哈尔滨工业大学机械原理3课件
机械原理(全套15PPT课件)
从动件的常用运动规律
等速运动规律
从动件匀速运动,产生刚性冲击
等加速等减速运动规律
从动件分段匀变速运动,产生柔性冲击
简谐运动规律(余弦加速度运动规律)
从动件按余弦规律加速运动,无冲击
正弦加速度运动规律
从动件按正弦规律加速运动,无冲击
平面四杆机构的设计
按照给定的连杆位置设计四杆机构
按照给定的运动轨迹设计四杆机构
作图法、解析法
作图法、解析法
按照给定的急回特性设计四杆机构
按照给定的传动角设计四杆机构
作图法、解析法
作图法、解析法
05 凸轮机构及其设 计
凸轮机构的应用和分类
凸轮机构的应用
自动机械、操纵控制、传动装置等
凸轮机构的分类
重要性
机械原理是机械工程学科的基础 ,对于理解和分析机械系统的运 动、力和能量传递过程具有重要 意义。
机械原理的研究对象和内容
研究对象
机械系统,包括机构、传动、控制等 方面。
研究内容
机构的结构分析、运动分析、力分析 、动力学分析、优化设计等。
机械原理的发展历程和趋势
发展历程
从简单机械到复杂机械系统,从经验设计到基于科学计算的设计。
机械原理(全套15PPT课件)
contents
目录
• 机械原理概述 • 机构的结构分析 • 平面机构的运动分析 • 平面连杆机构及其设计 • 凸轮机构及其设计 • 齿轮机构及其设计
01 机械原理概述
机械原理的定义与重要性
定义
机械原理是研究机械系统中力的 传递、转换和效应的基本规律和 原理的学科。
具有急回特性、死点位置、压力角和 传动角等特性,这些特性对机构的运 动性能和动力性能有重要影响。
哈工大机械设计第三章PPT课件
机电工程学院 张锋
《机械设计》第三章
1 普通螺纹
特点:牙型为等边三角形,螺纹的牙型角
=2=60。牙侧角大,因为 f f
cos
所以 f
一般 n 4
导程Ph-同一条螺旋线上相邻两个牙 型在中径线上对应点间的 轴向距离,
Ph=nP。
机电工程学院 张锋
《机械设计》第三章
螺纹升角ψ-螺旋线的切线与垂直于螺纹轴线 的平面间的夹角。
arctanP dh2 arctanndP2
旋向:螺旋线绕行的方向
右旋,左旋
牙型角---轴向剖面内螺纹 牙型两侧边的夹角
牙侧角---螺纹牙型侧边与 螺纹轴线的垂线的夹角
机电工程学院 张锋
3.1.1 常用螺纹类型及特点
《机械设计》第三章
螺纹的分类: 按牙形:普通螺纹 、矩形螺纹、 梯形螺纹、
锯齿形螺纹、管螺纹 按母体形状:圆柱螺纹、圆锥螺纹
机电工程学院 张锋
《机械设计》第三章
细牙的缺点:牙小,相同载荷下磨损快,易 脱扣 细牙的应用场合:
常用于承受冲击、振动及变载荷、或空心、 薄壁零件上及微调装置中
机电工程学院 张锋
2 、矩形螺纹
《机械设计》第三章
特点:牙形为正方形,=0,
f’小 f tg 小
tan tan( )
高
f f cos
机电工程学院 张锋
《机械设计》第三章
机电工程学院 张锋
《机械设计》第三章
只介绍普通螺纹的有关公差精度方面的知识 1.普通螺纹的公差等级及精度 GB/T197-2003规定:公差等级有3,4,5,6,7,8
机械原理第三章精选全文完整版
第三节 四杆机构的设计
一、四杆机构的设计的基本问题
平面连杆机构的功能:
(1)传动功能 图
(2)引导功能
图
四杆机构的设计的基本问题:
(1)实现预定的连杆位置问题; (1)实现已知运动规律问题; (2)实现已知轨迹问题。
设计方法:(1)图解法;(2)解析法;
ψ
θ
a AC2 AC1 2
a EC1 / 2
90 -θ
ψ
θ
θ
(2)曲柄滑块机构
已知: H , K,e ,求机构其它构件尺寸.
步骤:
180 (k
1)
k 1
取 l 作图
AB=(AC1-AC2)/2 BC=AC1-AB
H
c2
c1
90
A
lAB l AB
O
Hale Waihona Puke lBC l BCM
(3)导杆机构
已知: lAD , K
根据 3 ,则得
2
arcsin
l3
sin
3 l1 sin
l2
1
第四节 平面连杆机构的运动分析(8)
2.速度分析
将式(l1ei1 l2ei2 l4 l3ei3 对时间求导,得到
l ie 指数函数求导
i1
11
l22iei2
l33iei3
e 将式中的每项乘 i2,并取实部消去 2 ,解得:
3)以平面高副联接的两构件, 若高副元素之间为纯 滚动时, 接触点即为两构件的瞬心;若高副元素 之间既滚动又滑动, 则瞬心在高副接触点处的公 法线上。 图
(2)不直接相联的两构件的瞬心——三心定理
三心定理: 三个彼此作平面运动的构件共有三个瞬 心,且必定位于同一直线上。 图
哈工大机械原理大作业3
Harbin Institute of Technology机械原理大作业三课程名称:设计题目:院系:班级:设计者:学号:指导教师:设计时间:哈尔滨工业大学大作业3 齿轮传动设计 1、设计题目1.1机构运动简图1.2机械传动系统原始参数2、传动比的分配计算由已知条件,电动机转速n=1450r/min ,输出转速n 1=27 r/min ,n 2=31 r/min ,n 3=37 r/min ,带传动最大传动比max p i =2.5,滑移齿轮传动最大传动比=4,定轴齿轮传动最大 传动比=4。
可求得:传动系统的总传动比为:11n ni == 1450/27=53.70322n ni == 1450/31=46.774 33n ni == 1450/37=39.189 传动系统的总传动比分别由带传动、滑移齿轮传动和定轴齿轮传动三部分实现。
设带传的传送比为其最大传送比5.2max =p i ,滑移齿轮的传动比为321,,v v v i i i ,定轴齿轮传动的传动比为f i ,则总传动比由于1i > 2i > 3i ,故取1max 4v v i i ==则定轴齿轮传动部分的传动比为1max max5.37f p v i i i i ==滑移齿轮传动的传动比22max3.49v f p i i i i ==33m a x2.92v f p i i i i ==定轴齿轮传动由3对齿轮传动组成, 每对齿轮的传动比为:1.754d i ==≤3、齿轮齿数的确定滑移齿轮齿数3=v i 65622.9521z z == 2=v i 8766 3.4719z z ==1=v i 10967 3.9417z z ==齿轮7,齿轮8:719z = 866z =781()852a m z z =+=齿轮9,齿轮10:917z =1067z =此时已知条件为'a =85mm ,910211()842()ni i a m z z X X ==+=-∑mm ''arccos(cos )21.78a aαα==总变位系数:'910()0.552tan z z x inv inv ααα∑+=-=根据x ∑值和1093.94 3.0z uz ==>,按选择变位系数线图左部斜线⑤分配变位系数,得90.45x =齿轮5,齿轮6:5=21z662z =此时已知'a =85mm ,561()832a m z z =+= ''arccos(cos )23.42a a αα==100.10x =总变位系数:'65() 1.082tan z z x inv inv ααα∑+=-=根据x ∑值和652.953z u z ==>,按选择变位系数线图左部斜线④分配变位系数,得 50.5x =60.58x =定轴圆柱齿轮齿数=d i 1214111326 1.5317z z z z ===齿轮11,齿轮12:角度变位正传动。
哈工大机械原理课件
I
5
IV
2
II
4
V
1
III
3
移 动 副
V
1
IV
2
螺 旋 副
V
1
2、根据组成运动副的两个运动副元素的接触情况分类 运动副元素以点或线接触的运动副称为高副 。
球面高副
柱面高副
运动副元素以面接触的运动副称为低副 。
球面低副
移动副
转动副
3、根据组成运动副的两个构件的相对运动形式分类
空间运动副
球销副
螺旋副
只是为了表明机构的运动状态或各构件的 相互关系,也可以不按比例来绘制运动简图, 通常把这样的简图称为机构示意图。
常用机构构件、运动副代表符号
绘制机构运动简图的步骤
1. 在绘制机构运动简图时,首先确定机构的原动件 和执行件,两者之间为传动部份,由此确定出组成机 构的所有构件,然后确定构件间运动副的类型。 2. 为将机构运动简图表示清楚,恰当地选择投影面。一 般选择与多数构件的运动平面相平行的面为投影面,必要 时也可以就机械的不同部分选择两个或两个以上的投影面 ,然后展开到同一平面上。总之,绘制机构运动简图要以 正确、简单、清晰为原则。 3. 选择适当的比例尺,根据机构的运动尺寸定出各运动 副之间的相对位置,然后用规定的符号画出各类运动副,并 将同一构件上的运动副符号用简单线条连接起来,这样便可 绘制出机构的运动简图。
30米/分
500
二、创新
◆自然科学领域的最高成就是发现
◆应用技术领域的最高成就是发明
发明:
◆基础理论知识
◆应用技术知识 ◆实践经验
◆强烈的创新意识 ◆勤奋的工作
两用折叠椅
外环
双曲面滚柱加载器
机械原理第3版课件第六章
常取单头螺杆凸轮z2≥6,从动盘按正弦加速度规律设计, 可控制中心距消除间隙,承载能力高,间歇频率为1200次/分, 分度精度为30″。
(3)共轭凸轮式间歇机构
动力特性好,分度精度高,成本较低。
圆柱凸轮间歇运动机构
蜗杆凸轮间歇运动机构
凸轮式间歇机构的特点和应用
• 结构简单,运转可靠,无需专门定位装置;
电影放映机的 间歇卷片机构
间歇转位机构
二、棘轮机构
一)、棘轮机构的工作原理和类型
右图所示的为常见的外啮合齿式棘轮 机构,它主要由棘轮3,主动棘爪2, 止回棘爪4和机架组成。当主动摆杆1 逆时针摆动时,摆杆上铰接的主动棘 爪2插入棘轮3的齿内,推动棘轮同向 转动一定角度。当主动摆杆顺时针摆 动时,止回棘爪4阻止棘轮反向转动。 此时主动棘爪在棘轮的齿背上滑回原 位,棘轮静止不动,从而实现将主动 件的连续摆动转换为从动棘轮的单向 步进转动。为保证棘爪工作可靠,常 利用弹簧6使棘爪紧压齿面。
1、齿式棘轮机构
常用棘轮机构可分为齿式与摩擦式两大类 单动式棘轮机构 单向式棘轮机构 齿棘 式轮 双动式棘轮机构 机 棘 双向式棘轮机构 构 轮 机 构 偏心楔块式棘轮机构 摩棘 擦轮 式机 滚子楔紧式棘轮机构 构
齿式棘轮机构
内啮合棘轮机构
棘齿条机构
当棘轮的直径为无穷大时,变为棘齿条,此时, 棘轮的单向转动变为棘齿条的单向移动。
4)适于恶劣的工作环境下工作,特别是在易燃、易爆、
多尘埃、强磁、强振、潮湿、有辐射和温度变化大的恶 劣环境中工作时,安全可靠性优于液压、电子和电气机 构。 5)易于实现过载保护。
图6-33 可移动式气动通用 机械手结构示意图 1—真空吸头 2—水平缸 3—垂直缸 4—齿轮齿条副 5—回转缸
机械原理ppt课件完整版
机械原理的定义与重要性
2024/1/25
定义
机械原理是研究机械系统运动、 力和能量转换规律的科学。
重要性
机械原理是机械工程学科的基础 ,对于理解和分析机械系统的性 能、优化机械设计和提高机械效 率具有重要意义。
4
机械原理的研究对象和内容
研究对象
机构学
传动学
控制理论
机械系统,包括机构、 传动、控制等子系统。
动力学原理
牛顿运动定律、动量定理、动能定理等是机械系统动力学的基本原理,它们揭示了机械系 统运动的基本规律。
17
机械系统的运动方程和求解方法
运动方程的建立
根据机械系统的受力情况和约束条件,可以建立机械系统的运动方程。这些方程通常是一组微分方程或差分方程。
2024/1/25
求解方法
求解机械系统的运动方程可以采用解析法、数值法或图解法等方法。其中,解析法可以得到精确的解,但通常只适用 于简单的机械系统;数值法可以求解复杂的机械系统,但得到的是近似解;图解法则是一种直观形象的求解方法。
工艺特点
机械制造工艺具有多样性、复杂性 和综合性等特点,需要根据不同的 产品要求和生产条件制定相应的工 艺方案。
21
机械制造装备的分类和特点
加工装备
包括机床、刀具、夹具等,用于 对原材料进行切削、磨削等加工 操作,具有高精度、高效率和高
自动化等特点。
热处理装备
包括加热炉、淬火设备、回火设 备等,用于改善材料的力学性能 和加工性能,提高产品的使用寿
稳定性概念及判定方法:稳定性是指 机械系统在受到扰动后能否恢复到原 平衡状态的能力。稳定性的判定方法 包括静力学判定法、动力学判定法和 能量判定法等。其中,静力学判定法 主要关注机械系统在平衡位置附近的 稳定性;动力学判定法则通过分析机 械系统的运动方程来判断其稳定性; 能量判定法则是通过分析机械系统的 能量变化来判断其稳定性。
机械原理第3版课件第三章
v
生无限值惯性力,并由此对凸轮产
生冲击
a
+∞
—— 刚性冲击
-∞
s = c0 c1 v = ds dt = c1 回程运动方程: a = dv dt = 0
边界条件
运动始点:=0, s=h 运动终点: = ,s=0
s = h (1 ) h v = ω a = 0 Nhomakorabeaf
从动件在运动起始、中点 和终止点存在柔性冲击 适用于中速轻载场合
f
O
f/2
4h2/f2
c)五次多项式运动规律 表达式为
v = ds / dt = C1 2C2 3C3 2 4C4 3 5C5 4 a = dv / dt = 2C2 2 6C3 2 12C4 2 2 20C5 2 3 s = C0 C1 C2 2 C3 3 C4 4 C5 5
推程边界条件
在始点处:=0, s1=0, v1=0, a1=0; 在终点处: = Φ s2=h, v2=0, a2=0; 解得待定系数为
C0=0,C1=0,C2=0,C3=10h/Φ 3,C4=-15/ Φ4,C5=6h/ Φ5
位移方程式为
S=10hφ 3/ Φ3-15hφ4/Φ4+6hφ5/Φ5
第二节
凸轮机构基本运动参数设计
一、凸轮工作转角的确定
二、从动件运动规律设计
一、凸轮工作转角的确定
s
*从动件在远停处对应 的转角s——远停角。
h
0
0
120º
s
180º
300º
360º
120º
哈工大机械学基础第3章03bk
公式中不加“+” 或 “-”
68
例1(习题3-16) 图示为一钟表轮系,已知: z2=60 , z3=8, z4=64 , z5=28 , z6=42 , z8=64 ,求z1 、 z7各为多少?
69
例2(例3-3 ) 如图所示轮系中,蜗杆的头数 z1=1 ,右旋,蜗轮的齿数 z2=26。一对圆锥齿轮z3 =20,z4=21。一对圆柱齿轮z5=21, z6=28 。若蜗杆为主动轮,转速 n1=1500r/min ,试求齿轮 6 的转速n6和转向。
一. 变位齿轮产生
当
范成法加工
Z<17
时,又要避免根切
改变刀具和被加工齿轮的 位置
形成变位齿轮
27
二. 变位齿轮形成
刀具相对齿轮毛坯作前or后移动
刀具原来位置
齿轮节圆(分度圆)
刀具节线
刀具后退位置 刀具中线
28
三. 变位齿轮分类:
标准齿轮
齿条节线(中线)
齿轮节圆(分度圆) 齿条中线
正变位齿轮
刀具 外移
' 标准渐开线圆柱齿轮 20
Ⅴ 渐开线齿轮正确连续啮合条件
21
1.一对渐开线齿轮正确啮合条件
m1 m2 m
1 2
标准渐开线齿轮
20
22
2.一对渐开线齿轮连续啮合条件
B1 B2 重合度: 1 pb
通常取 1.2
23
(习题3-2)需要传动比i=3的一对标准渐开线直齿圆柱齿轮外 啮合传动,现有三个渐开线标准圆柱直齿轮,齿数为z1=20, z2=z3=60,齿顶圆直径分别为da1=44mm, da2=124mm, da3=139.5mm。问哪两个齿轮能正确啮合?并求中心距a。
哈工大机械原理课件
contents
目录
• 绪论 • 机构的结构分析 • 平面连杆机构 • 凸轮机构 • 齿轮机构 • 轮系 • 机械的平衡与调速
01
绪论
机械原理的研究对象
01 研究各种机械系统的运动规律和力的传递 关系。
02
研究各种机械系统中的机构、机器和机器 装置的设计、分析和综合方法。
03
常用的从动件运动规律有等速 运动规律、等加速等减速运动 规律、余弦加速度运动规律和 正弦加速度运动规律等。这些 运动规律各有特点,适用于不 同的工作场合和需求。
在设计从动件的运动规律时, 应考虑机构的传动性能、从动 件的受力情况、机构的动态响 应等因素,以确保机构在工作 过程中具有良好的稳定性和可 靠性。
平面机构的自由度计算
自由度是描述机构运动灵活性的参数,计算自由度可以判断机构是否具有确定的 运动状态。
平面机构的自由度计算公式为:F=3n-(2PL+Ph),其中n为活动构件数,PL为低 副数,Ph为高副数。
03
平面连杆机构
平面连杆机构的特点和基本类型
01
02
03
总结词
了解平面连杆机构的特点 和基本类型是掌握其工作 原理和应用的基础。
节气门调速
通过调节节气门的开度来控制进入发动机的空气 量,从而改变发动机的转速和功率。
离合器调速
通过控制离合器的接合与分离,实现发动机与传 动系统的结合与脱开,达到调速的目的。
变速器调速
通过改变变速器的传动比来改变输出轴的转速和 功率,实现调速。
机械的效率与节能
提高机械效率
通过优化设计、改善制造 工艺和加强维护保养,提 高机械系统的效率,减少 能量损失。
02
机械原理全套ppt课件
机械传动系统
轴系零部件
熟悉带传动、链传动、齿轮传动等传动方 式的工作原理、特点及应用场合。
了解轴承、轴、联轴器、离合器等轴系零部 件的结构、功能及选用原则。
机械原理在实际工程应用中的价值
1 2
指导机械设计
机械原理为机械设计提供理论依据,指导设计师 进行科学合理的机构选型、传动方案制定和零部 件设计。
获得综合性能最优的连杆机构方案。
多目标优化
在给定设计空间和约束条件下,寻求连杆机构材料的 最优分布,以实现轻量化设计和提高机构的整体性能 。
04 凸轮机构设计与 分析
凸轮机构类型及特点
盘形凸轮
凸轮为绕固定轴线转动且有变化 直径的盘形构件,具有结构简单 、紧凑的特点,适用于较小行程
的场合。
移动凸轮
等因素。
07 轮系设计与分析
轮系类型及特点
定轴轮系
所有齿轮的几何轴线均固定不变,适 用于简单、低速的传动系统。
混合轮系
由定轴轮系和行星轮系组合而成,兼 具两者的特点,适用于复杂、高速的 传动系统。
行星轮系
至少有一个齿轮的几何轴线绕其他齿 轮的几何轴线转动,结构紧凑、承载 能力大、传动效率高。
轮系传动比计算方法
06 蜗杆传动设计与 分析
蜗杆传动类型及特点
蜗杆传动类型
包括圆柱蜗杆传动、环面蜗杆传动和锥蜗杆传动等。
蜗杆传动特点
具有传动比大、结构紧凑、传动平稳、噪声小、自锁性好等特点。但同时也存在 效率低、发热量大、制造成本高等缺点。
蜗杆传动参数选择与强度计算
参数选择
包括蜗杆头数、蜗轮齿数、模数、压 力角、螺旋角等参数的选择,需根据 传动要求和工作条件进行确定。
机械原理课程目标与要求
机械原理第3版课件第一章
螺栓
连杆体
螺母
垫圈
曲轴
连杆头
真实连杆
从运动来看,任何机器都是由若干个
构件组合而成的。
气缸体 连杆体
连杆头
二、运动副与约束
运动副 是两构件直接接触而构成的可动联接。 运动副元素为两构件参与接触而构成运动副的表面。 例 轴与轴承、滑块与导轨 、两轮齿啮合。
圆柱面与圆孔面
棱柱面与棱孔面
两轮轮齿曲面
空间两构件构成的运动副,其自由度 f 和约束数 s 满足
(2)运动副符号
运动副常用规定的简单符号来表达(GB4460-84)。 各种常用运动副模型 常用运动副的符号表
3.运动链
构件通过运动副的联接而构成的相对可动的系统。
闭式运动链(简称闭链) 开式运动链(简称开链)
2
3
1
4
平面闭式运动链
2 3
1 4
空间闭式运动链
23
1
4
平面开式运动链
4
3
5
2 1
空间开式运动链
(1)分析机械的动作原理、组成情况和起动情况,确定其组 成的各构件,何为原动件、支架、执行部分和传动部分。
原动件 偏心轮1
齿轮1
杆件2
齿轮6`
杆件3
槽凸轮6
杆件4
滑块7
执行构件
压杆8
(2)沿着运动传递路线, 逐一分析每两个构件间相对 运动的性质,以确定运动副 的类型和数目。
转动副 移动副
平面高副
(3)恰当地选择运动简图的视图平面,通常可选择 机械中多 数构件的运动平面为视图平面,必要时也
原动件数目小于自由度数目,运动链运 动不确定。
F = 3×3 - 2×4 = 1 2 个原动件
机械原理课件完整版
THANK YOU
机械平衡的内容
研究机械系统在各种力作用下的平衡条件,分析平衡状态下系 统的受力情况和运动特性,以及探讨实现平衡的方法和措施。
刚性转子的平衡设计
01
刚性转子平衡设计的原则
根据转子的结构特点和工艺要求,选择合适的平衡方法,确定平衡精度
等级和校正量,以保证转子在运转过程中的稳定性和可靠性。
02 03
刚性转子平衡设计的方法
采用静平衡或动平衡方法,通过测量转子的不平衡量,对其进行相应的 校正,使转子达到平衡状态。其中,静平衡方法适用于低速、小直径的 转子,而动平衡方法适用于高速、大直径的转子。
刚性转子平衡设计的注意事项
在进行转子平衡设计时,需要考虑转子的结构刚度、转速、轴承类型等 因素对平衡的影响,同时还需要注意测量仪器的精度和测量方法的正确 性。
刚性转子平衡试验的注意事项 在进行转子平衡试验时,需要选择合适的试验设备和测量方法,确保试验结果的准确性和可靠性。同时, 还需要注意试验过程中的安全问题,防止意外事故的发生。
07
机械的运转及其速度波 动的调节
机械运转过程及驱动力、阻力矩
01
02
03
机械运转过程
机械运转是指机械设备中 各个零部件之间通过相互 作用和传动,实现预定的 运动和功能的过程。
利用速度瞬心进行机构的速度分析,可以简化计算过程,提高求 解效率。
用矢量方程图解法作机构的速度和加速度分析
1 2
矢量方程的建立
根据机构中各构件之间的运动关系,建立矢量方 程。
矢量方程的解法
运用几何方法求解矢量方程,得到机构的速度和 加速度。
3
矢量方程图解法的应用 适用于平面机构中速度和加速度的求解,具有直 观、形象的特点。
机械原理完整ppt课件
微器等。
04 连杆机构与凸轮机构
连杆机构的基本形式和设计方法
连杆机构的基本形式
包括曲柄摇杆机构、双曲柄机构、双摇杆机构等,每种形式都有其特定的运动特 性和应用场合。
连杆机构的设计方法
根据给定的运动规律和设计要求,选择合适的连杆机构形式,并通过几何关系、 运动学分析和动力学计算等方法,确定机构的尺寸、运动参数和动力参数。
机械原理完整ppt课 件
目录
CONTENTS
• 机械原理概述 • 机构的结构分析与设计 • 机械传动与驱动 • 连杆机构与凸轮机构 • 间歇运动机构与组合机构 • 机械系统动力学与平衡 • 现代设计方法在机械原理中的应用
01 机械原理概述
机械原理的定义与重要性
定义
机械原理是研究机械系统运动、 力和能量转换规律的科学。
01
链传动应用
适用于机床、起重机械、农业机械等需要较大传动比和较高效率的场合
。
02
带传动应用
广泛应用于轻工、纺织、化工等行业的传动系统中,如缝纫机、皮带运
输机等。
03
螺旋传动应用
常用于机床进给机构、千斤顶、螺旋压力机等需要直线运动或升降运动
的场合。同时,在精密仪器和微调装置中也有广泛应用,如精密螺旋测
中的重要性。
优化设计的数学模型
02
讲解优化设计的数学模型,包括设计变量、目标函数和约束条
件等要素的定义和表示方法。
优化算法与实例分析
03
介绍常用的优化算法,如梯度下降法、遗传算法等,并通过实
例分析展示如何在机械设计中应用这些算法进行优化。
可靠性设计在机械原理中的应用
可靠性设计的基本概念
介绍可靠性设计的定义、目的和意义,阐述可靠性设计在机械设计中的重要性。
哈工大机械原理大作业凸轮结构设计3演示教学
此文档仅供收集于网络,如有侵权请联系网站删除Harbin Institute of Technology机械原理大作业二课程名称:机械原理设计题目:凸轮结构设计院系:机电工程学院班级:设计者:学号:指导教师:设计时间:哈尔滨工业大学1、设计题目序号 升程(mm ) 升程运动角(︒) 升程运动规律 升程许用压力角(︒) 回程运动角(︒) 回程运动规律 回程许用压力角(︒) 远休止角(︒) 近休止角(︒) 350150正弦加速度40100余弦加速度6030802、凸轮机构推杆升程、回程运动方程,推杆位移、速度、加速度线图。
(1)推杆各行程运动方程(设定角速度为s s rad /2/1πω==)①从动件推程运动方程(650πϕ≤≤)⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=ϕφππφϕ002sin 21h s ⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=ϕφπφω0012cos 1h v ; ⎪⎪⎭⎫⎝⎛=ϕφπφωπ020212sin 2h a代入数据,可得:⎪⎭⎫ ⎝⎛-=ϕππϕ4.2sin 215650s mm()ϕ4.2cos -1120=v s mm /ϕπ4.2sin 576=a 2/s mm②从动件远休程运动方程(πϕπ≤≤65) 0;50===a v mm s③从动件回程运动方程(914πϕπ≤≤) ()[]⎭⎬⎫⎩⎨⎧+-+=s h s φφϕφπ0'0cos 12()[]s h v φφϕφπφωπ+--=0'0'01sin 2 ()[]s h a φφϕφπφωπ+--=0'0'212cos 22代入数据,可得:()[]πϕ8.18.1cos 125-+=s mm ()πϕπ8.18.1sin 90--=v s mm / ()πϕπ8.18.1cos 3242--=a 2/s mm④从动件进休程运动方程(πϕπ2914≤≤) 0===a v s(2)、推杆位移、速度、加速度线图①推杆的位移线图如下②推杆的速度线图如下③推杆的加速度线图如下3、凸轮机构的ds s-线图,并依次确定凸轮的基圆半径和偏dϕ距凸轮机构的s d ds-ϕ线图如下图所示由图中范围选定点(-10,-50)为凸轮转轴O 点,则mm r 99.501050220=+=取基圆半径为r 0 =51mm ,偏距e = 10mm 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xA li yA li
cosi sini
dxB
速度: dt
xB
xA -ili sini
dyB dt
yB
yA ili cosi
x
O
加速度:
d2xB dt2
xB
xA-i2li
c
osi
-ili
s ini
d2yB dt2
yB
yA-i2li
s
ini
ili
c osi 47
(2) RRRII级杆组的运动分析
通常认为摩擦力是阻力,但是,有时候摩擦力也可以是驱动力
51
摩擦力是驱 动力的实例
Ff Ff
vv
汽车前进方向
52
二、杆组法对平面连杆机构进行受力分析
自学,参见教材49页~53页。
53
三、运动副的摩擦及计及摩擦时机构的力分析
1. 移动副的摩擦和自锁
n
摩擦角(锥)
n
F F F Rij
t FNij
Fn
4
三、连杆机构的缺点
•惯性力不易平衡 •不易精确实现各种运动规律和轨迹要求
5
3-2 平面连杆机构的基本类型及其演化
一、平面四杆机构的基本类型及应用
基本类型: 曲柄摇杆机构
四杆机构 连杆曲线
6
双曲柄机构
7
双摇杆机构
8
周转副
连架杆 曲柄
周转副
机架
连杆 曲柄摇杆机构
摆转副
连架杆 摇杆 摆转副
9
二、平面连杆机构的演化
40
2. 运动分析的基本方法 ◆图解法 ◆解析法 ◆实验法
41
二、用速度瞬心法对平面机构作速度分析 1. 什么是速度瞬心?
作平面运动的两个构件上瞬时相对速度等于零的点或绝对速度 相等的点(等速重合点),称为速度瞬心。
设有m个构件 1,2,3,4,...,m
速度瞬心的个数: K (m -1 )(m -2 ).. .1m-(1m )
i
F fij
e Mr Ffijr
轴颈加速转动
e G
ω ji
FNij F Rij
rO j
i
F fij
e Mr Ffijr
轴颈减速转动
57
结论:(1) 当 e时,M=Mf,轴颈匀速转动
或静止不动;
(2) 当 e时,M>Mf,轴颈加速转动 (3) 当 e时,M<Mf,无论驱动力G
增加到多大,轴颈都不会转动, 这种现象称为自锁。
机械原理
第三章 连杆机构分析与设计
哈尔滨工业大学
2004年2月
1
一、定义与分类
3-1 概述
(1)由若干刚性构件用低副联接而成的机构称为连杆机构 连杆机构又称为低副机构
2
(2)连杆机构可分为 空间连杆机构和 平面连杆机构
空间连杆机构
平面连杆机构
3
二、连杆机构的优点
• 承受载荷大,便于润滑 • 制造方便,易获得较高的精度 • 两构件之间的接触靠几何封闭实 现 • 实现多种运动规律和轨迹要求
23
二、压力角和传动角 V
F
S
W FSco s
压力角:力F的作用线与力作用点绝对速度V所夹的锐角 α称为压力角。 传动角:压力角的余角γ称为传动角
24
W FSco s
在其它条件不变的情况下压力角α越大,作功W越大
压力角是机构传力性能的一个重要指标,它是力的利用率大小 的衡量指标。
25
曲柄摇杆机构的压力角
55
2. 转动轴颈的摩擦和自锁
Mr
G
ω ji
FNij F Rij
rO j
i
F fij
G FRij Mr Ffijr
e Mr G
Mr G
M r G eG
ω ji
FNij F Rij
rO j
i
F fij
e Mr Ffijr
G FRij 轴颈均速转动
56
e G
ω ji
FNij F Rij
rO j
比较
ad bc d-a bc badc b d-ac cadb c d-ab
d -a a d b c adbc b d - a c a d cbd-ac c d -a b a d bcd-ab
adbc
bd-ac
cd-ab
ac ab a d
a最短
a
b
c
d
该机构中构件a最短, 构件a能否整周回转?
a d
当最短杆与最长杆之和小于等于其它两杆长度之和 即
abcd
该式表明铰链四杆运动链有两个周转动副, 并且这两个周转副在最短杆的两端。
18
◆最短杆是连架杆或机架
周转副
b
a
d
周转副
摆转副
c
摆转副
最短杆a是机架时,连架杆b,d都是曲柄
最短杆a是连架杆时,b或者d是机架,a是曲柄
c是机架时,无曲柄
双摇杆机构
t2
2 1
180 - 1
t1 t2
3 3
31
3. 行程速比系数K
通常把从动件往复运动平均速度的比 值(大于1)称为行程速比系数,用K表示。
K从 从动 动件 件慢 快速 速行 行程 程平 平 度 度均 均 速 速 33
3
t1
t1
1 1
180 1
3
t2
t2
2 1
180 - 1
K
180 180
O
4
D
(1)用I级杆数学模型计算B点的运动
(2)用RRR杆组数学模型计算C点的运动
(3)用I级杆数学模型计算E点的运动
(4)用RRP杆组数学模型计算F点的运动
50
3-5 平面连杆机构的力分析机械效率
一、力分析的基本知识
作用在机械上的力: ◆驱动力 驱使机械运动的力,其特征:力与作用点速度方向的夹 角为锐角 ◆阻力 阻碍机械运动的力,其特征:力与作用点速度方向的夹角 为钝角
解析法有很多种不同的方法,本教材采用杆组法
分解 基本杆组
建立基本杆 组数学模型
按照基本杆组构成机构的 顺序对机构进行运动分析
46
2. 杆组法运动分析的数学模型
(1) 同一构件上点的运动分析 y
B
li i
A li
rA
B
i
已知:A (xA ,yA )l,i,li,δ , i
数学模型
位置:
xB yB
BD2 a2 d2 2adcos BD2 b2 c2 2bccos
cosb2c2-a2d22adcos
2bc
90
b
B
δ max
a
A
d
Fn
C
γ
α
F Ft
δ
Vc
c
δmin
D
26
90
180
B a A
b
Fn α F
C
α γδ γ
Ft c
Vc
δ max
δmin
d
D
27
曲柄滑块机构的压力角
m
ab
a
nb
导杆机构总 构是转导杆机
构。
是有曲柄的
d
21
4、偏置导杆机构有曲柄的条件
ae
d
ad-e
有曲柄,该机 构是摆动导杆 机构。
a
e
d
ad-e
有曲柄,该机 构是摆动导杆 机构。
22
a
d
d -e a d e
没有曲柄。
a
e e
结论
d
ade 偏置导杆机构有
有曲柄,该机 构是转动导杆
曲柄的条件是
机构。
ade,ade
180 K1
K1 32
四、机构的死点位置
1. 死点位置 所谓死点位置就是指从动件的传动角等于零或者压力角等于90∘时 机构所处的位置。
如何确定机构的 死点位置?
分析B、C点的压力角
C
C1
B
b a B2
c
C2
c
b
aA
d
D
B1
33
曲柄摇杆机构(曲柄为主动件)的死点
M
FB
M AB
B
vB
B 0
FB
C
e
max min
28
三、急回运动和行程速比系数
1. 极位夹角
当机构从动件处于两极限位置时,主动件曲柄在两相应位
置所夹的角
曲柄摇杆机构的极位夹角
C
C
C
b B
aA
d
D
B
29
曲柄滑块机构的极位夹角
BA B
C
摆动导杆机构的极位夹角
B
A
Bd
e
C
D
30
2. 急回运动
当曲柄等速回转的情况下,通
常把从动件往复运动速度快慢不同
osi y Djljc
osj
加速度: d2xC
dt2
xC
xB
ili
s ini
i2li
cosi
d2yC dt2
yC
yB ili
cosi
i2li
s ini
48
(3) RRPII级杆组的运动分析
y
C
li
lj
B i
rB rK
K
D
j
x
O
s
49
例
y
6
K E
5
F
I级杆
RRP杆组
C
H
I级杆
3
2
RRR杆组