应用回归分析第九章部分答案word精品文档7页

合集下载

(完整word版)应用回归分析,第9章课后习题参考答案

(完整word版)应用回归分析,第9章课后习题参考答案

第9章 含定性变量的回归模型思考与练习参考答案9.1 一个学生使用含有季节定性自变量的回归模型,对春夏秋冬四个季节引入4个0—1型自变量,用SPSS 软件计算的结果中总是自动删除了其中的一个自变量,他为此感到困惑不解。

出现这种情况的原因是什么?答:假如这个含有季节定性自变量的回归模型为:t t t t kt k t t D D D X X Y μαααβββ++++++=332211110其中含有k 个定量变量,记为x i 。

对春夏秋冬四个季节引入4个0—1型自变量,记为D i ,只取了6个观测值,其中春季与夏季取了两次,秋、冬各取到一次观测值,则样本设计矩阵为:⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=000110010110001010010010100011)(616515414313212111k k k k k k X X X X X X X X X X X XD X,显然,(X ,D)中的第1列可表示成后4列的线性组合,从而(X ,D)不满秩,参数无法唯一求出。

这就是所谓的“虚拟变量陷井",应避免。

当某自变量x j 对其余p —1个自变量的复判定系数2j R 超过一定界限时,SPSS 软件将拒绝这个自变量x j 进入回归模型.称Tol j =1—2j R 为自变量x j 的容忍度(Tolerance ),SPSS 软件的默认容忍度为0。

0001。

也就是说,当2j R >0.9999时,自变量x j 将被自动拒绝在回归方程之外,除非我们修改容忍度的默认值。

而在这个模型中出现了完全共线性,所以SPSS 软件计算的结果中总是自动删除了其中的一个定性自变量。

⎪⎪⎪⎪⎪⎭⎫⎝⎛=k βββ 10β⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4321ααααα9。

2对自变量中含有定性变量的问题,为什么不对同一属性分别建立回归模型,而采取设虚拟变量的方法建立回归模型?答:原因有两个,以例9.1说明。

一是因为模型假设对每类家庭具有相同的斜率和误差方差,把两类家庭放在一起可以对公共斜率做出最佳估计;二是对于其他统计推断,用一个带有虚拟变量的回归模型来进行也会更加准确,这是均方误差的自由度更多。

应用技术回归分析第九章部分完整答案

应用技术回归分析第九章部分完整答案

第9章 非线性回归9.1 在非线性回归线性化时,对因变量作变换应注意什么问题?答:在对非线性回归模型线性化时,对因变量作变换时不仅要注意回归函数的形式, 还要注意误差项的形式。

如:(1) 乘性误差项,模型形式为e y AK L αβε=, (2) 加性误差项,模型形式为y AK L αβε=+。

对乘法误差项模型(1)可通过两边取对数转化成线性模型,(2)不能线性化。

一般总是假定非线性模型误差项的形式就是能够使回归模型线性化的形式,为了方便通常省去误差项,仅考虑回归函数的形式。

9.2为了研究生产率与废料率之间的关系,记录了如表9.14所示的数据,请画出散点图,根据散点图的趋势拟合适当的回归模型。

表9.14生产率x (单位/周) 1000 2000 3000 3500 4000 4500 5000 废品率y (%)5.26.56.88.110.2 10.3 13.0解:先画出散点图如下图:5000.004000.003000.002000.001000.00x12.0010.008.006.00y从散点图大致可以判断出x 和y 之间呈抛物线或指数曲线,由此采用二次方程式和指数函数进行曲线回归。

(1)二次曲线 SPSS 输出结果如下:Mode l Sum mary.981.962.942.651R R SquareAdjusted R SquareStd. E rror of the E stim ateThe independent variable is x.ANOVA42.571221.28650.160.0011.6974.42444.2696Regression Residual TotalSum of Squares dfMean SquareF Sig.The independent variable is x.Coe fficients-.001.001-.449-.891.4234.47E -007.0001.4172.812.0485.843 1.3244.414.012x x ** 2(Constant)B Std. E rror Unstandardized Coefficients BetaStandardizedCoefficientstSig.从上表可以得到回归方程为:72ˆ 5.8430.087 4.4710yx x -=-+⨯ 由x 的系数检验P 值大于0.05,得到x 的系数未通过显著性检验。

第九章:回归分析-30页文档

第九章:回归分析-30页文档
Regression Analysis
Chapter 11
Regression and Correlation
Techniques that are used to establish whether there is a mathematical relationship between two or more variables, so that the behavior of one variable can be used to predict the behavior of others. Applicable to “Variables” data only.
run
axis.
b
0
X
A simple linear relationship can be described mathematically by
Y = mX + b
Simple Linear Regression
slope =
rise run
=
(6 - 3)
1
=
(10 - 4)
2
Y
rise
5
run intercept = 1
Rent
Step 1: Scatter plot
2500 2300 2100 1900 1700 1500 1300 1100 900 700 500
500 700 900 1100 1300 1500 1700 1900 2100
Size
Scatter plot suggests that there is a ‘linear’ relationship between Rent and Size
High

统计学原理第九章(相关与回归)习题答案

统计学原理第九章(相关与回归)习题答案

第九章相关与回归一.判断题部分题目1:负相关指的是因素标志与结果标志的数量变动方向是下降的。

()答案:×题目2:相关系数为+1时,说明两变量完全相关;相关系数为-1时,说明两个变量不相关。

()答案:√题目3:只有当相关系数接近+1时,才能说明两变量之间存在高度相关关系。

()答案:×题目4:若变量x的值增加时,变量y的值也增加,说明x与y之间存在正相关关系;若变量x的值减少时,y变量的值也减少,说明x与y之间存在负相关关系。

()答案:×题目5:回归系数和相关系数都可以用来判断现象之间相关的密切程度。

()答案:×题目6:根据建立的直线回归方程,不能判断出两个变量之间相关的密切程度。

()答案:√题目7:回归系数既可以用来判断两个变量相关的方向,也可以用来说明两个变量相关的密切程度。

()答案:×题目8:在任何相关条件下,都可以用相关系数说明变量之间相关的密切程度。

()答案:×题目9:产品产量随生产用固定资产价值的减少而减少,说明两个变量之间存在正相关关系。

()答案:√题目10:计算相关系数的两个变量,要求一个是随机变量,另一个是可控制的量。

()答案:×题目11:完全相关即是函数关系,其相关系数为±1。

()答案:√题目12:估计标准误是说明回归方程代表性大小的统计分析指标,指标数值越大,说明回归方程的代表性越高。

()答案×二.单项选择题部分题目1:当自变量的数值确定后,因变量的数值也随之完全确定,这种关系属于()。

A.相关关系B.函数关系C.回归关系D.随机关系答案:B题目2:现象之间的相互关系可以归纳为两种类型,即()。

A.相关关系和函数关系B.相关关系和因果关系C.相关关系和随机关系D.函数关系和因果关系答案:A题目3:在相关分析中,要求相关的两变量()。

A.都是随机的B.都不是随机变量C.因变量是随机变量D.自变量是随机变量答案:A题目4:测定变量之间相关密切程度的指标是()。

第九章 第四节 相关性、最小二乘估计、回归分析与独立性检验

第九章 第四节  相关性、最小二乘估计、回归分析与独立性检验
第四节 相关性、最小二乘估计、回归
分析与独立性检验
9/30/2013
9/30/2013
1.相关性 (1)散点图:在考虑两个量的关系时,为了对_____之间的关 变量 系有一个大致的了解,人们通常将___________的点描出来, 变量所对应 这些点就组成了变量之间的一个图,通常称这种图为变量之间 的散点图.
1.利用统计量χ 2来判断“两个变量X,Y有关系”计算公式为:

2
(A)ad-bc越小,说明X与Y关系越弱
(B)ad-bc越大,说明X与Y关系越强 (C)(ad-bc)2越大,说明X与Y关系越强 (D)(ad-bc)2越接近于0,说明X与Y关系越强
a b c d a c b d
1 2
9/30/2013
【拓展提升】线性相关关系与函数关系的区别 (1)函数关系中的两个变量间是一种确定性关系.例如,正 方形面积S与边长x之间的关系S=x2就是函数关系.
(2)相关关系是一种非确定性关系,即相关关系是非随机变
量与随机变量之间的关系.例如,商品的销售额与广告费是相
关关系.两个变量具有相关关系是回归分析的前提.
50 13 20-10 7) ( 4.844, 23 27 20 30
2
因为χ 2≥3.841,所以有
答案:95%
9/30/2013
考向 1
相关关系的判断
【典例1】(1)对变量x,y有观测数据(xi,yi)(i=1,2,„,
10),得散点图(1);对变量u,v有观测数据(ui,vi)(i=1,
9/30/2013
3.独立性检验
(1)2×2列联表
设A,B为两个变量,每一个变量都可以取两个值,变量A:

第九章 相关与回归分析

第九章  相关与回归分析

第9章相关与回归分析【教学内容】相关分析与回归分析是两种既有区别又有联系的统计分析方法。

本章阐述了相关关系的概念与特点;相关关系与函数关系的区别与联系;相关关系的种类;相关关系的测定方法(直线相关系数的含义、计算方法与运用);回归分析的概念与特点;回归直线方程的求解及其精确度的评价;估计标准误差的计算。

【教学目标】1、了解相关与回归分析的概念、特点和相关分析与回归分析的区别与联系;2、掌握相关分析的定性和定量分析方法;3、掌握回归模型的拟合方法、对回归方程拟合精度的测定和评价的方法。

【教学重、难点】1、相关分析与回归分析的概念、特点、区别与联系;2、相关与回归分析的有关计算公式和应用条件。

第一节相关分析的一般问题一、相关关系的概念与特点(一)相关关系的概念在自然界与人类社会中,许多现象之间是相互联系、相互制约的,表现在数量上也存在着一定的联系。

这种数量上的联系和关系究其实质,可以概括为两种不同类型,即函数关系与相关关系。

相关关系:是指现象之间客观存在的,在数量变化上受随机因素的影响,非确定性的相互依存关系。

例如,商品销售额与流通费用率之间的关系就是一种相关关系。

(二)相关关系的特点1、相关关系表现为数量相互依存关系。

2、相关关系在数量上表现为非确定性的相互依存关系。

二、相关关系的种类1、相关关系按变量的多少,可分为单相关和复相关2、相关关系从表现形态上划分,可分为直线相关和曲线相关3、相关关系从变动方向上划分,可分为正相关和负相关4、按相关的密切程度分,可分为完全相关、不完全相关和不相关三、相关分析的内容相关分析是对客观社会经济现象间存在的相关关系进行分析研究的一种统计方法。

其目的在于对现象间所存在的依存关系及其所表现出的规律性进行数量上的推断和认识,以便为回归分析提供依据。

相关分析的内容和程序是:(1)判别现象间有无相关关系(2)判定相关关系的表现形态和密切程度第二节相关关系的判断与分析一、相关关系的一般判断(一)定性分析对现象进行定性分析,就是根据现象之间的本质联系和质的规定性,运用理论知识、专业知识、实际经验来进行判断和分析。

应用技术回归分析第九章部分完整答案

应用技术回归分析第九章部分完整答案

第9章 非线性回归9.1 在非线性回归线性化时,对因变量作变换应注意什么问题?答:在对非线性回归模型线性化时,对因变量作变换时不仅要注意回归函数的形式, 还要注意误差项的形式。

如:(1) 乘性误差项,模型形式为e y AK L αβε=, (2) 加性误差项,模型形式为y AK L αβε=+。

对乘法误差项模型(1)可通过两边取对数转化成线性模型,(2)不能线性化。

一般总是假定非线性模型误差项的形式就是能够使回归模型线性化的形式,为了方便通常省去误差项,仅考虑回归函数的形式。

9.2为了研究生产率与废料率之间的关系,记录了如表9.14所示的数据,请画出散点图,根据散点图的趋势拟合适当的回归模型。

表9.14生产率x (单位/周) 1000 2000 3000 3500 4000 4500 5000 废品率y (%)5.26.56.88.110.2 10.3 13.0解:先画出散点图如下图:5000.004000.003000.002000.001000.00x12.0010.008.006.00y从散点图大致可以判断出x 和y 之间呈抛物线或指数曲线,由此采用二次方程式和指数函数进行曲线回归。

(1)二次曲线 SPSS 输出结果如下:Mode l Sum mary.981.962.942.651R R SquareAdjusted R SquareStd. E rror of the E stim ateThe independent variable is x.ANOVA42.571221.28650.160.0011.6974.42444.2696Regression Residual TotalSum of Squares dfMean SquareF Sig.The independent variable is x.Coe fficients-.001.001-.449-.891.4234.47E -007.0001.4172.812.0485.843 1.3244.414.012x x ** 2(Constant)B Std. E rror Unstandardized Coefficients BetaStandardizedCoefficientstSig.从上表可以得到回归方程为:72ˆ 5.8430.087 4.4710yx x -=-+⨯ 由x 的系数检验P 值大于0.05,得到x 的系数未通过显著性检验。

第九章 变量间的相关关系统计案例

第九章   变量间的相关关系统计案例

返回
(2)∵ xiyi=3 245, x =25, y =15.43, x2=5 075,7( x )2=4 375,7x y=2 695 i
i= 1 i= 1
7
7
--
y xiyi-7 x ·
i= 1
7
^ ∴b =
≈0.79,
xi2-7 x 2
i= 1
7
^= y -b x =-4.32,∴回归直线方程是y =0.79x-4.32. ^ a (3)进店人数80人时,商品销售的件数y=0.79×80-4.32≈59件.
^ B.y =2x+100 ^ D.y =2x-100
^ 解析:B、D为正相关,C中y 值恒为负,不符合题意.
答案: A
返回
2.两个变量y与x的回归模型中,分别选择了4个不同模
型,它们的相关指数R2如下,其中拟合效果最好的 模型是 A.模型1的相关指数R2为0.98 B.模型2的相关指数R2为0.80 C.模型3的相关指数R2为0.50 D.模型4的相关指数R2为0.25 解析:相关指数R2越大拟合效果越好. ( )
B.有99%以上的把握认为“爱好该项运动与性别无关”
C.在犯错误的概率不超过0.1%的前提下,认为“爱好该 项运动与性别有关” D.在犯错误的概率不超过0.1%的前提下,认为“爱好该 项运动与性别无关”
返回
[自主解答]
根据独立性检验的定义,由K2≈7.8>6.635
可知我们有99%以上的把握认为“爱好该项运动与性别
^= a
^ y -b x .
n
^ ^ Q= yi-b xi-a 2 的最小值而得到回归直线的方 3.通过求
i= 1
法,即求回归直线,使得样本数据的点到它的距离的平 方和最小,这一方法叫做最小二乘法.

应用统计学(第九章 协方差分析)

应用统计学(第九章 协方差分析)
➢ 均积与均方具有相似的形式,也有相似的性质: 一个变量的总平方和与自由度可按变异来源进行剖分,
从而求得相应的均方; 两个变量的总乘积和与自由度也可按变异来源进行剖分
而获得相应的均积; 把两个变量的总乘积和与自由度按变异来源进行剖分并
获得获得相应均积的方法称为协方差分析。
在随机模型的方差分析中,根据均方MS和期望均方的关 系,可以得到不同变异来源的方差组分的估计值;
b* SP / SP
e
ex
回归关系的显著性可用F检验或t检验,这时误差项目回
归自由度dfeU=1,回归平方和:
U SS b*SP SP2 / SP
e
ey
e
e
ex
误差项离回归平方和:
Q SS U SS SP2 / SS
e
ey
Байду номын сангаасey
ey
e
ex
离回归自由度:
df df df k(n 1) 1
矫正平均数的计算
yi.(xx..) yi . by / x ( xi . x..)
矫正平均数的多重比较
LSD0.05=0.8769, LSD0.01 =1.1718 食欲添加剂配方1、2、3号与对照比较, 其矫正50 日 龄平均重间均存在极显著的差异,配方1、2、3号的矫正50 日龄平均重均极显著高于对照。
回归关系的显著性检验:
变异来源 df 误 差回 归 1 误差离回归 43 误 差 总 和 44
SS 47.49 37.59 85.08
MS 47.49 0.87
F 54.32**
F0.01 7.255
F检验表明,误差项回归关系极显著,表明哺乳仔猪 50 日龄重与初生重间存在极显著的线性回归关系

方差分析与回归分析习题答案精修订

方差分析与回归分析习题答案精修订

方差分析与回归分析习题答案SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第九章 方差分析与回归分析习题参考答案1. 为研究不同品种对某种果树产量的影响,进行试验,得试验结果(产量)如下表,试分析果树品种对产量是否有显着影响.(0.05(2,9) 4.26F =,0.01(2,9)8.02F =)解:r=3,12444n n 321=++=++=n n ,T=120 ,12001212022===n T C 计算统计值?7228.53,38A A A e e SS f F SS f ==≈……方差分析表结论:由于0.018.53(2,9)8.02,A F F ≈>=故果树品种对产量有特别显着影响.2.2700=10.523.56=≈结论: 由以上方差分析知,进器对火箭的射程有特别显着影响;燃料对火箭的射程有显着影响. 3.为了研究某商品的需求量Y 与价格x 之间的关系,收集到下列10对数据:2231,58,147,112,410.5,i i i i i i x y x y x y =====∑∑∑∑∑(1)求需求量Y 与价格x 之间的线性回归方程; (2)计算样本相关系数;(3)用F 检验法作线性回归关系显着性检验. 解:引入记号10, 3.1,5.8n x y ===∴需求量Y 与价格x 之间的线性回归方程为(2)样本相关系数32.80.955634.3248l r-==≈≈- 在0H 成立的条件下,取统计量(2)~(1,2)Ren S FF n S -=-计算统计值22(32.8)15.967.66,74.167.66 6.44R xy xx e yy R S l l S l S ==-≈=-≈-=故需求量Y 与价格x 之间的线性回归关系特别显着.4. 随机调查10个城市居民的家庭平均收入(x)与电器用电支出(y)情况得数据(单位:千元)如下:(1) 求电器用电支出y 与家庭平均收入x 之间的线性回归方程; (2) 计算样本相关系数; (3) 作线性回归关系显着性检验;(4) 若线性回归关系显着,求x =25时, y 的置信度为的预测区间. 解:引入记号10,27,1.9n x y ===∴电器用电支出y 与家庭平均收入x 之间的线性回归方程为(2)样本相关系数 0.9845l r==≈在0H 成立的条件下,取统计量(2)~(1,2)Rn S FF n S -=-e计算统计值2243.6354 5.37,5.54 5.370.17xy xx yy s l l s l s ==≈=-≈-=R e R故家庭电器用电支出y 与家庭平均收入x 之间的线性回归关系特别显着. 相关系数检验法 01:0;:0H R H R =≠故家庭电器用电支出y 与家庭平均收入x 之间的线性回归关系特别显着. (4) 因为0xx =处,0y 的置信度为1α-的预测区间为其中00.025垐 1.42640.123225 1.6536,(8) 2.31,0.1458y t σ=-+⨯====代入计算得当x =25时, y 的置信度为的预测区间为。

第九章 回归分析(一元线性回归)(1)

第九章 回归分析(一元线性回归)(1)
我们先看一个实例 为研究温度对某个化学过程的生产量的影响, 收集到如下数据(规范化形式):
将表中各对数据描在坐标平面上得图
数 据 和 拟 合 直 线
这样的图称为观测数据的散点图。 从图上可以看出,随着温度x的升高, 某化学过程的生产量y的平均值也在增加, 它们大致成一直线关系,但各点不完全在一 条直线上,这是由于y还受到其它一些随机 因素的影响。
温度 xi

为了研究某一化学反应过程中温度 x 对产
品得率 Y 的影响. 测得数据如下:
C 100 110 120 130 140 150 160 170 180 190
45 51 54 61 66 70 74 78 85 89
得率 yi %
为了研究这些数据所蕴藏的规律性, 将温度 x i 作 为横坐标,得率 y i 作为纵坐标, 在 xoy 坐标系中作 散点图 从图易见, 虽然这些点是散乱的, 但大体上散布在 某条直线附近, 即该化学反应过程中温度与产品
回归分析正是研究预报变量之变动对响 应变量之变动的影响程度,其目的在于根据 已知预报变量的变化来估计或预测响应变量 的变化情况。
“回归(regression)”名称的由
来:
回归名称的由来要归功于英国统计学F.高尔顿 (F.Galton:1822~1911),他把这种统计分析方法 应用于研究生物学的遗传问题,指出生物后代有回 复或回归到其上代原有特性的倾向。高尔顿和他的 学生、现代统计学的奠基者之一K.皮尔逊 (K.Pearson:1856~1936)在研究父母身高与其 子女身高的遗传问题时,在观察了1078对夫妇后, 以每对夫妇的平均身高作为x,取他们的一个成年儿 子的身高为y,将结果绘成散点图后发现成一条直线。 计算出回归方程为

第9章 相关分析与一元回归分析

第9章 相关分析与一元回归分析

郑州轻工业学院数学与信息科学系第九章:相关分析与一元回归分析概率统计教研组变量之间的关系可以分为函数关系和相关关系两类,函数关系表示变量间确定的对应关系,而相关关系则是变量间的某种非确定的依赖关系.相关分析主要是研究随机变量间相关关系的形式和程度,在相关关系的讨论中,两个变量的地位是同等的,所使用的测度工具是相关系数,而回归分析则侧重考察变量之间的数量伴随关系,并通过一定的数学表达式将这种数量关系描述出来,用于解决预测和控制等实际问题.本章主要学习相关分析和一元回归分析的有关概念、理论和方法.●【回归名称的来历】―回归”这一词最早出现在1885年,英国生物学家兼统计学家——弗朗西斯⋅高尔顿(Francis Galton )在研究遗传现象时引进了这一名词.他研究分析了孩子和父母身高关系后发现:虽然高个子的父母会有高个子的后代,但后代的增高并不与父母的增高等量.他称这一现象为“向平常高度的回归”.尔后,他的朋友麦尔逊等人搜集了上千个家庭成员的身高数据,分析出儿子的平均身高和父亲的身高x 大致为如下关系:(英寸) 93.33516.0ˆ+=y●【回归名称的来历】这表明:(1)父亲身高增加1英寸,儿子的身高平均增加0.516英寸.(2)高个子父辈有生高个子儿子的趋势,但儿子的平均身高要比于父辈低一些.如x =80,那么低于父辈的平均身高.(3)低个子父辈的儿子们虽为低个子,但其平均身高要比父辈高一些.如x =80,那么高于父辈的平均身高,01.75ˆ=y,01.75ˆ=y●【回归名称的来历】可见儿子的高度趋向于“回归”到平均值而不是更极端,这就是“回归”一词的最初含义.诚然,如今对回归这一概念的理解并不是高尔顿的原意,但这一名词却一直沿用下来,成为数理统计中最常用的概念之一.回归分析的思想早已渗透到数理统计学科的其他分支,随着计算机的发展和各种统计软件的出现,回归分析的应用越来越广泛.主要内容§9.1相关分析§9.2回归分析在大量的实际问题中,随机变量之间虽有某种关系,但这种关系很难找到一种精确的表示方法来描述.例如,人的身高与体重之间有一定的关系,知道一个人的身高可以大致估计出他的体重,但并不能算出体重的精确值.其原因在于人有较大的个体差异,因而身高和体重的关系,是既密切但又不能完全确定的关系.随机变量间类似的这种关系在大自然和社会中屡见不鲜.例如,农作物产量与施肥量的关系,商业活动中销售量与广告投入的关系,人的年龄与血压的关系,每种股票的收益与整个市场收益的关系,家庭收入与支出的关系等等这种大量存在于随机变量间既互相联系,但又不是完全确定的关系,称为相关关系.从数量的角度去研究这种关系,是数理统计的一个任务.这包括通过观察和试验数据去判断随机变量之间有无关系,对其关系大小作出数量上的估计,我们把这种统计分析方法称为相关分析.相关分析通常包括考察随机变量观测数据的散点图、计算样本相关系数以及对总体相关系数的显著性检验等内容.●9.1.1散点图散点图是描述变量之间关系的一种直观方法.我们用坐标的横轴代表自变量X ,纵轴代表因变量Y ,每组观测数据(x i ,y i )在坐标系中用一个点表示,由这些点形成的散点图描述了两个变量之间的大致关系,从中可以直观地看出变量之间的关系形态及关系强度.图9-1 不同形态的散点图(a)(b)(c)(d)●9.1.1散点图图9-1 不同形态的散点图从散点图可以看出,变量间相关关系的表现形态大体上可分为线性相关、非线性相关、不相关等几种.就两个变量而言,如果变量之间的关系近似地表现为一条直线,则称为线性相关,如图9-1(a)和(b);(a)(b)(c)(d)●9.1.1散点图图9-1 不同形态的散点图如果变量之间的关系近似地表现为一条曲线,则称为非线性相关或曲线相关;如图9-1(c);如果两个变量的观测点很分散,无任何规律,则表示变量之间没有相关关系,如图9-1(d).(a)(b)(c)(d)●9.1.1散点图图9-1 不同形态的散点图在线性相关中,若两个变量的变动方向相同,一个变量的数值增加,另一个变量的数值也随之增加,或一个变量的数值减少,另一个变量的数值也随之减少,则称为正相关,如图9-1(a);(a)(b)(c)(d)●9.1.1散点图图9-1 不同形态的散点图若两个变量的变动方向相反,一个变量的数值增加,另一个变量的数值随之减少,或一个变量的数值减少,另一个变量的数值随之增加,则称为负相关,如图9-1(b).(a)(b)(c)(d)●9.1.1散点图通过散点图可以判断两个变量之间有无相关关系,并对变量间的关系形态做出大致的描述,但散点图不能准确反映变量之间的关系密切程度.因此,为准确度量两个变量之间的关系密切程度,需要计算相关系数.●9.1.2相关系数相关系数是对两个随机变量之间线性关系密切程度的度量.若相关系数是根据两个变量全部数据计算的,称为总体相关系数.设X ,Y 为两个随机变量,由定义4.5知,当D (X )D (Y )≠0时,总体相关系数的计算公式为:其中Cov (X ,Y )为变量X 和Y 的协方差,D (X )和D (Y )分别为X 和Y 的方差.,),(Cov DY DX Y X XY =ρ●9.1.2相关系数设(x i ,y i ),i =1,2,…,n ,为(X ,Y )的样本,记,11∑==n i i x n x ,11∑==ni i y n y ,)(11122∑=--=n i i x x x n s ∑=--=ni i y y y n s 122)(11●9.1.2相关系数【定义9.1】若s x s y ≠0,称为{x i }和{y i }的相关系数(也可简称为样本相关系数).r xy 常简记为r .r xy 的性质:(1)|r xy |≤1(2)|r xy |=1时,(x i ,y i ),i =1,2,…,n 在一条直线上.∑∑==----==n i i in i i i y x xyxy y y x xy y x x s s s r 1221)()())((●9.1.2相关系数【定义9.2】当r>0时,称{x i}和{y i}正相关,当r xy<0时,xy}和{y i}负相关,当r xy=0时,称{x i}和{y i}不相关称{xi实际应用中,为了说明{x}和{y i}的相关程度,通常将相i关程度分为以下几种情况:当|r|≥0.8时,可视{x i}与{y i}为高度线性相关;xy0.5≤|r|<0.8时,可视{x i}与{y i}为中度线性相关;xy0.3≤|r|<0.5时,视{x i}与{y i}为低度线性相关;xy当|r|<0.3时,说明{x i}与{y i}的线性相关程度极弱.xy●9.1.2相关系数说明:(1)有时个别极端数据可能影响样本相关系数,应用中要多加注意.(2)r xy=0,只能说明{x i}与{y i}之间不存在线性关系,并不能说明{xi}与{y i}之间无其他关系.(3)一般情况下,总体相关系数ρXY是未知的,通常是将样本相关系数rxy 作为ρXY的估计值,于是常用样本相关系数推断两变量间的相关关系.这一点要和相关系数的显著性检验结合起来应用.9.1.2相关系数【例9-1】用来评价商业中心经营好坏的一个综合指标是单位面积的营业额,它是单位时间内(通常为一年)的营业额与经营面积的比值.对单位面积营业额的影响因素的指标有单位小时车流量、日人流量、居民年平均消费额、消费者对商场的环境、设施及商品的丰富程度的满意度评分.这几个指标中车流量和人流量是通过同时对几个商业中心进行实地观测而得到的.而居民年平均消费额、消费者对商场的环境、设施及商品的丰富程度的满意度评分是通过随机采访顾客而得到的平均值数据.9.1.2相关系数【例9-1】某市随机抽取20个商业中心有关数据图9-2 商业中心经营状况指标与数据9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:设各指标(变量)的变量名分别为:单位面积营业额:y,每小时机动车流量:x1,日人流量:x2,居民年消费额:x3,对商场环境的满意度:x4,对商场设施的满意度:x5,为商场商品丰富程度满意度:x6.(1)利用Excel分别作出y与x1,x2,…,x6的散点图.●9.1.2相关系数【例9-1】解:图9-3 y与x1,x2,…,x6的散点图可以看到,各散点图的散点分布和一条直线相比均有一定差别.●9.1.2相关系数【例9-1】解:图9-3 y与x1,x2,…,x6的散点图其中单位面积营业额(y)与日人流量(x2)、居民年消费额(x3)的线性关系相对较明显一些.●9.1.2相关系数【例9-1】解:图9-3 y与x1,x2,…,x6的散点图y与商场商品丰富程度满意度(x6)有一定的线性关系,而y与其余几个变量的线性关系较弱.●9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:(1)利用Excel分别作出y与x1,x2,…,x6的散点图.实验操作:编号y x1x2x3x4x5x61 2.50.51 3.9 1.947962 3.20.26 4.24 2.867463 2.50.72 4.54 1.618874 3.4 1.23 6.98 1.92610105 1.80.69 4.210.7184760.90.36 2.910.625657 1.70.13 1.43 1.884928 2.60.58 4.14 1.9971069 2.10.81 4.660.9685710 1.90.37 2.15 1.8749311 3.4 1.26 6.47 2.110101012 3.90.12 5.33 3.475671310.23 2.530.5652414 1.70.56 3.780.7774615 2.6 1.04 5.53 1.3107916 2.7 1.18 5.98 1.2887917 1.40.61 1.27 1.4867118 3.2 1.05 5.77 2.1671099.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.,x2,…,x6的相关系数解:(2)利用Excel分别计算y与x1A B C D E F G22y与x1y与x2y与x3y与x4y与x5y与x6230.41270.790480.794330.341240.450200.69749=CORREL($B2:$B21,C2:C21)计算准备9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:(2)利用Excel分别计算y与x,x2,…,x6的相关系数1编号y x1x2x3x4x5x61 2.50.51 3.9 1.947962 3.20.26 4.24 2.867463 2.50.72 4.54 1.618874 3.4 1.23 6.98 1.92610105 1.80.69 4.210.7184760.90.36 2.910.625657 1.70.13 1.43 1.884928 2.60.58 4.14 1.9971069 2.10.81 4.660.9685710 1.90.37 2.15 1.8749311 3.4 1.26 6.47 2.110101012 3.90.12 5.33 3.475671310.23 2.530.5652414 1.70.56 3.780.7774615 2.6 1.04 5.53 1.3107916 2.7 1.18 5.98 1.2887917 1.40.61 1.27 1.4867118 3.2 1.05 5.77 2.16710919 2.9 1.06 5.71 1.7469920 2.50.58 4.11 1.85796y与x1y与x2y与x3y与x4y与x5y与x60.410.790.790.340.450.7计算结果●9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:(2)利用Excel分别计算y与x1,x2,…,x6的相关系数从相关系数的取值来看,单位面积营业额(y)与日人流量(x2)、居民年消费额(x3)接近高度相关;A B C D E F G 22y与x1y与x2y与x3y与x4y与x5y与x6 230.41280.79050.79430.34120.45020.69749●9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:(2)利用Excel分别计算y与x1,x2,…,x6的相关系数y与商场商品丰富程度满意度(x6)则属于中度相关;A B C D E F G 22y与x1y与x2y与x3y与x4y与x5y与x6 230.41280.79050.79430.34120.45020.69749●9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:(2)利用Excel分别计算y与x1,x2,…,x6的相关系数y与每小时机动车流量(x1)、对商场环境的满意度(x4)、对商场设施的满意度(x5)为低度相关;A B C D E F G22y与x1y与x2y与x3y与x4y与x5y与x6 230.41280.79050.79430.34120.45020.69749●9.1.3相关性检验设(xi ,yi),i=1,2,…,n,为(X,Y)的样本,相关性检验也就是检验总体X,Y的相关系数是否为0,通常采用费歇尔(Fisher)提出的t分布检验,该检验可以用于小样本,也可以用于大样本.检验的具体步骤如下:1)提出假设:假设样本是从不相关的两个总体中抽出的,即H0:ρXY= 0,H1:ρXY≠ 0如果否定了H就认为X,Y是相关的.●9.1.3相关性检验2)可以证明,当H 0成立时,统计量 因为H 0立时,|r xy |应该很小,从而T 的观测值应该取值较小,于是,在显著水平α下H 0的拒绝域是若T 的观测值记为t 0,衡量观测结果极端性的P 值:P = P {| T | ≥ | t 0|} = 2P {T ≥ | t 0 |})2(~122---=n t r n r T xyxy212xyxyr n r t --=)},2(|{|2/-≥n t t α●9.1.3相关性检验【例9-2】利用例9-1的数据,在显著水平 =0.05下,检验单位面积营业额与各变量之间的相关性.解:在例9.1的Excel工作表中继续如下操作:A B C D E F G22y与x1y与x2y与x3y与x4y与x5y与x623r=0.41270.790480.794330.341240.450200.69749 =B23*SQRT(20-2)/SQRT(1-B23^2)24t= 1.9224 5.4756 5.5519 1.5402 2.1391 4.129625P=0.0705 3.36E-05 2.86E-050.14090.46390.0006 =TDIST(B24,20-2,2)计算准备●9.1.3相关性检验【例9-2】利用例9-1的数据,在显著水平 =0.05下,检验单位面积营业额与各变量之间的相关性.解:在例9.1的Excel工作表中继续如下操作:编号y与x1x1x2x3x4x5x61 2.50.51 3.9 1.947962 3.20.26 4.24 2.867463 2.50.72 4.54 1.618874 3.4 1.23 6.98 1.92610105 1.80.69 4.210.7184760.90.36 2.910.625657 1.70.13 1.43 1.884928 2.60.58 4.14 1.9971069 2.10.81 4.660.9685710 1.90.37 2.15 1.8749311 3.4 1.26 6.47 2.110101012 3.90.12 5.33 3.475671310.23 2.530.5652414 1.70.56 3.780.7774615 2.6 1.04 5.53 1.3107916 2.7 1.18 5.98 1.2887917 1.40.61 1.27 1.4867118 3.2 1.05 5.77 2.16710919 2.9 1.06 5.71 1.7469920 2.50.58 4.11 1.85796y与x1y与x2y与x3y与x4y与x5y与x6r=0.412710.790480.794330.341240.45020.69749t= 1.92235 5.47556 5.54751 1.54023 2.13905 4.12956P=0.07053 3.4E-05 2.9E-050.14090.046390.00063计算结果●9.1.3相关性检验【例9-2】利用例9-1的数据,在显著水平 =0.05下,检验单位面积营业额与各变量之间的相关性.解:在例9.1的Excel工作表中继续如下操作:检验结果来看,单位面积营业额(y)与日人流量(x2)、居民年消费额(x3)、商场商品的丰富程度满意度(x6)、A B C D E F G 22y与x1y与x2y与x3y与x4y与x5y与x6 23r=0.41270.790480.794330.341240.450200.69749 24t= 1.9224 5.4756 5.5519 1.5402 2.1391 4.1296 25P=0.0705 3.36E-05 2.86E-050.14090.46390.0006●9.1.3相关性检验【例9-2】利用例9-1的数据,在显著水平α=0.05下,检验单位面积营业额与各变量之间的相关性. 解:在例9.1的Excel 工作表中继续如下操作:对商场设施的满意度(x 5)的相关系数显著不为0(P <α=0.05),即其相关性显著;A B C D E F G 22y 与x1y 与x2y 与x3y 与x4y 与x5y 与x623r =0.41270.790480.794330.341240.450200.6974924t = 1.9224 5.4756 5.5519 1.5402 2.1391 4.129625P =0.07053.36E-052.86E-050.14090.46390.0006●9.1.3相关性检验【例9-2】利用例9-1的数据,在显著水平 =0.05下,检验单位面积营业额与各变量之间的相关性. 解:在例9.1的Excel 工作表中继续如下操作:而不能拒绝y 与每小时机动车流量(x 1)、对商场环境的满意度(x 4)相关系数为0的假设(P >0.05),即其相关性不显著.A B C D E F G 22y 与x1y 与x2y 与x3y 与x4y 与x5y 与x623r =0.41270.790480.794330.341240.450200.6974924t = 1.9224 5.4756 5.5519 1.5402 2.1391 4.129625P =0.07053.36E-052.86E-050.14090.46390.0006回归分析是针对两个或两个以上具有相关关系的变量,研究它们的数量伴随关系,并通过一定的数学表达式将这种关系描述出来,建立回归模型.回归分析中总假设因变量是随机变量,自变量可以是随机变量也可以是一般变量(可以控制或精确测量的变量),我们只讨论自变量为一般变量的情况.为简单起见,以后的所有随机变量及其观测值均用小写字母表示.如果设随机变量y是因变量,x1,x2,…,xn是影响y的自变量,回归模型的一般形式为:y= f (x1,x2,…,x n) + ε其中ε为均值为0的正态随机变量,它表示除x1,x2,…,x n之外的随机因素对y的影响.在回归分析中,当只有一个自变量时,称为一元回归分析;当自变量有两个或两个以上时,称为多元回归分析;f是线性函数时,称线性回归分析,所建回归模型称为线性回归模型;f是非线性函数时,称非线性回归分析,所建回归模型称为非线性回归模型.线性回归模型的一般形式为:其中,β0和βi (i =1,2,…,k )是未知常数,称为回归系数,实际中常假定ε~N (0,σ2).一元线性回归模型的一般形式为:由ε~N (0,σ2)的假定,容易推出y ~N (β0+β1x ,σ2). 本章主要讨论一元线性回归分析和可化为线性回归的一元非线性回归分析.它们是反映两个变量之间关系的简单模型,但从中可了解到回归分析的基本思想、方法和应用,22110εββββ+++++=k k x x x y ,110εββ++=x y ),0(~2σεN●9.2.1一元线性回归分析让我们用一个例子来说明如何进行一元线性回归分析. 为了研究合金钢的强度和合金中含碳量的关系,专业人员收集了12组数据如表9-1所示.表9-1 合金钢的强度与合金中含碳量的关系序号123456789101112含碳量x(%)0.100.110.120.130.140.150.160.170.180.200.210.23合金钢的强度y(107Pa)42.043.045.045.045.047.549.053.050.055.055.060.0 试根据这些数据进行合金钢的强度y(单位:107Pa)与合金中含碳量x(%)之间的回归分析.●9.2.1一元线性回归分析为了研究这些数据中所蕴含的规律性,首先在Excel中由12对数据作出散点图,如图9-7所示.图9-7 画散点图从图看到,数据点大致落在一条直线附近,这告诉我们变量x和y之间大致可看作线性关系.●9.2.1一元线性回归分析为了研究这些数据中所蕴含的规律性,首先在Excel中由12对数据作出散点图,如图9-7所示.图9-7 画散点图从图中还看到,这些点又不完全在一条直线上,这表明x和y的关系并没有确切到给定x就可以唯一确定y的程度.●9.2.1一元线性回归分析为了研究这些数据中所蕴含的规律性,首先在Excel中由12对数据作出散点图,如图9-7所示.图9-7 画散点图事实上,还有许多其它随机因素对y产生影响.●9.2.1一元线性回归分析如果只研究x 和y 的关系,可考虑建立一元线性回归模型:(9.1)其中ε是除含碳量x 外其它诸多随机因素对合金钢强度y 的综合影响,假定它是零均值的正态随机变量. 由(9.1)式,不难算得y 的数学期望:(9.2)该式表示当x 已知时,可以精确地算出E (y ).称方程(9.2)为y 关于x 的回归方程.,110εββ++=x y ),0(~2σεN x y E 10)(ββ+=●9.2.1一元线性回归分析现对变量x ,y 进行了n 次独立观察,得样本(x i ,y i )(i =1,2,…,n ).据(9.1)式,此样本可由方程(9.3)来描述.这里εi 是第i 次观测时ε的值,是不能观测到的 由于各次观测独立,εi 看作是相互独立与ε同分布的随机变量.即有y i = β0+ β1x i + εi , (9.4)εi 相互独立,且εi ~N (0,σ2),i =1,2,…,ni i i x y εββ++=10●9.2.1一元线性回归分析y i = β0+ β1x i + εi , (9.4)εi 相互独立,且εi ~N (0,σ2),i =1,2,…,n(9.4)给出了样本(x 1,y 1),(x 2,y 2),…,(x n ,y n )的概率性质.它是对理论模型进行统计推断的依据,也常称(9.4)式为一元线性回归模型.要建立一元线性回归模型,首先利用n 组独立观测数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )来估计β0和β1,以估计值和分别代替(9.2)式中的β0和β1,得到(9.5)x y 10ˆˆˆββ+=●9.2.1一元线性回归分析(9.5) 由于此方程的建立有赖于通过观察或试验积累的数据,所以称其为经验回归方程(或经验公式),经验回归方程也简称为回归方程,其图形称为回归直线.当给定x= x0时,称为拟合值(预测值或回归值).那么,如何利用n组独立观察数据来估计β0和β1呢?一般常用最小二乘估计法和最大似然估计法,下面只介绍β和β1的最小二乘估计法.xy1ˆˆˆββ+=●9.2.1一元线性回归分析1.参数β0和β1的最小二乘估计设对模型(9.1)中的变量x ,y 进行了n 次独立观察,得样本(x i ,y i )(i =1,2,…,n ).由(9.3)式知随机误差εi =y i –(β0+β1x i ).最小二乘法的思想是:由x i ,y i 估计β0,β1时,使误差平方和达到最小的,分别作为β0,β1的估计,并称和为β0和β1的最小二乘估计.∑=+-=n i i i x y Q 121010)]([),(ββββ。

统计学第九章 相关与回归分析

统计学第九章  相关与回归分析

第九章相关与回归分析Ⅰ. 学习目的和要求本章所要学习的相关与回归分析是经济统计分析中最常重要的统计方法之一。

具体要求:1.掌握有关相关与回归分析的基本概念;2.掌握单相关系数的计算与检验的方法,理解标准的一元线性回归模型,能够对模型进行估计和检验并利用模型进行预测;3.理解标准的多元线性回归模型,掌握估计、检验的基本方法和预测的基本公式,理解复相关系数和偏相关系数及其与单相关系数的区别;4.了解常用的非线性函数的特点,掌握常用的非线性函数线性变换与估计方法,理解相关指数的意义;5.能够应用Excel软件进行相关与回归分析。

Ⅱ. 课程内容要点第一节相关与回归分析的基本概念一、函数关系与相关关系当一个或几个变量取一定的值时,另一个变量有确定值与之相对应,这种关系称为确定性的函数关系。

当一个或几个相互联系的变量取一定数值时,与之相对应的另一变量的值虽然不确定,但仍按某种规律在一定的范围内变化。

这种关系,称为具有不确定性的相关关系。

变量之间的函数关系和相关关系,在一定条件下是可以互相转化的。

116117二、相关关系的种类按相关的程度可分为完全相关、不完全相关和不相关。

按相关的方向可分为正相关和负相关。

按相关的形式可分为线性相关和非线性相关。

按所研究的变量多少可分为单相关、复相关和偏相关。

三、相关分析与回归分析相关分析是用一个指标来表明现象间相互依存关系的密切程度。

回归分析是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。

通过相关与回归分析虽然可以从数量上反映现象之间的联系形式及其密切程度,但是无法准确地判断现象内在联系的有无,也无法单独以此来确定何种现象为因,何种现象为果。

只有以实质性科学理论为指导,并结合实际经验进行分析研究,才能正确判断事物的内在联系和因果关系。

四、相关图相关图又称散点图。

它是以直角坐标系的横轴代表变量X ,纵轴代表变量Y,将两个变量间相对应的变量值用坐标点的形式描绘出来,用来反映两变量之间相关关系的图形。

第九章_最小二乘法与回归分析

第九章_最小二乘法与回归分析

第九章_最小二乘法与回归分析最小二乘法与回归分析是统计学中一种重要的方法,可以用于分析变量之间的关系以及进行预测。

本文将详细介绍最小二乘法和回归分析的概念、原理以及应用。

最小二乘法是一种用于估计参数的方法,它通过最小化观测值与估计值之间的误差平方和来确定最优参数。

这种方法可以用来建立变量之间的线性关系模型,并通过拟合观测数据来估计模型的参数。

最小二乘法的核心思想是找到最接近观测值的模型,并使观测值与模型之间的误差最小化。

回归分析是一种使用最小二乘法的统计方法,用于研究变量之间的关系。

它基于一组特征变量(自变量)与一个或多个目标变量(因变量)之间的观测值,来预测目标变量的值。

回归分析可以用于探索和建立变量之间的线性关系,然后使用这个关系来预测未来的观测值。

在回归分析中,最常用的模型是线性回归模型。

线性回归模型假设自变量和因变量之间存在线性关系,即因变量的值可以通过自变量的线性组合来表示。

该模型的形式可以表示为:Y=β0+β1X1+β2X2+...+βnXn+ε,其中Y是因变量,X1,X2,...,Xn是自变量,β0,β1,β2,...,βn是各个自变量的系数,ε是随机误差。

使用最小二乘法进行回归分析的步骤如下:1.收集观测数据:收集自变量和因变量的观测数据,构建数据集。

2.建立回归模型:基于观测数据,选择合适的自变量,并建立回归模型。

3.估计参数:使用最小二乘法估计回归模型中的参数,使得观测值与估计值之间的误差最小化。

4.检验模型:通过检验回归模型的显著性和拟合优度等指标来评估模型的质量。

5.使用模型:基于建立的回归模型,进行因变量的预测和推断分析。

回归分析在实践中有着广泛的应用。

它可以用于预测销售额、房价、股票价格等经济指标,也可以用于分析医学数据、社会科学数据等领域的问题。

回归分析可以帮助研究者理解变量之间的关系,找出影响因变量的关键因素,并进行相关的决策和策略制定。

总之,最小二乘法与回归分析是一种重要的统计方法,可以用于研究变量之间的关系以及进行预测。

第九章双变量相关与回归分析

第九章双变量相关与回归分析

X Y X X Y Y XY
n
二、直线回归中的统计推断

回归方程的假设检验:有方差分析和t检验方法。 总体回归系数β的可信区间 利用回归方程进行估计和预测
例题
SPSS操作分析步骤如下
1、建立数据文件
•建立两个变量: X变量:年龄,数值型 Y变量:尿肌酸含量,数值型
2、统计分析
(1)散点图的制作
graph scatter simple
通过散点图可看出两个变量间不具有直线趋势而是有曲线趋势, 可通过曲线拟合方法来刻画两变量间数量上的依存关系。
(2)曲线拟合的菜单操作
analyze
regression
Curve estimation主对话框


适用于两变量间关系为非直线形式,可以通过曲线拟 合方法来刻画两变量间数量上的依存关系。 毒理学动物试验中动物死亡率与给药剂量的关系、细 菌繁殖与培养时间的关系等情况。
例题
SPSS操作分析步骤如下
1、建立数据文件
•建立两个变量: X变量:住院天数,数值型 Y变量:预后指数,数值型
第六章 双变量相关与回归分析

例如:为了研究微量元素锰在胆固醇合成中的作用, 探讨大鼠肝脏中胆固醇含量和锰含量之间是否存在直 线关系?这种关系为随着锰含量的增加,胆固醇的含 量是增加还是减少呢?——直线相关问题
第一节 直线相关



直线相关:又称简单相关,是研究两个变量间线性关 系的一种常用统计方法。 直线相关分析的是两变量之间是否存在直线相关关系, 以及相关的方向和程度。直线相关系数又称Pearson相 关系数,使描述两变量线性相关关系程度和方向的统 计量。 作直线相关分析要求资料服从双变量正态分布。对于 不符合双变量正态分布的资料,不能直接计算Pearson 相关系数,可用非参数统计方法,即计算Kendall相关 系数或Spearman相关系数。

第九章 相关性系数

第九章 相关性系数

人均GDP和人均消费金额之间的相关系数为0.9938。
9-19
相关系数的性质 性质1(取值): 1. r 的取值范围是 [-1,1] 2. |r|=1,为完全相关
r =1,为完全正相关 r =-1,为完全负相关
3. 4. 5. 6.
r = 0,不存在线性相关关系 -1r<0,为负相关 0<r1,为正相关 |r|越趋于1表示关系越密切;|r|越趋于0表示关系 越不密切
3. 因变量与自变量之间的关系用一个线性方 程来表示
9-30
回归模型
(regression model)
1. 回答“变量之间是什么样的关系?” 2. 方程中运用
1 个数值型因变量(响应变量)
被预测的变量
1 个或多个数值型或分类型自变量 (解释变量)
用于预测的变量
3. 主要用于预测和估计
9-31
一元线性回归模型
9-5
函数关系
1. 是一一对应的确定关系 2. 变量 y 完全依赖于 x , 称 y 是 x 的函数,记为 y = f (x),其中 x 称为自 变量,y 称为因变量 y 3. 各观测点落在一条线上








x
9-6
函数关系
(几个例子)

某种商品的销售额y与销售量x之间的关系 可表示为 y = px (p 为单价)
atistics
第9章 相关与回归分析
9
通过本章的学习,我们应该知道: 1. 如何判别相关关系 2. 回归分析的基本假定 3. 一元线性回归分析的内容
9-4
第11章
学习目标
1. 2. 3. 4. 5. 6.
一元线性回归

应用回归分析教学大纲

应用回归分析教学大纲

遵义师范学院课程教学大纲应用回归分析教学大纲(试行)课程编号:280020 适用专业:统计学学时数:48 学分数: 2执笔人:黄建文审核人:系别:数学教研室:应用数学教研室编印日期:二〇一五年七月课程名称:应用回归分析课程编码:学分:2总学时:48课堂教学学时:16实践学时:32适用专业:统计学先修课程:高等数学、线性代数、概率论、数理统计一、课程的性质与目标:(一)该课程的性质《应用回归分析》课程是师范院校数学系统计学专业基础课程。

它是在学生掌握了一定的数学专业理论知识的基础上开设的。

本课程是学生掌握统计学的基本思想、理论和方法的主要课程,是培养学生熟练应用计算机软件处理统计数据的能力的基础课程.通过本课程的学习,了解统计知识在相关领域(如社会经济、生物、医学、信息管理、保险金融等)的应用,使学生成为具有综合应用能力的应用型人才。

(二)该课程的教学目标(1)从生活中的需要出发,并根据回归分析的内容和知识结构,把回归分析的一些基本问题分别组成若干专题,在内容上适当延伸和充实,在理论、观点和方法上予以提高。

(2)对各专题的教学,都要着重基本思维方法的培养和基本技能技巧的训练。

(3)结合学生生活实践,利用生活中的案例进行分析,培养学生的辩证唯物主义观点。

二、教学进程安排课外学习时数原则上按课堂教学时数1:1安排。

三、教学内容与要求第一章统计学基础【教学目标】教学重点:几种概率分布,参数估计,假设检验教学难点:参数估计,假设检验【教学内容和要求】分布;t分布;F分布;理解参数估计的方法及了解常见统计量;掌握2评价标准;掌握假设检验的思想和步骤。

【课外阅读资料】1. 周纪芗编著《回归分析》,华东师范大学出版社,2003.2. [美]著,王静龙等译《应用线性回归》,中国统计出版社,1998.3. 谢龙汉尚涛编著《SPSS统计分析与数据挖掘》,电子工业出版社,2012.【作业】无第二章回归分析概述【教学目标】教学重点:建立实际问题回归模型的过程教学难点:建立实际问题回归模型的过程【教学内容和要求】本章内容:回归分析的研究内容及建模过程;回归分析的应用及发展历史。

第九章【思考与练习】题与答案

第九章【思考与练习】题与答案

【思考与练习】一、判断题:1、正相关指的是两个变量之间的变动方向都是上升的。

()2、相关系数是测定变量之间相关密切程度的唯一方法。

()3、负相关指的就是两个变量变化趋势相反,一个上升而另一个下降。

()4、甲产品产量与单位成本的相关系数是-0.89。

乙产品单位成本与利润率的相关系数是-0.93。

因此,甲比乙的相关程度高。

()5、回归分析和相关分析一样,所分析的两个变量都一定是随机变量。

()6、相关系数r是在曲线相关条件下,说明两个现象之间相关关系密切程度的统计分析指标。

()7、回归分析中,对于没有明显因果关系的两个变量可以求得两个回归方程。

()8、估计标准误差指的就是实际值y与估计值y的平均误差程度。

()c9、一个回归方程只能作一种推算,即给出自变量的数值估计因变量的可能值。

()10、产量增加,则单位产品成本降低。

这种相关关系属于正相关。

()答案:1.×、2.×、3.√、4.×、5.×、6.×、7.√、8.×、9.√、10.×二、单项选择题:1、当自变量的数值确定后,因变量的数值也随之完全确定,这种关系属于()。

A.相关关系B.函数关系C.回归关系D.随机关系2、测定变量之间相关密切程度的代表性指标是()。

A.估计标准误差B.两个变量的协方差C.相关系数D.两个变量的标准差3、现象之间的相互关系可以归纳为两种类型,即()。

A.相关关系和函数关系 B.相关关系和因果关系C.相关关系和随机关系 D.函数关系和因果关系4、相关系数的取值范围是()。

A.0≤r≤1 B.-1<r<1 C.-1≤r≤1 D.-1≤r≤05、在价格不变的条件下,商品销售额和销售量之间存在着()。

A.不完全的依存关系 B.不完全的随机关系C.完全的随机关系D.完全的依存关系6、下列( )两个变量之间的相关程度高。

A.商品销售额和商品销售量的相关系数是0.9B.商品销售额和商业利润率的相关系数是0.84C.平均流通费用率与商业利润率的相关系数是-0.94D.商品销售价格与销售量的相关系数是-0.917、回归分析中的两个变量()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9章 非线性回归9.1 在非线性回归线性化时,对因变量作变换应注意什么问题?答:在对非线性回归模型线性化时,对因变量作变换时不仅要注意回归函数的形式, 还要注意误差项的形式。

如:(1) 乘性误差项,模型形式为e y AK L αβε=, (2) 加性误差项,模型形式为y AK L αβε=+对乘法误差项模型(1)可通过两边取对数转化成线性模型,(2)不能线性化。

一般总是假定非线性模型误差项的形式就是能够使回归模型线性化的形式,为了方便通常省去误差项,仅考虑回归函数的形式。

9.2为了研究生产率与废料率之间的关系,记录了如表9.14所示的数据,请画出散点图,根据散点图的趋势拟合适当的回归模型。

表9.14 生产率x (单位/周) 1000 2000 3000 3500 4000 4500 5000 废品率y (%) 5.2 6.5 6.8 8.1 10.2 10.3 13.0 解:先画出散点图如下图:从散点图大致可以判断出x 和y 之间呈抛物线或指数曲线,由此采用二次方程式和指数函数进行曲线回归。

(1)二次曲线SPSS 输出结果如下:从上表可以得到回归方程为:72ˆ 5.8430.087 4.4710yx x -=-+⨯ 由x 的系数检验P 值大于0.05,得到x 的系数未通过显著性检验。

由x 2的系数检验P 值小于0.05,得到x 2的系数通过了显著性检验。

(2)指数曲线从上表可以得到回归方程为:0.0002t ˆ 4.003ye = 由参数检验P 值≈0<0.05,得到回归方程的参数都非常显著。

从R2值,σ的估计值和模型检验统计量F值、t值及拟合图综合考虑,指数拟合效果更好一些。

9.3 已知变量x与y的样本数据如表9.15,画出散点图,试用αeβ/x来拟合回归模型,假设:(1)乘性误差项,模型形式为y=αeβ/x eε(2)加性误差项,模型形式为y=αeβ/x+ε。

表9.15序号x y 序号x y 序号x y1 4.20 0.086 6 3.20 0.150 11 2.20 0.3502 4.06 0.090 7 3.00 0.170 12 2.00 0.4403 3.80 0.100 8 2.80 0.190 13 1.80 0.6204 3.60 0.120 9 2.60 0.220 14 1.60 0.9405 3.40 0.130 10 2.40 0.240 15 1.40 1.620解:散点图:(1)乘性误差项,模型形式为y=αeβ/x eε线性化:lny=lnα+β/x +ε令y1=lny, a=lnα,x1=1/x .做y1与x1的线性回归,SPSS输出结果如下:从以上结果可以得到回归方程为:y1=-3.856+6.08x1F检验和t检验的P值≈0<0.05,得到回归方程及其参数都非常显著。

回代为原方程为:y=0.021e6.08/x(2)加性误差项,模型形式为y=αeβ/x+ε不能线性化,直接非线性拟合。

给初值α=0.021,β=6.08(线性化结果),NLS结果如下:从以上结果可以得到回归方程为:y=0.021e6.061/x根据R2≈1,参数的区间估计不包括零点且较短,可知回归方程拟合非常好,且其参数都显著。

9.4 Logistic 回归函数常用于拟合某种消费品的拥有率,表8.17(书上239页,此处略)是北京市每百户家庭平均拥有的照相机数,试针对以下两种情况拟合Logistic 回归函数。

(1)已知100u =,用线性化方法拟合,(2)u 未知,用非线性最小二乘法拟合。

根据经济学的意义知道,u 是拥有率的上限,初值可取100;b0>0,0<b1<1初值请读者自己选择。

解:(1),100u =时,的线性拟合。

对0111t y b b u =+函数线性化得到:11ln() 1.8510.264100y -=--0111ln()ln ln 100b t b y -=+,令311ln()100y y =-,作3y 关于t 的线性回归分析,SPSS 输出结果如下:由表Model Summary 得到,0.994R =趋于1,回归方程的拟合优度好,由表ANOVA 得到回归方程显著,由Coefficients 表得到,回归系数都是显著的,得到方程:11ln() 1.8510.264100y -=--,进一步计算得到:00.157b =,10.768b =(100u =)回代变量得到最终方程形式为: 1ˆ0.010.1570.768t y =+⨯ 最后看拟合效果,通过sequence 画图:由图可知回归效果比较令人满意。

(2)非线性最小二乘拟合,取初值100u =,00.157b =,10.768b =: 一共循环迭代8次,得到回归分析结果为:0.995R =>0.994,得到回归效果比线性拟合要好,且:91.062u =,00.211b =,10.727b =,回归方程为:110.211*0.727 91.062ty=+。

最后看拟合效果,由sequence画图:得到回归效果很好,而且较优于线性回归。

9.5表9.17(书上233页,此处略)数据中GDP 和投资额K 都是用定基居民消费价格指数(CPI )缩减后的,以1978年的价格指数为100。

(1) 用线性化乘性误差项模型拟合C-D 生产函数;(2) 用非线性最小二乘拟合加性误差项模型的C-D 生产函数;(3) 对线性化检验自相关,如果存在自相关则用自回归方法改进;(4) 对线性化检验多重共线性,如果存在多重共线性则用岭回归方法改进; 解:(1)对乘法误差项模型可通过两边取对数转化成线性模型。

ln y =ln A + α ln K + β ln L令y ′=ln y ,β0=ln A ,x 1=ln K ,x 2=ln L ,y ′=β0+ α x 1+ βx 2+ ε SPSS 输出结果如下:模型综述表 从模型综述表中可以看到,调整后的为0.993,说明C-D 生产函数拟合效果很好,也说明GDP 的增长是一个指数模型。

方差分析表从方差分析表中可以看到,F 值很大,P 值为零,说明模型通过了检验,这与上述分析结果一致。

系数表根据系数表显示,回归方程为:尽管模型通过了检验,但是也可以看到,常数项没有通过检验,但在这个模型里,当lnK 和lnL 都为零时,lnY 为-1.785,即当K 和L 都为1时,GDP 为0.168,也就是说当投入资本和劳动力都为1个单位时,GDP 将增加0.168个单位,这种解释在我们的承受范围内,可以认为模型可以用。

最终方程结果为:y=0.618K 0.801 L 0.404(2) 用非线性最小二乘法拟合加性误差项模型的C-D 生产函数;上述假设误差是乘性的,现假设误差是加性的情况下使用非线性最小二乘法估计。

初值采用(1)中参数的结果,SPSS 输出结果如下:参数估计表SPSS 经过多步迭代,最终得到的稳定参数值为P=0.407,a=0.868,b=0.270y=0.407K 0.868 L 0.270为了比较这两个方程,我们观察下面两个图线性回归估计拟合曲线图非线性最小二乘估计拟合曲线图我们知道,乘性误差相当于是异方差的,做了对数变换后,乘性误差转为加性误差,这种情况下认为方差是相等的,那么第一种情况(对数变换线性化)就大大低估了GDP数值大的项,因此,它对GDP前期拟合的很好,而在后期偏差就变大了,同时也会受到自变量之间的自相关和多重共线性的综合影响;非线性最小二乘法完全依赖数据,如果自变量之间存在比较严重的异方差、自相关以及多重共线性,将对拟合结果造成很大的影响。

因此,不排除异方差、自相关以及多重共线性的存在。

(3)对线性化回归模型采用DW检验自相关,结果如下:模型综述表DW=0.715<1.27,落在自相关的区间,所以采用迭代法改进将得到的数据再取对数,而后用普通最小二乘法估计,保留DW值模型综述表方差分析表系数表从模型综述表中可以看到,DW=1.618>1.45,认为消除了自相关;方差分析表中可以看到F值很大,P值为零,说明模型通过了检验。

从系数表可得回归方程:再迭代回去,最终得方程为:Lny t-Lny t-1=-1.859+0.755(LnK t-LnK t-1) +0.465(LnL t-LnL t-1)(4)对线性化回归方程通过VIF检验多重共线性:方差分析表系数表多重共线性诊断表直观法:从模型综述表上可以看到,F值很大,而t值很小,这是多重共线性造成的影响;VIF检验法:从系数表上可以看到,VIF=13>10,也说明多重共线性的存在;条件数:从诊断表上可以看到,最大的条件数是429,远远大于了100,所以自变量之间存在较为严重的多重共线性。

利用岭回归改进:R-SQUARE AND BETA COEFFICIENTS FOR ESTIMATED VALUES OF KK RSQ LNK LNL______ ______ ________ ________.00000 .99394 .860706 .141014.05000 .99015 .646381 .330432.10000 .98639 .577758 .375355.15000 .98260 .539715 .390822.20000 .97843 .513383 .395623.25000 .97379 .492922 .395526.30000 .96869 .475918 .392882.35000 .96318 .461184 .388818.40000 .95730 .448063 .383937.45000 .95109 .436158 .378587.50000 .94462 .425211 .372979.55000 .93791 .415047 .367248.60000 .93101 .405541 .361481.65000 .92395 .396598 .355735.70000 .91677 .388147 .350049从岭迹图观察,当k=0.2时,变量基本趋于稳定取k=0.2进行岭回归,SPSS输出结果为:α=0.479,β=1.127从岭回归给出的结果来看,说明劳动力L较资金K对GDP的影响较大,而我国属于人口大国,就业人数对GDP的贡献不一定有显著的影响,相反,资金对GDP的影响按常理来说是非常显著的,这点普通最小二乘法给出了合理的解释,但是,岭回归在理论上很可信的。

总之,影响统计的因素有很多,例如统计员的失误、国家政策等,造成函数系数的不稳定。

相关文档
最新文档