自动驾驶汽车控制的核心技术线控技术解析
线控转向系统技术综述与实车应用(一)
◆文/江苏 高惠民线控转向系统技术综述与实车应用(一)一、概述汽车线控技术(X-by-wire)起源于飞机的电传操纵系统,飞行员不再通过传统的机械回路或液压回路来控制飞机的飞行姿态,而是通过安装在操纵杆处的传感器检测飞行员施加在其上的力和位移,并将其转换为电信号,在电控单元中将信号进行处理,然后传递到执行机构,从而实现对飞机的控制。
随着线控技术的发展,这一技术逐渐应用到汽车。
图1所示为集成线控系统线控转向(Steer by Wire,简称 SBW)系统、线控制动(Brake by Wire,简称BBW)系统示意图。
汽车线控技术就是将驾驶员的操纵动作经过传感器转变为电信号,通过电缆直接传输到执行机构的一种系统。
目前,汽车的线控技术主要有线控转向(Steer by Wire,简称 SBW)系统、线控制动(Brake by Wire,简称BBW)系统、线控驱动(Drive by Wire,简称DBW)系统、线控悬架(Suspension by Wire)系统、线控换挡(Shift by Wire)系统。
通过分布在汽车各处的传感器实时获取驾驶员的操作意图和汽车行驶过程中的各种参数信息,传递给电控单元,电控单元将这些信息进行分析和处理,得到合适的控制参数传递给各个执行机构,进行对汽车的控制,极大的提高车辆的动力性、制动性、操纵稳定性和平顺性。
其中,SBW作为线控底盘系统的关键组成部分,一直是国内外汽车厂商及学术界研究的热点。
根据我国《智能网联汽车技术路线图》规划,将在2025年实现智能线控底盘系统产业化推广应用。
SBW就是通过线控化、智能化实现个性驾驶、辅助驾驶、自动驾驶等目标,是智能网联汽车落地的关键技术。
二、SBW系统的结构及工作原理汽车转向系统大致经历了机械转向系统、液压助力转向系统(Hydraulic Power Steering,HPS)、电控液压助力转向系统 (Electro Hydraulic Power Steering,EH PS)、电动助力转向系统 (El ectr ic Power Steering,EPS)的一个发展过程。
智能电动汽车线控制动关键技术与研究进展
智能电动汽车线控制动关键技术与研究进展在科技的海洋中,智能电动汽车犹如一艘扬帆远航的巨轮,而线控制动技术则是这艘巨轮上不可或缺的舵手。
它以电子信号为媒介,通过传感器、控制器和执行器等组件,实现对车辆制动系统的精确控制。
这种技术不仅提高了汽车的安全性和可靠性,还为自动驾驶技术的发展铺平了道路。
首先,让我们来探讨线控制动技术的工作原理。
当驾驶员踩下制动踏板时,传感器会捕捉到这一动作并将其转化为电信号。
随后,这些信号被传输至控制器,控制器根据车辆当前的行驶状态和外部环境信息,计算出合适的制动力矩。
最后,执行器接收到控制器的指令并驱动制动器工作,从而实现对车辆的精确制动。
然而,线控制动技术的发展并非一帆风顺。
其中最大的挑战之一就是如何确保系统的稳定性和可靠性。
由于线控制动系统完全依赖于电子信号进行控制,任何信号传输的延迟或干扰都可能导致制动失效或误操作。
因此,研究人员们一直在努力寻找解决方案。
他们通过优化算法、改进硬件设备以及加强系统测试等手段,不断提高线控制动系统的性能和稳定性。
除了稳定性和可靠性外,安全性也是线控制动技术发展的重要考量因素。
毕竟,在任何情况下,保障乘客的安全都是汽车设计的首要任务。
为此,研究人员们在线控制动系统中加入了多重安全机制。
例如,当主控制系统出现故障时,备用系统会立即接管控制任务;同时,系统还会实时监测各个组件的工作状态,一旦发现异常情况就会立即发出警报并采取相应措施。
当然,随着智能电动汽车技术的不断发展,线控制动技术也在不断进步。
近年来,研究人员们在提高线控制动系统的响应速度、降低能耗以及增强环境适应性等方面取得了显著成果。
例如,他们开发出了新型的传感器和执行器材料,使得系统更加轻便且耐用;同时,他们还改进了控制算法,使得系统能够更好地适应复杂多变的道路环境。
展望未来,线控制动技术在智能电动汽车领域的应用前景广阔。
随着自动驾驶技术的不断成熟和完善,线控制动系统将发挥越来越重要的作用。
智能驾驶底盘线控技术
任务一:线控底盘的构成
线控底盘运行逻辑
智能网联汽车概论
4.1.2线控油门系统
1. 基本定义
线控油门( Throttle--wire-by,TBW), 即使用电信号的形式来控制节气门的 一种电子控制技术。
线控油门通过用导线代替拉索或者拉 杆,由加速踏板上的位置传感器将电 信号输入给ECU,从而进行发动机的 运行控制。线控油门系统主要由加速 踏板位置传感器、ECU、CAN数据总 线、伺服电机和节气门构成。位置传 感器安装在加速踏板内部,随时监测 加速踏板的位置。当监测到加速踏板 高度位置有变化时,会瞬间将此信息 送往ECU,ECU对该信息和其他系统 传来的数据信息(如车速、扭矩、节气 门开度、发动机转速等)进行运算处 理,计算出一个控制信号,传送到伺 服电机,由伺服电机驱动节气门执行 机构。数据总线则是负责系统ECU与 其他ECU之间的通讯
智能网联汽车概论
项目四 智能驾驶底盘线控技术
1.知识目标:
• (1)了解汽车线 控技术的含义和 分类
• (2)理解汽车线 控技术的结构
• (3)掌握汽车线 控技术的工作原 理及用途
2.技能目标:
• (1)了解汽车线 控技术的技术特 点
• (2)理解汽车线 控技术与传统技 术的区别
• (3)掌握汽车线 控技术的应用场 景
智能网联汽车概论
4.1.3线控转向系统
3.线控转向系统的结构及原理
线控转向系统的工作原理:方向盘将驾驶员或车辆计算平台的转向意图通过 传感器转换成电信号,随后传递给转向齿条执行机构。转向齿条执行机构则 从方向盘执行机构接受信号,并根据驾驶员的转向意图将方向盘角度信号转 换成轮胎的摆动,控制助力电机工作,从而对转向系统进行控制
自动驾驶汽车的线控转向控制系统
自动驾驶汽车的线控转向控制系统发布时间:2021-03-02T04:48:07.699Z 来源:《中国科技人才》2021年第3期作者:刘琦[导读] 基于传统汽车电动助力转向系统的基本结构,文中设计转向角度控制器模块和扭矩控制器模块,实现线控转向控制系统,以用于自动驾驶汽车的自动转向控制。
东风小康汽车有限公司摘要:基于传统汽车电动助力转向系统的基本结构,文中设计转向角度控制器模块和扭矩控制器模块,实现线控转向控制系统,以用于自动驾驶汽车的自动转向控制。
其中转向角度控制器硬件使用STM32F4系列单片机,主要用于实时计算出转向扭矩值,实现转向角度的闭环控制;扭矩控制器模块主要由STM32单片机和扭矩信号生成电路构成,用于检测扭矩传感器输入及模拟扭矩传感器输出。
分别设计转向角度控制器软件和扭矩控制器软件,最后在某轿车上部署测试,车辆的转向角度控制快速精准,实现了自动驾驶车辆平台的转向控制功能。
关键词:自动驾驶汽车;线控转向系统;角度控制器;扭矩控制器引言:自从谷歌于2009年布局自动驾驶,自动驾驶技术引发了新一轮的产业热潮,且自动驾驶车辆在军事、工业、农业等各领域都有应用需求。
对于自动驾驶汽车,线控转向系统是无人驾驶汽车的重要执行机构,将驾驶意图中的转向信号通过电信号形形式发送到转向电机,由转向电机驱动转向轮。
传统驾驶汽车的转向控制是通过电动助力转向系统(ElectricPowerSteering,EPS)实现转向控制。
而电动助力转向系统是建立在传统机械转向系统的基础之上,由转向操纵机构、扭矩传感器、动力转向电动机转向传动机构转向角度传感器等系列机械和电子控制装置构成。
本设计根据目前的的。
而电动助力转向系统是建立在传统机械转向系统的基础之上,由转向操纵机构、扭矩传感器、动力转向电动机转向传动机构转向角度传感器等系列机械和电子控制装置构成。
本设计根据目前的电动助力转向系统的结构原理,设计线控转向控制系统,使汽车能根据实时的转向输入信息实现转向自动控制。
自动驾驶的线控底盘技术
自动驾驶的线控底盘技术在实现自动驾驶汽车的控制过程中,涉及到许多问题。
例如,控制车辆的转向,是通过输入方向盘转角位置还是输入扭矩来实现的?在进行加减速行驶时,是根据力度改变油门开度吗?在进行刹车制动时,如何精确控制制动百分比数值?要了解自动驾驶控制器与底盘组件之间信息交互关系,就需要先了解车辆的底盘控制组件的原理。
自动驾驶的实现首先依赖于感知传感器对道路周边环境信息进行采集,包括摄像头、激光雷达、毫米波雷达和超声波等。
采集的数据传输到中央计算单元进行计算,用来识别车辆周边障碍物和可行驶区域,进行路线规划和控制,最后制定方向盘转角和速度等信息,传输到底盘执行机构,按照指令进行精确执行。
在整个控制过程中,底盘执行机构的功能要完善,系统响应和精度要高。
底盘执行机构就像人的手和脚,用来做控制执行,是自动驾驶控制技术的核心部件,对整个底盘系统的要求非常高。
线控底盘是自动驾驶的必要条件。
在自动换道时,常常出现回退过度甚至偏出本车道导致不安全,继而系统又通过较大的回调力矩将车辆拉回车道中央。
在自动驾驶对中或驾驶员控制换道过程中,驾驶员缓慢施加力矩进行方向盘控制时,容易出现系统抢夺方向盘。
这些问题严重影响自动驾驶控制精度,延长落地的时间。
因此,需要结合实际存在的问题给出相应的解决方案,不断协调线控底盘和控制器之间的交互问题,改进线控底盘技术,这无疑会促进线控底盘的技术。
智能化、大数据网联化给线控底盘发展带来新的契机。
智能汽车需要大量的、精确的底盘系统信号。
而种类繁多的底盘传感器,信号模式和处理方法各异,且大量传感器信号汇入控制器对信号实时处理提出更高要求,因此亟需研究新型底盘域控制器,对多源传感器信号实时处理、校验与解算理论。
智能汽车直接前馈预瞄控制需要精确的车辆模型,逼近真实车辆动力学状态。
而底盘车辆及轮胎动力学呈现复杂非线性特性,因此亟需深入研究车辆复杂动力学模型精确解算机制,促进智能汽车的动力学应用发展。
自动驾驶汽车硬件系统概述
自动驾驶汽车硬件系统概述自动驾驶汽车的硬件架构、传感器、线控等硬件系统如果说人工智能技术将是自动驾驶汽车的大脑,那么硬件系统就是它的神经与四肢。
从自动驾驶汽车周边环境信息的采集、传导、处理、反应再到各种复杂情景的解析,硬件系统的构造与升级对于自动驾驶汽车至关重要。
自动驾驶汽车硬件系统概述从五个方面为大家做自动驾驶汽车硬件系统概述的内容分享,希望大家可以通过我的分享,对硬件系统的基础有个全面的了解:一、自动驾驶系统的硬件架构二、自动驾驶的传感器三、自动驾驶传感器的产品定义四、自动驾驶的大脑五、自动驾驶汽车的线控系统自动驾驶事故分析根据美国国家运输安全委员会的调查报告,当时涉事Uber汽车——一辆沃尔沃SUV系统上的传感器在撞击发生6s前就检测到了受害者,而且在事故发生前1.3秒,原车自动驾驶系统确定有必要采取紧急刹车,此时车辆处于计算机控制下时,原车的紧急刹车功能无法启用。
于是刹车的责任由司机负责,但司机在事故发生前0.5s低头观看视频未能抬头看路。
从事故视频和后续调查报告可以看出,事故的主要原因是车辆不在环和司机不在环造成的。
Uber在改造原车加装自动驾驶系统时,将原车自带的AEB功能执行部分截断造成原车ADAS功能失效。
自动驾驶系统感知到受害者确定要执行应急制动时,并没有声音或图像警报,此时司机正低头看手机也没有及时接管刹车。
目前绝大多数自动驾驶研发车都是改装车辆,相关传感器加装到车顶,改变车辆的动力学模型;改装车辆的刹车和转向系统,也缺乏不同的工况和两冬一夏的测试。
图中Uber研发用车是SUV车型自身重心就较高,车顶加装的设备进一步造成重心上移,在避让转向的过程中转向过急过度,发生碰撞时都会比原车更容易侧翻。
自动驾驶研发仿真测试流程所以在自动驾驶中,安全是自动驾驶技术开发的第一天条。
为了降低和避免实际道路测试中的风险,在实际道路测试前要做好充分的仿真、台架、封闭场地的测试验证。
软件在环(Software in loop),通过软件仿真来构建自动驾驶所需的各类场景,复现真实世界道路交通环境,从而进行自动驾驶技术的开发测试工作。
智能汽车自动驾驶的控制方法分析
能智造与信息技术智能汽车自动驾驶的控制方法分析王相哲(电子科技大学四川成都611730)摘要:自动驾驶汽车科技属于一类运用人工智能、视觉技术、雷达监控等科技完成无人驾驶的智能汽车把控科技,可以依照道路状况,自动对车辆开展运作,进一步打造高效合理的控制方式。
但是在当前,受到传感设备及把控体系等要素的制约,当前所运用的汽车自动驾驶科技还存在一定的缺陷。
例如,出现自动驾驶汽车故障而导致事故出现的案例,便是把控体系对危险认知不清的缘故造成的。
因此,对智能汽车自动驾驶的控制方法进行分析,具有重要的实践意义。
基于此,本文对智能汽车自动驾驶的控制方法进行研究,以供参考。
关键词:智能汽车自动驾驶现状分析控制方法中图分类号:U463.9文献标识码:A文章编号:1674-098X(2022)02(b)-0136-03随着我国社会经济快速发展,国民的生活水平显著提升,对汽车的需求逐年激增。
现如今,各大车企对于中国市场的竞争愈加激烈,呈现了电动化、网联化、智能化、共享化的“新四化”发展趋势,“互联网+汽车”模式逐渐兴起,智能汽车受到广泛关注。
可以预见,未来的一段时间内,智能化将是汽车行业发展的着力点和风向标[1]。
本文就智能汽车中如何实现自动驾驶控制方法进行分析,旨在提高公众对自动驾驶技术的了解。
1汽车自动驾驶的相关概述1.1研究背景近年来,自动驾驶科技从观念策划之间向现实运用层次稳步过渡,也有很多公司及员工加入到自动驾驶科技的探究进程中来。
自动驾驶概念出现已久,但是自动驾驶行业却鲜为人知。
20世纪80年代,无人车Naclab-1首次完成无人驾驶实验,之后,该型号车辆被运用在厢式货车上开展探究,无人车道路试验的相关法律如雨后春笋般出现。
之后,针对自动驾驶的探究渐渐走入大众视野。
2009年,自动驾驶汽车的照片广为流传,自动驾驶开始受到注重。
结合计算机工作的稳固性质及高科学性,能够与自动驾驶科技开展一定的结合,并进一步缩减由于驾驶因素引起的事故数量,与之相结合的车辆和基本设备互联科技也会经过车云交互,进一步缩减交通堵塞的状况出现。
线控制动简介介绍
它利用电线传递信号,以实现对 车辆制动力的精确控制。
线控制动的工作原理
当驾驶员踩下制动踏板时,制动信号 会通过电线传输到每个车轮的制动器 。
制动器根据这些信号对车轮施加相应 的制动力,从而实现精确的制动控制 。
线控制动系统的组成部分
01
02
03
04
控制器
线控制动系统的核心部件,负 责接收制动信号并发送给制动
线控制动系统将应用于更多的工业领域,如机器人、机械臂等,提高工业自动化的水平和效率。
更环保和可持续发展的线控制动系统
1
更环保和可持续发展的线控制动系统将采用更环 保的材料和更高效的制造工艺,降低对环境的影 响。
2
更环保和可持续发展的线控制动系统将注重资源 的循环利用和节能减排,提高资源的利用效率。
线控制动系统可以根据车辆行驶状态 和驾驶员意图智能调节刹车力度,避 免不必要的急刹车和频繁刹车,从而 降低车辆的油耗。
减少轮胎磨损
精确控制刹车力度
线控制动系统可以精确控制刹车力度,减少急刹车和频繁刹 车的次数,从而减少轮胎的磨损程度,延长轮胎的使用寿命 。
优化车辆稳定性
线控制动系统可以优化车辆的稳定性,减少车辆在高速行驶 和弯道行驶时的摆动和颠簸,从而减少轮胎的磨损程度。
智能化线控制动系统将具备更好的自适应学习能力,能够根据不同驾驶场景和驾驶 员习惯进行自我优化,不断提高控制效果。
智能化线控制动系统将与智能驾驶系统深度融合,实现更加高效和协同的驾驶体验 ,推动自动驾驶技术的发展。
更广泛的应用领域
随着技术的不断发展,线控制动系统将应用于更多的交通领域,如航空、铁路、水运等,为更广泛的交通领域提供安全、高 效、环保的制动解决方案。
5-1线控制动技术
Car 情报局
2 Part Two 线控制动系统的分类
线控制动系统的分类
Car 情报局
线控制动系统即电子控制制动系统,分为机械式线控制动系统和液压式线控制动系统。
1.液压式线控制动系统(EHB) 液压式线控制动系统(Electronic Hydraulic Brake System,简称EHB)EHB是从传统的液 压制动系统发展来的,但与传统制动方式有很大的不同,EHB以电子元件替代了原有的部分机械 元件,是一个先进的机电一体化系统,它将电子系统和液压系统相结合。EHB主要由电子踏板、 电子控制单元(ECU)、液压执行机构组成。电子踏板是由制动踏板和踏板传感器(踏板位移 传感器)组成。踏板传感器用于检测踏板行程,然后将位移信号转化成电信号传给ECU电控单 元,实现踏板行程和制动力按比例进行调控。
线控制动系统
Car 情报局
线控制动正是从真空助力器延伸开来,用一个电机来代替真空助力器推动主缸活塞。由于汽 车底盘空间狭小,电机的体积必须很小,同时要有一套高效的减速装置,将电机的扭矩转换为强 大的直线推力。
制动控制是自动驾驶执行系统的重要部分,目前 ADAS 与制动系统高度关联的功能模块包 括 ESP(车身稳定系统)/AP(自动泊车)/ACC(自适应巡航)/AEB(自动紧急制动)等。
Car 情报局
3 Part Three 线控制动系统的组成
线控制动系统的组成
Car 情报局
线控制动系统主要由接收单元、ECU及执行单元组成。 (一)接收单元
包括制动踏板、踏板行程传感器等。
(二)制动控制器(ECU) ECU接收制动踏板发出的信号,控制制动器制动;接收驻车制动信号,控制驻车制动;接收车 轮传感器信号,识别车轮是否抱死、打滑等;控制车轮制动力,实现防抱死和驱动防滑,并兼顾 其它系统的控制。
汽车自动驾驶专题报告
汽车自动驾驶专题报告1、自动驾驶三大系统:感知、决策、执行驾驶技术的发展是将人类驾车替换为机器驾车的过程,因此可以拿人类驾车作类比,自动驾驶技术分为感知决策和执行三大核心环节。
感知指对于环境的场景理解能力。
例如障碍物的类型、道路标志及标线、行车车辆的检测、交通信息等数据的分类。
目前存在两种主流技术路线,一种是以特斯拉为代表的以摄像头为主导的纯视觉方案;另外一种是以谷歌、百度为代表的多传感器融合方案。
根据融合阶段不同分为前融合和后融合。
前融合指的是把所有传感器的数据作为整体进行识别,后融合指的是将不同传感器识别后的结果进行整合。
决策是依据驾驶场景、驾驶需求进行任务决策,规划出车辆的路径和对应的车身控制信号。
分为任务决策、轨迹规划、跟踪控制和执行控制四个阶段。
在决策的过程中需要综合考虑安全性、舒适性和到达速度。
执行指的是将控制信号发送给执行器,执行器执行的过程。
执行器有转向、油门、刹车、灯光档位等。
由于电动汽车执行器执行较线性,便于控制,因此比燃油车更适合作为自动驾驶汽车使用。
为了实现更精确的执行能力,线控转向、线控刹车、线控油门等技术不断发展。
2、自动驾驶分级2.1L1-L2为驾驶辅助,L3-L5为自动驾驶国家标准GB/40429-2021和SAEJ3016明确定义了汽车自动驾驶分级,将驾驶自动化分为0级至5级。
其中定义等级的原则是1)自动化驾驶系统能够执行动态驾驶任务的程度。
2)驾驶员的角色分配。
3)有无允许规范限制。
国标规定L1和L2级自动化系统命名为“驾驶辅助系统”、L3-L5命名为“自动驾驶系统”。
具体来看:L0驾驶自动化—应急辅助(EmergencyAssistance):该级别的辅助驾驶系统,可以感知环境、并提供信息或者短暂介入车辆运动控制,但是不能持续执行车辆控制。
L1驾驶自动化—部分驾驶辅助(Partialdriverassistance):该级别的辅助驾驶系统可以持续提供横向或纵向运动控制。
自动驾驶汽车线控转向系统
自动驾驶汽车线控转向系统线控转向是自动驾驶汽车实现路径跟踪与避障避险必要的关键技术,其性能直接影响主动安全与驾乘体验。
在国际汽车工程师协会(Society of Automotive Engi⁃neers,SAE)发布的5级自动驾驶体系中:▪第1级为驾驶辅助,要求对转向或加、减速中单独一项进行自动控制;▪第2级为部分自动驾驶,要求对转向和加、减速中的2项进行自动控制;▪第3级及以上分别为有条件自动驾驶、高度无人驾驶和完全自动驾驶,要求转向逐步与其他子系统实现高度自主协同。
线控转向系统为自动驾驶汽车实现自主转向提供了良好的硬件基础,且线控转向系统被认为是实现高级自动驾驶的关键部件之一,具有以下优点:线控转向技术由于可实现驾驶员操作和车辆运动的解耦可提高紧急情况下转向操作正确性和驾驶员安全性采用电机控制直接驱动实现车辆转向,因此更容易与车辆其他主动安全控制子系统进行通讯和集成控制。
与传统的转向系统不同,线控转向系统取消了从转向盘到转向执行器之间的机械连接,完全由电控系统实现转向,可以摆脱传统转向系统的各种限制,汽车转向的力传递特性和角度传递特性的设计空间更大,更方便与自动驾驶其他子系统(如感知、动力、底盘等)实现集成,在改善汽车主动安全性能、驾驶特性、操纵性以及驾驶员路感方面具有优势。
1.线控转向系统发展概况线控转向的概念起源于20世纪50年代,美国天合(TRW)公司最早提出用控制信号代替转向盘和转向轮之间的机械连接,之后德国Kasselmann 和Keranen设计了早期的线控转向模型。
受制于电子控制技术,直到20世纪90年代,线控转向技术才有较大进展,美国、欧洲、日本在线控转向的研发与推广方面比较活跃,一些采用线控转向系统的概念车陆续展出。
2013年,英菲尼迪的“Q50”成为第1款应用线控转向技术的量产车型。
该线控转向系统由路感反馈总成、转向执行机构和3个电控单元组成,其中双转向电机的电控单元互相实现备份,可保证系统的冗余性能,转向柱与转向机间的离合器能够在线控转向系统出现故障时自动接合,保证紧急工况下依然可实现对车辆转向的机械操纵。
自动驾驶线控系统的设计与应用研究
2、软件设计
2、软件设计
软件设计是实现矿卡自动驾驶的核心。根据传感器采集的数据,通过高级算 法进行数据分析和处理,生成车辆行驶所需的指令。这些指令将通过控制器传输 到执行器,实现对车辆底盘的控制。在行驶过程中,系统还需要对车辆的运行状 态进行实时监测,以确保行驶安全。
3、线控系统与车辆行驶的关系
3、线控系统与车辆行驶的关系
线控系统在自动驾驶中扮演着重要角色。通过线控系统,可以实现对车辆的 精确控制,从而实现自动驾驶。例如,在车辆行驶过程中,线控系统可以根据预 先设定的路径和速度计划,自动控制车辆的转向和油门刹车,确保车辆稳定地行 驶在预定路线上。此外,线控系统还可以与其他传感器和控制系统配合,实现更 加复杂的功能,如自动泊车、自适应巡航等。
自动驾驶线控系统的设计与应 用研究
目录
01 一、自动驾驶线控系 统设计
03 参考内容
02
二、自动驾驶线控系 统应用研究
内容摘要
随着科技的不断发展,自动驾驶技术成为了当今研究的热点之一。线控系统 作为自动驾驶技术的关键组成部分,越来越受到研究者的。本次演示将从自动驾 驶线控系统的设计及应用两个方面进行研究,探讨线控系统的工作原理、设计思 路、应用场景、优缺点以及发展趋势。
(2)应用领域扩大:目前自动驾驶线控系统的应用主要集中在汽车领域,未 来将逐渐扩展到其他交通工具和领域,例如轨道交通、航空航天等。
3、发展趋势和前景分析
《汽车线控技术》课件
详细描述
线控技术是一种先进的电子控制技术,通过使用电线或电缆等导线作为信号传递的媒介,将控制信号 传递给执行机构,以实现汽车的各种功能,如转向、制动、加速等。与传统的机械连接方式相比,线 控技术具有更高的灵活性和可靠性。
2023-2026
END
THANKS
感谢观看
KEEP VIEW
REPORTING
PART 05
未来汽车线控技术的发展 方向
自动驾驶与线控技术的结合
自动驾驶技术是未来汽车发展的重要方向,而线控技术则是实现自动驾驶的关键 技术之一。通过线控技术,可以实现车辆的精准控制和快速响应,提高自动驾驶 的安全性和可靠性。
线控技术的应用可以使得车辆在行驶过程中更加灵活和智能,例如通过线控油门 和线控刹车等系统,可以实现车辆的自动加速和自动减速,提高行驶的安全性和 舒适性。
智能网联与线控技术的结合
智能网联是未来汽车发展的另一个重要方向,而线控技术 同样也是智能网联的关键技术之一。通过线控技术,可以 实现车辆与车辆、车辆与基础设施、车辆与行人等之间的 信息交流和控制。
在智能网联中,线控技术的应用可以使得车辆更加智能化 和互联化,例如通过线控油门和线控刹车等系统,可以实 现车辆的自动编队行驶和协同控制等功能,提高道路交通 的安全性和效率。
2023-2026
ONE
KEEP VIEW
《汽车线控技术》ppt 课件
REPORTING
CATALOGUE
目 录
• 汽车线控技术概述 • 汽车线控技术的工作原理 • 汽车线控技术的优缺点 • 汽车线控技术的应用案例 • 未来汽车线控技术的发展方向
自动驾驶四大核心技术的环境感知的详细概述
自动驾驶四大核心技术的环境感知的详细概述人类驾驶员会根据行人的移动轨迹大概评估其下一步的位置,然后根据车速,计算出安全空间(路径规划),公交司机最擅长此道。
无人驾驶汽车同样要能做到。
要注意这是多个移动物体的轨迹的追踪与预测,难度比单一物体要高得多。
这就是环境感知,也是无人驾驶汽车最具难度的技术。
今天介绍一下环境感知的内容。
环境感知也被称为MODAT(Moving Object Detection andTracking)。
自动驾驶四大核心技术,分别是环境感知、精确定位、路径规划、线控执行。
环境感知是其中被研究最多的部分,不过基于视觉的环境感知是无法满足无人汽车自动驾驶要求的。
实际的无人驾驶汽车面对的路况远比实验室仿真或者试车场的情况要复杂很多,这就需要建立大量的数学方程。
而良好的规划必须建立对周边环境,尤其是动态环境的深刻理解。
环境感知主要包括三个方面,路面、静态物体和动态物体。
对于动态物体,不仅要检测还要对其轨迹进行追踪,并根据追踪结果,预测该物体下一步的轨迹(位置)。
这在市区,尤其中国市区必不可少,最典型场景就是北京五道口:如果你见到行人就停,那你就永远无法通过五道口,行人几乎是从不停歇地从车前走过。
人类驾驶员会根据行人的移动轨迹大概评估其下一步的位置,然后根据车速,计算出安全空间(路径规划),公交司机最擅长此道。
无人驾驶汽车同样要能做到。
要注意这是多个移动物体的轨迹的追踪与预测,难度比单一物体要高得多。
这就是 MODAT(Moving Object Detectionand Tracking)。
也是无人驾驶汽车最具难度的技术。
下图是一个典型的无人驾驶汽车环境感知框架:这是基于激光雷达的环境感知模型,目前来说,搞视觉环境感知模型研究的人远多于激光雷达。
不过很遗憾地讲,在无人驾驶汽车这件事上,视觉肯定是不够的,长远来说,激光雷达配合毫米波雷达,再加上视觉环境感知的综合方案才能真正做到无人驾驶。
一文解析自动驾驶的线控底盘技术
一文解析自动驾驶的线控底盘技术线控底盘技术现状总结线控转向目前线控转向系统技术主要在研发阶段,从整车厂角度,已搭载该技术的量产车型仅英菲尼迪Q50一款车,泛亚和同济大学联合进行预研发,并没有与零部件厂商合作。
从供应商角度,目前博世、采埃孚等厂商正积极研发做样件,但还未在整车上搭载,博世线控转向系统采用的是双冗余全备份方案。
线控制动目前市场上线控制动技术主流的路线是电子液压制动(EHB)系统,且已经有多款量产产品,如博世的 iBooster 、大陆的MK C1等。
电子机械制动(EMB)系统由于技术不够成熟,目前仍处于研发阶段。
线控驱动针对传统内燃机汽车,线控驱动技术(线控油门)目前在乘用车和商用车上普遍应用,市场占有率达99%以上;针对新能源汽车,线控驱动技术已经全面应用,现在正处于集中电机驱动阶段,随着电气化水平的提高,未来将向以轮边电机和轮毂电机为代表的分布式驱动发展。
线控悬架线控悬架虽能自动调节线控弹簧的刚度、车身高度以及减震器阻尼,但由于重量、成本和可靠性的原因,目前属于非刚需配置,主要在C级和D级车中配备。
因此对于整车厂而言,线控减震器的装配优先级最高,其次是线控弹簧,最后是线控防倾杆。
从发展潜力上讲,线控空气弹簧、CDC/MRC型线控减震器的未来发展前景相对较好。
线控底盘技术难点总结线控转向线控转向技术的应用核心难点是系统的安全性和可靠性。
由于线控转向系统方向盘和转向轮之间没有直接的机械连接,当线控转向系统出现故障时,车辆将无法保证转向功能,会处于失控状态。
虽然目前采用冗余措施,但也仅能一定程度上提高可靠性,目前的控制器在故障诊断和处理能力上还需要进一步提升。
另外,路感模拟技术也是线控转向系统的技术难点之一。
线控制动电子液压制动(EHB)系统相较于电子机械制动(EMB)系统要成熟的多,目前在应用上几乎没有太大的难点。
EMB系统应用落地的主要难点有:(1)没有备份系统,对安全性要求极高;(2)刹车力不足问题,需要提供足够多的能量;(3)工作环境恶劣,如高温、震动等。
线控悬架、线控油门和线控换挡技术分类及发展趋势
线控悬架、线控油门和线控换挡技术分类及发展趋势线控底盘主要有五大系统,分别为线控转向、线控制动、线控换挡、线控油门、线控悬挂。
而转向和制动则是面向自动驾驶执行端方向最核心的产品,其中又以制动技术难度更高。
线控油门:当前线控油门或电子油门技术已经成熟。
针对传统燃油车,线控油门现在基本是标准配置,混合动力和电动汽车中都是线控油门,基本不需要换挡,若有也会是线控。
电子油门控制系统经过这么多年的发展,已经不是最初的电机控制节气门概念了,而逐渐发展成为根据油门踏板的位置,ECU来决定节气门的开合大小以及喷油量、喷油时间间隔。
线控换挡:线控换挡当前技术由传统的机械手动档位变化为手柄、拨杆、转盘、按钮等电子信号输出的方式。
线控换挡对燃油车自动变速器的控制方式不会改变,技术难度小,行业格局比较稳定,新进企业有一定机会,但需要与客户深度绑定,该技术对自动驾驶影响不大。
线控换挡技术发展已经发展的非常成熟,未来新能源汽车继续普及,将会是整车标配,有很多的资源可以借助,不会成为技术发展瓶颈线控空气悬架:当前技术已经比较成熟,受限于成本目前绝大多数应用于高端车辆,与自动驾驶关系不大,行业格局稳定。
组成部件主要有:空气弹簧、储气罐、高度传感器、减震器、气泵、电控单元。
下面两图能够看到传统车辆的悬挂与空气悬挂的对比,可以看到相对传统悬架,空气悬架增多了汽车电子的控制系统。
线控转向系统:线控转向系统的发展与EPS一脉相承,其所用到的关键部件在EPS中一样有应用,其系统相对于EPS需要有冗余功能。
目前主要有两种方式:取消方向盘与转向执行机构的机械连接,通过多个电机和控制器来增加系统的冗余度在方向盘与转向执行机构之间增加一个电磁离合器作为失效备份,来增加系统的冗余度。
线控转向技术需要在EPS技术上发展,因此此项技术的参与者绝大多数都是传统的Tier 1 EPS系统供应商。
EPS的核心部件:电机、电控、扭矩传感器、角度传感器基本都为各大主机厂内部供应,有很深厚的积累,新厂商切入此领域比较困难。
无人驾驶汽车的智能车速控制技术
无人驾驶汽车的智能车速控制技术近年来,无人驾驶汽车的技术迅猛发展,成为智能交通的一个重要方向。
而其中,智能车速控制技术作为无人驾驶汽车的重要核心之一,不仅关系到车辆的稳定性和安全性,更关乎人们对无人驾驶技术的信任度。
本文将深入探讨无人驾驶汽车的智能车速控制技术,包括其原理、应用及发展前景。
一、智能车速控制技术的原理无人驾驶汽车的智能车速控制技术基于车辆感知、决策和执行三个核心环节,通过精确的数据采集和处理,实现车辆速度的智能控制。
1. 车辆感知无人驾驶汽车通过激光雷达、摄像头、超声波传感器等感知设备获取周围环境的信息,包括前方障碍物、道路状况、交通标志等。
这些感知设备将数据传输给智能系统进行处理和分析。
2. 决策在获得周围环境信息后,无人驾驶汽车的智能系统将对所接收到的数据进行分析,并通过深度学习等技术,判断最佳的车速控制策略。
这一过程主要考虑路况、交通规则、车辆稳定性以及乘客需求等因素。
3. 执行智能车速控制技术将根据决策结果,调整车辆的加速、减速、制动等参数,以实现智能的车速控制。
该过程中,涉及到车辆动力系统、制动系统等的协同工作,确保车速调整的平稳、可靠。
二、智能车速控制技术的应用智能车速控制技术在无人驾驶汽车中有广泛的应用场景,主要包括以下几个方面:1. 市区交通拥堵在城市拥堵的道路上,无人驾驶汽车可以通过智能车速控制技术,实现自动跟车和自动停车等功能,减少交通堵塞,提高道路通行效率。
2. 高速公路驾驶智能车速控制技术可实现对车辆的自适应巡航控制,根据前车车速和道路状况进行智能调整。
这不仅能够提高行车的安全性,还能减轻驾驶者的疲劳度。
3. 特殊道路行驶无人驾驶汽车通过智能车速控制技术,可以根据不同的道路类型和限速要求,调整车辆的速度。
例如,在弯道行驶时,智能系统可以降低车辆速度,提高行车的稳定性。
4. 路况适应无人驾驶汽车利用智能车速控制技术,可以实时获取道路交通信息,如道路施工、事故等情况,并根据实际情况对车速进行相应调整,确保驾驶的安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动驾驶汽车控制的核心技术线控技术解析
对于自动驾驶汽车的控制有很多疑问。
比如转向,具体跟车辆的交互,是传入转向角度还是力度?刹车制动是由IPC 告诉硬件多少力度呢,还是智能到具体的制动百分比就可以?
要实现这些控制指令,首先与参考车辆的底盘组组件有很大的关系,要了解与车辆底盘的各个组件交互,就要先了解这些控制组件。
线控执行
简单地说,线控执行主要包括线控制动、转向和油门。
某些高级车上,悬架也是可以线控的。
线控执行中制动是最难的部分。
1线控油门
线控油门相当简单,且已经大量应用,也就是电子油门,凡具备定速巡航的车辆都配备有电子油门。
电子油门通过用线束(导线)来代替拉索或者拉杆,在节气门那边装一只微型电动机,用电动机来驱动节气门开度。
电子油门控制系统主要由油门踏板、踏板位移传感器、ECU(电控单元)、数据总线、伺服电动机和节气门执行机构组成。
位移传感器安装在油门踏板内部,随时监测油门踏板的位置。
当监测到油门踏板高度位置有变化,会瞬间将此信息送往ECU,ECU 对该信息和其它系统传来的数据信息进行运算处理,计算出一个控制信号,通过线路送到伺服电动机继电器,伺服电动机驱动节气门执行机构,数据总线则是负责系统ECU 与其它ECU 之间的通讯。
在自适应巡航中,则由ESP(ESC)中的ECU 来控制电机,进而控制进气门开合幅度,最终控制车速。
2线控转向
日产旗下的英菲尼迪Q50 是。