哈工大机械原理大作业

合集下载

哈尔滨工业大学机械原理大作业_连杆26题

哈尔滨工业大学机械原理大作业_连杆26题

1.运动分析题目如图所示机构,已知机构各构件的尺寸为AB=108mm,EF=320mm,BC=CE=CD=200mm,FG=162mm,AD=258mm,AG=514mm,DG=384mm,β=80º,构件1的角速度为ω1=10rad/s,试求构件2上点E的轨迹及构件5的角位移、角速度和角加速度,并对计算结果进行分析。

2.机构的结构分析,组成机构的基本杆组划分3.各基本杆组的运动分析数学模型(1)RR基本杆组:delt=0xB = xA + AB * Cos(f + delt)yB = yA + AB* Sin(f + delt)vxB = vxA - w * AB * Sin(f + delt)vyB = vyA + w * AB* Cos(f + delt)axB = axA - w ^ 2 * AB * Cos(f + delt):ayB = ayA - w ^ 2 * AB* Sin(f + delt)(2)RRR基本杆组Ci = lbc * Cos(fbc)Si = lbc * Sin(fbc)Cj = lcd * Cos(fcd)Sj = lcd * Sin(fcd)G1 = Ci * Sj - Cj * Siwbc = (Cj * (vxD - vxB) + Sj * (vyD - vyB)) / G1wcd = (Ci * (vxD - vxB) + Si * (vyD - vyB)) / G1vxC = vxB - wbc * lbc * Sin(fbc)vyC = vyB + wbc * lbc * Cos(fbc)G2 = axD - axB + wbc ^ 2 * Ci - wcd ^ 2 * CjG3 = ayD - ayB + wbc ^ 2 * Si - wcd ^ 2 * Sjebc = (G2 * Cj + G3 * Sj) / G1ecd = (G2 * Ci + G3 * Si) / G1axC = axB - ebc * lbc * Sin(fbc) - wbc ^ 2 * lbc * Cos(fbc)ayC = ayB + ebc * lbc * Cos(fbc) - wbc ^ 2 * lbc * Sin(fbc)EB = 2 * BC * Cos(febc)xE = xB + EB* Cos(fbc + febc)yE = yB + EB * Sin(fbc + febc)vxE = vxB – wbc * EB* Sin(fbc + febc)vyE = vyB + wbc * EB* Cos(fbc + febc)axE = axB - wbc ^ 2 * EB * Cos(fbc + delt) - ebc * EB * Sin(fbc + febc)ayE = ayB - wbc ^ 2 * leb * Sin(fbc + delt) + ebc * leb * Sin(fbc + febc) Ci = lef * Cos(fef)Si = lef * Sin(fef)Cj = lfg * Cos(ffg)Sj = lfg * Sin(ffg)G1 = Ci * Sj - Cj * Siwef = (Cj * (vxG - vxE) + Sj * (vyG - vyE)) / G1wfg = (Ci * (vxG - vxE) + Si * (vyG - vyE)) / G1vxF = vxE - wef * lef * Sin(fef)vyF = vyE + wef * lef * Cos(fef)G2 = axG - axE + wef ^ 2 * Ci - wfg ^ 2 * CjG3 = ayG - ayE + wef ^ 2 * Si - wfg ^ 2 * Sjeef = (G2 * Cj + G3 * Sj) / G1efg = (G2 * Ci + G3 * Si) / G1axF = axE - eef * lef * Sin(fef) - wef ^ 2 * lef * Cos(fef)ayF = ayE + eef * lef * Cos(fef) - wef ^ 2 * lef * Sin(fef)4.计算编程Dim xA As DoubleDim yA As DoubleDim vxA As DoubleDim vyA As DoubleDim axA As Double 'A '点加速度x轴分量Dim ayA As Double 'A '点加速度y轴分量Dim xB As Double 'B'点'x轴坐标Dim yB As Double 'B点y轴坐标Dim vxB As Double 'B点速度x轴分量Dim vyB As Double 'B点速度y轴分量Dim axB As Double 'B点加速度x轴分量Dim ayB As Double 'B点加速度y轴分量Dim xC As Double 'C点x轴坐标Dim yC As Double C'点y轴坐标Dim vxC As Double 'C点速度x轴分量Dim vyC As Double 'C点速度y轴分量Dim axC As Double 'C点加速度x轴分量Dim ayC As Double 'C点加速度y轴分量Dim xD As Double 'D点x轴坐标Dim yD As Double 'D点y轴坐标Dim vxD As Double 'D点速度x轴分量Dim vyD As Double 'D点速度y轴分量Dim axD As Double 'D点加速度x轴分量Dim ayD As Double 'D点加速度y轴分量Dim xE As Double 'E点x轴坐标Dim yE As Double 'E点y轴坐标Dim vxE As Double 'E点速度x轴分量Dim vyE As Double 'E点速度y轴分量Dim axE As Double 'E点加速度x轴分量Dim ayE As Double 'E点加速度y轴分量Dim xF As Double 'F点x轴坐标Dim yF As Double 'F点y轴坐标Dim vxF As Double 'F点速度x轴分量Dim vyF As Double 'F点速度y轴分量Dim axF As Double 'F点加速度x轴分量Dim ayF As Double 'F点加速度y轴分量Dim xG As Double 'G点x轴坐标Dim yG As Double 'G点y轴坐标Dim vxG As Double 'G点速度x轴分量Dim vyG As Double 'G点速度y轴分量Dim axG As Double 'G点加速度x轴分量Dim ayG As Double 'G点加速度y轴分量Dim delt As Double ' AB杆初始转角Dim lab As Double 'AB杆长Dim lbc As Double 'BC杆长Dim lcd As Double ' CD杆长Dim lce As Double 'CE杆长Dim lef As Double 'EF杆长Dim lfg As Double 'FG杆长Dim leb As Double 'ED杆长Dim f As Double 'AB杆转角Dim fbc As Double 'BC杆转角Dim fcd As Double 'CD杆转角Dim fce As Double 'CE杆转角Dim fef As Double 'EF杆转角Dim ffg As Double 'FG杆转角Dim fge As Double 'ge杆转角Dim w As Double 'AB杆角速度Dim wbc As Double ' BC角速度Dim wcd As Double 'CD角速度Dim wce As Double 'CE角速度Dim wef As Double 'EF角速度Dim wfg As Double 'FG角速度Dim e As Double 'AB杆角加速度Dim ebc As Double ' BC杆角加速度Dim ecd As Double 'CD杆角加速度Dim ece As Double 'CE杆角加速度Dim eef As Double 'EF杆角加速度Dim efg As Double 'FG杆角加速度Dim LBD As Double 'BD距离Dim leg As Double 'EG距离Dim JCBD As Double '角CBDDim jfeg As Double '角FEGDim fBD As Double 'BD转角Dim feg As Double 'EG转角Dim Ci As DoubleDim Cj As DoubleDim Si As DoubleDim Sj As DoubleDim G1 As DoubleDim G2 As DoubleDim G3 As DoubleDim val As DoubleDim pi As DoubleDim pa As DoubleDim febc As Double '角EBCDim i As DoubleDim fj1 As DoublePrivate Sub Command1_Click() '求点E的轨迹Picture1.Scale (-300, 400)-(10, -15)Picture1.Line (-300, 0)-(10, 0) 'XPicture1.Line (0, 400)-(0, -15) 'YFor i = -300 To 0 Step 50 'X轴坐标Picture1.DrawStyle = 2Picture1.Line (i, 400)-(i, 0)Picture1.CurrentX = i - 10: Picture1.CurrentY = 0 Picture1.Print iNext iFor i = 0 To 350 Step 50 'Y轴坐标Picture1.DrawStyle = 2Picture1.Line (0, i)-(-400, i)Picture1.CurrentX = -20: Picture1.CurrentY = i + 7 Picture1.Print iNext iFor fj1 = 0 To 360 Step 0.01f = fj1 * paCall RR1Call RRR1Call RR2Picture1.PSet (xE, yE)Next fj1End SubPrivate Sub Command2_Click() '求构件5的角位移Picture2.Scale (-20, 5)-(380, -0.5)Picture2.Line (-20, 0)-(380, 0) 'XPicture2.Line (0, 3)-(0, -0.5) 'YFor i = 0 To 360 Step 30 'X轴坐标Picture2.DrawStyle = 2Picture2.Line (i, 3)-(i, 0)Picture2.CurrentX = i - 10: Picture2.CurrentY = 0 Picture2.Print iNext iFor i = -0.5 To 3 Step 0.5 'Y轴坐标Picture2.Line (0, i)-(380, i)Picture2.CurrentX = -25: Picture2.CurrentY = i Picture2.Print iNext iFor fj1 = 0 To 360 Step 0.01f = fj1 * paCall RR1Call RRR1Call RR2Call RRR2Picture2.PSet (fj1, ffg)Next fj1End SubPrivate Sub Command3_Click() '求构件5的角速度Picture3.Scale (-20, 10)-(380, -10)Picture3.Line (-20, 0)-(380, 0) 'XPicture3.Line (0, 10)-(0, -10) 'YFor i = 0 To 360 Step 30 'X轴坐标Picture3.DrawStyle = 2Picture3.Line (i, 10)-(i, -10)Picture3.CurrentX = i - 10: Picture3.CurrentY = 0 Picture3.Print iNext iFor i = -8 To 8 Step 2 'Y轴坐标Picture3.Line (0, i)-(380, i)Picture3.CurrentX = -20: Picture3.CurrentY = i Picture3.Print iNext iFor fj1 = 0 To 360 Step 0.01f = fj1 * paCall RR1Call RRR1Call RR2Call RRR2Picture3.PSet (fj1, wfg)Next fj1End SubPrivate Sub Command4_Click() '求构件5的角加速度Picture4.Scale (-20, 300)-(380, -200)Picture4.Line (-20, 0)-(380, 0) 'XPicture4.Line (0, 300)-(0, -200) 'YFor i = 0 To 360 Step 30 'X轴坐标Picture4.DrawStyle = 2Picture4.Line (i, 300)-(i, -200)Picture4.CurrentX = i - 10: Picture4.CurrentY = 0 Picture4.Print iNext iFor i = -200 To 300 Step 50 'Y轴坐标Picture4.Line (0, i)-(380, i)Picture4.CurrentX = -25: Picture4.CurrentY = i + 5 Picture4.Print iNext iFor fj1 = 0 To 360 Step 0.01f = fj1 * paCall RR1Call RRR1Call RR2Call RRR2Picture4.PSet (fj1, efgNext fj1End SubPrivate Sub Form_Load() '赋初值lab = 108lce = 200lbc = 200lcd = 200lef = 320lfg = 162w = 10e = 0delt = 0xA = 0yA = 0vyA = 0axA = 0ayA = 0xD = -178.311284yD = 186.464704vxD = 0vyD = 0axD = 0ayD = 0xG = -514yG = 0vxG = 0vyG = 0axG = 0ayG = 0pi = 3.1415926pa = pi / 180febc = pa * 50End SubPrivate Sub RR1() 'RR基本杆组xB = xA + lab * Cos(f + delt)yB = yA + lab * Sin(f + delt)vxB = vxA - w * lab * Sin(f + delt)vyB = vyA + w * lab * Cos(f + delt)axB = axA - w ^ 2 * lab * Cos(f + delt) - e * lab * Sin(f + delt)ayB = ayA - w ^ 2 * lab * Sin(f + delt) + e * lab * Sin(f + delt)End SubPrivate Sub RR2() 'RR基本杆组leb = 2 * lbc * Cos(febc)xE = xB + leb * Cos(fbc + febc)yE = yB + leb * Sin(fbc + febc)vxE = vxB - wbc * leb * Sin(fbc + febc)vyE = vyB + wbc * leb * Cos(fbc + febc)axE = axB - wbc ^ 2 * leb * Cos(fbc + delt) - ebc * leb * Sin(fbc + febc) ayE = ayB - wbc ^ 2 * leb * Sin(fbc + delt) + ebc * leb * Sin(fbc + febc) End SubPrivate Sub RRR1() 'RRR基本杆组LBD = Sqr((xD - xB) ^ 2 + (yD - yB) ^ 2)If LBD > lbc + lcd And LBD < Abs(lbc - lcd) ThenIf MsgBox("RRR杆组杆长不符合要求", vbOKOnly, "提示") = 1 Then EndEnd IfElseEnd IfIf LBD < lbc + lcd And LBD > Abs(lbc - lcd) Then val = (lbc ^ 2 + LBD ^ 2 - lcd ^ 2) / (2 * lbc * LBD) JCBD = Atn(-val / Sqr(-val * val + 1)) + 2 * Atn(1) ElseEnd IfIf LBD = lbc + lcd ThenJCBD = 0ElseEnd IfIf LBD = Abs(lbc - lcd) ThenIf lbc > lcd ThenJCBD = 0ElseEnd IfIf lbc < lcd ThenJCBD = piElseEnd IfElseEnd IfIf xD > xB And yD >= yB Then '第一象限fBD = Atn((yD - yB) / (xD - xB))ElseEnd IfIf xD = xB And yD > yB ThenfBD = pi / 2ElseEnd IfIf xD < xB And yD >= yB Then '第二象限fBD = pi + Atn((yD - yB) / (xD - xB))ElseEnd IfIf xD < xB And yD < yB Then '第三象限fBD = pi + Atn((yD - yB) / (xD - xB))ElseEnd IfIf xD = xB And yD < yB ThenfBD = 3 * pi / 2ElseEnd IfIf xD > xB And yD <= yB Then '第四象限fBD = 2 * pi + Atn((yD - yB) / (xD - xB))ElseEnd Iffbc = fBD - JCBDxC = xB + lbc * Cos(fbc)yC = yB + lbc * Sin(fbc)If xC > xD And yC >= yD Then '第一象限fcd = Atn((yC - yD) / (xC - xD))ElseEnd IfIf xC = xD And yC >= yD Thenfcd = pi / 2ElseEnd IfIf xC < xD And yC >= yD Then '第二象限fcd = pi + Atn((yC - yD) / (xC - xD))ElseEnd IfIf xC < xD And yC < yD Then '第三象限fcd = pi + Atn((yC - yD) / (xC - xD))ElseEnd IfIf xC = xD And yC < yD Thenfcd = 3 * pi / 2ElseEnd IfIf xC > xD And yC <= yD Then '第四象限fcd = 2 * pi + Atn((yC - yD) / (xC - xD))ElseEnd IfCi = lbc * Cos(fbc)Si = lbc * Sin(fbc)Cj = lcd * Cos(fcd)Sj = lcd * Sin(fcd)G1 = Ci * Sj - Cj * Siwbc = (Cj * (vxD - vxB) + Sj * (vyD - vyB)) / G1 wcd = (Ci * (vxD - vxB) + Si * (vyD - vyB)) / G1 vxC = vxB - wbc * lbc * Sin(fbc)vyC = vyB + wbc * lbc * Cos(fbc)G2 = axD - axB + wbc ^ 2 * Ci - wcd ^ 2 * CjG3 = ayD - ayB + wbc ^ 2 * Si - wcd ^ 2 * Sj ebc = (G2 * Cj + G3 * Sj) / G1ecd = (G2 * Ci + G3 * Si) / G1axC = axB - ebc * lbc * Sin(fbc) - wbc ^ 2 * lbc * Cos(fbc)ayC = ayB + ebc * lbc * Cos(fbc) - wbc ^ 2 * lbc * Sin(fbc)End SubPrivate Sub RRR2() 'RRR基本杆组leg = Sqr((xG - xE) ^ 2 + (yG - yE) ^ 2)If leg > lef + lfg And leg < Abs(lef - lfg) ThenIf MsgBox("RRR杆组杆长不符合要求", vbOKOnly, "提示") = 1 Then EndElseEnd IfElseEnd IfIf leg < lef + lfg And leg > Abs(lef - lfg) Thenval = (lef ^ 2 + leg ^ 2 - lfg ^ 2) / (2 * lef * leg)jfeg = Atn(-val / Sqr(-val * val + 1)) + 2 * Atn(1)ElseEnd IfIf leg = lef + lfg Thenjfeg = 0ElseEnd IfIf leg = Abs(lef - lfg) ThenIf lef > lfg Thenjfeg = 0ElseEnd IfIf lef < lfg Thenjfeg = piElseEnd IfElseEnd IfIf xG > xE And yG >= yE Then '第一象限feg = Atn((yG - yE) / (xG - xE))ElseEnd IfIf xG = xE And yG > yE Thenfeg = pi / 2ElseEnd IfIf xG < xE And yG >= yE Then '第二象限feg = pi + Atn((yG - yE) / (xG - xE))ElseEnd IfIf xG < xE And yG < yE Then '第三象限feg = pi + Atn((yG - yE) / (xG - xE)) ElseEnd IfIf xG = xE And yG < yE Thenfeg = 3 * pi / 2ElseEnd IfIf xG > xE And yG <= yE Then '第四象限feg = 2 * pi + Atn((yG - yE) / (xG - xE)) ElseEnd Iffef = feg - jfegxF = xE + lef * Cos(fef)yF = yE + lef * Sin(fef)If xF > xG And yF >= yG Then '第一象限ffg = Atn((yF - yG) / (xF - xG))ElseEnd IfIf xF = xG And yF >= yG Thenffg = pi / 2ElseEnd IfIf xF < xG And yF >= yG Then '第二象限ffg = pi + Atn((yF - yG) / (xF - xG)) ElseEnd IfIf xF < xG And yF < yG Then '第三象限ffg = pi + Atn((yF - yG) / (xF - xG)) ElseEnd IfIf xF = xG And yF < yG Thenffg = 3 * pi / 2ElseEnd IfIf xF > xG And yF <= yG Then '第四象限ffg = 2 * pi + Atn((yF - yG) / (xF - xG)) ElseEnd IfCi = lef * Cos(fef)Si = lef * Sin(fef)Cj = lfg * Cos(ffg)Sj = lfg * Sin(ffg)G1 = Ci * Sj - Cj * Siwef = (Cj * (vxG - vxE) + Sj * (vyG - vyE)) / G1wfg = (Ci * (vxG - vxE) + Si * (vyG - vyE)) / G1vxF = vxE - wef * lef * Sin(fef)vyF = vyE + wef * lef * Cos(fef)G2 = axG - axE + wef ^ 2 * Ci - wfg ^ 2 * CjG3 = ayG - ayE + wef ^ 2 * Si - wfg ^ 2 * Sjeef = (G2 * Cj + G3 * Sj) / G1efg = (G2 * Ci + G3 * Si) / G1axF = axE - eef * lef * Sin(fef) - wef ^ 2 * lef * Cos(fef)ayF = ayE + eef * lef * Cos(fef) - wef ^ 2 * lef * Sin(fef)End Sub5.结果及分析图1 E点的运动轨迹(1)由图1所示,E点的运动轨迹呈稍倾斜“8字形”。

哈工大机械原理大作业1-16

哈工大机械原理大作业1-16

Harbin Institute of Technology机械原理大作业设计说明书(一)课程名称:机械原理设计题目:连杆运动分析(16)院系:能源科学与工程学院班级:1102201设计者:学号:指导教师:赵永强唐德威设计时间:2013年6月8 日哈尔滨工业大学1 连杆机构运动分析题目16:如图所示机构,已知机构各构件的尺寸为AC l =CE l =100mm ,BC l =CD l =200mm ,90BCD ∠=,构件1的角速度为10/rad s ,试求构件5的角位移、角速度和角加速度,并对计算结果进行分析。

2 分析过程2.1 建立坐标系建立以点E 为原点的固定平面直角坐标系x-E-y,如图所示:图2 机构坐标系2.2结构分析将构件BCD 分为杆3和杆4。

该机构由2个Ⅰ级杆组RR (杆1和杆5)和两个Ⅱ级杆组RRP (杆3、杆4和滑块B 、D )。

其中原动件为杆1。

现将杆组分为如下两部分:图1 机构运动简图RRPRR图3 各级杆组2.3 建立数学模型2.3.1构件1、2、3的分析原动件杆1的转角:1θ=0—360。

原动件杆1的角速度:1ω=.1θ=10/rad s原动件杆1的角加速度:..1αθ==0运动副A 的坐标:0200A A x y mm =⎫⎬=⎭运动副A 的速度及加速度都为零。

构件1为BC (RRP Ⅱ级杆组)上滑块B 的导路 滑块B 的位置为:132cos cos B A C x x s x l θθ=+=+ 132sin sin B A C y y s x l θθ=+=+消去s,得:212arcsinA l θθ=+式中:011()sin ()cos C A C A A x x y y θθ=---构件3的角速度i ω和滑块B 沿导路的移动速度D υ:.211213(Q sin Q cos )/Q ωϕθθ==-+ 1322323(Q cos Q sin )/Q D s l l υθθ⋅==-+式中:..11111211321212Q sin ;Q cos ;Q sin sin cos sin l l l θθθθθθθθ=-==+构件3的角加速度和滑块B 沿导路移动的加速度:..241513(Q sin Q cos )/Q αθθθ==-+..4325323(Q cos Q sin )/Q B s l l υθθ==-+式中:122......21142211111Q cos sin cos 2sin l l l s θθθθθθθθ=---- 122......21152211111Q sin cos sin 2cos l l l s θθθθθθθθ=+-+2.3.2 构件3,4,5的分析构件3,4,5,由1个Ⅰ级基本杆组和一个RRP Ⅱ级杆组组成,与构件1,2,3结构相同,只运动分析过程与其相反。

哈工大机械原理大作业

哈工大机械原理大作业

H a r b i n I n s t i t u t e o f T e c h n o l o g y机械原理大作业一课程名称:机械原理设计题目:连杆机构运动分析院系:机电学院班级: 1208105分析者:殷琪学号:指导教师:丁刚设计时间:哈尔滨工业大学设计说明书1 、题目如图所示机构,一只机构各构件的尺寸为AB=100mm,BC=4.28AB,CE=4.86AB,BE=8.4AB,CD=2.14AB,AD=4.55AB,AF=7AB,DF=3.32AB,∠BCE=139?。

构件1的角速度为ω1=10rad/s,试求构件2上点E的轨迹及构件5的角位移、角速度和角加速度,并对计算结果进行分析。

2、机构结构分析该机构由6个构件组成,4和5之间通过移动副连接,其他各构件之间通过转动副连接,主动件为杆1,杆2、3、4、5为从动件,2和3组成Ⅱ级RRR基本杆组,4和5组成Ⅱ级RPR 基本杆组。

如图建立坐标系3、各基本杆组的运动分析数学模型1) 位置分析2) 速度和加速度分析 将上式对时间t 求导,可得速度方程:将上式对时间t 求导,可得加速度方程:RRR Ⅱ级杆组的运动分析如下图所示 当已知RRR 杆组中两杆长L BC 、L CD 和两外副B 、D 的位置和运动时,求内副C的位置、两杆的角位置、角运动以及E 点的运动。

1) 位置方程由移项消去j ϕ后可求得i ϕ:式中,可求得j ϕ:E 点坐标方程:其中2) 速度方程两杆角速度方程为式中,点E 速度方程为3) 加速度方程两杆角加速度为式中,点E 加速度方程为RPR Ⅱ级杆组的运动分析(1) 位移方程(2)速度方程其中(3)加速度方程4、 计算编程利用MATLAB 软件进行编程,程序如下:% 点B 和AB 杆运动状态分析>>r=pi/180;w 1=10;e 1=0;l 1=100;Xa=0;Ya=0;Vax=0;Vay=0;aax=0;aay=0;f1=0:1: 360;% B 点位置Xb=Xa+l1*cos(r*f1);Yb=Ya+l1*sin(r*f1);% B点速度Vbx=Vax-w1*l1*sin(r*f1);Vby=Vay+w1*l1*cos(r*f1);% B点加速度abx=aax-l1*w1.^2.*cos(r*f1);aby=aay-l1*w1.^2.*sin(r*f1);% RRR2级杆组运动分析% 输入D点参数l2=428;l3=214;Xd=455;Yd=0;Vdx=0;Vdy=0;adx=0;ady=0;% 计算E点、2杆、3杆运动参数lbe=840;lce=486;a0=2*l2*(Xd-Xb);b0=2*l2*(Yd-Yb);c0=l2^2+(Xb-Xd).^2+(Yb-Yd).^2-l3^2;f2=2*atan((b0+sqrt(a0.^2+b0.^2-c0.^2))./(a0+c0)); % C点位置Xc=Xb+l2*cos(f2);Yc=Yb+l2*sin(f2);% 2杆、3杆运动参数计算dX=Xc-Xd;dY=Yc-Yd;for n=1:length(dX)if dX(n)>0&dY(n)>=0f3(n)=atan(dY(n)/dX(n));elseif dX(n)==0&dY(n)>0f3(n)=pi/2;elseif dX(n)<0&dY(n)>=0f3(n)=pi+atan(dY(n)/dX(n));elseif dX(n)<0&dY(n)<0f3(n)=pi+atan(dY(n)/dX(n));elseif dX(n)==0&dY(n)<0f3(n)=1.5*pi;elseif dX(n)>0&dY(n)<0f3(n)=2*pi+atan(dY(n)/dX(n));endendC2=l2*cos(f2);C3=l3*cos(f3);S2=l2*sin(f2);S3=l3*sin(f3);G1=C2.*S3-C3.*S2;w2=(C3.*(Vdx-Vbx)+S3.*(Vdy-Vby))./G1;w3=(C2.*(Vdx-Vbx)+S2.*(Vdy-Vby))./G1;G2=adx-abx+(w2.^2).*C2-(w3.^2).*C3;G3=ady-aby+(w2.^2).*S2-(w3.^2).*S3;e2=(G2.*C3+G3.*S3)./G1;% E点位置w=acos((l2^2+lbe^2-lce^2)/(2*l2*lbe));Xe=Xb+lbe*cos(f2-w);Ye=Yb+lbe*sin(f2-w);Vex=Vbx-lbe*w2.*sin(f2-w);Vey=Vby+lbe*w2.*cos(f2-w);aex=abx-lbe*(e2.*sin(f2-w)+w2.^2.*cos(f2-w));aey=aby+lbe*(e2.*cos(f2-w)-w2.^2.*sin(f2-w));% 计算杆5运动参数Xf=646.2912088;Yf=-268.9008617;l5=sqrt((Xe-Xf).^2+(Ye-Yf).^2);dX=Xe-Xf;dY=Ye-Yf;for n=1:length(dX)if dX(n)>0&dY(n)>=0f5(n)=atan(dY(n)/dX(n));elseif dX(n)==0&dY(n)>0f5(n)=pi/2;elseif dX(n)<0&dY(n)>=0f5(n)=pi+atan(dY(n)/dX(n));elseif dX(n)<0&dY(n)<0f5(n)=pi+atan(dY(n)/dX(n));elseif dX(n)==0&dY(n)<0f5(n)=1.5*pi;elseif dX(n)>0&dY(n)<0f5(n)=2*pi+atan(dY(n)/dX(n));endendw5=(-Vex.*sin(f5)+Vey.*cos(f5))./l5;a5=(-aex.*sin(f5)+aey.*cos(f5))./l5;% 画出各参数曲线figure(1);plot(Xe,Ye,'k');xlabel('Xe/\mm');ylabel('Ye/mm');grid on;title('E点位置');figure(2);plot(f1,f5,'k');xlabel('f/\circ');ylabel('f5/\circ');grid on;title('5杆角位移');figure(3);plot(f1,w5,'k');xlabel('f/\circ');ylabel('w5/rad/s');grid on;title('5杆角速度');figure(4);plot(f1,a5,'k');xlabel('f/\circ');ylabel('a5/rad/s2');gridon;title('5杆角加速度');Warning: Unable to interpret TeX string "Xe/\mm"5、计算结果图一:E点的运动轨迹图二:5杆角位移图三:5杆角速度图四:5杆角加速度6、计算结果分析由E点位置图像可看出,构件4做周期往复运动,由图二、三、四可看出,构件5的角位移、角速度、角加速度均成周期性变化。

哈工大机械原理大作业

哈工大机械原理大作业

H a r b i n I n s t i t u t e o f T e c h n o l o g y大作业设计说明书课程名称:机械原理设计题目:凸轮机构院系:机电学院班级:姓名:学号:指导教师:丁刚设计时间:2014.5.29哈尔滨工业大学1.设计题目第31题:升程/mm 升程运动角/。

升程运动规律升程许用压力角/。

回程运动角/。

回程运动规律回程许用压力角/。

远休止角/。

近休止角/。

150 90 等加等减速40 80 余弦加速度70 40 1502.运动方程式及运动线图由题目要求凸轮逆时针旋转(1)确定凸轮机构推杆升程、回程运动方程,并绘制推杆位移、速度、加速度线图。

升程第一段:(0 <φ< pi /4)φ0=pi/2;s1 = 73*φ^2;v1=146*w*φ;a1 = 146*w^2;升程第二段:(pi/4 <φ< pi /2)s2 =90-73*(pi/2-φ)^2;v2=146*w*( pi/2-φ);a2 =-146*w.^2;远休止程:(pi/2 <φ< 10*pi/9)s3 = 90;v3 = 0;a3 = 0;回程:(10*pi/9)< φ< ( 14*pi/9)s4 =45*(1+cos(9/4*(φ-10*pi/9)));v4 =-101.25*w*sin(9/4*(φ-10*pi/9)) ;a4 =-227.8*w^2* cos(9/4*(φ-10*pi/9)); 近休止程:(14*pi/9)< φ < ( 2*pi);s5 =0;v5 =0;a5 =0;1.由上述公式通过编程得到位移、速度、加速度曲线如下:(编程见附录).基圆半径为r0 = (50^2+100^2)0.5=112mm,偏距e = 50mm。

3.凸轮实际轮廓,理论轮廓,基圆,偏距圆绘制4.整体图像附录1.求位移、速度、加速度的程序(matlab)w = input('请输入W=');x = 0:(pi/1000):(pi/4);s1 = 73*x.^2;v1=146*w*x;a1 = 146*w.^2;y = (pi/4):(pi/1000):(pi/2);s2 =90-73*(pi/2-y).^2;v2=146*w*( pi/2-y);a2 =-146*w.^2;z = (pi/2 ):(pi/1000):(10*pi/9);s3 = 90;v3 = 0;a3 = 0;c = (10*pi/9):(pi/1000):( 14*pi/9);s4 =45*(1+cos(9/4*(c-10*pi/9)));v4 =-101.25*w*sin(9/4*( c-10*pi/9)) ;a4 =-227.8*w.^2* cos(9/4*(c-10*pi/9));d=(14*pi/9):(pi/1000):( 2*pi);s5 =0; v5 =0; a5 =0;subplot (2,2,1)plot(x,s1,'b',y,s2,'b',z,s3,'b',c,s4,'b', d,s5,'b');xlabel('转角/rad')ylabel('位移/(mm/s)')title('位移与转角曲线')grid onsubplot (2,2,2)plot(x,v1,'g',y,v2,'g',z,v3,'g ',c,v4,'g', d,v5,'g')ds4 =45*9/4*sin(9/4*(c-10*pi/9));d=(14*pi/9):(pi/1000):( 2*pi);s5 =0;ds5 =0;plot(ds1,s1,'b',ds2,s2,'b',ds3,s3,'b',ds4,s4,'b',ds5,s5,'b'); xlabel('ds/dp');ylabel('(位移s/mm)')title('ds/dp 与位移s曲线')grid onhold onx3=-150:0.001:0;y3 = 0.577*x3;plot (x3,y3,'r');hold onx1=-150:0.001:150;for i=1:1:250;k1=(s1(i+1)-s1(i))/ (ds1(i+1)-ds1(i));if(k1>=-1.733 && k1<=-1.731)y1=k1*(x1-ds1(i))+s1(i);plot (x1,y1,'r');end3.确定滚子半径(1)先求凸轮理论轮廓曲线,程序如下:Clc;clear;w = input('请输入w=');s0 = 100;s = 90;e = 50; x = 0:(pi/100):(pi/4);x1 = (s + s0)*cos(x)-e*sin(x);y1 = (s0 + s)*sin(x) - e*cos(x);y = (pi/4):(pi/100):(pi/2);x2 = (s + s0)*cos(y)-e*sin(y);y2 = (s0 + s)*sin(y) - e*cos(y);z = (pi/2 ):(pi/100):(10*pi/9);x3 = (s + s0)*cos(z)-e*sin(z);y3 = (s0 + s)*sin(z) - e*cos(z);c = (10*pi/9):(pi/1000):( 14*pi/9);x4 = (s + s0)*cos(c)-e*sin(c);y4 = (s0 + s)*sin(c) - e*cos(c);d=(14*pi/9):(pi/1000):( 2*pi);x5 = (s + s0)*cos(d)-e*sin(d);y5 = (s0 + s)*sin(d) - e*cos(d);plot(x1,y1,'b',x2,y2,'b',x3,y3,'b',x4,y4,'b',x5,y5,'b');xlabel('x/mm')ylabel('y/mm')title('理论轮廓曲线')grid on(2)理论轮廓线最小曲率半径编程代码:由下程序结果可知pmin =81.6667这里滚子半径为 r r < pmin-ΔΔ=3~5mm;取r r=10mm;clear;clc;v=[];syms x1 x2 x3 x4 x5s0 = 100;e = 50;s1 = 73*x1.^2;t1 = (s1 + s0)*cos(x1)-e*sin(x1);y1 = (s0 + s1)*sin(x1) - e*cos(x1);tx1=diff(t1,x1);txx1=diff(t1,x1,2);yx1=diff(y1,x1);yxx1=diff(y1,x1,2);for xx1= 0:(pi/100):(pi/4);k1=subs(abs((tx1*yxx1-txx1*yx1)/(tx1^2+yx1^2)^1.5),{x1},{xx1}); v=[v,1/k1];ends2 =90-73*(pi/2-x2).^2;t2 = (s2 + s0)*cos(x2)-e*sin(x2);y2 = (s0 + s2)*sin(x2) - e*cos(x2);tx2=diff(t2,x2);txx2=diff(t2,x2,2);yx2=diff(y2,x2);yxx2=diff(y2,x2,2);for xx2=(pi/4):(pi/100):(pi/2);k2=subs(abs((tx2*yxx2-txx2*yx2)/(tx2^2+yx2^2)^1.5),{x2},{xx2});k4=subs(abs((tx4*yxx4-txx4*yx4)/(tx4^2+yx4^2)^1.5),{x4},{xx4}); v=[v,1/k4];ends5 =0;t5 = (s5 + s0)*cos(x5)-e*sin(x5);y5 = (s0 + s5)*sin(x5) - e*cos(x5);tx5=diff(t5,x5);txx5=diff(t5,x5,2);yx5=diff(y5,x5);yxx5=diff(y5,x5,2);for xx5=(10*pi/9):(pi/100):( 4*pi/3);k5=subs(abs((tx5*yxx5-txx5*yx5)/(tx5^2+yx5^2)^1.5),{x5},{xx5}); v=[v,1/k5];endpmin=min(v)4.绘制凸轮轮廓曲线clear ;clc;syms x y z c dw= input('请输入w=');n3 = diff(x3);m3 = diff(y3);xt3= subs(x3 + (r*m3)./sqrt(m3.^2+n3.^2),z,zz);yt3 = subs(y3 - (r*n3)./sqrt(m3.^2+n3.^2),z,zz);cc= (10*pi/9):(pi/1000):( 14*pi/9);s4 =45*(1+cos(9/4*(c-10*pi/9)));x4 = (s4 + s0).*cos(c)-e*sin(c);y4 = (s0 +s4).*sin(c) - e*cos(c);n4 = diff(x4);m4 = diff(y4);xt4= subs(x4 + (r*m4)./sqrt(m4.^2+n4.^2),c,cc);yt4 =subs( y4 - (r*n4)./sqrt(m4.^2+n4.^2),c,cc);dd=(14*pi/9):(pi/1000):( 2*pi);s5 =0;x5 = (s5 + s0).*cos(d)-e*sin(d);y5 = (s0 +s5).*sin(d) - e*cos(d);n5 = diff(x5);m5 = diff(y5);xt5= subs(x5 + (r*m5)./sqrt(m5.^2+n5.^2),d,dd);yt5 =subs( y5 - (r*n5)./sqrt(m5.^2+n5.^2),d,dd);plot(xt1,yt1,'b',xt2,yt2,'b',xt3,yt3,'b',xt4,yt4,'b',xt5,yt5,'b')for i=1:3601if yy(1,i)<=y0/2s(1,i)=2*h*(yy(i)./y0).^2;v(1,i)=4*h*w*yy(i)./(y0.^2);a(1,i)=4*h*w.^2./(y0.^2);elseif yy(1,i)>y0/2 && yy(1,i)<y0s(1,i)=h-2*h./y0.^2.*(y0-yy(i)).^2;v(1,i)=4*h*w*(y0-yy(i))./(y0.^2);a(1,i)=-4*h*w.^2./(y0.^2);elseif yy(1,i)>=y0 && yy(1,i)<y0+yss(1,i)=h;v(1,i)=0;a(1,i)=0;elseif yy(1,i)>=y0+ys && yy(1,i)<y0+ys+y01s(1,i)=h/2*(1+cos(pi/y01*(yy(1,i)-y0-ys)));v(1,i)=-pi*h*w/2/y01*sin(pi/y01*(yy(1,i)-y0-ys));a(1,i)=-pi^2*h*w^2/2/y01^2*cos(pi/y01*(yy(1,i)-y0-ys)); elseif yy(1,i)>=y0+ys+y01 && yy(1,i)<=360s(1,i)=0;v(1,i)=0;a(1,i)=0;subplot(2,3,5) ;plot(x,y,'r',xt,yt,eex,eey,'g',r0x,r0y,'k')%画图title('实际理论轮廓线')axis equal%使坐标轴比例相等grid on%画网格线。

哈工大机械原理大作业3

哈工大机械原理大作业3

Harbin Institute of Technology机械原理大作业三课程名称:设计题目:院系:班级:设计者:学号:指导教师:设计时间:哈尔滨工业大学大作业3 齿轮传动设计 1、设计题目1.1机构运动简图1.2机械传动系统原始参数2、传动比的分配计算由已知条件,电动机转速n=1450r/min ,输出转速n 1=27 r/min ,n 2=31 r/min ,n 3=37 r/min ,带传动最大传动比max p i =2.5,滑移齿轮传动最大传动比=4,定轴齿轮传动最大 传动比=4。

可求得:传动系统的总传动比为:11n ni == 1450/27=53.70322n ni == 1450/31=46.774 33n ni == 1450/37=39.189 传动系统的总传动比分别由带传动、滑移齿轮传动和定轴齿轮传动三部分实现。

设带传的传送比为其最大传送比5.2max =p i ,滑移齿轮的传动比为321,,v v v i i i ,定轴齿轮传动的传动比为f i ,则总传动比由于1i > 2i > 3i ,故取1max 4v v i i ==则定轴齿轮传动部分的传动比为1max max5.37f p v i i i i ==滑移齿轮传动的传动比22max3.49v f p i i i i ==33m a x2.92v f p i i i i ==定轴齿轮传动由3对齿轮传动组成, 每对齿轮的传动比为:1.754d i ==≤3、齿轮齿数的确定滑移齿轮齿数3=v i 65622.9521z z == 2=v i 8766 3.4719z z ==1=v i 10967 3.9417z z ==齿轮7,齿轮8:719z = 866z =781()852a m z z =+=齿轮9,齿轮10:917z =1067z =此时已知条件为'a =85mm ,910211()842()ni i a m z z X X ==+=-∑mm ''arccos(cos )21.78a aαα==总变位系数:'910()0.552tan z z x inv inv ααα∑+=-=根据x ∑值和1093.94 3.0z uz ==>,按选择变位系数线图左部斜线⑤分配变位系数,得90.45x =齿轮5,齿轮6:5=21z662z =此时已知'a =85mm ,561()832a m z z =+= ''arccos(cos )23.42a a αα==100.10x =总变位系数:'65() 1.082tan z z x inv inv ααα∑+=-=根据x ∑值和652.953z u z ==>,按选择变位系数线图左部斜线④分配变位系数,得 50.5x =60.58x =定轴圆柱齿轮齿数=d i 1214111326 1.5317z z z z ===齿轮11,齿轮12:角度变位正传动。

哈工大机械原理大作业直动从动件盘形凸轮机构满分完美版哈尔滨工业大学

哈工大机械原理大作业直动从动件盘形凸轮机构满分完美版哈尔滨工业大学
y(i)=(s0+s(i))*cosd(Phi(i))-e*sind(Phi(i));
end
%曲率半径
dx=diff(x);
dx(36001)=0;
dy=diff(y);
dy(36001)=0;
dydx=dy./dx;
ddy=diff(dydx);
ddy(36001)=0;
ddy=ddy./dx;
~7~
xlabel('凸轮转角φ/°');
ylabel('从动件加速度 a/(mm/s^2)');
title('加速度');
subplot(2,3,4);
plot(dsdPhi,s);
axis equal
axis([-30 50 -50 30]);
hold on
plot(x1,f1,'r');
hold on
axis equal
hold on
plot(x,y,'k')
legend('理论廓线',-1);
hold on
%轮廓图
%实际廓线
%理论廓线
~8~
哈尔滨工业大学
直动从动件盘型凸轮机构设计说明书
plot(x0,y0,':')
hold on
%基圆
plot(xe,ye,'k:')
%偏距圆
legend('实际廓线','理论廓线','基圆','偏距圆',-1);
subplot(2,3,1);
plot(Phi,s);
grid on
axis([0 360 0 27]);

哈工大机械原理连杆和凸轮大作业24题

哈工大机械原理连杆和凸轮大作业24题

班级学号机械原理大作业说明书题目 1、连杆机构运动分析2、凸轮机构设计学生姓名1连杆机构运动分析1.设计题目:一、先建立如下坐标系:二、划分杆组如下,进行结构分析:该机构由I级杆组RR(如图1)、II级杆组RPR(如图2、3)和II级杆组RRP(如图4)组成。

(1)(2)(3)(4)三、运动分析数学模型:(1)同一构件上点的运动分析:如右图所示的原动件1,已知杆1的角速度=10/rad s ω,杆长1l =170mm,A y =0,A x =110mm 。

可求得下图中B 点的位置B x 、B y ,速度xB v 、yB v ,加速度xB a 、yB a 。

θcos 1l xB =,θsin 1l yB =θωυsin 1l xB -=,θωυcos 1l yB =,222B2==-cos =-BxB i d x a l x dt ωϕω2222==-sin =-B yB i B d y a l y dtωϕω。

(2)RPRII 级杆组的运动分析:a. 如右图所示是由2个回转副和1个移动副组成的II 级组。

已知两个外运动副C 、B 的位置(B x 、B y 、c x =110mm 、C y =0)、速度(xB υ,yB υ,xC υ=0,yC υ=0)和加速度(0,0,,==yC xC yB xB a a a a )。

可确定下图中D 点的位置、速度和加速度。

确定构件3的角位移1ϕ、角速度1ω、角加速度1α。

1sin 31..ϕϕl x dt dx C B -= 1s i n 131c o s 13.....2ϕϕϕϕl l x dt x d C B --= 1cos 31..ϕϕl y dt dy C B += 1c o s 131s i n 13.....2ϕϕϕϕl l y dty d C B +-= 根据关系:1111d 122..11.αϕϕωϕϕ====dtd dt , 故可得出: D x =)1cos(4βϕ++l x CD y =)1sin(4βϕ++l y Cb. 如右图所示是由2个回转副和1个移动副组成的II级组。

哈工大机械原理大作业——齿轮——1号

哈工大机械原理大作业——齿轮——1号

Harbin Institute of Technology机械原理大作业3课程名称:机械原理设计题目:齿轮传动设计哈尔滨工业大学一、设计题目:如下图一个机械传动系统,运动运动由电动机1输入,经过机械传动系变速后由圆锥齿轮16输出三种不同转速。

选择一组传动系统的原始参数,据此设计该传动系统。

序号电机转速〔r/min〕输出轴转速〔r/min〕带传动最大传动比滑移齿轮传动定轴齿轮传动最大传动比模数圆柱齿轮圆锥齿轮一对齿轮最大传动比模数一对齿轮最大传动比模数7 1450 17 23 30 ≤2.8 ≤4.5 2 ≤4.5 3 ≤4 3二、传动比的分配计算:电动机转速n=1450r/min,输出转速n1=17r/min,n2=23 r/min,n3=30 r/min,带传动的最大传动比=2.8,滑移齿轮传动的最大传动比=4.5,圆柱齿轮传动的最大传动比=4.5,圆锥齿轮最大传动比=4。

根据传动系统的原始参数可知,传动系统的总传动比为:i1=1450/30=48.333i2=1450/23=63.043i3=1450/17=85.294传动系统的总传动比由带传动、滑移齿轮传动和定轴齿轮传动三局部实现。

设带传动的传动比为ipmax =2.8,滑移齿轮的传动比为iv1,iv2和iv3,令iv3=ivmax=4.5,那么定轴的传动比为if =85.294/(4.5*2.8)=6.769,从而iv1=48.333/〔6.769*2.8〕=2.550,iv2=3.326。

定轴齿轮每对的传动比为id==1.89。

三、滑移齿轮变速传动中每对齿轮的几何尺寸及重合度:经过计算、比拟,确定出三对滑移齿轮的齿数,其分别为:z5=17,z6=44,z 7=14,z8=47,z9=11,z10=50。

变位系数确实定:x5=x6=0; x7≥ha*(17-14)/17=0.176,取x7=0.18,x8=-0.18;x9≥ha*(17-11)/17=0.353,取x9=0.36;x10=-0.36。

哈工大机械原理大作业——凸轮——5号

哈工大机械原理大作业——凸轮——5号

Harbin Institute of Technology机械原理大作业二课程名称:机械原理设计题目:凸轮机构设计院系:机电工程学院班级:设计者:学号:指导教师:设计时间:凸轮机构设计一. 设计题目表1 凸轮机构原始参数二. 凸轮推杆升程、回程运动方程及推杆位移、速度、加速度线图1. 推杆升程运动方程(ϕ为转角)(203ϕπ≤≤) 令1/rad s ω= 位移:001212040[sin()]sin(3)2s h ϕπϕϕϕφπφππ=-=- 速度:1002120120[1cos()]cos(3)h v ωπϕϕφφππ=-=- 加速度:2120022360[sin()]sin(3)h a πωπϕϕφφπ==2. 推杆回程运动方程(ϕ为转角)7563πϕπ≤≤ 位移:''00128001604014[1sin()]sin(4)]233T s h T πϕϕπφπφππ=-+=-+- 速度:1''00216016014[1cos()]cos(4)]3h v T ωπϕϕπφφππ=--=-+- 加速度:21'2'002264014sin()sin(4)]3h a T πωπϕπφφπ=-=-- 式中:027()()326s T πππϕϕϕϕϕ=-+=-+=-由MATLAB编程得到线位移图像:线速度图像:线加速度图像:三.绘制机构的ds sdϕ-线图由dsds vdtdd wtϕϕ==可知线图即vsw-线图,由MATLAB编程后得图四.确定基圆半径和偏距1.画切线图如上页图,得其切线图2.求基圆半径和偏距从图中读取e=50mmr0=111.80mm五.画理论及实际轮廓附:MATLAB编程1.推杆位移线图代码%升程阶段t=0:0.001:2*pi/3;s=120.*t./pi-40./pi.*sin(3.*t);hold onplot(t,s);%远休止阶段t=2*pi/3:0.001:7*pi/6;s=80;hold onplot(t,s);%回程阶段t=7*pi/6:0.001:5*pi/3;s=800/3-160.*t./pi+40./pi.*sin(4.*t-14*pi/3) hold onplot(t,s);%近休止阶段t=5*pi/3:0.001:2*pi;s=0;hold onplot(t,s);grid onhold off2.推杆速度线图代码%升程阶段t=0:0.001:2*pi/3;v=120/pi-120/pi*cos(3.*t);hold onplot(t,s);%远休止阶段t=2*pi/3:0.001:7*pi/6;v=0;hold onplot(t,s);%回程阶段t=7*pi/6:0.001:5*pi/3;v=-160/pi+160/pi*cos(4.*t-14/3*pi) hold onplot(t,s);%近休止阶段t=5*pi/3:0.001:2*pi;v=0;hold onplot(t,s);grid onhold off3.推杆加速度线图代码%升程阶段t=0:0.001:2*pi/3;a=360/pi.*sin(3.*t)hold onplot(t,a);%远休止阶段t=2*pi/3:0.001:7*pi/6;a=0;hold onplot(t,a);%回程阶段t=7*pi/6:0.001:5*pi/3;a=-640/pi.*sin(4.*t-14/3*pi) hold onplot(t,a);%近休止阶段t=5*pi/3:0.001:2*pi;a=0;hold onplot(t,a);grid onhold off4.dssdϕ-线图代码%升程阶段t=0:0.001:2*pi/3;s=120.*t./pi-40./pi.*sin(3.*t);v=120/pi-120/pi*cos(3.*t);hold onplot(v,s);%远休止阶段t=2*pi/3:0.001:7*pi/6;s=80;v=0;hold onplot(v,s);%回程阶段t=7*pi/6:0.001:5*pi/3;s=800/3-160.*t./pi+40./pi.*sin(4.*t-14*pi/3);v=-160/pi+160/pi*cos(4.*t-14/3*pi)hold onplot(v,s);5.最终轮廓线图代码h=80;w=1;e=50;rr=20;s0=100;m=120*pi/180;ms=(120+90)*pi/180;m1=(120+90+90)*pi/180; for i=1:1:120mm(i)=i*pi/180.0;s1=h.*( mm(i)./m -(1/(2*pi)).*sin(2.*pi.*mm(i)./m));v1=(w*h./m)*(1-cos(2*pi*mm(i)/m));x(i)=(s0+s1)*sin(mm(i))+e*cos(mm(i));y(i)=(s0+s1)*cos(mm(i))-e*sin(mm(i));a(i)=(s0+s1)*cos(mm(i))-e*sin(mm(i))+v1/w*sin(mm(i)); b(i)=-(s0+s1)*sin(mm(i))-e*cos(mm(i))+v1/w*cos(mm(i));xx(i)=x(i)+rr*b(i)/sqrt(a(i)*a(i)+b(i)*b(i));yy(i)=y(i)-rr*a(i)/sqrt(a(i)*a(i)+b(i)*b(i));endfor i=121:1:210mm(i)=i*pi/180;s2=h;v2=0;x(i)=(s0+s2)*sin(mm(i))+e*cos(mm(i));y(i)=(s0+s2)*cos(mm(i))-e*sin(mm(i));a(i)=(s0+s2)*cos(mm(i))-e*sin(mm(i))+v2/w*sin(mm(i));b(i)=-(s0+s2)*sin(mm(i))-e*cos(mm(i))+v2/w*cos(mm(i));xx(i)=x(i)+rr*b(i)/sqrt(a(i)*a(i)+b(i)*b(i));yy(i)=y(i)-rr*a(i)/sqrt(a(i)*a(i)+b(i)*b(i));endfor i=211:1:300mm(i)=i*pi/180;s3=800/3-160/pi.*mm(i)+40/pi.*sin(4.*mm(i)-14/3*pi);v3=-160/pi+160/pi.*cos(4*mm(i)-14/3*pi)x(i)=(s0+s3)*sin(mm(i))+e*cos(mm(i));y(i)=(s0+s3)*cos(mm(i))-e*sin(mm(i));a(i)=(s0+s3)*cos(mm(i))-e*sin(mm(i))+v3/w*sin(mm(i));b(i)=-(s0+s3)*sin(mm(i))-e*cos(mm(i))+v3/w*cos(mm(i));xx(i)=x(i)+rr*b(i)/sqrt(a(i)*a(i)+b(i)*b(i));yy(i)=y(i)-rr*a(i)/sqrt(a(i)*a(i)+b(i)*b(i));endfor i=301:1:360mm(i)=i*pi/180;x(i)=(s0+0)*sin(mm(i))+e*cos(mm(i));y(i)=(s0+0)*cos(mm(i))-e*sin(mm(i));a(i)=(s0+0)*cos(mm(i))-e*sin(mm(i))+v3/w*sin(mm(i));b(i)=-(s0+0)*sin(mm(i))-e*cos(mm(i))+v3/w*cos(mm(i));xx(i)=x(i)+rr*b(i)/sqrt(a(i)*a(i)+b(i)*b(i));yy(i)=y(i)-rr*a(i)/sqrt(a(i)*a(i)+b(i)*b(i));endplot(x,y,'r',xx,yy,'g')text(0,20,'实际轮廓线')text(120,100,'理论轮廓线')hold on。

哈工大机械原理大作业连杆机构9

哈工大机械原理大作业连杆机构9

机械原理大作业大作业一:连杆机构运动分析学生姓名:学号:指导教师:丁刚完成时间:机电工程学院机械设计系制二〇一八年四月连杆机构运动分析1题目(9)图1 设计题目在图1所示的机构中,已知l AB=60mm,l BC=180mm,l DE=200mm,l CD=120mm,l EF=300mm,h=80mm,h1=85mm,h2=225mm,构件1以等角速度ω1=100rad/s 转动。

求在一个运动循环中,滑块5的位移、速度和加速度曲线。

2分析结构1、杆1为RR主动件,绕A以ω1 转动,自由度1.2、4杆和滑块5为RRP II级杆组.,自由度0.3、2,3杆组成II级杆组RRR,自由度0.总共自由度为F=5*3-2*7=1 .由上述的杆组类型,确认出所需运动分析数学模型:同一构件上的点、RRP、RRR。

3.杆组法对平面连杆机构进行运动分析3.1对主动件杆1 RR I级构件的分析主动杆1转角:φ= [0°,360°) δ=0°,则φ’=ω1=100 rad/s角加速度φ’’=0.已知h2=225mm, h=80mm, l AB=60mm 所以A(225mm,80mm)A点速度(0,0),加速度(0,0)B点位置(x A+l AB*cos(φ), Y A+l AB*sin(φ))B点速度(-l AB*sin(φ), l AB*cos(φ)),加速度(-l AB*cos(φ), -l AB*sin(φ))3.2RRRII 级杆组分析(模型参考教材P37-38)图3 如图所示两个构件组成II 级杆组。

已知了B 的位置(x B ,y B )= (x A +l AB *cos(φ), Y A +l AB *sin(φ)),速度(x ’B ,y ’B ) 和加速度(x ’’B ,y ’’B ), 已知运动副D (0,0), 还可知,x ’D =y ’D =0, x ’’D =y ’’D =0. l BC =180 mm, l CD = 120mm所以,x c =x D +l CD *cos(φi)= x B +l BC *cos(φj) y c =x D +l CD *sin(φi)= x B +l BC *sin(φi) 对于φ的求解: A 0=2*l CD (x B -x D ) B 0=2*l BC (y B -y D ) C 0=l CD 2+ l BD 2- l BC 2为了保证机构的装配正常:l BD ≤l CD + l BC AND l BD ≥Abs (l CD - l BC )可求3杆的转角φi=2*arctan((B 0±sqrt (A 02 + B 02- C 02))/(A 02+ C 02)),角速度w3=φi ’和角加速度α3= φi ’’3.3 同一构件上的点(模型参考书P35-36)Φiφjφi已知D(0,0),速度(0,0),加速度(0,0),3杆转角φi 角速度φi’角加速度φi’’,Φi和它的导数在3.2都有体现LDE= 200mm可求出E的坐标,速度,加速度.x E =x c+lCE*cos(φi)y E =x C+lCE*sin(φi)同样地,速度、加速度通过求导即可得出算式,可以编出程序。

哈工大机械原理大作业一连杆-15题

哈工大机械原理大作业一连杆-15题

Harbin Institute of Technology机械原理大作业一课程名称:机械原理设计题目:连杆传动设计院系:船舶与海洋工程学院班级:1513102班分析者:刘康哲学号:*********指导教师:***设计时间:2017.06.051.题目:如图所示机构,已知机构各构件的的尺寸为l AB=100mm,l BD=400mm,l AE=400mm,l BC=200mm,曲柄AB的角速度为w1=10rad/s,试求构件2上点D的轨迹,构件5的角位移、角速度和角加速度,并对结果进行分析。

(题中构件尺寸满足l BD-l AB<l AE<l BD+l AB)。

2.机构的结构分析及基本杆组划分机构各构件都在同一平面内运动,可拆分成一个原动件(构件1),一个RRPⅡ级基本杆组(构件2、3)和一个RPR Ⅱ级基本杆组(构件4、5)。

活动构件数n=5,P L,P H,因此,机构的自由度为F=3*n-2* P L- P H =3*5-2*7=1原动件:RRPⅡ级基本杆组:RPR Ⅱ级基本杆组:3.坐标系的建立以A点为坐标原点,AE方向为x轴正方向,建立平面直角坐标系。

4.各基本杆组的运动分析数学模型(1)原动件:位置分析: X B = X A + L AB * cos(wt) Y B = Y A + L AB * sin(wt) 其中,X A = Y A = 0 ,w = 10rad/s , L AB = 100 mm 速度分析:将上式分别对时间求导,可得速度方程,V XB = V XA – w*L AB *sin(wt)V YB = V YA + w*L AB *cos(wt)其中,V XA = V YA = 0 加速度分析:将上式分别对时间求导,可得速度方程,a XA = a XA – α* L AB * sin(wt) – w*w*L AB *cos(wt)a YA = a YA + α* L AB * cos(wt) – w*w*L AB *sin(wt)其中,a XA = a YA = 0 α= dw/dt(2)RRP Ⅱ级基本杆组:位置分析: X C = LAB*cos(wt)+wt Lab Lbc 222sin *Y C = 0 可求得,β= arcsin (Y B / L BC ) 速度分析:将上式分别对时间求导,可得速度方程,V XC =-w* LAB*cos(wt) – (wt Lab Lbc 222sin * )-1/2 * sin(wt)*wV YC = 0加速度分析:将上式分别对时间求导,可得加速度方程, (3)RPR Ⅱ级基本杆组位置分析: X D = X C + L CD * cos βY D = - L CD * sin β可求得, θ = arctan (-YD / (LAE -XD) ) 速度分析:将上式分别对时间求导,可得速度方程,5.计算编程在MATLAB 中编写如下程序:function [ XD,YD,Q,Q1,Q2] = calculate(t) %UNTITLED4 Summary of this function goes here % Detailed explanation goes here Lab=100; Lbc=200; Lcd=200; Lae=400; w=10;XB=Lab*cos(w.*t); YB=Lab*sin(w.*t); P=asin(YB./Lbc); XC=sqrt(Lbc.^2-YB.^2)+XB; XD=Lcd.*cos(P)+XC; YD=-Lcd.*sin(P); Q=atan(YD./(Lae-XD)); Q1=diff(Q); Q2=diff(Q1); end5.计算结果t 时间 XD D 点横坐标YD D 点纵坐标Q构件5角度Q1 构件5角速度 Q2构件5角加速度5000.10050.003008D点运动轨迹:构件5的角位移线图:构件5的角速度图:构件5的角加速度线图:6.计算结果分析原动件1可做整周回转,同时构件5也可做整周运动。

哈工大机械原理大作业连杆

哈工大机械原理大作业连杆

哈工大机械原理大作业连杆Modified by JACK on the afternoon of December 26, 2020Harbin Institute of Technology机械原理大作业一课程名称:机械原理设计题目:连杆机构运动分析院系:机电工程学院班级:设计者:学号:指导教师:设计时间:1.运动分析题目(11)在图所示的六杆机构中,已知:AB l =150mm, AC l =550mm, BD l =80mm, DE l =500mm,曲柄以等角速度1w =10rad/s 沿逆时针方向回转,求构件3的角速度、角加速度和构件5的位移、速度、加速度。

2.机构的结构分析建立以点A 为原点的固定平面直角坐标系A-x, y,如下图:机构结构分析该机构由Ⅰ级杆组RR (原动件1)、Ⅱ级杆组RPR (杆2及滑块3)和Ⅱ级杆组RRP (杆4及滑块5)组成。

3.建立组成机构的各基本杆组的运动分析数学模型原动件1(Ⅰ级杆组RR )由图所示,原动件杆1的转角a=0-360°,角速度1w =10rad/s ,角加速度1a =0,运动副A 的位置坐标A x =A y =0,速度(A ,A),加速度(A ,A ),原动件1的长度AB l =150mm 。

求出运动副B 的位置坐标(B x , B y )、速度(B ,B )和加速度(B ,B )。

杆2、滑块3杆组(RPR Ⅱ级杆组)已出运动副B 的位置(B x , B y )、速度(B ,B )和加速度(B ,B ),已知运动副C 的位置坐标C x =0, C y =550mm,速度,加速度,杆长AC l =550mm 。

求出构件2的转角b,角速度2w 和角加速度2a . 构件二上点D 的运动已知运动副B 的位置(B x , B y )、速度(B ,B )、加速度(B ,B ),已经求出构件2的转角b ,角速度2w 和角加速度2a ,杆BD 的长度BD l =80mm 。

哈工大机械原理大作业-凸轮结构设计 -05

哈工大机械原理大作业-凸轮结构设计 -05

机械原理大作业二课程名称:机械原理设计题目:凸轮机构设计院系:机电工程学院班级:完成者:学号:指导教师:设计时间:设计说明书1 设计题目:如图所示直动从动件盘形凸轮机构,其原始参数见表2-1。

从表2-1中选择一组凸轮机构的原始参数,据此设计该凸轮机构。

注: 5题参数有误,我将远休止角改为45 ,将近休止角改为105 .2、推杆升程、回程运动方程及位移、速度、加速度线图:2.1凸轮运动分析: 推程运动方程; 01cos 2h s πϕ⎡⎤⎛⎫=-⎢⎥ ⎪Φ⎝⎭⎣⎦100sin 2h v πωπϕ⎛⎫=⎪ΦΦ⎝⎭序号 升程 (mm ) 升程运 动角( ) 升程运 动规律 升程 许用压力角 () 回程运动角 () 回程运 动规律 回程许用 压力角 ( ) 远休 止角 ( ) 近休 止角 ( ) 5(改)60120余弦加速度3590等速6545105ω221200cos 2h a πωπϕ⎛⎫=⎪ΦΦ⎝⎭回程运动方程: ()0'01s s h ϕ-Φ+Φ⎡⎤=-⎢⎥Φ⎣⎦1'0h v ω=-Φ 0a =2.2求位移、速度、加速度线图MATLAB 源程序: pi=3.1415926; c=pi/180; h=60; f0=120; fs=45; f01=90; fs1=105;f=0:1:360; %升程阶段 for n=0:f0s(n+1)=h/2*(1-cos(pi/f0*f(n+1)));v(n+1)=pi*h/(2*f0*c)*sin(pi/f0*f(n+1));a(n+1)=pi^2*h/(2*f0^2*c^2)*cos(pi/f0*f(n+1)); end%远休止阶段 for n=f0:f0+fs s(n+1)=60; v(n+1)=0; a(n+1)=0; endfor n=f0+fs:f0+fs+f01 %回程阶段 s(n+1)=h*(1-(f(n+1)-(f0+fs))/f01); v(n+1)=-h/(f01*c); a(n+1)=0; end;for n=f0+fs+f01:360; %近休止阶段 s(n+1)=0; v(n+1)=0; a(n+1)=0; endfigure(1);plot(f,s,'r');xlabel('\phi/\circ');ylabel('s/mm');grid on;title('推杆位移线图')figure(2);plot(f,v,'r');xlabel('\phi/\circ');ylabel('v/\ommiga');grid on;title('推杆速度线图')figure(3);plot(f,a,'r');xlabel('\phi/\circ');ylabel('a/\ommiga');grid on;title('推杆加速度线图')2.3位移、速度、加速度线图:3 凸轮机构的dss d ϕ-线图,确定基圆半径和偏心距: 3.1理论分析:机构压力角α应按下式计算: 0-tan =+ds d es sϕα作出-ds d s ϕ曲线,因凸轮机构压力角0-tan =+ds d e s sϕα,式中,2200=-s r e ,右侧为升程,作与s 轴夹角等于升程许用压力角35的切界线D d t t ,则在直线上或其右下方取凸轮轴心时,可使[]0-=arctan+ds d es sϕαα≤,同理左侧回程,作与s 轴夹角等于回程许用压力角65的切界线D 'd 't t ,则在直线上或其左下方取凸轮轴心时,使[]0-=arctan+ds d es sϕαα≤。

哈工大机械原理大作业-连杆

哈工大机械原理大作业-连杆

Harbin Institute of Technology机械原理大作业一课程名称:机械原理设计题目:连杆运动分析院系:机电工程学院班级:设计者:学号:指导教师:明设计时间: 2013年6月25日1、运动分析题目在图1-10中所示的干草压缩机中,已知LAB=150mm,LBC=600mm,LCE=120mm,LCD=500mm,LEF=600mm,XD=400mm,YD=500mm,YF=600mm,曲柄1作等速转动,其转速n1=50r/min。

求在一个运动循环中活塞5的位移、速度和加速度的变化曲线。

图1-102、机构的结构分析(1)基本杆组的划分①AB即杆件1为原动件②DECB即杆件2、3为RRR型II级杆组,其中CE为同一构件上点。

③ EF 和滑块即4、5为RRP 型II 级杆组(2)、建立以点A 为原点的固定平面直角系3、确定已知参数和求解流程(1)原动件1(I 级杆组RR )如图所示,已知原动件1的转角πϕ2~01=原动件杆1的角速度s rad /236.51=ω原动件1的角加速度01=α运动副A 的位置坐标0,0==A A y x运动副A 的速度0,0==yA xA v v运动副A 的加速度0,0==yA xA a a原动件杆I 的长度mm l 1501=可求出B 的位置B 的速度B 的加速度(2)构件2、3(II 级杆组RRR )D 的位置500400==D D y xD 的速度 00==yD xD v vD 的加速度00==yD xD a a杆长mm l l CD j 500==,mm l l BC i 600==由关系j j D i i B C l x l x x ϕϕcos cos +=+=j j D i i B C l y l y y ϕϕsin sin +=+=其中)(20sin cos B D i i i x x l A C B A -==-+ ϕϕ)(2B D i y y l B -=222j BD i l l l C -+=222)()(B D B D BD y y X x l -+-=可解得C A C B A B i +-++=222arctan 2ϕ DC D C j x x y y --=arctan ϕ 由上面两个式子可以得到两杆的角速度 1)()(G y y s x x c w B D j B D j i i -+-==•ϕ132G s G c G ij i i +==ϕα其中i j j i s c s c G -=1,i i i l c ϕcos =,i i i l s ϕsin =,j j j l c ϕcos =,j j j l s ϕsin =可得E 的位置iB E iB E y y x x ϕϕsin 480cos 480+=+=E 的速度 i i yB E yE i i xB E xE v yv v x v ωϕωϕcos 480sin 480+==-==E 的加速度i i i i xB E xE a xa αϕωϕsin 480cos 4802--== i i i i yB E yE a ya ϕαϕωcos 480sin 4802+-== (3)、构件4、5杆组(II 级杆组RRP )在建立的坐标系中取一参考点K 600,0==K K y x则速度0,0==yK xK v v加速度0,0==yK xK a a杆长mm l EF 600=,设F 位移为s由s x l x x K i EF E F +=+='cos ϕ K i EF E F y l y y =+='sin ϕ由上面两个式子可以得到 600600arcsin arcsin'E EF E k i y l y y -=-=ϕ所以:F 点位移 )600600arcsin(cos 600E E F y x x s -+== 速度F F xv = 加速度F F xa =四、编程计算并输出结果(VB 编程)主程序:Private Sub Command1_Click()Dim s5(3600) As DoubleDim v5(3600) As DoubleDim a5(3600) As DoubleDim pi As DoubleDim pa As Doublepi = 3.1415926pa = pi / 180Dim i As LongDim f1(3600) As Double Dim RR1 As RRDim RR2 As RRDim RRR1 As RRRDim RRP1 As RRPSet RR1 = New RRSet RR2 = New RRSet RRR1 = New RRRSet RRP1 = New RRPFor i = 0 To 3600 Step 1 f1(i) = i * pa / 10RR1.delt = 0RR1.f = f1(i)RR1.w = 5.24RR1.e = 0RR1.L = 150RR1.xA = 0RR1.yA = 0RR1.vxA = 0RR1.vyA = 0RR1.axA = 0RR1.ayA = 0RR1.calRRR1.Li = 600RRR1.Lj = 500RRR1.xB = RR1.xBRRR1.yB = RR1.yBRRR1.vxB = RR1.vxBRRR1.vyB = RR1.vyBRRR1.axB = RR1.axBRRR1.ayB = RR1.ayBRRR1.xD = 400RRR1.yD = 500RRR1.vxD = 0RRR1.vyD = 0RRR1.axD = 0RRR1.ayD = 0RRR1.M = 1RRR1.calRRRRR2.delt = 0RR2.f = RRR1.fi RR2.w = RRR1.wi RR2.e = RRR1.ei RR2.L = 480RR2.xA = RR1.xB RR2.yA = RR1.yB RR2.vxA = RR1.vxB RR2.vyA = RR1.vyB RR2.axA = RR1.axB RR2.ayA = RR1.ayB RR2.calRRP1.Li = 600RRP1.Lj = 0RRP1.fj = piRRP1.wj = 0RRP1.ej = 0RRP1.xB = RR2.xB RRP1.yB = RR2.yB RRP1.vxB = RR2.vxB RRP1.vyB = RR2.vyB RRP1.axB = RR2.axB RRP1.ayB = RR2.ayB RRP1.xK = 0RRP1.yK = 600RRP1.vxK = 0RRP1.vyK = 0RRP1.axK = 0RRP1.ayK = 0RRP1.M = 1RRP1.cals5(i) = RRP1.ssv5(i) = RRP1.vssa5(i) = RRP1.assNext iPicture1.Scale (-30, 700)-(360, 580)Picture1.Line (0, 0)-(360, 0) 'XPicture1.Line (0, 580)-(0, 700) 'YFor i = 0 To 360 Step 10 'X轴坐标Picture1.DrawStyle = 2Picture1.Line (i, 700)-(i, 580)Picture1.CurrentX = i - 10: Picture1.CurrentY = 0 Picture1.Print iNext iFor i = 580 To 700 Step 10 'Y轴坐标Picture1.DrawStyle = 2Picture1.Line (0, i)-(360, i)Picture1.CurrentX = -10: Picture1.CurrentY = iPicture1.Print iNext iFor i = 0 To 3600 Step 1Picture1.PSet (i / 10, s5(i))Next iEnd SubRR:Public L As DoublePublic f As DoublePublic delt As DoublePublic w As DoublePublic e As DoublePublic xA As DoublePublic yA As DoublePublic vxA As DoublePublic vyA As DoublePublic axA As DoublePublic ayA As DoublePublic xB As DoublePublic yB As DoublePublic vxB As DoublePublic vyB As DoublePublic axB As DoublePublic ayB As DoublePublic Sub cal()xB = xA + L * Cos(f + delt)yB = yA + L * Sin(f + delt)vxB = vxA - w * L * Sin(f + delt)vyB = vyA + w * L * Cos(f + delt)axB = axA - w ^ 2 * L * Cos(f + delt) - e * L * Sin(f + delt) ayB = ayA - w ^ 2 * L * Sin(f + delt) + e * L * Cos(f + delt) End SubRRR:Public Li As DoublePublic Lj As DoublePublic fi As DoublePublic fj As DoublePublic wi As DoublePublic wj As DoublePublic ei As DoublePublic ej As DoublePublic xB As DoublePublic yB As DoublePublic vxB As DoublePublic vyB As DoublePublic axB As DoublePublic ayB As DoublePublic xC As DoublePublic yC As DoublePublic vxC As DoublePublic vyC As DoublePublic axC As DoublePublic ayC As DoublePublic xD As DoublePublic yD As DoublePublic vxD As DoublePublic vyD As DoublePublic axD As DoublePublic ayD As DoublePublic M As DoublePublic Sub calRRR()Dim fDB As DoubleDim Ci As DoubleDim Cj As DoubleDim Si As DoubleDim Sj As DoubleDim G1 As DoubleDim G2 As DoubleDim G3 As DoubleDim LBD As DoubleDim JCBD As DoubleDim val As Doublepi = 3.1415926LBD = Sqr((xB - xD) ^ 2 + (yD - yB) ^ 2)If LBD < Li + Lj And LBD > Abs(Li - Lj) Thenval = (Li ^ 2 + LBD ^ 2 - Lj ^ 2) / (2 * Li * LBD) JCBD = Atn(-val / Sqr(-val * val + 1)) + 2 * Atn(1) End IfRRP:Public Li As DoublePublic Lj As DoublePublic fi As DoublePublic fj As DoublePublic wi As DoublePublic wj As DoublePublic ei As DoublePublic ej As DoublePublic xB As DoublePublic yB As DoublePublic vxB As DoublePublic vyB As DoublePublic axB As DoublePublic ayB As DoublePublic xK As DoublePublic yK As DoublePublic vxK As DoublePublic vyK As DoublePublic axK As DoublePublic ayK As DoublePublic xC As DoublePublic yC As DoublePublic vxC As DoublePublic vyC As DoublePublic axC As DoublePublic ayC As DoublePublic xD As DoublePublic yD As DoublePublic vxD As DoublePublic vyD As DoublePublic axD As DoublePublic ayD As DoublePublic M As SinglePublic ss As DoublePublic vss As DoublePublic ass As DoublePublic Sub cal()Dim A0 As DoubleDim Q1 As DoubleDim Q2 As DoubleDim Q3 As DoubleDim Q4 As DoubleDim Q5 As DoubleDim val As DoubleDim pi As Doublepi = 3.14159216A0 = Lj + ((yK - yB) * Cos(fj) - (xK - xB) * Sin(fj)) val = A0 / Lifi = M * Atn(val / Sqr(-val * val + 1)) + fjxC = xB + Li * Cos(fi)yC = yB + Li * Sin(fi)ss = (xC - xK) * Cos(fj) + (yC - yK) * Sin(fj)xD = xK + ss * Cos(fj)yD = yK + ss * Sin(fj)Q1 = vxK - vxB - wj * (ss * Sin(fj) + Lj * Cos(fj))Q2 = vyK - vyB + wj * (ss * Cos(fj) - Lj * Sin(fj))Q3 = Li * Sin(fi) * Sin(fj) + Li * Cos(fi) * Cos(fj) wi = (-Q1 * Sin(fj) + Q2 * Cos(fj)) / Q3vss = -(Q1 * Li * Cos(fi) + Q2 * Li * Sin(fi)) / Q3vxC = vxB - wi * Li * Sin(fi)vyC = vyB + wi * Li * Cos(fi)vxD = vxK + vss * Cos(fj) - ss * wj * Sin(fj)vyD = vyK + vss * Sin(fj) + ss * wj * Cos(fj)Q4 = axK - axB + wi ^ 2 * Li * Cos(fi) - ej * (ss * Sin(fj) + Lj * Cos(fj)) - wj ^ 2 * (ss * Cos(fj) - Lj * Sin(fj)) - 2 * vss * wj * Sin(fj)Q5 = ayK - ayB + wi ^ 2 * Li * Sin(fi) + ej * (ss * Cos(fj) - Lj * Sin(fj)) - wj ^ 2 * (ss * Sin(fj) + Lj * Cos(fj)) + 2 * vss * wj * Cos(fj)ei = (-Q4 * Sin(fj) + Q5 * Cos(fj)) / Q3ass = (-Q4 * Li * Cos(fi) - Q5 * Li * Sin(fi)) / Q3axC = axB - ei * Li * Sin(fi) - wi ^ 2 * Li * Cos(fi)ayC = ayB + ei * Li * Cos(fi) - wi ^ 2 * Li * Sin(fi)axD = axK + ass * Cos(fj) - ss * ej * Sin(fj) - ss * wj ^ 2 * Cos(fj) - 2 * vss * wj * Sin(fj) ayD = ayK + ass * Sin(fj) + ss * ej * Cos(fj) - ss * wj ^ 2 * Sin(fj) + 2 * vss * wj * Cos(fj) End Sub五、计算结果数据如图:位移曲线:速度曲线:加速度曲线:六、计算结果分析主动件转角为0时,滑块的位移为628mm,随着转角的匀速增加,滑块位移先上升,速度为负快速下降,加速度为负且开始值较小并逐渐下降,到达最低点-2200左右,此时速度为0, 然后位移开始继续下降,速度继续下降,然后到达最小值-100左右,此时加速度为0,又开始上升(向左运动),速度正向增大,在后面一段时期速度继续增大,加速度也正向增大,然后速度下降,加速度下降.滑块分别在4.2s,11.4s速度达到正向最大,1.7s,7.7s速度达到负向最大,0.8s,2.7s,5.8s,9.6s加速度达到极值,滑块就是这样周期性的左右运动。

02-哈工大机械原理大作业任务书-凸轮机构

02-哈工大机械原理大作业任务书-凸轮机构

大作业2 凸轮机构设计
1.设计题目
如图2-1所示直动从动件盘形凸轮机构,其原始参数见表2-1。

从表2-1中选择一组凸轮机构的原始参数,据此设计该凸轮机构。

表2-1 凸轮机构原始参数
2.凸轮机构的设计要求
(1)确定凸轮推杆升程、回程运动方程,并绘制推杆位移、速度、加速度线图;
(2)绘制凸轮机构的s s -ϕ
d d 线图; (3)确定凸轮基圆半径和偏距;
(4)确定滚子半径;
图2-1
(5)绘制凸轮轮廓曲线。

3.要求提交的设计文件
(1)机构运动简图1张,凸轮轮廓图1张(标注凸轮的各部分参数),A3图纸;
(2)设计说明书1份,A4幅面。

4.设计说明书内容要求
设计说明书的封面按机械原理课程网站提供的格式制作。

设计说明书包含以下内容:
(1)设计题目,包括机构运动简图和凸轮机构的原始参数;
(2)凸轮推杆升程、回程运动方程及推杆位移、速度、加速度线图;
(3)凸轮机构的s s -ϕ
d d 线图,并依次确定凸轮的基圆半径和偏距; (4)滚子半径的确定及凸轮理论廓线和实际廓线的绘制。

5.凸轮机构的设计流程
(1)计算推杆的位移、速度和加速度线图;
(2)绘制凸轮机构的s s -ϕ
d d 线图; (3)确定凸轮的基圆半径和偏距;
(4)绘制凸轮理论廓线;
(5)确定滚子半径并绘制凸轮实际廓线。

哈工大机械原理大作业1

哈工大机械原理大作业1
11.440890
420.636249
198
-25.780027
-7.408008
448.711622
19
17.496096
11.511568
389.280068
199
-27.066134
-7.329197
454.399338
20
19.511173
11.576658
356.588380
200
-28.338399
-6.837081
484.309157
26
31.792111
11.837106
133.586249
206
-35.672384
-6.752179
488.602299
27
33.860111
11.856813
92.240035
207
-36.843419
-6.666544
492.701606
28
35.930920
(4)利用导数的定义与其物理意义
利用上述公式,选取适当的步长h,利用F点位移就可以得出速度与加速度
5、用VC编程
#include <stdio.h>
#include <math.h>
#define pi 3.14159265358979323846
//定义全局变量
double Lab,Lbc,Lcd,Xf,Xd,Yd;//定义已知位置量
11.079883
-670.906136
223
-53.471235
-5.223053
533.839546
44
68.312705
10.958430

哈工大机械原理大作业(连杆机构)

哈工大机械原理大作业(连杆机构)
三、建立数学模型
建立坐标系:以C为原点,水平方向为X轴,CA所在直线为Y轴建立直角坐标系(如图4)。
取曲柄1水平且位于A点右侧为初始时刻,设曲柄1角速度为w,由题意知w= =8.5π rad/s………………(1)
设曲柄1转角为θ,则B点坐标:
xB=ιABcosθ=ιABcoswt
yB=H1+ιABsinθ=H1+ιABsinwt………………(2)
form=1:length(t)-1
ddxF(m)=(dxF(m+1)-dxF(m))/0.0001;
end
ddxF(length(t))=ddxF(length(t)-1);
figure
plot(t,ddxF)
title('¼ÓËÙ¶ÈͼÏñ');
xlabel('t /s'),ylabel('v /(m/s^2)');
输出图像:
xE(m)=yE(m)/k(m);
xF(m)=xE(m)-(-H^2+lEF^2-yE(m)^2+2*yE(m)*H)^(1/2)+0.1142;
end
form=1:length(t)-1
dxF(m)=(xF(m+1)-xF(m))/0.0001;
end
dxF(length(t))=dxF(length(t)-1);
∵ιEF+ιCE>H且ιCE<H
∴E点始终在F点的右下方
∴xF<xE,所以x2舍去,只取xF=x1……………(8)
∴点F坐标为(xF,H)
当t=0时,可得F点初始位置坐标,不妨设为(xo,H)。
则F点位移(通过计算,t=0时,得xo=-0.1142)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
aby=aay-l1*w1.^2.*sin(r*f1);
% RRR2级杆组运动分析
%输入D点参数
l2=428;
l3=214;
Xd=455;
Yd=0;
Vdx=0;
Vdy=0;
adx=0;
ady=0;
%计算E点、2杆、3杆运动参数
lbe=840;
lce=486;
a0=2*l2*(Xd-Xb);
b0=2*l2*(Yd-Yb);
aex=abx-lbe*(e2.*sin(f2-w)+w2.^2.*cos(f2-w));
aey=aby+lbe*(e2.*cos(f2-w)-w2.^2.*sin(f2-w));
%计算杆5运动参数
Xf=;
Yf=;
l5=sqrt((Xe-Xf).^2+(Ye-Yf).^2);
dX=Xe-Xf;
dY=Ye-Yf;
Warning: Unable to interpret TeX string "Xe/\mm"
5、计算结果
图一:E点的运动轨迹
图二:5杆角位移
图三:5杆角速度
图四:5杆角加速度
6、计算结果分析
由E点位置图像可看出,构件4做周期往复运动,由图二、三、四可看出,构件5的角位移、角速度、角加速度均成周期性变化。构件5的角位移曲线为类正弦曲线,从与之对应的角速度曲线中可看出5杆做往复摆动运动,推程时速度较快,回程时速度较慢。
3)加速度方程
两杆角加速度为
式中,
点E加速度方程为
RPRⅡ级杆组的运动分析
(1)位移方程
(2)速度方程
其中
(3)加速度方程
4、 计算编程
利用MATLAB软件进行编程,程序如下:
%点B和AB杆运动状态分析
>>r=pi/180;
w1=10;
e1=0;
l1=100;
Xa=0;
Ya=0;
Vax=0;
Vay=0;
f3(n)=pi+atan(dY(n)/dX(n));
elseif dX(n)==0&dY(n)<0
f3(n)=*pi;
elseif dX(n)>0&dY(n)<0
f3(n)=2*pi+atan(dY(n)/dX(n));
end
end
C2=l2*cos(f2);
C3=l3*cos(f3);
S2=l2*sin(f2);
figure(3);plot(f1,w5,'k');xlabel('f/\circ');ylabel('w5/rad/s');grid on;title('5杆角速度');
figure(4);plot(f1,a5,'k');xlabel('f/\circ');ylabel('a5/rad/s2');grid on;title('5杆角加速度');
Harbin Institute of Technology
机械原理大作业一
课程名称:机械原理
设计题目:连杆机构运动分析
院系:机电学院
班级:1208105
分析者:殷琪
学号:
指导教师:丁刚
设计时间:
哈尔滨工业大学
设计说明书
1 、题目
如图所示机构,一只机构各构件的尺寸为AB=100mm,BC=,CE=,BE=,CD=,AD=,AF=7AB,DF=,∠BCE=139?。构件1的角速度为ω1=10rad/s,试求构件2上点E的轨迹及构件5的角位移、角速度和角加速度,并对计算结果进行分析。
aax=0;
aay=0;
f1=0:1: 360;
% B点位置
Xb=Xa+l1*cos(r*f1);
Yb=Ya+l1*sin(r*f1);
% B点速度
Vbx=Vax-w1*l1*sin(r*f1);
Vby=Vay+w1*l1*cos(r*f1);
% B点加速度
abx=aax-l1*w1.^2.*cos(r*f1);
for n=1:length(dX)
if dX(n)>0&dY(n)>=0
f3(n)=atan(dY(n)/dX(n));
elseif dX(n)==0&dY(n)>0
f3(n)=pi/2;
elseif dX(n)<0&dY(n)>=0
f3(n)=pi+atan(dY(n)/dX(n));
elseif dX(n)<0&dY(n)<0
S3=l3*sin(f3);
G1=C2.*S3-C3.*S2;
w2=(C3.*(Vdx-Vbx)+S3.*(Vdy-Vby))./G1;
w3=(C2.*(Vdx-Vbx)+S2.*(Vdy-Vby))./G1;
G2=adx-abx+(w2.^2).*C2-(w3.^2).*C3;
G3=ady-aby+(w2.^2).*S2-(w3.^2).*S3;
for n=1:length(dX)
if dX(n)>0&dY(n)>=0
f5(n)=atan(dY(n)/dX(n));
elseif dX(n)==0&dY(n)>0
f5(n)=pi/2;
elseif dX(n)<0&dY(n)>=0
f5(n)=pi+atan(dY(n)/dX(n)ห้องสมุดไป่ตู้;
elseif dX(n)<0&dY(n)<0
c0=l2^2+(Xb-Xd).^2+(Yb-Yd).^2-l3^2;
f2=2*atan((b0+sqrt(a0.^2+b0.^2-c0.^2))./(a0+c0));
% C点位置
Xc=Xb+l2*cos(f2);
Yc=Yb+l2*sin(f2);
% 2杆、3杆运动参数计算
dX=Xc-Xd;
dY=Yc-Yd;
将上式对时间t求导,可得加速度方程:
RRRⅡ级杆组的运动分析
如下图所示当已知RRR杆组中两杆长LBC、LCD和两外副B、D的位置和运动时,求内副C的位置、两杆的角位置、角运动以及E点的运动。
1)位置方程
由移项消去 后可求得 :
式中,
可求得 :
E点坐标方程:
其中
2)速度方程
两杆角速度方程为
式中,
点E速度方程为
a5=(-aex.*sin(f5)+aey.*cos(f5))./l5;
%画出各参数曲线
figure(1);plot(Xe,Ye,'k');xlabel('Xe/\mm');ylabel('Ye/mm');grid on;title('E点位置');
figure(2);plot(f1,f5,'k');xlabel('f/\circ');ylabel('f5/\circ');grid on;title('5杆角位移');
2、机构结构分析
该机构由6个构件组成,4和5之间通过移动副连接,其他各构件之间通过转动副连接,主动件为杆1,杆2、3、4、5为从动件,2和3组成Ⅱ级RRR基本杆组,4和5组成Ⅱ级RPR基本杆组。
如图建立坐标系
3、各基本杆组的运动分析数学模型
1)位置分析
2)速度和加速度分析
将上式对时间t求导,可得速度方程:
e2=(G2.*C3+G3.*S3)./G1;
% E点位置
w=acos((l2^2+lbe^2-lce^2)/(2*l2*lbe));
Xe=Xb+lbe*cos(f2-w);
Ye=Yb+lbe*sin(f2-w);
Vex=Vbx-lbe*w2.*sin(f2-w);
Vey=Vby+lbe*w2.*cos(f2-w);
f5(n)=pi+atan(dY(n)/dX(n));
elseif dX(n)==0&dY(n)<0
f5(n)=*pi;
elseif dX(n)>0&dY(n)<0
f5(n)=2*pi+atan(dY(n)/dX(n));
end
end
w5=(-Vex.*sin(f5)+Vey.*cos(f5))./l5;
相关文档
最新文档