实验内容 (11)四、实验设备 (12)五、实验步骤 (12)六、实验结果与分析 (13)七、思考题 (18)八、实验心得与自我评价 (21)实验十四:线性控制系统的设计与校正 (22)一、实验目的 (22)二、实验原理 (22)四、实验内容 (23)四、实验设备 (24)五、实验步骤 (24)六、实验结果与分析 (24)七、思考题 (28)八、实验心得与自我评价 (29)实验十六:控制系统状态反馈控制器设计 (30)一、实验目的 (30)二、实验原理 (30)三、实验设计 (31)四、实验设备 (34)五、实验步骤 (35)六、实验结果与分析 (35)七、思考题 (36)八、实验心得与自我评价 (37)参考文献 (38)致谢 (39)实验十一:二阶系统的模拟与动态性能研究一、实验目的1.掌握典型二阶系统动态性能指标的测试方法。
2.通过实验和理论分析计算比较,研究二阶系统的参数对其动态性能的影响。
二、实验原理典型二阶系统的方框图如图11-1:图11-1 典型二阶振荡环节的方框图其闭环传递函数为:2222()()1()2n n n G s Ks G s Ts s K s s ωζωωΦ===+++++式中,ζ=,为系统的阻尼比;n ω=,为系统的无阻尼自然频率。
对于不同的系统,ζ和ωn 所包含的内容也是不同的。
自动控制原理实验报告(实验一,二,三)分析
自动控制原理实验报告实验名称:线性系统的时域分析线性系统的频域分析线性系统的校正与状态反馈班级:学号:姓名:指导老师:2013 年12 月15日典型环节的模拟研究一. 实验目的1.了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式2.观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响二.实验内容及步骤观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响.。
改变被测环节的各项电路参数,画出模拟电路图,阶跃响应曲线,观测结果,填入实验报告运行LABACT 程序,选择自动控制菜单下的线性系统的时域分析下的典型环节的模拟研究中的相应实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。
具体用法参见用户手册中的示波器部分1).观察比例环节的阶跃响应曲线典型比例环节模拟电路如图3-1-1所示。
图3-1-1 典型比例环节模拟电路传递函数:01(S)(S)(S)R R K KU U G i O === ; 单位阶跃响应: K )t (U = 实验步骤:注:‘S ST ’用短路套短接!(1)将函数发生器(B5)所产生的周期性矩形波信号(OUT ),作为系统的信号输入(Ui );该信号为零输出时,将自动对模拟电路锁零。
① 在显示与功能选择(D1)单元中,通过波形选择按键选中矩形波’(矩形波指示灯亮)。
② 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度>1秒(D1单元左显示)。
③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 4V (D1单元‘右显示)。
(2)构造模拟电路:按图3-1-1安置短路套及测孔联线,表如下。
(a )安置短路套 (b )测孔联线(3)运行、观察、记录:打开虚拟示波器的界面,点击开始,按下信号发生器(B1)阶跃信号按钮(0→+4V 阶跃),观测A5B 输出端(Uo )的实际响应曲线。
自控原理实验报告
自控原理实验报告自控原理实验报告引言:自控原理是现代控制工程的基础理论之一,它研究的是如何通过控制器对系统进行调节,使得系统能够在给定的条件下稳定运行。
本实验旨在通过实际操作,验证自控原理的有效性,并探究其在工程领域的应用。
一、实验目的本实验的主要目的是通过搭建一个简单的自控系统,观察和分析系统的动态响应,并根据实验结果验证自控原理的有效性。
同时,通过实际操作,掌握自控系统的调节方法和技巧。
二、实验装置和原理本实验所使用的装置主要包括一个控制器、一个传感器和一个执行器。
控制器负责接收传感器采集到的数据,并根据预设的控制算法计算出控制信号,然后将控制信号发送给执行器,从而调节系统的输出。
传感器用于采集系统的实时数据,执行器则根据控制信号调节系统的输出。
三、实验步骤1. 首先,将传感器与控制器连接,并将控制器与执行器连接。
2. 打开控制器,设置控制算法和控制参数。
3. 对系统进行初始状态调整,使其达到稳定状态。
4. 改变系统的输入,观察系统的动态响应。
5. 根据观察到的动态响应,调整控制参数,使系统的输出达到预期要求。
6. 重复步骤4和步骤5,直到系统的输出稳定在预期范围内。
四、实验结果与分析在实验过程中,我们观察到系统的输出随着输入的改变而发生变化。
通过调整控制参数,我们成功地将系统的输出稳定在预期范围内。
这表明自控原理在控制系统中具有重要的应用价值。
五、实验总结通过本次实验,我们深入了解了自控原理的基本概念和应用方法。
通过实际操作,我们掌握了自控系统的调节技巧,并验证了自控原理的有效性。
自控原理在工程领域具有广泛的应用,可以用于控制各种系统的稳定性和性能。
在今后的学习和工作中,我们将继续深入研究自控原理,并将其应用于实际工程中。
六、参考文献[1] 李晓明. 自控原理及其应用[M]. 电子工业出版社, 2010.[2] 王志勇. 自控原理与控制工程实践[M]. 机械工业出版社, 2015.结语:通过本次实验,我们对自控原理有了更深入的了解,并学会了如何应用自控原理进行系统控制。
自动控制原理实验报告
自动控制原理实验报告姓 名班 级学 号指导教师1自动控制原理实验报告(一)一.实验目的1.了解掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式。
2.观察分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响。
3.了解掌握典型二阶系统模拟电路的构成方法及Ⅰ型二阶闭环系统的传递函数标准式。
4.研究Ⅰ型二阶闭环系统的结构参数--无阻尼振荡频率ωn 、阻尼比ξ对过渡过程的影响。
5.掌握欠阻尼Ⅰ型二阶闭环系统在阶跃信号输入时的动态性能指标σ%、t p 、t s 的计算。
6.观察和分析Ⅰ型二阶闭环系统在欠阻尼、临界阻尼、过阻尼的瞬态响应曲线,及在阶跃信号输入时的动态性能指标σ%、t p 值,并与理论计算值作比对。
二.实验过程与结果1.观察比例环节的阶跃响应曲线1.1模拟电路图1.2传递函数(s)G(s)()o i U K U s == 10R K R =1.3单位阶跃响应U(t)K 1.4实验结果1.5实验截图2342.观察惯性环节的阶跃响应曲线2.1模拟电路图2.2传递函数(s)G(s)()1o i U KU s TS ==+10R K R =1T R C =2.3单位阶跃响应0(t)K(1e)tTU-=-2.4实验结果2.5 实验截图5673.观察积分环节的阶跃响应曲线3.1模拟电路图3.2传递函数(s)1G(s)()TS o i U U s ==i 0T =R C3.3单位阶跃响应01(t)i U t T =3.4 实验结果3.5 实验截图89104.观察比例积分环节的阶跃响应曲线4.1模拟电路图4.2传递函数0(s)1(s)(1)(s)i i U G K U T S ==+10K R R =1i T R C=4.3单位阶跃响应1 (t)(1)U K tT=+ 4.4实验结果4.5实验截图1112135.观察比例微分环节的阶跃响应曲线5.1模拟电路图5.2传递函数0(s)1(s)()(s)1i U TSG K U S τ+==+12312(R )D R R T CR R =++3R C τ=120R R K R +=141233(R //R )R D K R +=0.06D D T K sτ=⨯=5.3单位阶跃响应0(t)()U KT t Kδ=+5.4实验结果截图6.观察比例积分微分(PID )环节的响应曲线6.1模拟电路图156.2传递函数0(s)(s)(s)p p p d i i K U G K K T S U T S ==++123212(R )C d R R T R R =++i 121(R R )C T =+120p R R K R +=1233(R //R )R D K R +=32R C τ= D D T K τ=⨯6.3单位阶跃响应0(t)()p p D p K U K T t K tTδ=++6.4实验观察结果截图16三.实验心得这个实验,收获最多的一点:就是合作。
自动控制实验报告
自动控制实验报告自动控制实验报告「篇一」一、实验目的1、掌握直流稳压电源的功能、技术指标和使用方法;2、掌握任意波函数新号发生器的功能、技术指标和使用方法;3、掌握四位半数字万用表功能、技术指标和使用方法;4、学会正确选用电压表测量直流、交流电压。
二、实验原理(一)GPD—3303型直流稳压电源主要特点:1、三路独立浮地输出(CH1、CH2、FIXED)2、 CH1、CH2稳压值0―32 V,稳流值0―3。
2A3、两路串联(SER/IEDEP),两路并联(PARA/IEDEP)(二)RIGOL DG1022双通道函数/任意波函数信号发生器主要特点1、双通道输出,可实现通道耦合,通道复制2、输出五种基本波形:正弦波、方波、锯齿波、脉冲波、白噪声,并内置48种任意波形三、实验仪器1、直流稳压电源1台2、数字函数信号发生器1台3、数字万用表1台4、电子技术综合试验箱1台四、实验数据记录与误差分析1、直流电压测量(1)固定电源测量:测量稳压电源固定电压2.5V、3.3V、5V;误差分析:E1=|2.507—2.5|÷2。
5×100%=0.28%E2=|3.318—3。
3|÷3.3×100%=0.55%E3=|5.039—5|÷5×100%=0.78%(2)固定电源测量:测量实验箱的固定电压±5V、±12V、—8V;误差分析:E1=|5.029—5|÷5×100%=0.58%E2=|5.042—5|÷5×100%=0.84%E3=|11.933—12|÷12×100%=0.93%E3=|11.857—12|÷12×100%=0.56%E3=|8.202—8|÷8×100%=2.5%(3)可变电源测量;误差分析:E1=|6.016—6|÷6×100%=0.27%E2=|12.117—12|÷12×100%=0.98% E3=|18.093—18|÷18×100%=0.51%(4)正、负对称电源测量;2、正弦电压(有效值)测量(1)正弦波fs=1kHz;(2)正弦波fs=100kHz;3、实验箱可调直流信号内阻测量4、函数信号发生器内阻(输出电阻)的测量;自动控制实验报告「篇二」尊敬的各位领导、同事:大家好!在过去的一年多里,因为有公司领导的关心和指导,有热心的同事们的努力配合和帮助,所以能较圆满的完成质检部门的前期准备工作和领导交代的其他工作,作为质检专责我的主要工作职责就掌握全厂的工艺,负责全厂的质量工作,审核化验结果,并定期向上级领导做出汇报,编写操作规程并组织实施,编写质量和实验室的管理制度以及实验设备的验收等工作。
自动控制原理实验报告
自动控制原理实验报告实验目的本次自动控制原理实验的目的是通过对传统反馈控制系统的模拟和实现,了解并掌握基本的控制原理和控制器设计方法,进一步深化对自动控制理论的理解。
实验装置本次实验使用的是一台水位控制系统,该系统由电源、电机、计量储水罐、信号检测器、PID控制器、水泵等组成。
电源将电能转换为机械能,通过水泵将水流入到计量储水罐中,信号检测器对储水罐中的水位进行检测并反馈给PID控制器,PID控制器对信号进行处理并控制电机的转速,从而实现对水位的控制。
实验步骤1. 确定实验参数在进行实验之前,首先需要确定实验的一些参数,如PID控制器的比例系数、积分系数以及微分系数等。
这需要根据具体实验情况进行设定,以确保控制系统具有良好的稳定性和响应能力。
2. 实施控制将水泵开启,令水流入计量储水罐中,同时PID控制器对信号进行处理,调节电机的转速以控制水位。
实验过程中需要注意及时进行系统动态的监控和调整,以确保控制系统的稳定性和故障排除。
3. 结束实验并分析结果实验结束后,需要对实验结果进行分析,包括控制系统的响应速度、稳定性以及对参数的灵敏度等。
通过对实验数据的收集和分析,可以进一步提高对自动控制理论的理解和应用能力。
实验结果分析本次实验中,我们实现了对水位的控制,并对PID控制器的参数进行了设定和调整。
实验结果表明,我们所设计的控制系统具有较好的稳定性和响应能力,并且对参数的灵敏度较高。
同时,通过实验数据的分析,我们也发现了一些问题和不足之处,如控制系统的动态响应速度过慢等,这需要我们在实际应用中加以改进和完善。
结论本次自动控制原理实验通过实现对水位的控制,进一步加深了对自动控制理论的理解,掌握了基本的控制原理和控制器设计方法。
同时,通过实验数据的分析和总结,也为今后在自动控制领域的实际应用提供了一定的参考和指导。
自动控制原理实验报告
自动控制原理实验报告摘要:本实验通过对自动控制原理的研究与实践,旨在深入了解自动控制系统的基本原理,以及相关的实验应用。
通过实验的设计与实施,我们在实践中学习了控制系统的结构、传递函数、稳定性、稳态误差等内容,并通过使用PID控制器对物理实验系统进行控制,从而对自动控制系统有了更加深入的理解。
引言:自动控制原理是现代工程控制领域的基础理论之一,在工业、交通、通信等领域都有广泛的应用。
自动控制原理实验是培养学生工程实践能力和动手能力的重要实践环节。
本实验通过对自动控制原理相关实验的设计与实践,让我们深入了解了自动控制系统的基本原理,并通过实际操作对理论知识进行了实际应用。
实验目的:1. 了解自动控制系统的基本结构和原理;2. 学习如何建立传递函数,并分析系统的稳定性;3. 熟悉PID控制器的参数调节方法;4. 掌握如何利用PID控制器对物理实验系统进行控制。
实验原理与方法:1. 实验装置搭建:我们搭建了一个简单的电路系统,包括输入信号源、控制器、执行器和输出传感器。
通过控制器对执行器的控制,实现对输出信号的调节。
2. 传递函数建立:使用系统辨识方法,通过对输入和输出信号的采集,建立系统的传递函数。
经过数据处理和分析,得到系统的传递函数表达式。
3. 稳定性分析:对系统的传递函数进行稳定性分析,包括零极点分析和Nyquist稳定性判据。
根据分析结果,判断系统的稳定性。
4. PID参数调节:根据传递函数和系统要求,使用PID控制器对系统进行调节。
根据实际情况进行参数调节,使得系统的响应达到要求。
实验结果与讨论:我们通过以上方法,成功地建立了控制系统的传递函数,并进行了稳定性分析。
通过对PID控制器参数的调节,使系统的稳态误差达到了要求。
通过实验,我们深刻理解了自动控制系统的基本原理,并学会了如何应用具体方法进行实际操作。
实验结论:通过自动控制原理的实验研究,我们对控制系统的基本原理有了更加深入的了解。
实践中,我们通过搭建实验装置、建立传递函数、进行稳定性分析和PID参数调节等实验操作,使得理论知识得到了更加全面的应用和巩固。
自动控制原理实验报告
自动控制原理实验报告 The document was finally revised on 2021自动控制原理实验报告实验一、典型环节的时域响应一.实验目的1.熟悉并掌握TD-ACC+(TD-ACS)设备的使用方法及各典型环节模拟控制电路的构成方法。
2.熟悉各种典型环节的理想阶跃曲线和实际阶跃响应曲线。
对比差异、分析原因。
3.了解参数变化对典型环节动态特性的影响。
二.实验设备PC机一台,TD-ACC+(TD-ACS)实验系统一套。
三.实验内容1.比例环节2.积分环节3.比例积分环节4.惯性环节5.比例微分环节6.比例积分微分环节四、实验感想在本次实验后,我了解了典型环节的时域响应方面的知识,并且通过实践,实现了时域响应相关的操作,感受到了实验成功的喜悦。
实验二、线性系统的矫正一、目的要求1.掌握系统校正的方法,重点了解串联校正。
2.根据期望的时域性能指标推导出二阶系统的串联校正环节的传递函数二、仪器设备PC 机一台,TD-ACC+(或 TD-ACS)教学实验系统一套。
三、原理简述所谓校正就是指在使系统特性发生变接方式,可分为:馈回路之内采用的测点之后和放1.原系统的结构框图及性能指标对应的模拟电路图2.期望校正后系统的性能指标3.串联校正环节的理论推导四、实验现象分析校正前:校正后:校正前:校正后:六、实验心得次实验让我进一步熟悉了TD-ACC+实验系统的使用,进一步学习了虚拟仪器,更加深入地学习了自动控制原理,更加牢固地掌握了相关理论知识,激发了我理论学习的兴趣。
实验三、线性系统的频率响应分析一、实验目的1.掌握波特图的绘制方法及由波特图来确定系统开环传函。
2.掌握实验方法测量系统的波特图。
二、实验设备PC机一台,TD-ACC+系列教学实验系统一套。
三、实验原理及内容(一)实验原理1.频率特性当输入正弦信号时,线性系统的稳态响应具有随频率(ω由0变至∞)而变化的特性。
频率响应法的基本思想是:尽管控制系统的输入信号不是正弦函数,而是其它形式的周期函数或非周期函数,但是,实际上的周期信号,都能满足狄利克莱条件,可以用富氏级数展开为各种谐波分量;而非周期信号也可以使用富氏积分表示为连续的频谱函数。
自动控制原理实验报告
自动控制原理实验报告实验目的,通过本次实验,掌握自动控制原理的基本知识,了解控制系统的结构和工作原理,以及掌握控制系统的设计和调试方法。
实验仪器,本次实验所使用的仪器有PID控制器、执行器、传感器等。
实验原理,自动控制系统是指通过传感器采集被控对象的信息,经过控制器处理后,通过执行器对被控对象进行调节,以达到设定的控制目标。
其中PID控制器是通过比较被控对象的实际值和设定值,计算出误差,并根据比例、积分、微分三个参数来调节执行器输出的控制信号,使被控对象的实际值逐渐趋近设定值的一种控制方式。
实验步骤:1. 将PID控制器与执行器、传感器连接好,并确认连接正确无误。
2. 设置被控对象的设定值,并观察实际值的变化情况。
3. 调节PID控制器的参数,观察被控对象的响应情况,找到最佳的控制参数组合。
4. 对不同类型的被控对象进行实验,比较不同参数组合对控制效果的影响。
实验结果与分析:通过实验我们发现,合适的PID参数组合能够使被控对象的实际值快速稳定地达到设定值,并且对不同类型的被控对象,需要调节的参数组合也有所不同。
在实际工程中,需要根据被控对象的特性和控制要求来选择合适的PID参数,并进行调试和优化。
结论:本次实验使我们进一步了解了自动控制原理,掌握了PID控制器的基本原理和调试方法,对控制系统的设计和调试有了更深入的理解。
同时也认识到在实际工程中,需要根据具体情况来选择合适的控制方法和参数,进行调试和优化,以达到最佳的控制效果。
通过本次实验,我们对自动控制原理有了更深入的认识,对控制系统的设计和调试方法有了更加清晰的理解,相信这对我们今后的学习和工作都将有所帮助。
自动控制原理_实验报告
一、实验目的1. 理解自动控制系统的基本概念和组成;2. 掌握典型环节的传递函数和响应特性;3. 熟悉PID控制器的原理和参数整定方法;4. 通过实验验证理论知识的正确性,提高实际操作能力。
二、实验设备1. 自动控制原理实验箱;2. 示波器;3. 数字多用表;4. 个人电脑;5. 实验指导书。
三、实验原理自动控制系统是一种根据给定输入信号自动调节输出信号的系统。
它主要由控制器、被控对象和反馈环节组成。
控制器根据被控对象的输出信号与给定信号的偏差,通过调节控制器的输出信号来改变被控对象的输入信号,从而实现对被控对象的控制。
1. 典型环节(1)比例环节:比例环节的传递函数为G(s) = K,其中K为比例系数。
比例环节的响应特性为输出信号与输入信号成线性关系。
(2)积分环节:积分环节的传递函数为G(s) = 1/s,其中s为复频域变量。
积分环节的响应特性为输出信号随时间逐渐逼近输入信号。
(3)比例积分环节:比例积分环节的传递函数为G(s) = K(1 + 1/s),其中K为比例系数。
比例积分环节的响应特性为输出信号在比例环节的基础上,逐渐逼近输入信号。
2. PID控制器PID控制器是一种常用的控制器,其传递函数为G(s) = Kp + Ki/s + Kd(s/s^2),其中Kp、Ki、Kd分别为比例系数、积分系数和微分系数。
PID控制器可以实现对系统的快速、稳定和精确控制。
四、实验内容及步骤1. 实验一:典型环节的阶跃响应(1)搭建比例环节电路,观察并记录输出信号随时间的变化曲线;(2)搭建积分环节电路,观察并记录输出信号随时间的变化曲线;(3)搭建比例积分环节电路,观察并记录输出信号随时间的变化曲线。
2. 实验二:PID控制器参数整定(1)搭建PID控制器电路,观察并记录输出信号随时间的变化曲线;(2)通过改变PID控制器参数,观察并分析系统响应特性;(3)根据系统响应特性,整定PID控制器参数,使系统达到期望的响应特性。
自动控制原理实验报告
自动控制原理实验报告实验报告:自动控制原理一、实验目的本次实验的目的是通过设计并搭建一个简单的自动控制系统,了解自动控制的基本原理和方法,并通过实际测试和数据分析来验证实验结果。
二、实验装置和仪器1. Arduino UNO开发板2.电机驱动模块3.直流电机4.旋转角度传感器5.杜邦线6.电源适配器三、实验原理四、实验步骤1. 将Arduino UNO开发板与电机驱动模块、旋转角度传感器和直流电机进行连接。
2. 编写Arduino代码,设置电机的控制逻辑和旋转角度的反馈机制。
3. 将编写好的代码上传至Arduino UNO开发板。
4.将电源适配器连接至系统,确保实验装置正常供电。
5.启动实验系统并观察电机的转动情况。
6.记录电机的转动角度和实际目标角度的差异,并进行数据分析。
五、实验结果和数据分析在实际操作中,我们设置了电机的目标转动角度为90度,待实验系统运行后,我们发现电机实际转动角度与目标角度存在一定的差异。
通过对数据的分析,我们发现该差异主要由以下几个方面导致:1.电机驱动模块的响应速度存在一定的延迟,导致电机在到达目标角度时出现一定的误差。
2.旋转角度传感器的精度有限,无法完全准确地测量电机的实际转动角度。
这也是导致实际转动角度与目标角度存在差异的一个重要原因。
3.电源适配器的稳定性对电机的转动精度也有一定的影响。
六、实验总结通过本次实验,我们了解了自动控制的基本原理和方法,并通过实际测试和数据分析了解了自动控制系统的运行情况。
同时,我们也发现了实际系统与理论预期之间存在的一些差异,这些差异主要由电机驱动模块和旋转角度传感器等因素引起。
为了提高自动控制系统的精度,我们需要不断优化和改进这些因素,并进行相应的校准和调试。
实验的结果也提醒我们,在实际应用中,需要考虑各种因素的影响,以确保自动控制系统的可靠性和准确性。
自控原理实验报告(2)
红河学院工学院实验报告单图1-3 比例环节的模拟电路及SIMULINK图形
按钮,即可进入如图
图1-1 SIMULINK仿真界面
以图1-2所示的系统为例,说明基本设计步骤如下:
)运行并观察响应曲线。
用鼠标单击工具栏中的“
b 1)(2+=s s G
B s s G 21
1)(+=
红河学院工学院实验报告单
三、实验内容和步骤:
1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为
4)(4+=s s s s G 图2-3 二阶系统的单位脉冲响应
红河学院工学院实验报告单
四、实验内容和步骤:
1.请绘制下面系统的根轨迹曲线)(=
K
s G
(a )根轨迹图形 (b )K=1时的阶跃响应曲线
图3-2 系统的根轨迹和阶跃响应曲线
红河学院工学院实验报告单
[mag,phase,w]=bode(num,den,w)
图4-2(a) 幅值和相角范围自动确定的Bode图图4-2(b) 指定幅值和相角范围的Bode
num=[0 0 0 10]; den=[5 24 -5 0 0]; w=logspace(-2,3,100); bode(num,den,w)
红河学院工学院实验报告单。
2016自动控制理论实验报告 (2)
实验一典型环节的时域响应一、实验目的实用文档二、实验设备三、实验原理及内容1.典型环节的方框图及传递函数实用文档2.典型环节的模拟电路图及输出响应实用文档实用文档实用文档实用文档四、实验结果比例环节①取R0 = 200K;R1 = 100K积分环节① 取R0 = 200K;C = 1uF实用文档② 取R0 = 200K;C = 2uF比例积分环节实用文档① 取R0 = R1 = 200K;C = 1uF② 取R0=R1=200K;C=2uF实用文档惯性环节① 取R0=R1=200K;C=1uF实用文档② 取R0=R1=200K;C=2uF比例微分环节① 取R0 = R2 = 100K,R3 = 10K,C = 1uF;R1 = 100K实用文档② 取R0=R2=100K,R3=10K,C=1uF;R1=200K实用文档五、心得体会实用文档实验二典型系统的时域响应和稳定分析一、实验目的二、实验设备三、实验原理及内容1、典型的二阶系统稳定性分析(1)结构框图图1-2是典型二阶系统的原理方框图,其中T0=1s,T1=0.1s,K1分别为10、5、2.5和1。
实用文档实用文档(2)模拟电路图见图1-3。
(3)理论分析 开环传函:)11.0()1()(11+=+=s s K s T s Ks G其中:===101/K T K K 开环增益。
(4)实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论值分析基本吻合。
在此实验中T0=1s,T1=0.2s,K1=200/R =>K=200/R闭环传函:2nn 22n2)(ωζωω++=s s s W 其中:2//;/110011n T K T T T K ==ξω四、实验步骤1.将信号源单元的“ST”端插针与“S”端插针用“短路板”短接。
由于每个运放单元均设置了锁零场效应管,所以运放具有锁零功能。
自动控制原理实验报告(自动化专业电子版)
精心整理自动控制原理实验报告课程编号:ME3121023专业班级实验目的和要求:通过自动控制原理实验牢固地掌握《自动控制原理》课的基本分析方法和实验测试手段。
能应用运算放大器建立各种控制系统的数学模型,掌握系统校正的常用方法,掌握系统性能指标同系统结构和参数之间的基本关系。
通过大量实验,提高动手、动脑、理论结合实际的能力,提高从事数据采集与调试的能力,为构建系统打下坚实的基础。
一、12341分环节和比例积分微分环节。
2、在阶跃输入信号作用下,记录各环节的输出波形,写出输入输出之间的时域数学关系。
3、在运算放大器上实现各环节的参数变化。
(三)、实验要求:1、仔细阅读自动控制实验装置布局图和计算机虚拟测量软件的使用说明书。
2、做好预习,根据实验内容中的原理图及相应参数,写出其传递函数的表达式,并计算各典型环节的时域输出响应和相应参数(K、T)。
3、分别画出各典型环节的理论波形。
5、输入阶跃信号,测量各典型环节的输入和输出波形及相关参数。
(四)、实验原理:实验原理及实验设计:1.2.3.时域输出响应:4.比例积分环节:Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:5.比例微分环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:6.123、123的原因。
(七)、记录实验数据:、实测实验二二阶系统的性能研究(一)、实验目的:通过实验加深理解二阶系统的性能指标同系统参数的关系。
(二)、实验内容:1、二阶系统的时域动态性能研究;(三)、实验要求:1、做好预习,根据实验原理图所示相应参数,写出系统的开环,闭环传递函数。
(八)、思考与讨论:将实验结果与理论知识作对比,并进行讨论。
实验三系统时域分析实验(一)、实验目的:1、深入掌握二阶系统的性能指标同系统闭环极点位置的关系。
2、掌握高阶系统性能指标的估算方法及开环零、极点同闭环零、极点的关系。
3、能运用根轨迹分析法由开环零极点的位置确定闭环零极点的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
红河学院工学院实验报告单图1-3 比例环节的模拟电路及SIMULINK图形
按钮,即可进入如图
图1-1 SIMULINK仿真界面
以图1-2所示的系统为例,说明基本设计步骤如下:
)运行并观察响应曲线。
用鼠标单击工具栏中的“
b 1)(2+=s s G
B s s G 21
1)(+=
红河学院工学院实验报告单
三、实验内容和步骤:
1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为
4)(4+=s s s s G 图2-3 二阶系统的单位脉冲响应
红河学院工学院实验报告单
四、实验内容和步骤:
1.请绘制下面系统的根轨迹曲线)(=
K
s G
(a )根轨迹图形 (b )K=1时的阶跃响应曲线
图3-2 系统的根轨迹和阶跃响应曲线
红河学院工学院实验报告单
[mag,phase,w]=bode(num,den,w)
图4-2(a) 幅值和相角范围自动确定的Bode图图4-2(b) 指定幅值和相角范围的Bode
num=[0 0 0 10]; den=[5 24 -5 0 0]; w=logspace(-2,3,100); bode(num,den,w)
红河学院工学院实验报告单。