专用集成运放及使用

合集下载

集成运算放大器的应用有哪些

集成运算放大器的应用有哪些

集成运算放大器的应用有哪些集成运算放大器(Operational Amplifier,简称OP-AMP) 是现代电子技术中常用的一种集成电路,广泛应用于信号放大、积分、微分、比较、滤波、波形变换、逻辑运算等电路中。

本文将介绍一些集成运算放大器的应用。

一、信号放大集成运算放大器广泛应用于信号放大电路中,其直接或变压器耦合输入方式具有低输入电阻、高输入阻抗、低噪声、高增益和宽带等特性。

在应用中,可通过精心设计放大器电路,控制反馈,实现高增益稳定运行。

二、积分电路积分电路是信号处理电路中的基本电路,它能将信号输入与时间积分,输出的是输入信号积分后的值。

集成运算放大器常用于积分电路的设计,其放大电压信号,然后通过电容对信号进行积分。

例如,在三角形波发生器电路中,可通过电容积分得到正弦波信号,而集成运算放大器的内部电路通常包含差分放大器,可将输入信号转化为电压差,用于驱动电容,完成积分计算。

三、微分电路微分电路是在信号处理中广泛应用的一种电路,它能够将信号对时间的微分操作,其输出电压是输入信号微分后的值。

集成运算放大器也常用于微分电路的设计中,可通过对输入信号进行微分计算得到输出信号。

例如,在测量热电偶温度时,可将温度信号输入到集成运算放大器中,通过差分放大器将信号转化为电压差,然后用电阻对信号进行微分计算,输出即为最终温度值。

四、比较电路比较电路是一种将两个信号进行比较然后输出比较结果的电路,它广泛应用于数字电路、自动控制、计算机硬件等领域。

集成运算放大器常用于比较电路中,它的输出能够根据电压的大小关系取两个输入信号中的一个。

例如,电压比较器是一种常见的电路,它采用集成运算放大器作为比较电路的核心元件,用于比较两个不同电压的大小关系,以便输出相应的状态。

五、滤波器滤波器是一种通过对输入信号进行滤波操作,抑制或增强特定频率信号的电路。

集成运算放大器广泛应用于滤波电路的设计中,其内部电路包括低通滤波器、高通滤波器、带通滤波器、带阻滤波器等类型。

集成运放的类型及应用

集成运放的类型及应用

集成运放的类型及应用集成运放(即集成式运算放大器)是一种高增益、高输入阻抗以及低输出阻抗的电子放大器,广泛应用于电路设计和信号处理等领域。

下面将详细介绍集成运放的类型及应用。

1. 类型:目前,常见的集成运放有多种类型,包括普通运放、仪表运放、高速运放、低功耗运放等。

普通运放:普通运放是最常见的一种集成运放,具有宽带宽、高增益、高输入阻抗和低输出阻抗的特点。

它的主要应用领域包括信号放大、滤波、理想运算放大器电路设计等。

仪表运放:仪表运放是一种精密运放,具有高共模抑制比、低偏置电流和低噪声的特点。

它的主要应用领域包括电压、电流、温度等测量,以及精密仪器和设备的信号放大等。

高速运放:高速运放是一种具有高增益带宽积(GBW)和快速响应特性的运放,适用于高频信号处理和快速信号放大等应用。

它的主要应用领域包括通信系统、高速数据传输、高速采样和测量等。

低功耗运放:低功耗运放是针对低电源电压和低功耗要求而设计的集成运放。

它可以在低电源电压下正常工作,并具有低静态功耗和低失调电压的特点。

它的主要应用领域包括移动设备、便携式仪器和电池供电系统等。

2. 应用:集成运放作为一种重要的电子器件,在电路设计和信号处理等领域应用广泛。

下面列举一些常见的应用示例:信号放大:集成运放最常见的应用就是信号放大。

通过调整运放的增益,可以将微弱的传感器信号放大到适合后续处理的范围,如压力传感器、温度传感器等。

滤波器:集成运放可以被用来设计各种类型的滤波器,如低通滤波器、高通滤波器、带通滤波器等。

滤波器的设计可以通过选择运放的反馈电阻和电容来实现。

运算放大器电路设计:运算放大器电路是运放最重要的应用之一。

基于运算放大器的电路可以实现加法、减法、乘法、除法、积分、微分等运算,并被广泛应用于模拟电路设计、自动控制系统等领域。

电压和电流测量:仪表运放常用于电压和电流测量。

通过仪表运放的高共模抑制比和低偏置电流特性,可以实现高精度和高稳定性的电压和电流测量。

集成运放的应用

集成运放的应用

自动控制系统中的集成运放应用
模拟计算
集成运放可以用于实现各种模拟计算, 如加减乘除、积分、微分等,以实现控 制系统中的信号处理和运算。
VS
比较器和触发器
集成运放还可以用作比较器和触发器,用 于检测信号的阈值和状态变化,触发相应 的控制动作。
医学仪器中的集成运放应用
生理信号监测
集成运放在医学仪器中广泛应用于生理信号 的监测,如心电图、脑电图、血压等,用于 诊断疾病或研究生理机制。
医学成像
集成运放也可以用于医学成像设备中,如超 声波、核磁共振等,以实现信号的放大和处 理,提高成像质量。
05
集成运放的未来发展与应用 趋势
高性能集成运放的研发
高精度集成运放
随着电子测量技术的发展,对高精度放大器 的需求日益增长。高性能集成运放能够提供 高精度、低噪声、低失真的放大信号,广泛 应用于科学实验、医疗仪器、通信设备等领 域。
02
集成运放的基本应用
放大电路
放大电路
集成运放作为放大器使用时,可 以实现对微弱信号的放大,广泛 应用于信号处理、音频放大、传 感器输出等领域。
放大倍数
通过改变反馈电阻的阻值,可以 调整放大倍数,实现不同需求的 信号放大。
输入输出阻抗
集成运放在放大电路中具有较高 的输入阻抗和较低的输出阻抗, 有利于信号的传输和隔离。
03
集成运放的特殊应用
模拟运算的应用
01
模拟运算放大器在模拟运算中发挥着重要作用现各种运算功能,广泛 应用于信号处理、控制系统等领域。
03
集成运放具有高精度、低噪声、低失真等特点,能 够提高运算精度和稳定性。
有源滤波器的应用
1
有源滤波器是集成运放的重要应用之一,用于实 现各种滤波功能,如低通、高通、带通、带阻等。

电工与电子技术第三章 集成运算放大器及其应用

电工与电子技术第三章 集成运算放大器及其应用

各级工作点相互影响 适于放大直流或变化缓慢的信号 电压放大倍数为各级放大倍数之积 零点漂移
零点漂移---当输入信号为零时,输出端电压 偏离原来的起始电压缓慢地无规则的上下漂动, 这种现象叫零点漂移。
产生原因---温度变化、电源电压的波动、电 路元件参数的变化等等。
第一级产生的零漂对放大电路影响最大。
∴ i 1= i f
即 ui/R1=-uo/ Rf
uo、ui 符合比例关系,负号表示输出输入电 压变化方向相反。
电路中引入深度负反馈, 闭环放大倍数Auf 与运放的Au无关,仅与R1、Rf 有关。
当R1=Rf 时, uo=-ui ,该电路称为反相器。 R2--平衡电阻 同相端与地的等效电阻 。其作用是保持输入 级电路的对称性,以保持电路的静态平衡。
共模信号--极性相同,幅值相同的信号。
u i1= u i2
差模输入(信号)
ui1 ui2 ui 2
IC1 IC2
UCE1 UCE2 u0 UCE1 Δ UCE2 2 UCE1
Ad 2 UCE1 / ui 2 UCE1 / 2ui1 UCE1 / ui1
i3 ui3 R3
i f u0 Rf
ui1 R1 i1
Rf if
ui2 R2 i2 ui3 R3 i3
- + +∞
uo
RP
u0 ui1 ui 2 ui 3 R f R1 R2 R3
uo R f ( ui1 ui2 ui3 ) R1 R2 R3
若 R1 R2 R3 R f
AOUi
uo
I-≈I+ ≈0
二、Rf if
ui R1 i1 R2

第2章 集成运放及其基本应用

第2章   集成运放及其基本应用

集成运放的电压传输特性
uO=f(uP-uN)
在线性区: uO=Aod(uP-uN) Aod是开环差模放大倍数。
非线 性区
由于Aod高达几十万倍,所以集成运放工作在线性区时的 最大输入电压(uP-uN)的数值仅为几十~一百多微伏。 (uP-uN)的数值大于一定值时,集成运放的输出不是 +UOM , 就是-UOM,即集成运放工作在非线性区。
RL
RE2
RC4
T9
R2
第2级:差动放大器
第3级:单管放大器
Hale Waihona Puke -UEE集成运算放大器符号
国内符号:
反相输入端 u- 同相输入端 u+
- + +
输出端 uo
同相输入端: 该端输入信号变化的极性与输出端相同
反相输入端: 该端输入信号变化的极性与输出端相反
美国符号:
u- u+


uo
运 算 放 大 器 外 形 图
集成电路运算放大器
集成运算放大器是一种高电压增益,高输入 电阻和低输出电阻的多级直接耦合放大电路。
运算放大器方框图
1.输入级 使用高性能的差分放大电路,它必 须对共模信号有很强的抑制力,而且采用双端输 入双端输出的形式。
2.电压放大级 要提供高的电压增益,以保证 运放的运算精度。中间级的电路形式多为差分电 路和带有源负载的高增益放大器。 3.输出级 由PNP和NPN两种极性的三极 管或复合管组成,以获得正负两个极性的输出电 压或电流。具体电路参阅功率放大器。
4.偏置电路 提供稳定的几乎不随温度而变化 的偏置电流,以稳定工作点。 另举例说明集成运放内部结构
集成运放内部结构(举例)
极 性 判 RC1 断 RC2

集成运算放大器及应用—集成运算放大器(电子技术课件)

集成运算放大器及应用—集成运算放大器(电子技术课件)

(a)新国标符号
(b)以往用过的符号
图3.1.2 集成运放的符号
4.集成运放实物 (1)封装形式、引脚排列
金属壳封装
双列直插式 塑料封装
图3.1.3 集成运放封装与引脚图
图3.1.4 LM324引脚图
(2)运算放大器外形图
图3.1.5 集成运放实物图
三、理想集成运放的主要参数 1.理想集成运放
4.共模抑制比 KCMR 反映了集成运放对共模信号的抑制能力。
5.输入失调电压、电流 U IO 0 I IO 0 它是指集成运放输出电压为零时,两个输入端所加补偿电压的大小、两个输
入端的静态电流之差均为零。 6.上限截止频率 f H
反映集成运放的频率特性。
集成运放的线性应用(一)
3.2.1 集成运放的线性应用(一)
差模信号是指 ui1 = – ui2,即两个输入信号大小相同,极性相反。 共模信号是指 ui1 = ui2 ,即两个输入信号大小相同,极性相同。
2.输入电阻 rid
它是指集成运放在开环状态下,输入差模信号时两输入端之间的动态电阻, 反映差模输入时,集成运放向信号源索取电流的大小。
3.输出电阻 ro 0
二、集成运放的组成及符号 1.集成运放的组成框图
uid +
输入级
中间电压 放大级
输出级 uo
偏置电路
图3.1.1 集成运放的组成框图
2.各组成部分的特点
采用差分放大电路。要求输入电阻 高,输入端耐压高,抑制温度漂移 能力强,静态电流小。
采用共发射极放大 电路。要求有足够 的放大能力。
采用互补对称输出电 路。要求输出电压范 围宽,输出电阻小, 非线性失真小。
一、线性区的集成运放

集成运放及其基本运用

集成运放及其基本运用
发展
随着半导体工艺的进步,集成运放性能不断提高,同时出现 了许多新型集成运放,如CMOS集成运放、BiCMOS集成运 放、开关电容集成运放等,进一步拓展了应用领域。
集成运放的应用领域
信号放大
滤波器
集成运放可用于信号的放大,实现信号的 线性放大和非线性变换。
集成运放可以构成各种滤波器,如低通滤 波器、高通滤波器、带通滤波器等,用于 信号处理和噪声抑制。
解决方法
采用负反馈技术,优化电路元件匹配, 以及在必要时加入补偿电容或电感。
PART 06
集成运放的应用实例
REPORTING
WENKU DESIGN
音频信号处理应用
音频信号放大
集成运放可以用于放大音 频信号,提高声音质量。
音频均衡器
通过调整不同频段的增益 和相位,实现音频信号的 均衡处理。
音频滤波器
集成运放及其基本运 用
https://
REPORTING
• 集成运放概述 • 集成运放的基本原理 • 集成运放的分类与选择 • 集成运放的基本运用 • 集成运放的常见问题与解决方案 • 集成运放的应用实例
目录
PART 01
集成运放概述
REPORTING
WENKU DESIGN
波、方波、三角波等。
通过RC电路或LC电路等振荡 器结构,结合运放的线性区 和饱和区特性,可以产生不 同频率和幅度的波形信号。
信号发生器在测试测量、通信 和自动控制等领域有广泛应用。
PART 05
集成运放的常见问题与解 决方案
REPORTING
ห้องสมุดไป่ตู้
WENKU DESIGN
噪声问题
噪声来源
集成运放的噪声主要来源于内部 元件的热噪声和外部环境的电磁 干扰。

集成运算放大器及应用—集成运放的非线性应用(电子技术课件)

集成运算放大器及应用—集成运放的非线性应用(电子技术课件)
集成运放的内部结构。无论是输入信号的正向电压或负向电压超过二极管导通电压, 则V1或V2中就会有一个导通,从而限制了输入信号的幅度,起到了保护作用。
(a)反相输入
(b)同相输入
图3.3.9 输入保护电路
(3)输出保护 利用稳压管V1和V2接成反向串联电路。若输出端出现过高电压,集成运放输
出端电压将受到稳压管稳压值的限制,从而避免了损坏。
由于大部分集成运放内部电路的改进,已不需要外加补偿网络。
3.保护电路 (1)电源极性的保护 利用二极管的单向导电特性防止由于电源极性接反而造成的损坏。当
电源极性错接成上负下正时,两二极管均不导通,等于电源断路,从而起 到保护作用。
图3.3.8 电源极性保护电路
(2)输入保护 利用二极管的限幅作用对输入信号幅度加以限制,以免输入信号超过额定值损坏
由图可见,他们之间存在差值称为回差电 压或迟滞宽度u,用 表示,即:
图3.3.7 滞回电压比较器的传输特性
u Uth1 Uth2
三、集成运放使用常识 1.零点调整 方法:将输入端短路接地,调整调零电位器,使输出电压为零。 2.消除自激振荡 方法:加阻容补偿网络。具体参数和接法可查阅使用说明书。目前,
滞回比较器具有两个不同的阈值,且相差较大(通常称我电压 滞回特性),即惯性,因而也就具有一定的抗干扰能力。
(1)滞回电压比较器中的阈值电压
图3.3.6 滞回电压比较器
当 uo U om 时,集成运放同相
输入端的电位为:
u
R1 R1 R2
F
Uth1
(2)滞回电压比较器中的阈值电压
图3.3.6 滞回电压比较器
当 uo U om 时,集成运放同相输入端
的电位为:
u

集成运放的使用常识

集成运放的使用常识

集成运放的使用常识
一、集成运放的调零
集成运放调零的作用是保证集成运放实现零输入时零输出。

当选用的集成运放有调零端时,应查阅集成电路手册,按接线图正确接上调零电位器进行调零。

二、集成运放的保护
集成运放在使用过程中容易出现电源接反或电压过高、输入电压过大以及输出端过载等情况,从而导致集成运放的损坏。

因此,在使用过程中需加各种保护电路。

1.输入保护
为了防止由于集成运放输入电压过高而引起的集成运放损坏,输入保护电路在集成运放输入端起限幅保护作用。

图1所示为反相输入保护电路。

由图可知,两只二极管VD1、VD2 R构成了限幅电路,这样,集成运放输入电压的幅度被限制为二极管的正向导通压和电阻
1
降,有效地防止了差模信号过大的现象出现。

图1 反相输入保护电路
2.输出保护
为了防止输出端可能接到外部过高的电压上而造成集成运放损坏,可在输出端接入双向稳压二极管,如图2所示,其中(a)图为双向稳压二极管与输出电压并联,(b)图为双向稳压二极管与反馈电阻并联。

图2 输出端保护电路
3.电源端反接保护
图3所示为利用二极管的单向导电性构成的电源端反接保护电路。

一旦电源接反,二极管VD1、VD2反向截止,切断电源;而电源极性连接正确时,二极管正偏导通,从而保护集成运放不受损坏。

图3 电源端反接保护电路。

集成运算放大器的原理与应用讲解

集成运算放大器的原理与应用讲解

集成运算放大器的原理与应用讲解1. 什么是集成运算放大器(Op Amp)?•集成运算放大器(Op Amp)是一种高增益、直流耦合、差分放大器,常被用于放大、滤波和电压比较等电路应用。

•Op Amp是一种集成电路芯片,通常包含多个晶体管、电阻和电容等被精确布局在一个芯片上。

2. 集成运算放大器的原理•Op Amp的核心是差动放大器,由两个输入端(非反馈端和反馈端)和一个输出端组成。

•在差动放大器中,非反馈端的输入信号被放大器放大,然后通过反馈回到非反馈端,从而形成放大器的反馈机制。

•Op Amp的增益由开环增益和反馈网络的配置决定。

3. 集成运算放大器的主要特性•增益:Op Amp具有非常高的开环增益,通常在105到108之间。

•输入阻抗:Op Amp的输入阻抗非常大,通常在106到1012欧姆之间。

•输出阻抗:Op Amp的输出阻抗非常小,通常在几十欧姆以下。

•带宽:Op Amp的带宽是指在给定增益下能够传输信号的频率范围。

4. 集成运算放大器的应用4.1 可逆放大器•可逆放大器是Op Amp最常见的应用之一,采用负反馈的方式将输出信号的一部分反馈到输入端。

•可逆放大器可以用于放大和滤波等电路,常用的配置包括反向放大器、比例放大器和积分器等。

4.2 比较器•Op Amp可以作为比较器使用,将输入信号与一个参考电压进行比较,输出高电平或低电平。

•比较器广泛应用于电压比较、电压检测和信号切换等电路。

4.3 运算放大器•运算放大器是一种特殊的Op Amp应用,采用负反馈的方式实现各种算术运算。

•常见的运算放大器电路包括加法器、减法器、乘法器和除法器等。

4.4 滤波器•Op Amp可以用于构建各种类型的滤波器,如低通滤波器、高通滤波器和带通滤波器等。

•滤波器可以用于信号调整、降噪和频谱分析等应用。

5. 集成运算放大器的选择与设计•在选择和设计集成运算放大器时,需要考虑参数如增益、输入阻抗、输出阻抗、带宽和供电电压等。

集成运放的实际应用

集成运放的实际应用

集成运放的实际应用集成运放(Integrated Operational Amplifier)是一种常见的电子器件,广泛应用于各种电路中。

它的主要功能是放大电压信号,并具有高输入阻抗和低输出阻抗的特点。

集成运放的应用非常广泛,下面将介绍几个与集成运放相关的实际应用。

集成运放在音频放大器中的应用非常常见。

音频放大器是将低功率音频信号放大为较大功率的电子设备,常见的应用场景包括音响系统、汽车音频设备等。

集成运放作为音频放大器的核心部件,能够提供高品质的音频放大效果。

它可以放大音频信号的幅度,同时保持音频信号的准确性和稳定性,使得音乐、语音等声音更加清晰、真实。

集成运放在模拟计算器中的应用也非常重要。

模拟计算器是一种能够进行各种数学运算的电子设备,广泛应用于科学研究、工程设计等领域。

在模拟计算器中,集成运放可以用于实现各种数学运算,如加法、减法、乘法、除法等。

它的高精度和稳定性能保证了计算结果的准确性,提高了计算器的可靠性和实用性。

集成运放还在信号调理中起到了重要的作用。

信号调理是指对输入信号进行处理和优化,以满足特定的要求。

在信号调理中,集成运放可以用于滤波、放大、补偿等操作。

例如,在传感器信号处理中,集成运放可以用于放大微弱的传感器信号,提高信号的可靠性和稳定性。

又如,在音频信号处理中,集成运放可以用于实现音频信号的均衡和控制,使得音频信号更加优质和适合特定的应用场景。

集成运放还在仪器仪表中有着广泛的应用。

仪器仪表是一种测量和控制物理量的设备,广泛应用于科学实验、工程测试等领域。

在仪器仪表中,集成运放可以用于放大和处理测量信号,提高测量的精确度和可靠性。

例如,在电压测量中,集成运放可以用于放大微弱的电压信号,使其达到适合测量的范围。

又如,在温度测量中,集成运放可以用于放大和补偿传感器产生的微弱信号,提高温度测量的精确度和稳定性。

集成运放在实际应用中发挥着重要的作用。

它广泛应用于音频放大器、模拟计算器、信号调理和仪器仪表等领域,为这些设备提供了高品质的信号放大和处理功能。

集成运放及其应用

集成运放及其应用

集成运放及其应用摘要:集成运算放大器已成为现代电子电路中的核心器件,它与不同的外接电路连接,可以工作在不同的区域,实现多种电路功能,广泛应用于信号运算、信号处理、信号变换及信号发生器等电子领域的各个方面。

关键词:集成运放特点应用集成运算放大器是一种将管和路紧密结合的电子器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻、电容等元件制作在一起,使之具有特定的功能。

目前集成运算放大器已成为现代电子电路中的核心器件,广泛应用于信号运算、信号处理、信号变换及信号发生器等电子领域的各个方面。

1 集成运算放大器的特点集成运算放大器与不同的外接电路连接,可以工作在不同的区域:线性区和非线性区。

运放工作在不同的区域时,有不同的特点。

1.1 集成运放工作在线性区的特点(1)u+≈u-,即两输入端电位近似相等。

由于两输入端电位相等,但又不是短路,故称为“虚短”。

(2)i+≈i-≈0,即两个输入端的电流近似为零。

由于两输入端并非开路而电流为零,故称为“虚断”。

[1]1.2 集成运放工作在非线性区的特点(1)当u+>u-时,输出高电平+UOH;当u+<u-时,输出低电平-UOL。

(2)流入输入端的电流近似等于零,即ii≈0,称为“虚断”。

这些重要结论是分析和应用集成运放的基础。

2 集成运算放大器的应用2.1 集成运放的线性应用将集成运放的输出信号通过电器元件反送到反相输入端,即接入深度负反馈,便可使集成运放工作在线性区,从而实现同相比例、反相比例、加法、减法、微分、积分等多种运算功能。

以加法运算为例,如图1。

对电路的反相输入端,根据“虚短”和“虚断”的特点可得出输出电压和输入电压的关系:可见,电路输出电压uo为输入电压ui1和ui2相加所得结果,即电路可以实现求和运算。

此外,集成运放在线性区工作时除了能够实现多种运算功能外,还可以实现波形变换、波形发生、整流、滤波、实现电压和电流的相互变换等多种功能。

集成运放及应用实验报告

集成运放及应用实验报告

一、实验目的1. 理解集成运算放大器(运放)的基本原理和特性。

2. 掌握集成运放的基本线性应用电路的设计方法。

3. 通过实验验证运放在实际电路中的应用效果。

4. 了解实验中可能出现的误差及分析方法。

二、实验原理集成运算放大器是一种高增益、低噪声、高输入阻抗、低输出阻抗的直接耦合多级放大电路。

它广泛应用于各种模拟信号处理和产生电路中。

本实验主要研究运放的基本线性应用电路,包括比例、加法、减法、积分、微分等运算电路。

三、实验仪器与器材1. 集成运放(如LM741)2. 模拟信号发生器3. 示波器4. 数字多用表5. 电阻、电容等电子元件6. 面包板四、实验内容1. 反相比例运算电路(1) 设计电路:根据实验要求,搭建一个反相比例运算电路,其中输入电阻R1和反馈电阻Rf的比值决定了放大倍数A。

(2) 实验步骤:a. 连接电路,确保无误。

b. 输入一定频率和幅值的正弦信号,观察输出波形。

c. 改变输入信号幅度,记录输出波形。

d. 计算放大倍数,并与理论值进行比较。

2. 同相比例运算电路(1) 设计电路:搭建一个同相比例运算电路,其中输入电阻R1和反馈电阻Rf 的比值决定了放大倍数A。

(2) 实验步骤:a. 连接电路,确保无误。

b. 输入一定频率和幅值的正弦信号,观察输出波形。

c. 改变输入信号幅度,记录输出波形。

d. 计算放大倍数,并与理论值进行比较。

3. 加法运算电路(1) 设计电路:搭建一个加法运算电路,实现两个输入信号的求和。

(2) 实验步骤:a. 连接电路,确保无误。

b. 输入两个不同频率和幅值的正弦信号,观察输出波形。

c. 改变输入信号幅度,记录输出波形。

d. 验证输出波形为两个输入信号的相加。

4. 减法运算电路(1) 设计电路:搭建一个减法运算电路,实现两个输入信号的相减。

(2) 实验步骤:a. 连接电路,确保无误。

b. 输入两个不同频率和幅值的正弦信号,观察输出波形。

c. 改变输入信号幅度,记录输出波形。

第6章 集成运算放大器及其应用

第6章 集成运算放大器及其应用

6.3 .
一、比例运算电路
集成运算放大器的线性应用
1.反相比例运算电路 反相比例运算电路如下图所示
根据理想运放在线性区“虚短”和“虚断”的特点,有 输入电压ui 通过电阻R1作用于集成运放的反相输入端,故输出电压uo与ui 反 相;电阻Rf 跨接在集成运放的输出端和反相输入端,引入了电压并联负反馈; 同相输入端通过电阻R’ 接地,R’ 为补偿电阻,以保证集成运放输入级差分放 大电路的对称性,其值为ui =0时反相输入端总等效电阻,即R’=R1∥ Rf 。 集成运放两个输入端的电位均为零,但由于它们并没有接地,故称为“虚 地”。节点N的电流方程为 该电路的闭环电路放大倍数为 由于N点虚地(u-=0),整理得出 A= uo /ui = -Rf/ R1 若Rf= R1 ,则A=1,即uo =-ui ,这时电路为倒相器。 uo 与ui 成比例关系,比例系数为-Rf/ R1负号表示uo 与ui 反相。 1
6.2 放大电路中的负反馈 .
一、反馈的基本概念 所谓反馈,就是指连接放大电路输入回路和放大电路输出回路的电路(或元 件),利用反馈元件将输出信号(电压或电流,全部或部分)引回到放大电路输入 回路中,来影响或改变受控元件的净输入信号(电压或电流)的大小或波形,从 而控制输出信号的大小及波形。将放大电路输出端的电压或电流,通过一定的 方式返回到放大器的输入端,对输入端产生作用或影响,称为反馈。 反馈放大电路的方框图如下图所示。

• 放大器的输出信号为 由上式可知,放大器一旦引入深度负反馈,其闭环放大倍数仅与反馈系数 F 有关,而与放大器本身的参数无关。 反馈放大器的放大倍数At(又称为闭环增益)为
其中, 称为反馈深度,是描述反馈强弱的物理量。可见,放大器引 入负反馈后,放大器的放大倍数下降。如果 >>1,则一般认为反馈 已经加得很深,这时的反馈称为深度负反馈,此时上式可简化为

集成运算放大器的运用.pptx

集成运算放大器的运用.pptx

度系数的热敏电阻RT,也可消除UT =kT/q引 起的温度漂移,实现温度稳定性良好的对数
运算关系。
第25页/共54页

二、反对数(指数)

指数运算是对数的逆运算,在电路结构上只要将对数运算器的电阻和
晶体管位置调换一下即可,如图7.1.16所示。
uBE
uo Rif RiC RISe UT
uBE ui
第7页/共54页
• 7.1.2
(Adder)
•1.反相输入求和电路 (Inver ting Adder)
•( 1 ) 电 路 如 图 7 . 1 . 4 所 示 。 •直 流 平 衡 电 阻 :
if Rf
R1 i1
ui1
i2 i-
ui2
-
RP R1 R2 R3 R f
R2
i+ +
+
uo
R3
(2)关系式:
图7.1.4 反相求和运算电路
因为反相端“虚地”(Virtual Ground),
i1 i2 i f
ui1 ui2 uo
R1 R2
Rf
uo
Rf R1
ui1
Rf R2
ui 2
第8页/共54页
若 R1 R2 R

uo
Rf R
(ui1 ui2 )
例1:利用集成运放实现以下求和运算关系:
反向饱和电流的影响,RT是热敏电阻,用以补偿UT引起的温度漂移。由图
可见:
uo
(1
R3 R2 RT
)u A
uA
u BE 2
uBE1
UT
ln
ic 2 IS2
UT
ln
ic1 IS1

电子技术集成运放及其应用电路举例

电子技术集成运放及其应用电路举例
电子技术集成运放及其应用电路举 例
6.1 集成运算放大器
6.1.1 集成运放概述
集成运放符号:
集成运放特点:
高增益;
高输入用型 ;高输入阻抗型 ;低温漂型 ;宽带高速型 ; 低功耗型 ;高压型 ;大功率型
6.1.2 MOS运放核心电路
MOS两级运算放大器
MOS折叠式共源共栅运算放大器
二、仪器放大器
利用叠加原理,先令vI2=0 ,由vI1在 A1和A2输出端产生的输出电压分别 为
vO ' 1(1R RG 1)vI1 , vO ' 2R RG 2vI1
令vI1=0 ,由vI2在A1和A2输出端产生 的输出电压分别为
vO ''1R RG 1vI2, vO ''2(1R RG 1)vI2 当R1=R2=R时,v O v O 1 ( v O ' 2 1 v O ''1 ) ( v O '2 v O ''2 ) ( 1 2 R / R G ) v I ( 1 v I ) 2
(b) 同相加法器 利用线性叠加原理:
vO1R R fR 1R 2R 2vS1 R 1R 1R 2vS2
2. 积分和微分电路 积分电路
i1≈vS/R 若C上的起始电压为零 ,则
vOC 10 ti1dtR 1C 0 tvSdt
微分电路 vOi1RRCddvtS
3. 对数和反对数放大器 对数放大器
电压传输特性
根据输入信号幅度范围的不同,集成运放可能工作在闭
环状态,也可能工作在开环状态,典型的应用是精密整
流电路。
6.2.3 集成运放的基本应用电路
一、反相放大器
i1
vs v R1

集成运放的基本应用

集成运放的基本应用

集成运放的应用范围
信号放大
集成运放可以用于信号 的放大,实现信号的传
输和处理。
滤波器
集成运放可以用于构成 各种滤波器,如低通、 高通、带通、带阻滤波
器等。
电压比较器
模拟电路
集成运放可以用于构成 电压比较器,用于信号 的阈值检测和波形整形。
集成运放还可以用于模 拟电路中,如模拟运算 放大器、模拟乘法器等。
在模拟运算电路中的应用
01
02
03
加法器
集成运放可以构成加法器 电路,将多个输入信号按 比例相加,输出结果。
减法器
集成运放也可以构成减法 器电路,将两个输入信号 按比例相减,输出结果。
积分器
集成运放还可以构成积分 器电路,用于对输入信号 进行积分运算,输出结果。
在有源滤波器中的应用
低通滤波器
集成运放可以用于低通滤 波器,用于滤除高频噪声 或干扰,保留低频信号。
集成运放的功耗问题
总结词
集成运放的功耗问题主要表现在静态功耗和动态功耗上。
详细描述
静态功耗是指集成运放处于静止状态时的功耗,动态功耗则是指在工作状态下,随着输入 信号的变化而产生的功耗。
解决方案
可以采用低功耗的器件和电路设计,同时优化电源电压和时钟频率来降低功耗。此外,还 可以采用动态功耗管理技术,根据实际需求动态调整功耗。
05
集成运放的常见问题与解决 方案
集成运放的噪声问题
01
总结词
集成运放的噪声问题主要来源于内部元件的不完美性和外部环境的干扰。
02 03
详细描述
集成运放的制造过程中,由于工艺限制,内部元件难免存在不完美性, 这导致了噪声的产生。此外,外部环境的电磁干扰也可能对集成运放造 成噪声干扰。

集成运算放大器的基本应用

集成运算放大器的基本应用

集成运算放大器的基本应用
集成运算放大器(Operational Amplifier,简称Op Amp)是一
种高增益、直流耦合的放大电路。

它广泛应用于电子电路中,具有非常重要的作用。

常见的集成运算放大器IC芯片有
LM741、LM358、LM324等。

以下是集成运算放大器的基本应用:
1. 比较器:将两个电压进行比较,输出高电平或低电平。

比较器具有电压转换和开关控制的功能,常用于电压检测、信号选择和自动控制等方面。

2. 增益放大器:将输入信号进行放大,输出信号比输入信号大。

这种电路可以放大微小信号,如传感器输出、电源噪声等。

3. 运算放大器:进行数学运算,如加减乘除、积分、微分和求反向比等。

这种电路通常用于信号处理、滤波、振荡和控制等方面。

4. 反馈电路:利用Op Amp的高增益和稳定性,通过反馈电路实现精确控制。

反馈电路包括正反馈和负反馈两种,应用广泛,如DC稳压电源、振荡器、电压跟随器和信号隔离器等。

5. 信号滤波:利用Op Amp的高增益和频率特性,设计高性能的RC滤波器和二阶滤波器。

这种电路可以提取出特定频率的
信号,去除噪声和干扰,应用于音频、通信和仪器等方面。

总之,集成运算放大器广泛应用于各种电子电路中,可以实现信号放大、滤波、比较和控制等多种功能,是电子工程师必不可少的工具。

第四章 集成运算放大器各种运用

第四章 集成运算放大器各种运用

的R1对应于当具用有R1内+R阻s代Rs替的,信为号了源不,使上电面压公增式益中 受Rs的太大影响,R1应该取大一些。但为了 保运证 放输 的入 内电 阻流,远对大于于通偏用置型电运流放,,RR11应 不宜远小超于过 数十千欧,反馈电阻RF越大则电压增益越大, 但要求反馈电流也应远大于偏置电流,所以 RF也不能取得过大,通常不宜超过兆欧。因 此,当Rs达到数千欧时,这个电路难以获得 高增益。另外,反相放大器是并联负反馈电
集成运放的基本组成
右图是运算放大器
的电路符号。它有两个 输入端和一个输出端。 反相输入端标“-”号, 同相输入端标“+”号。 输出电压与反相输入电 压相位相反,与同相输 入电压相位相同。此外 还有两个端分别接正、 负电源,有些集成运放 还有调零端和相位补偿 端。在电路中不画出。
二. 集成运算放大器的使用
由于集成运放具有性能稳定、可靠性高、寿命 长、体积小、重量轻、耗电量少等优点得到了广泛 应用。可完成放大、振荡、调制、解调及模拟信号 的各种运算和脉冲信号的产生等。
本章将介绍集成运放的基本知识、基本电路及 其主要应用。
主要内容
第一节 运算放大器的基本知识 第二节 运算放大器的基本电路 第三节 运算放大器的应用
因Ii=0,故i1≈if,因此 又因u+≈u-,因此
uo与ui之间的比例 关系也与运放本身
的参数无关,电路
精度和稳定度都很 高。KF为正表示uo 与ui同相,并且KF 总是大于或等于1, 这一点与反相放大 器不同。
当RF=0时KF=1,电路就变成电压 跟随器。
同相放大器实际上是一个电压串 联负反馈放大器,因此其输入阻抗高、 输出阻抗低,而且增益不受信号源内 阻的影响。该电路的不足是其共模抑 制比CMRR不太大。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8 单电源型
在正、负两电源下工作的运算放大器为普通的运 算放大器,而只用单电源工作的运算放大器为单电源 型,通常它自0V起也能放大信号。
1.2 集成运放的选择及使用
1.运放的选择
当采用集成运放设计电子电路时,应该首先理 解设计说明书和产品说明书介绍的运算放大器的参 数的含义,了解其参数是否满足电路的要求,然后 对电路作必要的修改,找出所选运放的外部接线图 进行连接。若有相同类型的集成运放,应选择失调 电压小、调零效果好、补偿电容小、输出幅度合适 又不产生失真的运放,同时还要考虑信号源的性质 、负载的性质、环境条件影响等其他因素。
2.运放使用注意事项
(1)运放的调零
调零的作用是实现运放零输入-零输出的要 求,运放调零有两种方法,一种是通过运放本身 的调零端子外加调零电位器调零;另一种是通过 给运放的输入端加偏移电压调零。
(2)自激的消除
自激振荡是运放工作时产生的一种现象,如 果电路出现自激现象,应该判断是哪种原因造成 的,尽量增加地线的面积,在运放供电脚附近, 一般是在附近增加高频退耦电容,采用高频屏蔽 等方法消除自激,减小干扰。
3.高速型
高速型运放是指输出端能对输入端信号的变化做 出快速反应,一般通过转换速率来描述其性能,
4.低功耗型
通常运算放大器的静态功耗在50mW以上。如果在 电源电压±15V时,最大功耗低于6mW;或是工作在 低电源电压(如1.5~4V)时,具有较低的静态功耗并 能保持良好的电气性能,这类运放为低功耗型运放。
5.高压型
普通运放的工作电压为V,而工作电压在V以上的 运算放大器为高电压型,这种运放的动态范围较宽。
6.低输入偏流型
运算放大器的输入偏流为零时是理想情况。
7.可编程序型
对这种类型的运算放大器,通过调整控制端电流 Iset,使输入电压、输入偏置电流和静态功耗等参数达 到给定的值。如LM4250等。
(2)将集成运放接成电压跟随器形式,如图所示,
将万用表置于直流电压档。当电位器RP滑动点至UCC时, 输出电压为最大值,接近于UCC,再将RP滑动点至地端, 输出电压为最小值,接近于零,表明运放性能良好,否
则说明运放已经损坏。
模拟 电子 技术 基础
(3)运放的保护
运放在实验、调试中容易出现电源极性接反、电源 电压过高或输出端短路等现象,将造成运放的损坏。因 此在使用运放时。可以加一保护电路,如图所示。
3.运放的简单测试
在维修工作中,可以使用万用表或者集成运放 参数测试仪对集成运放进行简单的测试,以确定质 量的好坏。方法如下:
(1)用万用表的电阻档测量集成运放各引脚对 负电源端及对正电源端的正、反向电阻,将测得的 阻值与同型号的质量良好的运放进行比较,若比较 接近,则说明运放正常;若阻值差别很大,则说明 运放损坏。使用万用表时候注意量程。
模拟 专用集成运放简介 1.2 集成运放的选择及使用
1.1 专用集成运放简介
1.低输入失调电压型 无信号时,运算放大器正、负输入端之间产
生的电压称为失调电压,在理想状态下应为零。 2.高精度、低漂移型
这种类型的运放,在电路结构上除采用低噪 声差分输入级外,还采用热匹配设计和低温度系 数的精密电阻,或者在电路加入自动控温系统电 路以减小温度漂移。
相关文档
最新文档