2022届二轮复习 第11讲 电磁感应规律及应用 教案 Word版含答案

合集下载

2020版高考物理大二轮复习试题:电磁感应规律及其应用(含答案)

2020版高考物理大二轮复习试题:电磁感应规律及其应用(含答案)

回扣练12:电磁感应规律及其应用1.如图所示,两根相距为l 的平行直导轨ab 、cd ,b 、d 间连有一固定电阻R ,导轨电阻可忽略不计.MN 为放在ab 和cd 上的一导体杆,与ab 垂直,其电阻也为R .整个装置处于匀强磁场中,磁感应强度的大小为B ,磁场方向垂直于导轨所在平面(垂直纸面向里).现对MN 施力使它沿导轨方向以速度v 水平向右做匀速运动.令U 表示MN 两端电压的大小,则( )A .U =12Blv ,流过固定电阻R 的感应电流由b 经R 到dB .U =Blv ,流过固定电阻R 的感应电流由d 经R 到bC .MN 受到的安培力大小F A =B 2l 2v 2R,方向水平向右 D .MN 受到的安培力大小F A =B 2l 2v R,方向水平向左 解析:选A.当MN 运动时,相当于电源.但其两边的电压是外电路的电压,假设导轨没电阻,MN 两端的电压也就是电阻R 两端的电压,电路中电动势为E =BlV ,MN 的电阻相当于电源的内阻,二者加起来为2R ,则电阻上的电压为12Blv ,再由右手定则,拇指指向速度方向,手心被磁场穿过,四指指向即为电流方向,即由N 到M ,那么流过电阻的就是由b 到d .故A 正确,B 错误.MN 受到的安培力F =BIl =B 2l 2v 2R;由左手定则可知,安培力的方向水平向左;故CD 错误.故选A.2.如图所示,两相邻有界匀强磁场的宽度均为L ,磁感应强度大小相等、方向相反,均垂直于纸面.有一边长为L 的正方形闭合线圈向右匀速通过整个磁场.用i 表示线圈中的感应电流,规定逆时针方向为电流正方向,图示线圈所在位置为位移起点,则下列关于i ­x 的图象中正确的是( )解析:选C.线圈进入磁场,在进入磁场的0~L 的过程中,E =BLv ,电流I =BLv R ,根据右手定则判断方向为逆时针方向,为正方向;在L ~2L 的过程中,电动势E =2BLv ,电流I =2BLv R,根据右手定则判断方向为顺时针方向,为负方向;在2L ~3L 的过程中,E =BLv ,电流I =BLv R,根据右手定则判断方向为逆时针方向,为正方向;故ABD 错误,C 正确;故选C.3.如图所示,表面粗糙的U 形金属线框水平固定,其上横放一根阻值为R 的金属棒ab ,金属棒与线框接触良好,一通电螺线管竖直放置在线框与金属棒组成的回路中,下列说法正确的是( )A .当变阻器滑片P 向上滑动时,螺线管内部的磁通量增大B .当变阻器滑片P 向下滑动时,金属棒所受摩擦力方向向右C .当变阻器滑片P 向上滑动时,流过金属棒的电流方向由a 到bD .当变阻器滑片P 向下滑动时,流过金属棒的电流方向由a 到b解析:选C.根据右手螺旋定则可知螺线管下端为N 极,而穿过回路的磁通量分为两部分,一部分为螺线管内部磁场,方向竖直向下,一部分为螺线管外部磁场,方向竖直向上,而总的磁通量方向为竖直向下,当变阻器滑片P 向上滑动时,滑动变阻器连入电路的电阻增大,螺线管中电流减小,产生的磁场变弱,即穿过回路的磁通量向下减小,根据楞次定律可得流过金属棒的电流方向由a 到b ,A 错误C 正确;当变阻器滑片P 向下滑动时,滑动变阻器连入电路的电阻减小,螺线管中电流变大,产生的磁场变强,即穿过回路的磁通量向下增大,根据楞次定律可得流过金属棒的电流方向由b 到a ,而导体棒所处磁场方向为竖直向上的,金属棒所受安培力方向向右,故摩擦力方向向左,故BD 错误.故选C.4.如图所示,处于竖直面的长方形导线框MNPQ 边长分别为L和2L ,M 、N 间连接两块水平正对放置的金属板,金属板距离为d ,虚线为线框中轴线,虚线右侧有垂直线框平面向里的匀强磁场.两板间有一个质量为m 、电量为q 的带正电油滴恰好处于平衡状态,重力加速度为g ,则下列关于磁场磁感应强度大小B 的变化情况及其变化率的说法正确的是( )A .正在增强,ΔB Δt =mgd qL 2 B .正在减小,ΔB Δt =mgd qL 2C .正在增强,ΔB Δt =mgd 2qL 2D .正在减小,ΔB Δt =mgd 2qL2 解析:选B.电荷量为q 的带正电的油滴恰好处于静止状态,电场力竖直向上,则电容器的下极板带正电,所以线框下端相当于电源的正极,感应电动势顺时针方向,感应电流的磁场方向和原磁场同向,根据楞次定律,可得穿过线框的磁通量在均匀减小;线框产生的感应电动势:E =ΔB Δt S =ΔB Δt L 2;油滴所受电场力:F =E 场q ,对油滴,根据平衡条件得:q E d=mg ;所以解得,线圈中的磁通量变化率的大小为:ΔB Δt =mgd qL2;故选B. 5.如图所示,相距为d 的两条水平虚线L 1、L 2之间是方向水平向里的匀强磁场,磁感应强度为B ,正方形线圈abcd 边长为L (L <d ),质量为m 、电阻为R ,将线圈在磁场上方h 高处静止释放,cd 边刚进入磁场时速度为v 0,cd 边刚离开磁场时速度也为v 0,则线圈穿过磁场的过程中(从cd 边刚进入磁场一直到ab 边离开磁场为止)( )A .感应电流所做的功为3mgdB .线圈的最小速度一定大于mgR B 2L 2C .线圈的最小速度一定是2g (h +L -d )D .线圈穿出磁场的过程中,感应电流为逆时针方向解析:选C.据能量守恒,研究从cd 边刚进入磁场到cd 边刚穿出磁场的过程:动能变化量为0,重力势能转化为线框进入磁场的过程中产生的热量,Q =mgd .cd 边刚进入磁场时速度为v 0,cd 边刚离开磁场时速度也为v 0,所以从cd 边刚穿出磁场到ab 边离开磁场的过程,线框产生的热量与从cd 边刚进入磁场到ab 边刚进入磁场的过程产生的热量相等,所以线圈从cd 边进入磁场到ab 边离开磁场的过程,产生的热量Q ′=2mgd ,感应电流做的功为2mgd ,故A 错误.线框可能进入磁场先做减速运动,在完全进入磁场前已做匀速运动,刚完全进入磁场时的速度最小,有:mg =B 2L 2v R ,解得可能的最小速度v =mgR B 2L2,故B 错误.因为进磁场时要减速,线圈全部进入磁场后做匀加速运动,则知线圈刚全部进入磁场的瞬间速度最小,线圈从开始下落到线圈刚完全进入磁场的过程,根据能量守恒定律得:mg (h +L )=Q+12mv 2,解得最小速度v =2g (h +L -d ),故C 正确.线圈穿出磁场的过程,由楞次定律知,感应电流的方向为顺时针,故D 错误.故选C.6.如图所示的电路中,三个相同的灯泡a 、b 、c 和电感L 1、L 2与直流电源连接,电感的电阻忽略不计.电键S 从闭合状态突然断开时,下列判断正确的( )A .a 先变亮,然后逐渐变暗B .b 先变亮,然后逐渐变暗C .c 先变亮,然后逐渐变暗D .b 、c 都先变亮,然后逐渐变暗解析:选A.电键S 闭合时,电感L 1中电流等于两倍L 2的电流,断开电键S 的瞬间,由于自感作用,两个电感线圈相当于两个电源,与三个灯泡构成闭合回路,通过b 、c 的电流都通过a ,故a 先变亮,然后逐渐变暗,故A 正确; b 、c 灯泡由电流i 逐渐减小,B 、C 、D 错误 .故选A.7.(多选)如图甲所示,宽度为L 的足够长的光滑平行金属导轨固定在水平面上,导轨左端连接一电容为C 的电容器,将一质量为m 的导体棒与导轨垂直放置,导轨间存在垂直导轨平面向下的匀强磁场,磁感应强度为B .用与导轨平行的外力F 向右拉动导体棒,使导体棒由静止开始运动,作用时间t 1后撤去力F ,撤去力F 前棒内电流变化情况如图乙所示.整个过程中电容器未被击穿,不计空气阻力.下列说法正确的是 ( )A .有外力作用时,导体棒在导轨上做匀速运动B .有外力作用时,导体棒在导轨上做匀加速直线运动C .外力F 的冲量大小为It 1⎝ ⎛⎭⎪⎫BL +m CBL D .撤去外力F 后,导体棒最终静止在导轨上,电容器中最终储存的电能为零解析:选BC.对电容器Q =CU ,则ΔQ =C ΔU ,I =ΔQ Δt ;ΔU =ΔE =BL Δv ;解得I =CBL Δv Δt=CBLa ,则导体棒的加速度a 恒定,做匀加速运动,选项A 错误,B 正确;根据牛顿第二定律:F -BIL =ma ,则F =BIL +mI CBL ,则外力F 的冲量大小为I F =Ft 1=It 1⎝⎛⎭⎪⎫BL +m CBL ,选项C 正确;撤去外力F 后,导体棒开始时做减速运动,当导体棒产生的感应电动势与电容器两端电压相等时,回路中电流为零,此时安培力为零,导体棒做匀速运动,此时电容器两端的电压不为零,则最终储存的电能不为零,选项D 错误;故选BC.8.(多选)如图所示,在竖直平面内MN 、PQ 两光滑金属轨道平行竖直放置,两导轨上端M 、P 间连接一电阻R .金属小环a 、b 套在金属轨道上,质量为m 的金属杆固定在金属环上,该装置处在匀强磁场中,磁场方向垂直竖直平面向里.金属杆以初速度v 0从图示位置向上滑行,滑行至最高点后又返回到出发点.若运动过程中,金属杆保持水平,两环与导轨接触良好,不计轨道、金属杆、金属环的电阻及空气阻力.金属杆上滑过程和下滑过程相比较,以下说法正确的是( )A .上滑过程所用时间比下滑过程短B .上滑过程通过电阻R 的电量比下滑过程多C .上滑过程通过电阻R 产生的热量比下滑过程大D .上滑过程安培力的冲量比下滑过程安培力的冲量大解析:选AC. 如图所示,v ­t 图斜率代表加速度,其面积表示位移,上滑过程中,做加速度逐渐减小的减速运动,下滑过程中是加速度逐渐减小的加速运动,由于位移大小相等,可知上升时间小于下落时间,故A 正确;由q =ΔΦR,可知上滑过程通过电阻R 的电量等于下滑过程中电量,故B 错误;在相同位置,上滑时的速度大于下滑时的速度,则上滑过程安培力的平均值大于下滑过程安培力的平均值,导致上滑过程中导体棒克服安培力做功多,则上滑过程中电阻R 产生的热量大于下滑过程中产生的热量,故C 正确.安培力冲量I =BLq ,q =ΔΦR,可知上滑过程安培力的冲量等于下滑过程安培力的冲量,故D 错误.9.(多选)如图所示,两根足够长的光滑平行金属导轨MN 、PQ 相距为L ,导轨平面与水平面的夹角θ=30°,导轨电阻不计,整个装置处于磁感应强度大小为B 、方向垂直导轨平面向上的匀强磁场中.质量为m 、长为L 、电阻为R 的金属棒垂直导轨放置,且始终与导轨接触良好.金属导轨的上端连接一个阻值也为R 的定值电阻.现闭合开关K ,给金属棒施加一个平行于导轨斜向上、大小为F =2mg 的恒力,使金属棒由静止开始运动.若金属棒上滑距离s 时,金属棒开始匀速运动,则在金属棒由静止到刚开始匀速运动过程,下列说法中正确的是(重力加速度为g )( )A .金属棒的末速度为3mgRB 2L 2 B .金属棒的最大加速度为1.4gC .通过金属棒的电荷量为BLs RD .定值电阻上产生的焦耳热为34mgs -9m 3g 2R 24B 4L4 解析:选AD.设金属棒匀速运动的速度为v ,则感应电动势E =BLv ;回路电流I =E 2R =BLv2R ;安培力F 安=BIL =B 2L 2v 2R ;金属棒匀速时,受力平衡有F =mg sin 30°+F 安,即2mg =12mg +B 2L 2v 2R联立解得:v =3mgR B 2L2,故A 正确;金属棒开始运动时,加速度最大,即F -mg sin 30°=ma ,代入数据2mg -12mg =ma ,解得a =1.5g ,故B 错误;根据感应电量公式Q =ΔΦR 总=BLs 2R,故C 错误;对金属棒运用动能定理,有Fs -mgs sin 30°-Q =12mv 2,其中定值电阻上产生的焦耳热为Q R =12Q =34mgs -9m 3g 2R 24B 4L4,故D 正确;故选AD. 10.(多选)如图甲所示,光滑且足够长的金属导轨MN 、PQ 平行地固定在同一水平面上,两导轨间距L =0.2 m ,两导轨的左端之间连接的电阻R =0.4 Ω,导轨上停放一质量m =0.1 kg 的金属杆ab ,位于两导轨之间的金属杆的电阻r =0.1 Ω,导轨的电阻可忽略不计.整个装置处于磁感应强度B =0.5 T 的匀强磁场中,磁场方向竖直向下.现用一外力F 水平向右拉金属杆,使之由静止开始运动,在整个运动过程中金属杆始终与导轨垂直并接触良好,若理想电压表的示数U 随时间t 变化的关系如图乙所示.则在金属杆开始运动经t = 5.0 s 时( )A .通过金属杆的感应电流的大小为1.0 A ,方向由b 指向aB .金属杆的速率为4.0 m/sC .外力F 的瞬时功率为1.0 WD .0~5.0 s 内通过R 的电荷量为5.0 C解析:选AC.导体棒向右切割磁感线,由右手定则知电流方向为b 指向a ,金属杆开始运动经t =5.0 s ,由图象可知电压为0.4 V ,根据闭合电路欧姆定律得I =U R =0.40.4 A =1 A ,故A 正确;根据法拉第电磁感应定律知E =BLv ,根据电路结构可知:U =R R +r E ,解得v =5 m/s ,故B 错误;根据电路知U =R R +r BLv =0.08v =0.08at ,结合U ­t 图象知导体棒做匀加速运动,加速度为a =1 m/s 2,根据牛顿第二定律,在5 s 末时对金属杆有:F -BIL =ma 解得:F =0.2 N ,此时F 的瞬时功率P =Fv =0.2×5 W=1 W 故C 正确;0~5.0 s 内通过R 的电荷量为q =It =E R +r t =ΔΦt (R +r )×t =ΔΦR +r =B ×12at 2R +r =12.5 C ,故D 错误;综上所述本题答案是AC.。

历届高考物理二轮复习 电磁感应规律 教案 Word版含答案

历届高考物理二轮复习 电磁感应规律 教案 Word版含答案

电磁感应规律1.电磁感应现象(1)磁通量:Φ=BS,磁通量的变化:ΔΦ=Φ2-Φ1.(2)通过磁场产生电动势或电流的现象叫电磁感应现象,发生电磁感应现象的那部分导体相当于电源,电磁感应的实质是机械能转化为电能.2.电路知识 (1)电流强度:I =qt(2)导体的电阻:R =ρLS .(3)欧姆定律:I =U R 、I =ER +r(4)电功:W =UIt ,电功率:P =Wt =UI ,焦耳定律:Q =I 2Rt .3.力学知识(1)力的分解与合成的平行四边形定则、正交分解法. (2)滑动摩擦力:F 滑=μF N ,安培力F 安=BIL . (3)牛顿第二定律:F 合=ma(4)匀变速直线运动的规律:v 1=v 0+at 、s =v 0t +12at 2、v 21-v 20=2as 、s =v -t =v 0+v t 2t . (5)功能关系:安培力做正功,电能转化为机械能;做负功,机械能转化电能. (6)动能定理:W 总=12m v 22-12m v 21.(7)能量守恒定律:能的转化和守恒定律:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他的形式,或者从一个物体转移到别的物体,而能的总量保持不变.1.(2015·课标Ⅰ)1824年,法国科学家阿拉果完成了著名的“圆盘实验”.实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图所示.实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后.下列说法正确的是( )A .圆盘上产生了感应电动势B .圆盘内的涡电流产生的磁场导致磁针转动C .在圆盘转动的过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化D .圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动 答案 AB解析 如图所示,将铜圆盘等效为无数个长方形线圈的组合,则每个线圈绕OO ′轴转动时,均有感应电流产生,这些感应电流产生的磁场对小磁针有作用力,从而使小磁针转动起来,可见A 、B 均正确.由上述分析可见,感应电流的方向与圆盘的转动方向并不一致,故D 错.由对称性可见,穿过整个圆盘的磁通量始终为零,故C 错.2.(2015·安徽理综)如图所示,abcd 为水平放置的平行“”形光滑金属导轨,间距为l ,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B ,导轨电阻不计.已知金属杆MN 倾斜放置,与导轨成θ角,单位长度的电阻为r ,保持金属杆以速度v 沿平行于cd 的方向滑动(金属杆滑动过程中与导轨接触良好).则( )A .电路中感应电动势的大小为Bl vsin θB .电路中感应电流的大小为B v sin θrC .金属杆所受安培力的大小为B 2l v sin θrD .金属杆的发热功率为B 2l v 2r sin θ答案 B解析 金属杆MN 切割磁感线的有效长度为l ,产生的感应电动势E =Bl v ,A 错误;金属杆MN 的有效电阻R =rlsin θ,故回路中的感应电流I =E R =Bl v sin θrl =B v sin θr ,B 正确;金属杆受到的安培力F =BIlsin θ=Bl sin θ·B v sin θr =B 2l vr ,C 错误;金属杆的热功率P =I 2R =B 2v 2sin 2θr 2·rl sin θ=B 2v 2sin θ·lr ,D 错误. 3.(2015·山东理综)如图甲,R 0为定值电阻,两金属圆环固定在同一绝缘平面内.左端连接在一周期为T 0的正弦交流电源上,经二极管整流后,通过R 0的电流i 始终向左,其大小按图乙所示规律变化.规定内圆环a 端电势高于b 端时,a 、b 间的电压u ab 为正,下列u ab t 图象可能正确的是( )答案 C解析 由题图乙知,0~0.25T 0,外圆环电流逐渐增大且ΔiΔt 逐渐减小,根据安培定则,外圆环内部磁场方向垂直纸面向里,磁场逐渐增强且ΔBΔt 逐渐减小,根据楞次定律知内圆环a端电势高,所以u ab >0,根据法拉第电磁感应定律u ab =ΔΦΔt =ΔBSΔt 知,u ab 逐渐减小;t =0.25T 0时,Δi Δt =0,所以ΔBΔt =0,u ab =0;同理可知0.25T 0<t <0.5T 0时,u ab <0,且|u ab |逐渐增大;0.5T 0~T 0内重复0~0.5T 0的变化规律.故选项C 正确.知识:法拉第电磁感应定律、安培定则及楞次定律的综合应用.能力:对图象的理解能力、推理能力和分析综合能力.试题难度:中等.4.(2015·江苏单科)做磁共振(MRI)检查时,对人体施加的磁场发生变化时会在肌肉组织中产生感应电流.某同学为了估算该感应电流对肌肉组织的影响,将包裹在骨骼上的一圈肌肉组织等效成单匝线圈,线圈的半径r =5.0 cm ,线圈导线的截面积A =0.80 cm 2,电阻率ρ=1.5 Ω·m.如图所示,匀强磁场方向与线圈平面垂直,若磁感应强度B 在0.3 s 内从1.5 T 均匀地减为零,求:(计算结果保留一位有效数字)(1)该圈肌肉组织的电阻R ;(2)该圈肌肉组织中的感应电动势E ; (3)0.3 s 内该圈肌肉组织中产生的热量Q .答案 (1)6×103Ω (2)4×10-2V (3)8×10-8J解析 (1)由电阻定律得R =ρ2πrA ,代入数据得R =6×103Ω(2)感应电动势E =ΔB ·πr 2Δt ,代入数据得E =4×10-2V(3)由焦耳定律得Q =E 2RΔt ,代入数据得Q =8×10-8J电磁感应的图象问题1.电磁感应中的图象多在选择题中出现,有时也在计算题中考查,主要考查以下内容:(1)综合考查楞次定律、法拉第电磁感应定律及电路、安培力等相关知识;(2)在计算题中考查学生的识图能力.电磁感应现象中,回路产生的感应电动势、感应电流及磁场对导线的作用力随时间的变化规律,可用图象直观地表现出来(如:I -t 、B -t 、E -t 等),此题型可大致分为两类:(1)由给定的电磁感应过程选择相应的物理量的函数图象,以选择题形式为主;(2)由给定的有关图象分析电磁感应过程,确定相关物理量,以综合计算题形式出现. 2.解答电磁感应问题的一般步骤:(1)明确图象的种类,即是B -t 图还是Φ-t 图,或者E -t 图、I -t 图等. (2)分析电磁感应的具体过程.(3)用右手定则或楞次定律确定方向对应关系.(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式. (5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等. (6)画图象或判断图象.【例1】 (2013·新课标全国卷Ⅰ)如图,在水平面(纸面)内有三根相同的均匀金属棒ab 、ac 和MN ,其中ab 、ac 在a 点接触,构成“V ”字型导轨.空间存在垂直于纸面的均匀磁场.用力使MN 向右匀速运动,从图示位置开始计时,运动中MN 始终与∠bac 的平分线垂直且和导轨保持良好接触.下列关于回路中电流i 与时间t 的关系图线,可能正确的是( )【审题突破】 1.正确写出回路中感应电流i 与时间t 的函数关系式是解题的关键. 2.解题思路(1)写出金属棒MN 匀速向右切割磁感线产生的感应电动势及整个回路电阻的表达式; (2)根据闭合电路欧姆定律求出回路中的感应电流,得到回路中电流i 和时间t 的关系式. 答案 A解析 金属棒MN 匀速向右切割磁感线产生的感应电动势为E =BL v ,设∠bac =2θ,金属棒单位长度的电阻为r ,则整个回路的电阻为R =r (L +L 2 sin θ×2)=r (1+1sin θ)L ,再根据欧姆定律可得回路中的电流为i =ER=BL vr (1+1sin θ)L =B v sin θr (1+sin θ)=定值,故图A 正确.1.解答电磁感应问题的“三个关注”:(1)关注初始时刻,如初始时刻感应电流是否为零,是正方向还是负方向.(2)关注变化过程,看电磁感应发生的过程分为几个阶段,这几个阶段是否和图象变化相对应.(3)关注大小、方向的变化趋势,看图线斜率的大小、图线的曲、直是否和物理过程对应.2.图象问题的思路与方法:(1)图象选择问题:求解物理图象的选择题可用“排除法”,即排除与题目要求相违背的图象,留下正确图象.也可用“对照法”,即按照要求画出正确的草图,再与选项对照.解决此类问题关键是把握图象特点、分析相关物理量的函数关系、分析物理过程的变化或物理状态的变化.(2)图象分析问题:定性分析物理图象,要明确图象中的横轴与纵轴所代表的物理量,弄清图象的物理意义,借助有关的物理概念、公式、不变量和定律作出相应判断.在有关物理图象的定量计算时,要弄清图象所揭示的物理规律及物理量间的函数关系,善于挖掘图象中的隐含条件,明确有关图象所包围的面积、斜率,以及图象的横轴、纵轴的截距所表示的物理意义.【变式训练】1.(2014·课标Ⅰ)如图(a),线圈ab、cd绕在同一软铁芯上,在ab线圈中通以变化的电流,用示波器测得线圈cd间电压如图(b)所示,已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab中电流随时间变化关系的图中,可能正确的是()答案 C解析 A 选项中只有电流方向改变的瞬间,线圈cd 间才会产生电压,其他时间cd 间电压为零,不符合题意,故A 选项错误.通电线圈中产生的磁场B =ki (k 为比例系数);在另一线圈中的磁通量Φ=BS =kiS ,由法拉第电磁感应定律可知,在另一线圈中产生的感应电动势E =n ΔΦΔt ,由图(b)可知,|U cd |不变,则|ΔΦΔt |不变,故|ΔiΔt |不变,故选项B 、D 错误,C 正确.电磁感应的动力学问题1.电磁感应中的动力学问题应抓住的“两个对象”:2.电磁感应中的动力学问题的解题策略: 此类问题中力现象和电磁现象相互联系、相互制约,解决问题前首先要建立“动→电→动”的思维顺序,可概括为:(1)找准主动运动者,用法拉第电磁感应定律和楞次定律求解感应电动势的大小和方向. (2)根据等效电路图,求解回路中电流的大小及方向.(3)分析安培力对导体棒运动速度、加速度的影响,从推理得出对电路中的电流有什么影响,最后定性分析导体棒的最终运动情况.(4)列牛顿第二定律或平衡方程求解. 3.电磁感应中的动力学临界问题【例2】 (2014·江苏单科)如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L ,长为3d ,导轨平面与水平面的夹角为θ,在导轨的中部刷有一段长为d 的薄绝缘涂层.匀强磁场的磁感应强度大小为B ,方向与导轨平面垂直.质量为m 的导体棒从导轨的顶端由静止释放,在滑上涂层之前已经做匀速运动,并一直匀速滑到导轨底端.导体棒始终与导轨垂直,且仅与涂层间有摩擦,接在两导轨间的电阻为R ,其他部分的电阻均不计,重力加速度为g .求:(1)导体棒与涂层间的动摩擦因数μ; (2)导体棒匀速运动的速度大小v ;(3)整个运动过程中,电阻产生的焦耳热Q .【审题突破】 关注:导体棒在有绝缘涂层段受摩擦力,而不受安培力,在无涂层段不受摩擦力,而受安培力.隐含条件,匀速运动意味着摩擦力与安培力相同.答案 (1)tan θ (2)mgR sin θB 2L 2 (3)2mgd sin θ-m 3g 2R 2sin 2θ2B 4L 4解析 (1)在绝缘涂层上 受力平衡mg sin θ=μmg cos θ 解得μ=tan θ (2)在光滑导轨上 感应电动势E =BL v 感应电流I =ER安培力F 安=BIL受力平衡F 安=mg sin θ 解得v =mgR sin θB 2L2(3)摩擦生热Q 摩=μmgd cos θ由能量守恒定律得3mgd sin θ=Q +Q 摩+12m v 2解得Q =2mgd sin θ-m 3g 2R 2sin 2θ2B 4L 4破解电磁感应的动力学问题的思路(1)明确题目中给出的情景和运动过程的关键状态. (2)明确等效电源,画出等效电路,分析电路并列方程. (3)确定研究对象,进行受力分析,画出力的受力示意图.(4)写出安培力的表达式,抓住关键状态列出平衡条件或牛顿第二定律方程.(5)确定研究过程,分析研究对象的加速度、速度、感应电动势、感应电流、安培力等的变化情况.【变式训练】2.(2015·安徽合肥一模)如图(a)所示,平行长直导轨MN 、PQ 水平放置,两导轨间距L =0.5 m ,导轨左端M 、P 间接有一阻值R =0.2 Ω的定值电阻,导体棒ab 的质量m =0.1 kg ,与导轨间的动摩擦因数μ=0.1,导体棒垂直于导轨放在距离左端为d =1.0 m 处,导轨和导体棒始终接触良好,电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,t =0时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图(b)所示,不计感应电流磁场的影响.取重力加速度g =10 m/s 2.(1)求t =0时棒所受到的安培力F 0;(2)分析前3 s 时间内导体棒的运动情况并求前3 s 内棒所受的摩擦力f 随时间t 变化的关系式;(3)若t =3 s 时,突然使ab 棒获得向右的速度v 0=8 m/s ,同时垂直棒施加一方向水平、大小可变化的外力F ,使棒的加速度大小恒为a =4 m/s 2、方向向左.求从t =3 s 到t =4 s 的时间内通过电阻的电荷量q .答案 (1)0.025 N (2)f =0.0125(2-t )(N)(t <3 s) (3)1.5 C解析 (1)t =0时棒的速度为零,故回路中只有感应电动势,为E =ΔΦΔt =ΔBΔt Ld =0.1×0.5×1.0 V =0.05 V感应电流为:I =E R =0.050.2A =0.25 A 可得t =0时棒所受到的安培力:F 0=B 0IL =0.025 N(2)ab 棒与导轨间的最大静摩擦力:f m =μmg =0.1×0.1×10 N =0.1 N >F 0=0.025 N 所以在t =0时刻棒静止不动,加速度为零,在0~3 s 内磁感应强度B 都小于B 0,棒所受的安培力都小于最大静摩擦力,故前3 s 内导体棒静止不动,电流恒为I =0.25 A在0~3 s 内,磁感应强度为:B =B 0-kt =0.2-0.1t (T)因导体棒静止不动,ab 棒在水平方向受安培力和摩擦力,二力平衡,则有:f =BIL =(B 0-kt )IL =(0.2-0.1t )×0.25×0.5=0.0125(2-t )(N)(t <3 s)(3)3~4 s 内磁感应强度大小恒为B 2=0.1 T ,ab 棒做匀变速直线运动,Δt 1=4 s -3 s =1 s设t =4 s 时棒的速度为v ,第4 s 内的位移为x ,则:v =v 0-a Δt 1=4 m/sx =v 0+v 2Δt 1=6 m 在这段时间内的平均感应电动势为:E =ΔΦΔt 1通过电阻的电荷量为:q =I Δt 1=E R Δt 1=B 2Lx R=1.5 C. 电磁感应的能量问题电磁感应中功能问题的分析方法1.电磁感应过程的实质是不同形式的能量之间转化的过程,而能量的转化是通过安培力做功的形式实现的,安培力做功的过程,是电能转化为其他形式能的过程,外力克服安培力做功,则是其他形式的能转化为电能的过程.2.能量转化及焦耳热的求法(1)能量转化其他形式的能量――→克服安培力做功电能――→电流做功焦耳热或其他形式的能量(2)求解焦耳热Q的三种方法①焦耳定律:Q=I2Rt.②功能关系:Q=W克服安培力.③能量转化:Q=ΔE其他能的减少量.3.解决此类问题的步骤(1)用法拉第电磁感应定律和楞次定律(右手定则)确定感应电动势的大小和方向.(2)画出等效电路图,写出回路中电阻消耗的电功率的表达式.(3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程,联立求解.注意在利用能量的转化和守恒解决电磁感应问题时,第一要准确把握参与转化的能量的形式和和种类,第二要确定哪种能量增加,哪种能量减少.【例3】(2014·天津高考)如图所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L=0.4 m.导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B=0.5 T.在区域I中,将质量m1=0.1 kg,电阻R1=0.1 Ω的金属条ab放在导轨上,ab刚好不下滑.然后,在区域Ⅱ中将质量m2=0.4 kg,电阻R2=0.1 Ω的光滑导体棒cd置于导轨上,由静止开始下滑.cd在滑动过程中始终处于区域Ⅱ的磁场中,ab、cd始终与导轨垂直且两端与导轨保持良好接触,取g=10 m/s2.问(1)cd下滑的过程中,ab中的电流方向;(2)ab刚要向上滑动时,cd的速度v多大;(3)从cd开始下滑到ab刚要向上滑动的过程中,cd滑动的距离x=3.8 m,此过程中ab 上产生的热量Q是多少.【审题突破】 1.命题立意:本题以金属条切割磁场为背景,结合受力问题、能量转化问题、电路问题,主要考查法拉第电磁感应定律、闭合电路的欧姆定律、运动学公式、动能定理、功能关系等知识点.。

精品最新高考物理二轮提优导学案:专题十一电磁感应规律的综合应用

精品最新高考物理二轮提优导学案:专题十一电磁感应规律的综合应用

能力呈现【考情分析】201120122013电磁感应规律的综合应用T5:电磁感应中的图象问题T13:电磁感应定律的应用T13:电磁感应定律的应用【备考策略】电磁感应的综合应用,是高中物理中难度较大、综合性较强的部分之一,是高考必考内容之一。

电磁感应与力学、电路、磁场、能量等密切联系,涉及知识面广,综合性强,能力要求高,题型有计算题、选择题。

解答电磁感应综合应用的问题要“先电后力”,即先分析“电源、电路”,再进行受力和运动分析,然后选用牛顿运动定律或能量关系列式求解.1. (2013·浙江)如图甲所示,磁卡的磁条中有用于存储信息的磁极方向不同的磁化区,刷卡器中有检测线圈。

当以速度v0刷卡时,在线圈中产生感应电动势.其E—t关系如图乙所示.如果只将刷卡速度改为2v,线圈中的E-t关系可能是 ( )2. (2013·南京模拟)如图所示是两个互连的金属圆环,小金属环的电阻是大金属环电阻的二分之一,磁场垂直穿过大金属环所在区域.当磁感应强度随时间均匀变化时,在大环内产生的感应电动势为E,则a、b两点间的电势差为 ( )A. 12E B。

13E C.23E D。

E3。

(2013·扬州一模)如图所示装置中,一个足够长的光滑水平导轨与一理想变压器的原线圈相连,导体棒ab处于匀强磁场中,副线圈上连接有灯泡L和电容器C,其余一切电阻不计。

则下列说法中正确的是()A。

若ab棒向右做匀速直线运动,则灯泡L中有c→d的电流B. 若ab棒向右做匀速直线运动,则电容器C下极板带正电C. 若ab棒向右做匀加速直线运动,则灯泡L中有d→c的电流D。

若ab棒向右做匀加速直线运动,则电容器C上极板带正电4. (2013·安徽)如图所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5 m,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN垂直于导轨放置,质量为0。

2 kg,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5。

《电磁感应规律的应用》教案(最终定稿)

《电磁感应规律的应用》教案(最终定稿)

《电磁感应规律的应用》教案(最终定稿)第一篇:《电磁感应规律的应用》教案选修3-2第四章第5节《电磁感应规律的应用》一、教材分析由感生电场产生的感应电动势—感生电动势,由导体运动而产生的感应电动势—动生电动势。

这是按照引起磁通量变化的原因不同来区分的。

感生电动势与动生电动势的提出,涉及到电磁感应的本质问题,但教材对此要求不高。

教学中要让学生认识到变化的磁场可以产生电场,即使没有电路,感生电场依然存在,这是对电磁感应现象认识上的飞跃。

二、教学目标1.知识目标:(1).知道感生电场。

(2).知道感生电动势和动生电动势及其区别与联系。

2.能力目标:理解感生电动势与动生电动势的概念3.情感、态度和价值观目标:(1)。

通过同学们之间的讨论、研究增强对两种电动势的认知深度,同时提高学习物理的兴趣。

(2)。

通过对相应物理学史的了解,培养热爱科学、尊重知识的良好品德。

三、教学重点难点重点:感生电动势与动生电动势的概念。

难点:对感生电动势与动生电动势实质的理解。

四、学情分析学生学习了《楞次定律》、《法拉第电磁感应定律》内容之后,本节重点是使学生理解感生电动势和动生电动势的概念,因此要想方设法引导学生通过课前预习和课堂上的探究性学习来达到这个目的。

五、教学方法1.分组探究讨论法,讲练结合法2.学案导学:见后面的学案。

3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习六、课前准备1.学生的学习准备:结合本节学案来预习本节课本内容。

2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。

3.教学环境的设计和布置:以学习小组为单位课前预习讨论两个重要概念及其实质。

七、课时安排:1课时八、教学过程(一)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。

(二)情景导入、展示目标。

什么是电源?什么是电动势?电源是通过非静电力做功把其他形式能转化为电能的装置。

2022年高考物理三轮冲刺过关回归教材重难点11法拉第电磁感应定律及其应用(原卷版+解析)

2022年高考物理三轮冲刺过关回归教材重难点11法拉第电磁感应定律及其应用(原卷版+解析)

回归教材重难点11 法拉第电磁感应定律及其应用2022年高考考查的内容较大概率以法拉第电磁感应定律的理解及其应用为核心,侧重力与电的综合应用,有可能和欧姆定律一起综合命题考查。

在备考过程中首先要重视对物理概念、物理规律的理解,在应用中深化理解,夯实双基;其次要重视与电路、牛顿运动定律、动量、能量相结合的综合性题型的训练,如“电磁感应中的电路问题”“电磁感应中的力学问题”“电磁感应中的能量问题”等,让考生掌握各种典型问题的解决办法,培养考生模型建构能力、推理论证能力。

知识点一磁通量1.定义:在磁感应强度为B的匀强磁场中,与磁场方向垂直的面积S和B的乘积.2.公式:Φ=B·S.3.单位:1 Wb=1_T·m2.4.标矢性:磁通量是标量,但有正、负.知识点二、电磁感应1.电磁感应现象当穿过闭合电路的磁通量发生变化时,电路中有电流产生,这种现象称为电磁感应现象.2.产生感应电流的条件(1)电路闭合;(2)磁通量变化.3.能量转化发生电磁感应现象时,机械能或其他形式的能转化为电能.特别提醒:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线圈中就有感应电动势产生.知识点三、感应电流方向的判断1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化.(2)适用情况:所有的电磁感应现象.2.右手定则(1)内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内,让磁感线从掌心进入,并使拇指指向导体运动的方向,这时四指所指的方向就是感应电流的方向.(2)适用情况:导体切割磁感线产生感应电流.知识点四、楞次定律推论的应用楞次定律中“阻碍”的含义可以理解为感应电流的效果总是阻碍产生感应电流的原因,推论如下:(1)阻碍原磁通量的变化——“增反减同”;(2)阻碍相对运动——“来拒去留”;(3)使线圈面积有扩大或缩小的趋势——“增缩减扩”;(4)阻碍原电流的变化(自感现象)——“增反减同”知识点五、法拉第电磁感应定律1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.产生感应电动势的那部分导体就相当于电源,导体的电阻相当于电源内阻.(2)感应电流与感应电动势的关系:遵循闭合电路欧姆定律,即I =E R +r. 2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.(2)公式:E =n ΔΦΔt,n 为线圈匝数. 3.导体切割磁感线的情形(1)若B 、l 、v 相互垂直,则E =Blv .(2)若B ⊥l ,l ⊥v ,v 与B 夹角为θ,则E =Blv sin_θ.知识点六、自感与涡流1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.(2)表达式:E =L ΔI Δt. (3)自感系数L 的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关.2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生像水的旋涡状的感应电流.(1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动.(2)电磁驱动:如果磁场相对于导体转动,在导体中会产生感应电流,使导体受到安培力作用,安培力使导体运动起来.交流感应电动机就是利用电磁驱动的原理工作的.知识点七、电磁感应中的电路问题1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源.(2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电阻.2.电源电动势和路端电压(1)电动势:E =Blv 或E =n ΔΦΔt. (2)路端电压:U =IR =E R +r·R . 知识点八、电磁感应中的图象问题1.图象类型(1)随时间t 变化的图象如B -t 图象、Φ-t 图象、E -t 图象和i -t 图象.(2)随位移x 变化的图象如E -x 图象和i -x 图象.2.问题类型(1)由给定的电磁感应过程判断或画出正确的图象.(2)由给定的有关图象分析电磁感应过程,求解相应的物理量.(3)利用给出的图象判断或画出新的图象.知识点九、电磁感应现象中的动力学问题1.安培力的大小⎭⎪⎬⎪⎫安培力公式:F =BIl感应电动势:E =Blv 感应电流:I =E R ⇒F =B 2l 2v R 2.安培力的方向(1)先用右手定则判定感应电流方向,再用左手定则判定安培力方向.(2)根据楞次定律,安培力的方向一定和导体切割磁感线运动方向相反.知识点十、电磁感应中的能量转化1.过程分析(1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程.(2)感应电流在磁场中受安培力,若安培力做负功,则其他形式的能转化为电能;若安培力做正功,则电能转化为其他形式的能.(3)当感应电流通过用电器时,电能转化为其他形式的能.2.安培力做功和电能变化的对应关系“外力”克服安培力做多少功,就有多少其他形式的能转化为电能;安培力做多少功,就有多少电能转化为其他形式的能.1. (2021·河北卷)如图,两光滑导轨水平放置在竖直向下的匀强磁场中,磁感应强度大小为B ,导轨间距最窄处为一狭缝,取狭缝所在处O 点为坐标原点,狭缝右侧两导轨与x 轴夹角均为θ,一电容为C 的电容器与导轨左端相连,导轨上的金属棒与x 轴垂直,在外力F 作用下从O 点开始以速度v 向右匀速运动,忽略所有电阻,下列说法正确的是( )A .通过金属棒的电流为22tan BCv θB .金属棒到达0x 时,电容器极板上的电荷量为0tan BCvx θC .金属棒运动过程中,电容器的上极板带负电D .金属棒运动过程中,外力F 做功的功率恒定2.(2021·山东卷)如图所示,电阻不计的光滑U 形金属导轨固定在绝缘斜面上。

高中物理-第一篇 专题四 第11讲 电磁感应

高中物理-第一篇 专题四 第11讲 电磁感应

第11讲 电磁感应 命题规律 1.命题角度:(1)楞次定律与法拉第电磁感应定律的应用;(2)电磁感应中的图象问题;(3)电磁感应中的动力学与能量问题.2.常用方法:排除法、函数法.3.常考题型:选择题、计算题.考点一 楞次定律与法拉第电磁感应定律的应用1.感应电流方向的判断(1)楞次定律:线圈面积不变,磁感应强度发生变化的情形,往往用楞次定律.(2)右手定则:导体棒切割磁感线的情形往往用右手定则.2.楞次定律中“阻碍”的主要表现形式(1)阻碍原磁通量的变化——“增反减同”;(2)阻碍物体间的相对运动——“来拒去留”;(3)使线圈面积有扩大或缩小的趋势——一般情况下为“增缩减扩”;(4)阻碍原电流的变化(自感现象)——一般情况下为“增反减同”.3.求感应电动势的方法(1)法拉第电磁感应定律:E =n ΔΦΔt ⎩⎨⎧ S 不变时,E =nS ΔB Δt B 不变时,E =nB ΔS Δt(2)导体棒垂直切割磁感线:E =Bl v .(3)导体棒以一端为圆心在垂直匀强磁场的平面内匀速转动:E =12Bl 2ω. (4)线圈绕与磁场垂直的轴匀速转动(从线圈位于中性面开始计时):e =nBSωsin ωt .4.通过回路截面的电荷量q =I Δt =n ΔΦR 总Δt Δt =n ΔΦR 总.q 仅与n 、ΔΦ和回路总电阻R 总有关,与时间长短无关,与Φ是否均匀变化无关.例1 (多选)(2022·广东卷·10)如图所示,水平地面(Oxy 平面)下有一根平行于y 轴且通有恒定电流I 的长直导线.P 、M 和N 为地面上的三点,P 点位于导线正上方,MN 平行于y 轴,PN 平行于x 轴.一闭合的圆形金属线圈,圆心在P 点,可沿不同方向以相同的速率做匀速直线运动,运动过程中线圈平面始终与地面平行.下列说法正确的有( )A .N 点与M 点的磁感应强度大小相等,方向相同B .线圈沿PN 方向运动时,穿过线圈的磁通量不变C .线圈从P 点开始竖直向上运动时,线圈中无感应电流D .线圈从P 到M 过程的感应电动势与从P 到N 过程的感应电动势相等答案 AC解析 依题意,M 、N 两点连线与长直导线平行,两点与长直导线的距离相等,根据右手螺旋定则可知,通电长直导线在M 、N 两点产生的磁感应强度大小相等、方向相同,故A 正确;根据右手螺旋定则,线圈在P 点时,穿进线圈中的磁感线与穿出线圈中的磁感线相等,磁通量为零,在向N 点平移过程中,穿进线圈中的磁感线与穿出线圈中的磁感线不再相等,穿过线圈的磁通量发生变化,故B 错误;根据右手螺旋定则,线圈从P 点竖直向上运动过程中,穿进线圈中的磁感线与穿出线圈中的磁感线始终相等,穿过线圈的磁通量始终为零,没有发生变化,线圈中无感应电流,故C 正确;线圈从P 点到M 点与从P 点到N 点,穿过线圈的磁通量变化量相同,依题意从P 点到M 点所用时间较从P 点到N 点的时间长,根据法拉第电磁感应定律,可知两次的感应电动势不相等,故D 错误.例2 (多选)(2021·辽宁卷·9)如图(a)所示,两根间距为L 、足够长的光滑平行金属导轨竖直放置并固定,顶端接有阻值为R 的电阻,垂直导轨平面存在变化规律如图(b)所示的匀强磁场,t =0时磁场方向垂直纸面向里.在t =0到t =2t 0的时间内,金属棒水平固定在距导轨顶端L 处;t =2t 0时,释放金属棒.整个过程中金属棒与导轨接触良好,导轨与金属棒的电阻不计,则( )A .在t =t 02时,金属棒受到安培力的大小为B 02L 3t 0RB .在t =t 0时,金属棒中电流的大小为B 0L 2t 0RC .在t =3t 02时,金属棒受到安培力的方向竖直向上 D .在t =3t 0时,金属棒中电流的方向向右答案 BC解析 由题图(b)可知在0~t 0时间段内闭合回路产生的感应电动势为E =ΔΦΔt =B 0L 2t 0,根据闭合电路欧姆定律有,此时间段内的电流为I =E R =B 0L 2Rt 0,在t 02时磁感应强度大小为B 02,此时安培力大小为F =B 02IL =B 02L 32Rt 0,故A 错误,B 正确;由题图(b)可知,在t =3t 02时,磁场方向垂直纸面向外并逐渐增大,根据楞次定律可知产生顺时针方向的电流,再由左手定则可知金属棒受到的安培力方向竖直向上,故C 正确;由题图(b)可知,在t =3t 0时,磁场方向垂直纸面向外,金属棒向下掉的过程中穿过回路的磁通量增加,根据楞次定律可知金属棒中的感应电流方向向左,故D 错误.考点二 电磁感应中的图象问题1.电磁感应中常见的图象常见的有磁感应强度、磁通量、感应电动势、感应电流、速度、安培力等随时间或位移的变化图象.2.解答此类问题的两个常用方法(1)排除法:定性分析电磁感应过程中某个物理量的变化情况,把握三个关注,快速排除错误的选项.这种方法能快速解决问题,但不一定对所有问题都适用.(2)函数关系法:根据题目所给的条件写出物理量之间的函数关系,再对图象作出判断,这种方法得到的结果准确、详细,但不够简捷.例3 (多选)(2022·河北卷·8)如图,两光滑导轨水平放置在竖直向下的匀强磁场中,一根导轨位于x 轴上,另一根由ab 、bc 、cd 三段直导轨组成,其中bc 段与x 轴平行,导轨左端接入一电阻R .导轨上一金属棒MN 沿x 轴正向以速度v 0保持匀速运动,t =0时刻通过坐标原点O ,金属棒始终与x 轴垂直.设运动过程中通过电阻的电流强度为i ,金属棒受到安培力的大小为F ,金属棒克服安培力做功的功率为P ,电阻两端的电压为U ,导轨与金属棒接触良好,忽略导轨与金属棒的电阻.下列图象可能正确的是( )答案 AC解析 在0~L v 0时间内,在某时刻金属棒切割磁感线的长度L =l 0+v 0t tan θ(θ为ab 与ad 的夹角),则根据E =BL v 0,可得I =BL v 0R =B v 0R(l 0+v 0t tan θ),可知回路电流均匀增加;安培力F =B 2L 2v 0R =B 2v 0R (l 0+v 0t tan θ)2,则F -t 关系为二次函数关系,但是不过原点;安培力做功的功率P =F v 0=B 2L 2v 02R =B 2v 02R (l 0+v 0t tan θ)2,则P -t 关系为二次函数关系,但是不过原点;电阻两端的电压等于金属棒产生的感应电动势,即U =E =BL v 0=B v 0(l 0+v 0t tan θ),即U -t 图象是不过原点的直线;根据以上分析,可排除B 、D 选项;在L v 0~2L v 0时间内,金属棒切割磁感线的长度不变,感应电动势E 不变,感应电流I 不变,安培力F 大小不变,安培力的功率P 不变,电阻两端电压U 保持不变;同理可判断,在2L v 0~3L v 0时间内,金属棒切割磁感线长度逐渐减小,金属棒切割磁感线的感应电动势E 均匀减小,感应电流I 均匀减小,安培力F 大小按照二次函数关系减小,但是不能减小到零,与0~L v 0内是对称的关系,安培力的功率P 按照二次函数关系减小,但是不能减小到零,与0~L v 0内是对称的关系,电阻两端电压U 按线性均匀减小,综上所述选项A 、C 可能正确,B 、D 错误.例4 (多选)(2022·安徽省六校第二次联考)如图所示,水平面内有一足够长平行金属导轨,导轨光滑且电阻不计.匀强磁场与导轨平面垂直.阻值为R的导体棒垂直于导轨静止放置,且与导轨接触良好.开关S由1掷到2时开始计时,q、i、v和a分别表示电容器所带的电荷量、棒中的电流、棒的速度和加速度.下列图象可能正确的是()答案ACD解析开关S由1掷到2,电容器放电后会在电路中产生电流且此刻电流最大,导体棒通有电流后会受到安培力的作用产生加速度而加速运动,导体棒切割磁感线产生感应电动势,导体棒速度增大,则感应电动势E=Bl v增大,则实际电流减小,安培力F=BIL减小,加速度a=Fm即减小,因导轨光滑,所以在有电流通过棒的过程中,棒是一直做加速度减小的加速运动(变加速),故a-t图象即选项D是正确的;导体棒运动产生感应电动势会给电容器充电,当充电和放电达到一种平衡时,导体棒做匀速运动,因此最终电容器两端的电压能稳定在某个不为0的数值,即电容器的电荷量应稳定在某个不为0的数值(不会减少到0),电路中无电流,故B错误,A、C正确.考点三电磁感应中的动力学与能量问题1.电磁感应综合问题的解题思路2.求解焦耳热Q的三种方法(1)焦耳定律:Q=I2Rt,适用于电流恒定的情况;(2)功能关系:Q=W克安(W克安为克服安培力做的功);(3)能量转化:Q =ΔE (其他能的减少量).例5 (多选)(2022·全国甲卷·20)如图,两根相互平行的光滑长直金属导轨固定在水平绝缘桌面上,在导轨的左端接入电容为C 的电容器和阻值为R 的电阻.质量为m 、阻值也为R 的导体棒MN 静止于导轨上,与导轨垂直,且接触良好,导轨电阻忽略不计,整个系统处于方向竖直向下的匀强磁场中.开始时,电容器所带的电荷量为Q ,合上开关S 后( )A .通过导体棒MN 电流的最大值为Q RCB .导体棒MN 向右先加速、后匀速运动C .导体棒MN 速度最大时所受的安培力也最大D .电阻R 上产生的焦耳热大于导体棒MN 上产生的焦耳热答案 AD解析 开始时电容器两极板间的电压U =Q C ,合上开关瞬间,通过导体棒的电流I =U R =Q CR ,随着电容器放电,通过电阻、导体棒的电流不断减小,所以在开关闭合瞬间,导体棒所受安培力最大,此时速度为零,A 项正确,C 项错误;由于回路中有电阻与导体棒,最终电能完全转化为焦耳热,故导体棒最终必定静止,B 项错误;由于导体棒切割磁感线,产生感应电动势,所以通过导体棒的电流始终小于通过电阻的电流,由焦耳定律可知,电阻R 上产生的焦耳热大于导体棒MN 上产生的焦耳热,D 项正确.例6 (2022·山东济南市一模)如图所示,在水平虚线下方存在方向垂直纸面向外的匀强磁场,磁感应强度大小为B .磁场上方某高度处有一个正方形金属线框,线框质量为m ,电阻为R ,边长为L .某时刻将线框以初速度v 0水平抛出,线框进入磁场过程中速度不变,运动过程中线框始终竖直且底边保持水平.磁场区域足够大,忽略空气阻力,重力加速度为g ,求:(1)线框进入磁场时的速度v ;(2)线框进入磁场过程中产生的热量Q .答案 (1)v 02+m 2g 2R 2B 4L 4,速度方向与水平方向夹角的正切值为mgRB 2L 2v 0(2)mgL 解析 (1)当线框下边界刚进入磁场时,由于线框速度不变,对线框进行受力分析有BIL=mg由欧姆定律可得I=ER线框切割磁感线,由法拉第电磁感应定律可得E=BL v y由速度的合成与分解可得v=v02+v y2联立求解可得v=v02+m2g2R2B4L4设此时速度方向与水平面的夹角为θ,则tan θ=v yv0=mgR B2L2v0即此时速度方向与水平方向夹角的正切值为mgRB2L2v0.(2)线框进入磁场过程中速度不变,则从进入磁场开始到完全进入磁场,由能量守恒定律得Q=mgL.例7(2022·河南洛阳市模拟)如图甲所示,金属导轨MN和PQ平行,间距L=1 m,与水平面之间的夹角α=37°,匀强磁场磁感应强度大小B=2.0 T,方向垂直于导轨平面向上,MP 间接有阻值R=1.5 Ω的电阻,质量m=0.5 kg,接入电路中电阻r=0.5 Ω的金属杆ab垂直导轨放置,金属杆与导轨间的动摩擦因数为μ=0.2.现用恒力F沿导轨平面向上拉金属杆ab,使其由静止开始运动,当金属杆上滑的位移x=3.8 m时达到稳定状态,金属杆始终与导轨接触良好,对应过程的v-t图象如图乙所示.取g=10 m/s2,sin 37°=0.6,cos 37°=0.8,导轨足够长且电阻不计.求:(1)恒力F的大小及金属杆的速度为0.4 m/s时的加速度大小;(2)从金属杆开始运动到刚达到稳定状态,通过电阻R的电荷量;(3)从金属杆开始运动到刚达到稳定状态,金属杆上产生的焦耳热.答案(1)5.8 N 2.4 m/s2(2)3.8 C(3)1.837 5 J解析(1)当金属杆匀速运动时,由平衡条件得F=μmg cos 37°+mg sin 37°+F安由题图乙知v =1 m/s ,则F 安=BIL =B 2L 2v R +r =2 N 解得F =5.8 N当金属杆的速度为0.4 m/s 时F 安1=BI 1L =B 2L 2v 1R +r=0.8 N 由牛顿第二定律有F -μmg cos 37°-mg sin 37°-F 安1=ma解得a =2.4 m/s 2.(2)由q =I ·ΔtI =E R +rE =ΔΦΔt 得q =ΔΦR +r =BLx R +r=3.8 C. (3)从金属杆开始运动到刚到达稳定状态,由动能定理得(F -μmg cos 37°-mg sin 37°)x +W 安=12m v 2-0 又Q =|W 安|=7.35 J ,所以解得Q r =r R +rQ =1.837 5 J.1.(多选)(2022·河南郑州市二模)在甲、乙、丙图中,MN 、PQ 是固定在同一水平面内足够长的平行金属导轨.导体棒ab 垂直放在导轨上,导轨都处于垂直水平面向下的匀强磁场中,导体棒和导轨间的摩擦不计,导体棒、导轨和直流电源的电阻均可忽略,甲图中的电容器C 原来不带电.现给导体棒ab 一个向右的初速度v 0,对甲、乙、丙图中导体棒ab 在磁场中的运动状态描述正确的是( )A .甲图中,棒ab 最终做匀速运动B .乙图中,棒ab 做匀减速运动直到最终静止C .丙图中,棒ab 最终做匀速运动D .甲、乙、丙中,棒ab 最终都静止答案 AC解析 题图甲中,导体棒向右运动切割磁感线产生感应电流而使电容器充电,当电容器C 极板间电压与导体棒产生的感应电动势相等时,电路中没有电流,此时ab 棒不受安培力作用,向右做匀速运动,故A 正确;题图乙中,导体棒向右运动切割磁感线产生感应电流,通过电阻R 转化为内能,ab 棒速度减小,当ab 棒的动能全部转化为内能时,ab 棒静止,又由I =BL v R,F =BIL ,由于速度减小,则产生的感应电流减小,导体棒所受安培力减小,根据牛顿第二定律可知导体棒的加速度减小,所以题图乙中,棒ab 做加速度减小的减速运动直到最终静止,故B 错误;题图丙中,导体棒先受到向左的安培力作用向右做减速运动,速度减为零后在安培力作用下向左做加速运动,当导体棒产生的感应电动势与电源的电动势相等时,电路中没有电流,此时ab 棒向左做匀速运动,故C 正确;由以上分析可知,甲、乙、丙中,只有题图乙中棒ab 最终静止,故D 错误.2.(2022·山东泰安市高三期末)如图所示,间距为L 的平行光滑足够长的金属导轨固定倾斜放置,倾角θ=30°,虚线ab 、cd 垂直于导轨,在ab 、cd 间有垂直于导轨平面向上、磁感应强度大小为B 的匀强磁场.质量均为m 、阻值均为R 的金属棒PQ 、MN 并靠在一起垂直导轨放在导轨上.释放金属棒PQ ,当PQ 到达ab 瞬间,再释放金属棒MN ;PQ 进入磁场后做匀速运动,当PQ 到达cd 时,MN 刚好到达ab .不计导轨电阻,两金属棒与导轨始终接触良好,重力加速度为g .则MN 通过磁场过程中,PQ 上产生的焦耳热为( )A.2m 3g 2R 2B 4L4 B.m 3g 2R 2B 4L 4 C.m 3g 2R 24B 4L4 D.m 3g 2R 22B 4L4 答案 D解析 由题意知PQ 进入磁场后做匀速运动,则由平衡条件得安培力为F =mg sin θ,又因为F =BIL =B 2L 2v 2R ,解得金属棒速度为v =mgR B 2L 2,电流为I =mg 2BL ,因为金属棒从释放到刚进入磁场时做匀加速直线运动,由牛顿第二定律知mg sin θ=ma,所以加速时间为t=va,由题意知当PQ到达cd时,MN刚好到达ab,即金属棒穿过磁场的时间等于进入磁场前的加速时间,且MN在磁场中的运动情况和PQ一致,故MN通过磁场过程中,PQ上产生的焦耳热为Q焦耳=I2Rt,解得Q焦耳=m3g2R22B4L4,故选D.专题强化练[保分基础练]1.(2022·上海市二模)如图,某教室墙上有一朝南的钢窗,将钢窗右侧向外打开,以推窗人的视角来看,窗框中产生()A.顺时针电流,且有收缩趋势B.顺时针电流,且有扩张趋势C.逆时针电流,且有收缩趋势D.逆时针电流,且有扩张趋势答案 D解析磁场方向由南指向北,将钢窗右侧向外打开,则向北穿过窗户的磁通量减少,根据楞次定律,以推窗人的视角来看,感应电流为逆时针电流,同时根据“增缩减扩”可知,窗框有扩张趋势,故选D.2.(2022·广东肇庆市二模)如图所示,开口极小的金属环P、Q用不计电阻的导线相连组成闭合回路,金属环P内存在垂直圆环平面向里的匀强磁场,匀强磁场的磁感应强度随时间的变化率为k,若使金属环Q中产生逆时针方向逐渐增大的感应电流,则()A.k>0且k值保持恒定B.k>0且k值逐渐增大C.k<0且k值逐渐增大D.k<0且k值逐渐减小答案 B解析若使金属环Q中产生逆时针方向逐渐增大的感应电流,则金属环P中也有逆时针方向逐渐增大的感应电流,根据楞次定律和安培定则可知,金属环P中向里的磁感应强度增加,且增加得越来越快,即k>0且k值逐渐增大,故选B.3.(2022·陕西宝鸡市模拟)如图所示,两根电阻不计的平行光滑长直金属导轨水平放置,导体棒a和b垂直跨在导轨上且与导轨接触良好,导体棒a的电阻大于b的电阻,匀强磁场方向竖直向下.当导体棒b在大小为F2的水平拉力作用下匀速向右运动时,导体棒a在大小为F1的水平拉力作用下保持静止状态.若U1、U2分别表示导体棒a和b与导轨两个接触点间的电压,那么它们的大小关系为()A.F1=F2,U1> U2B.F1< F2,U1< U2C.F1 > F2,U1< U2D.F1=F2,U1=U2答案 D解析导体棒a、b与导轨构成了闭合回路,流过a、b的电流是相等的;a静止不动,b匀速运动,都处于平衡状态,即拉力等于安培力,所以F1=F2=BIL,导体棒b相当于电源,导体棒a相当于用电器,由于电路是闭合的,所以导体棒a两端的电压U1=IR a,导体棒b切割磁感线产生的电动势E=BL v b=I(R a+R b),所以其输出的路端电压U2=E-IR b=IR a=U1,故选D.4.(2022·广东省模拟)如图所示,水平面内光滑的平行长直金属导轨间距为L,左端接电阻R,导轨上静止放有一导体棒.正方形虚线框内有方向竖直向下、磁感应强度大小为B的匀强磁场,该磁场正以速度v匀速向右移动,则()A.电阻R两端的电压恒为BL vB .电阻R 中有从a 到b 的电流C .导体棒以速度v 向左运动D .导体棒也向右运动,只是速度比v 小 答案 D解析 根据楞次定律,磁场正以速度v 匀速向右移动,磁通量减小,则导体棒也向右运动,阻碍磁通量的减小,但由于要产生感应电流,棒的速度比v 小,C 错误,D 正确;由此可认为磁场不动,棒向左切割,感应电流方向从b 到a 流过R ,B 错误;产生感应电动势的大小看棒与磁场的相对速度,故电阻R 两端的电压不恒定且小于或等于BL v ,A 错误. 5.(2022·全国甲卷·16)三个用同样的细导线做成的刚性闭合线框,正方形线框的边长与圆线框的直径相等,圆线框的半径与正六边形线框的边长相等,如图所示.把它们放入磁感应强度随时间线性变化的同一匀强磁场中,线框所在平面均与磁场方向垂直,正方形、圆形和正六边形线框中感应电流的大小分别为I 1、I 2和I 3.则( )A .I 1<I 3<I 2B .I 1>I 3>I 2C .I 1=I 2>I 3D .I 1=I 2=I 3答案 C解析 设圆线框的半径为r ,则由题意可知正方形线框的边长为2r ,正六边形线框的边长为r ;所以圆线框的周长为C 2=2πr ,面积为S 2=πr 2,同理可知正方形线框的周长和面积分别为C 1=8r ,S 1=4r 2,正六边形线框的周长和面积分别为C 3=6r ,S 3=33r 22,三个线框材料粗细相同,根据电阻定律R =ρL S 横截面,可知三个线框电阻之比为R 1∶R 2∶R 3=C 1∶C 2∶C 3=8∶2π∶6,根据法拉第电磁感应定律有I =E R =ΔB Δt ·SR ,可得电流之比为I 1∶I 2∶I 3=2∶2∶3,即I 1=I 2>I 3,故选C.6.(2022·黑龙江哈师大附中高三期末)如图,一线圈匝数为n ,横截面积为S ,总电阻为r ,处于一个均匀增强的磁场中,磁感应强度随时间的变化率为k (k >0且为常量),磁场方向水平向右且与线圈平面垂直,电容器的电容为C ,两个电阻的阻值分别为r 和2r .下列说法正确的是( )A .电容器下极板带正电B .此线圈的热功率为(nkS )2rC .电容器所带电荷量为3nSkC5D .电容器所带电荷量为nSkC2答案 D解析 根据楞次定律可以判断通过电阻r 的电流方向为从左往右,所以电容器上极板带正电,故A 错误;根据法拉第电磁感应定律可得线圈产生的感应电动势为E =n ΔΦΔt =nS ΔBΔt =nkS ,根据焦耳定律可得此线圈的热功率为P =(E 2r )2r =(nkS )24r ,故B 错误;电容器两端电压等于r两端电压,电容器所带电荷量为Q =CU =C ·rE 2r =nSkC2,故C 错误,D 正确.7.(2022·江苏盐城市二模)如图所示,三条平行虚线L 1、L 2、L 3之间有宽度为L 的两个匀强磁场区域Ⅰ、Ⅱ,两区域内的磁感应强度大小相等、方向相反,正方形金属线框MNPQ 的质量为m 、边长为L ,开始时MN 边与边界L 1重合,对线框施加拉力F 使其以加速度a 匀加速通过磁场区,以顺时针方向电流为正方向,下列关于感应电流i 和拉力F 随时间变化的图象可能正确的是( )答案 B解析 当MN 边向右运动0~L 的过程中,用时t 1=2L a ,则E 1=BLat ,电流I 1=E 1R =BLa Rt ,方向为正方向;拉力F 1=ma +F 安1=ma +B 2L 2aR t ;当MN 边向右运动L ~2L 的过程中,用时t 2=4L a-2La=(2-1)2L a =(2-1)t 1,E 2=2BLat ,电流I 2=E 2R =2BLa Rt ,方向为负方向,拉力F 2=ma +F 安2=ma +4B 2L 2aR t ;当MN 边向右运动2L ~3L 的过程中,用时t 3=6La-4La=(3-2)2L a =(3-2)t 1,E 3=BLat ,电流I 3=E 3R =BLa Rt ,方向为正方向,拉力F 3=ma +F 安3=ma +B 2L 2aRt ,对比四个选项可知,只有B 正确.[争分提能练]8.(多选)(2021·广东卷·10)如图所示,水平放置足够长光滑金属导轨abc 和de ,ab 与de 平行,bc 是以O 为圆心的圆弧导轨,圆弧be 左侧和扇形Obc 内有方向如图的匀强磁场,金属杆OP 的O 端与e 点用导线相接,P 端与圆弧bc 接触良好,初始时,可滑动的金属杆MN 静止在平行导轨上,若杆OP 绕O 点在匀强磁场区内从b 到c 匀速转动时,回路中始终有电流,则此过程中,下列说法正确的有( )A .杆OP 产生的感应电动势恒定B .杆OP 受到的安培力不变C .杆MN 做匀加速直线运动D .杆MN 中的电流逐渐减小 答案 AD解析 杆OP 匀速转动切割磁感线产生的感应电动势为E =12Br 2ω,因为OP 匀速转动,所以杆OP 产生的感应电动势恒定,故A 正确;杆OP 转动过程中产生的感应电流由M 到N 通过杆MN ,由左手定则可知,杆MN 会向左运动,杆MN 运动会切割磁感线,产生电动势,感应电流方向与原来电流方向相反,使回路电流减小,杆MN 所受合力为安培力,电流减小,安培力会减小,加速度减小,故D 正确,B 、C 错误.9.(多选)(2021·全国甲卷·21)由相同材料的导线绕成边长相同的甲、乙两个正方形闭合线圈,两线圈的质量相等,但所用导线的横截面积不同,甲线圈的匝数是乙的2倍.现两线圈在竖直平面内从同一高度同时由静止开始下落,一段时间后进入一方向垂直于纸面的匀强磁场区域,磁场的上边界水平,如图所示.不计空气阻力,已知下落过程中线圈始终平行于纸面,上、下边保持水平.在线圈下边进入磁场后且上边进入磁场前,可能出现的是( )A .甲和乙都加速运动B .甲和乙都减速运动C .甲加速运动,乙减速运动D .甲减速运动,乙加速运动 答案 AB解析 设线圈下边到磁场上边界的高度为h ,线圈的边长为l ,则线圈下边刚进入磁场时,有v =2gh ,感应电动势为E =nBl v ,两线圈材料相同(设密度为ρ0),质量相等(设为m ), 则m =ρ0·4nl ·S ,设材料的电阻率为ρ,则线圈电阻 R =ρ4nl S =16n 2l 2ρρ0m感应电流为I =E R =mB v 16nlρρ0所受安培力为F =nBIl =mB 2v16ρρ0由牛顿第二定律有mg -F =ma 联立解得a =g -Fm =g -B 2v 16ρρ0加速度与线圈的匝数、横截面积无关,则甲和乙进入磁场时,具有相同的加速度. 当g >B 2v16ρρ0时,甲和乙都加速运动,当g <B 2v 16ρρ0时,甲和乙都减速运动,当g =B 2v16ρρ0时,甲和乙都匀速运动,故选A 、B.10.(2022·山东省第二次模拟)如图所示,“凹”字形硬质金属线框质量为m ,相邻各边互相垂直,且处于同一平面内,ab 、bc 边长均为2l ,gf 边长为l .匀强磁场区域的上下边界均水平,磁场方向垂直于线框所在平面.开始时,bc 边离磁场上边界的距离为l ,线框由静止释放,从bc 边进入磁场直到gf 边进入磁场前,线框做匀速运动.在gf 边离开磁场后,ah 、ed 边离开磁场之前,线框又做匀速运动.线框在下落过程中始终处于竖直平面内,且bc 、gf 边保持水平,重力加速度为g .(1)线框ah 、ed 边将要离开磁场时做匀速运动的速度大小是bc 边刚进入磁场时的几倍? (2)若磁场上下边界间的距离为H ,则线框完全穿过磁场过程中产生的热量为多少? 答案 (1)4 (2)mg (H -13l )解析 (1)设bc 边刚入磁场时速度为v 1,bc 边刚进入时, 有E 1=2Bl v 1,I 1=E 1R ,F 1=2BI 1l线框匀速运动,有F 1=mg 联立可得v 1=mgR4B 2l2设ah 、ed 边将离开磁场时速度为v 2,ah 、ed 边将离开磁场时,有E 2=Bl v 2,I 2=E 2R ,F 2=BI 2l ,线框匀速运动,有F 2=mg 联立可得v 2=mgRB 2l 2,综上所述v 2v 1=4即线框ah 、ed 边将要离开磁场时做匀速运动的速度大小是bc 边刚进入磁场时的4倍. (2)bc 边进入磁场前,根据动能定理, 有mgl =12m v 12穿过磁场过程中能量守恒,。

适用于新高考新教材2024版高考物理二轮复习专题电磁感应规律及综合应用(含答案)

适用于新高考新教材2024版高考物理二轮复习专题电磁感应规律及综合应用(含答案)

适用于新高考新教材高考物理二轮复习专题:专题分层突破练11 电磁感应规律及综合应用A组基础巩固练1.(2023山东烟台一模)智能手表通常采用无线充电方式充电。

如图甲所示,充电基座与交流电源相连,智能手表放置在充电基座旁时未充电,将智能手表压在充电基座上,无需导线连接,智能手表便可以充电(如图乙所示)。

已知充电基座与智能手表都内置了线圈,则()A.智能手表和充电基座无导线连接,所以传输能量时没有损失B.用塑料薄膜将充电基座包裹起来,之后仍能为智能手表充电C.无线充电的原理是利用充电基座内的线圈发射电磁波传输能量D.充电时,充电基座线圈的磁场对智能手表线圈中的电子施加力的作用,驱使电子运动2.(2023山东德州模拟)某课题组要测量某金属材料的电阻率,他们先取适量该金属材料切割成如图所示的长方体,长方体的三条边长分别为a、b、c,长方体上、下表面与电流传感器用导线相连,导线左端紧贴长方体上、下表面。

虚线框左侧有垂直于长方体前、后表面的匀强磁场,磁感应强度大小为B。

使匀强磁场以大小为v的速度向左运动时(长方体全部处于磁场中),电流传感器显示回路中的电流大小为I。

不计电流传感器及导线的电阻,则该金属材料的电阻率为()A.BvabI B.Bvab2IcC.Bvbc2IaD.Bvcb2Ia3.(2023江苏卷)如图所示,圆形区域内有垂直纸面向里的匀强磁场,OC导体棒的O端位于圆心,棒的中点A位于磁场区域的边缘。

现使导体棒绕O点在纸面内逆时针转动。

O、A、C点电势分别为φO、φA、φC,则()A.φO>φCB.φC>φAC.φO=φAD.φO-φA=φA-φC4.(多选)(2023辽宁沈阳模拟)如图所示,有界匀强磁场的磁感应强度为B,方向垂直纸面向里。

有一半径为R的线圈,其单位长度上的电阻为r,线圈平面与磁场方向垂直,线圈直径MN垂直磁场边界于M点。

现以M点为轴在纸面内,线圈沿顺时针方向匀速旋转90°,角速度为ω,则()A.感应电流方向为顺时针方向B.感应电动势的最大值为BR2ωC.感应电流的最大值为2BR 2ωrD.通过线圈任意横截面的电荷量为BR4r5.(2023湖南娄底模拟)轻质细线吊着一质量为m=1 kg、边长为0.2 m、电阻R=1 Ω、匝数n=10的正方形闭合线圈abcd,bd为正方形闭合线圈的对角线,bd下方区域分布着匀强磁场,如图甲所示。

高考物理二轮复习专题电磁感应定律及综合应用教学案

高考物理二轮复习专题电磁感应定律及综合应用教学案

专题09 电磁感应定律及综合应用电磁感应是电磁学中最为重要的内容,也是高考命题频率最高的内容之一。

题型多为选择题、计算题。

主要考查电磁感应、楞次定律、法拉第电磁感应定律、自感等知识。

本部分知识多结合电学、力学部分出压轴题,其命题形式主要是电磁感应与电路规律的综合应用、电磁感应与力学规律的综合应用、电磁感应与能量守恒的综合应用。

复习中要熟练掌握感应电流的产生条件、感应电流方向的判断、感应电动势的计算,还要掌握本部分内容与力学、能量的综合问题的分析求解方法。

预测2020年的高考基础试题重点考查法拉第电磁感应定律及楞次定律和电路等效问题.综合试题还是涉及到力和运动、动量守恒、能量守恒、电路分析、安培力等力学和电学知识.主要的类型有滑轨类问题、线圈穿越有界磁场的问题、电磁感应图象的问题等.此除日光灯原理、磁悬浮原理、电磁阻尼、超导技术这些在实际中有广泛的应用问题也要引起重视。

一、法拉第电磁感应定律法拉第电磁感应定律的内容是感应电动势的大小与穿过回路的磁通量的变化率成正比.在具体问题的分析中,针对不同形式的电磁感应过程,法拉第电磁感应定律也相应有不同的表达式或计算式.磁通量变化的形式表达式备注通过n匝线圈内的磁通量发生变化E=n·ΔtΔΦ(1)当S不变时,E=nS·ΔtΔB(2)当B不变时,E=nB·ΔtΔS导体垂直切割磁感线运动E=BLv 当v∥B时,E=0 导体绕过一端且垂直于磁场方向的转轴匀速转动E=21BL2ω线圈绕垂直于磁场方向的转轴匀速转动E=nBSω·sinωt当线圈平行于磁感线时,E最大为E=nBSω,当线圈平行于中性面时,E=0二、楞次定律与左手定则、右手定则1.左手定则与右手定则的区别:判断感应电流用右手定则,判断受力用左手定则.2.应用楞次定律的关键是区分两个磁场:引起感应电流的磁场和感应电流产生的磁场.感应电流产生的磁场总是阻碍引起感应电流的磁场的磁通量的变化,“阻碍”的结果是延缓了磁通量的变化,同时伴随着能量的转化.3.楞次定律中“阻碍”的表现形式:阻碍磁通量的变化(增反减同),阻碍相对运动(来拒去留),阻碍线圈面积变化(增缩减扩),阻碍本身电流的变化(自感现象).三、电磁感应与电路的综合电磁感应与电路的综合是高考的一个热点内容,两者的核心内容与联系主线如图4-12-1所示:1.产生电磁感应现象的电路通常是一个闭合电路,产生电动势的那一部分电路相当于电源,产生的感应电动势就是电源的电动势,在“电源”内部电流的流向是从“电源”的负极流向正极,该部分电路两端的电压即路端电压,U =R +r R E.2.在电磁感应现象中,电路产生的电功率等于内外电路消耗的功率之和.若为纯电阻电路,则产生的电能将全部转化为内能;若为非纯电阻电路,则产生的电能除了一部分转化为内能,还有一部分能量转化为其他能,但整个过程能量守恒.能量转化与守恒往往是电磁感应与电路问题的命题主线,抓住这条主线也就是抓住了解题的关键.在闭合电路的部分导体切割磁感线产生感应电流的问题中,机械能转化为电能,导体棒克服安培力做的功等于电路中产生的电能.说明:求解部分导体切割磁感线产生的感应电动势时,要区别平均电动势和瞬时电动势,切割磁感线的等效长度等于导线两端点的连线在运动方向上的投影.考点一 对楞次定律和电磁感应图像问题的考查例1、【2020·新课标Ⅲ卷】如图,在方向垂直于纸面向里的匀强磁场中有一U 形金属导轨,导轨平面与磁场垂直。

高考物理二轮复习第1部分专题整合突破专题11电磁感应规律及其应用教案(2021学年)

高考物理二轮复习第1部分专题整合突破专题11电磁感应规律及其应用教案(2021学年)

2018版高考物理二轮复习第1部分专题整合突破专题11 电磁感应规律及其应用教案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考物理二轮复习第1部分专题整合突破专题11 电磁感应规律及其应用教案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考物理二轮复习第1部分专题整合突破专题11电磁感应规律及其应用教案的全部内容。

专题十一电磁感应规律及其应用——————[知识结构互联]-—-——-—[核心要点回扣]—-———1.“三定则、一定律”的应用(1)安培定则:判断运动电荷、电流产生的磁场方向.(2)左手定则:判断磁场对运动电荷、电流的作用力的方向.(3)右手定则:判断部分导体切割磁感线产生感应电流的方向.(4)楞次定律:判断闭合电路磁通量发生变化产生感应电流的方向.2.求感应电动势的两种方法(1)E=n\f(ΔΦ,Δt),主要用来计算感应电动势的平均值.(2)E=BLv,主要用来计算感应电动势的瞬时值或平均值.考点1 电磁感应规律及其应用(对应学生用书第56页)■品真题·感悟高考……………………………………………………………·[考题统计] 五年8考:2017年Ⅰ卷T18、Ⅲ卷T152016年Ⅰ卷T24、Ⅱ卷T202015年Ⅰ卷T19、Ⅱ卷T152014年Ⅰ卷T142013年Ⅱ卷T19[考情分析]1.高考在本考点的考查主要集中在导体棒切割磁感线为背景的电动势的计算及方向的判断. 2.掌握法拉第电磁感应定律和楞次定律及右手定则是突破考点的关键.3.对感应电流产生的条件理解不准确,易误认为只要切割就有感应电流.4.左手定则和右手定则混淆易出现电流方向的判断错误.1.(楞次定律的应用)(2017·Ⅲ卷T15)如图11。

新高考二轮复习专题五第11讲电磁感应的规律及综合运用课件(84张)

新高考二轮复习专题五第11讲电磁感应的规律及综合运用课件(84张)

[思维分析] 考查 楞次定律、法拉第电磁感应定律、牛顿第二定律 角度
根据楞次定律判断感应电流的方向,明确线圈进 解题 入磁场中的受力情况,由牛顿第二定律写出加速 关键 度的表达式,得出加速Байду номын сангаас和线圈的匝数、横截面
积无关,进而判断线框的运动情况
[尝试解答]________
解析:设线圈到磁场的高度为h,线圈的边长为l,则
线圈下边刚进入磁场时,有v= 2gh ,感应电动势为E=
nBlv,两线圈材料相等(设密度为ρ0),质量相同(设为m),
则m=ρ0×4nl×S,设材料的电阻率为ρ,则线圈电阻R=
4nl ρS
=16n2lm2ρρ0
,由闭合电路欧姆定律得感应电流为I

E R

mBv
16nlρρ0
,由楞次定律得线圈中的感应方向为逆
压,变压器是理想变压器,所以变压器两端的电压是0,
故A错误;变压器只能改变原线圈的交流电的电压,不能
改变直流电的电压,也不能将直流电的电能传递给副线
圈,所以若R1不变时,原线圈中的电流为定值,通过负载
R2的电流强度为0,故B正确;虽然通过负载R2的电流强度
为0,但副线圈中的磁通量与原线圈中的磁通量相同,不
向为顺时针方向,是负值,电流大小为i=
3BLv R
;故A正
确,B、C、D错误。
答案:A
3.(多选)(2021·山东青岛二模)如图甲所示、单匝正方 形线框abcd的电阻R=0.5 Ω,边长L=20 cm,匀强磁场 垂直于线框平面向里,磁感应强度的大小随时间变化规律 如图乙所示,则下列说法中正确的是( )
向右匀速运动。回路的总磁通量为Φ、回路的电流为i、电 阻R上产生的热量为Q、导体棒受到的外力为F,它们随时 间t的变化图像正确的是( )

新课标高考物理二轮复习 专题11-电磁感应规律及应用(解析版)

新课标高考物理二轮复习 专题11-电磁感应规律及应用(解析版)

高考物理二轮复习专题内容11电磁感应规律及应用§知识网络§1.楞次定律中“阻碍”的表现 (1)阻碍磁通量的变化(增反减同)。

(2)阻碍物体间的相对运动(来拒去留)。

(3)阻碍原电流的变化(自感现象)。

2.感应电动势的计算(1)法拉第电磁感应定律:E =n ΔΦΔt ,常用于计算平均电动势。

①若B 变,而S 不变,则E =n ΔBΔt S ; ②若S 变,而B 不变,则E =nB ΔSΔt 。

(2)导体棒垂直切割磁感线:E =Blv ,主要用于求电动势的瞬时值。

B 、l 与v 三者必须两两垂直,l 为有效长度,v 为有效速度。

【答案】B【解析】当ab 棒在磁场中切割磁感线时,ab 棒相当于电源,等效电路:由法拉第电磁感应定律可知:E 1=Blv 由欧姆定律可知:E 1=I ab (r +R 并) I cd =I ab 2=Blv3R 方向c →d U cd =I cd ·R =Blv3 U cd >0当cd 棒在磁场中切割磁感线时,cd 棒相当于电源,等效电路:由法拉第电磁感应定律可知:E 2=Blv 由欧姆定律可知:E 2=I cd (r +R 并) I cd =2Blv3R 方向d →cU cd =I cd ·R =2Blv3 U cd >0所以B选项是正确的。

U cd随时间变化如图:C、D选项都错误。

5.相关类型题目如图甲,R0为定值电阻,两金属圆环固定在同一绝缘平面内。

左端连接在一周期为T0的正弦交流电源上,经二极管整流后,通过R0的电流i始终向左,其大小按图乙所示规律变化。

规定内圆环a端电势高于b端时,a、b间的电压u ab为正,下列u ab-t图象可能正确的是()【答案】C【解析】由安培定则知:0~0.25T0,圆环内的磁场垂直纸面向里逐渐增大,由楞次定律知,若圆环闭合,感应电流是逆时针方向,逐渐减小至0;0.25T~0.5T,圆环内的磁场垂直纸面向里逐渐减小,由楞次定律知,若圆环闭合,感应电流是顺时针方向,逐渐增大。

最新-名师导学高考二轮总复习物理专题4 第11课电磁感应规律及其应用 课件 精品

最新-名师导学高考二轮总复习物理专题4 第11课电磁感应规律及其应用 课件 精品
力总是阻碍相对运动,即“来拒去留”; (2)感应电流引起的安培力使线圈面积有扩大或
缩小的趋势以阻碍磁通量的变化; (3)阻碍原电流的变化(自感现象).
二、右手定则 1.适用范围:适用于闭合回路的部分导体做切割 磁感线运动的情况. 2.定则表述:伸开右手,让拇指跟其余四指垂直
并在同一个平面内,让磁感线垂直穿过掌心,大姆指
2.电磁感应中的电路问题 例 3 如图所示,匀强磁场的方向垂直于光滑的金 属导轨平面向里,极板间距为 d 的平行板电容器与总 阻值为 2R0 的滑动变阻器通过平行导轨连接,电阻为 R0 的导体棒 MN 可在外力的作用下沿导轨从左向右 做匀速直线运动.当滑动变阻器的滑动触头位于 a、b 的中间位置且导体棒 MN 的速度为 v0 时,位于电容 器中 P 点的带电油滴恰好处于静止状态.若不计摩擦 和平行导轨及导线的电阻,各接触处接触良好,重力 加速度为 g,则下列判断正确的是( CD )
B2d2v 运动,F 安=Bld= R 逐渐增大,线圈做加速度逐 渐减小的加速运动,当安培力等于重力时,线圈开始 做匀速运动直到 t3 时刻离开磁场,此后线圈又做加速
度等于 g 的匀加速运动,C 错误;若线圈开始进入磁 场时所受的安培力大于线圈重力,则线圈做减速运动, 安培力减小,线圈做加速度减小的减速运动,当安培 力等于线圈重力时,又开始做匀速运动,直到 t3 时刻 离开磁场,此后线圈又做加速度等于 g 的匀加速运动, B 正确;综上,D 错误.
第11课时 电磁感应规律及其应用
知识重点是对楞次定律和法拉第电磁感应定律的 理解及应用,综合性强,可涉及动力学问题、图象问
题、与电路结合问题.能量转化问题等,题型多样, 有选择、论述和计算.
一、楞次定律
1.内容:感应电流的磁场总是要阻碍引起感应电

高考物理二轮复习综合训练——法拉第电磁感应定律(word版含答案)

高考物理二轮复习综合训练——法拉第电磁感应定律(word版含答案)

法拉第电磁感应定律一、选择题(共15题)1.在竖直方向的匀强磁场中,水平放置一圆形导体环,导体环面积为S=1m2,导体环的总电阻为R=Ω。

规定导体环中电流的正方向如图甲所示,磁场向上为正。

磁感应强度B随时间t的变化如乙图10B=。

下列说法正确的是()所示,00.1TA.t=1s时,导体环中电流为零B.第2s内,导体环中电流为负方向C.第3s内,导体环中电流的大小为0.1AD.第4s内,通过导体环中某一截面的电荷量为0.01C2.一匀强磁场,磁场方向垂直于纸面,规定垂直纸面向里的方向为正,在磁场中有一细金属圆环,圆环平面位于纸面内,如图甲所示。

现令磁感应强度B随时间t变化,先按图乙中所示的Oa图线变化,后来又按图线bc和cd变化,令E1、E2、E3分别表示这三段变化过程中感应电动势的大小,I1、I2、I3分别表示对应的感应电流,则()A.E1>E2,I1沿逆时针方向,I2沿顺时针方向B.E1<E2,I1沿逆时针方向,I2沿顺时针方向C.E1<E2,I1沿顺时针方向,I2沿逆时针方向D.E2=E3,I2沿顺时针方向,I3沿逆时针方向3.如图所示,匀强磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合,磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0,使该线框从静止开始绕过圆心O 且垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流。

现使线框保持图中所示位置不变,磁感应强度大小随时间线性变化。

为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率B t∆∆的大小应为A .0B ωπ B .02B ωπ C .04B ωπ D .02B ωπ4.如图所示,a 、b 是同一导线制成的粗细均匀的闭合导线环,两导线环的半径之比为4:5,其中仅在a 环所围区域内有方向垂直于纸面向里的匀强磁场。

当该磁场均匀变化时,a 、b 两环内的感应电流之比为( )A .1:1B .4:5C .5:4D .16:255.磁悬浮列车是高速低耗交通工具,如图(a )所示,它的驱动系统简化为如图(b )所示的物理模型。

高三一轮二轮复习电磁感应教案讲义(含答案)

高三一轮二轮复习电磁感应教案讲义(含答案)

电磁感应第1课时电磁感应现象楞次定律一、电磁感应现象1.电磁感应现象:当穿过闭合电路的磁通量发生_ _______时,电路中有____________产生,这种利用磁场产生电流的现象叫做电磁感应.2.产生感应电流的条件:表述1:闭合电路的一部分导体在磁场内做______ ________运动.表述2:穿过闭合电路的磁通量____________.3.能量转化发生电磁感应现象时,机械能或其他形式的能转化为______.2.引起磁通量Φ变化的情况有哪些?二、感应电流方向的判断1.楞次定律(1)内容:感应电流的磁场总要________引起感应电流的__________的变化.(2)适用情况:所有的电磁感应现象.2.右手定则(1)内容:伸开右手,使拇指与其余四个手指________,并且都与手掌在同一个________,让磁感线从掌心进入,并使拇指指向____________的方向,这时四指所指的方向就是感应电流的方向.(2)适用情况:____________________产生感应电流.考点一电磁感应现象能否发生的判断判断流程:(1)确定研究的闭合电路.(2)弄清楚回路内的磁场分布,并确定该回路的磁通量Φ.(3)错误!【典例剖析】例1.(多选)下列说法正确的是( )A.闭合电路内只要有磁通量,就有感应电流产生B.穿过闭合电路的磁通量发生变化,电路中不一定有感应电流产生C.线框不闭合时,即使穿过线框的磁通量发生变化,线框中也没有感应电流产生D.当导体切割磁感线时,一定产生感应电动势例2.如图所示,一个U形金属导轨水平放置,其上放有一个金属导体棒ab,有一磁感应强度为B的匀强磁场斜向上穿过轨道平面,且与竖直方向的夹角为θ.在下列各过程中,一定能在轨道回路里产生感应电流的是( )A.ab向右运动,同时使θ减小B.使磁感应强度B减小,θ角同时也减小C.ab向左运动,同时增大磁感应强度BD.ab向右运动,同时增大磁感应强度B和θ角(0°<θ<90°)例3.现将电池组、滑动变阻器、带铁芯的线圈A、线圈B、电流计及开关按如图所示连接.下列说法中正确的是( )A.开关闭合后,线圈A插入或拔出都会引起电流计指针偏转B.线圈A插入线圈B中后,开关闭合和断开的瞬间电流计指针均不会偏转C.开关闭合后,滑动变阻器的滑片P匀速滑动,会使电流计指针静止在中央零刻度D.开关闭合后,只有滑动变阻器的滑片P加速滑动,电流计指针才会偏转1.在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是( )A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化C.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化2.(多选)如图所示,水平面内有两条相互垂直且彼此绝缘的通电长直导线,以它们为坐标轴构成一个平面直角坐标系.四个相同的圆形闭合线圈在四个象限内完全对称放置,两直导线中的电流大小与变化情况完全相同,电流方向如图中所示,当两直导线中的电流都增大时,四个线圈a、b、c、d中感应电流的情况是( )A.线圈a中有感应电流B.线圈b中有感应电流C.线圈c中无感应电流D.线圈d中无感应电流3.绕在同一铁芯上的线圈Ⅰ、Ⅱ按图所示方法连接,判断在以下各情况中,线圈Ⅱ中是否有感应电流产生.①闭合电健K的瞬时.②保持电键K闭合的时候.③断开电键K的瞬时.④电键K闭合将变阻器R O的滑动端向左滑动时:.(以上各空均填“有”或“无”)考点二利用楞次定律判断感应电流的方向判断感应电流方向的“三步走”【典例剖析】例1.如图,在方向垂直于纸面向里的匀强磁场中有一U形金属导轨,导轨平面与磁场垂直,金属杆PQ置于导轨上并与导轨形成闭合回路PQRS,一圆环形金属线框T位于回路围成的区域内,线框与导轨共面.现让金属杆PQ突然向右运动,在运动开始的瞬间,关于感应电流的方向,下列说法正确的是( )A.PQRS中沿顺时针方向,T中沿逆时针方向B.PQRS中沿顺时针方向,T中沿顺时针方向C.PQRS中沿逆时针方向,T中沿逆时针方向D.PQRS中沿逆时针方向,T中沿顺时针方向例2.如图甲所示,长直导线与闭合金属线框位于同一平面内,长直导线中的电流i随时间t的变化关系如图乙所示.在0~T2时间内,直导线中电流向上,则在T2~T时间内,线框中感应电流的方向与所受安培力的合力方向分别是( )A.顺时针,向左B.逆时针,向右C.顺时针,向右D.逆时针,向左例3.如图所示的各种情境中,满足磁铁与线圈相互排斥,通过R的感应电流方向从a到b的是()A.B.C.D.例4.如图所示,一水平放置的矩形线圈abed在磁场N极附近竖直自由下落,保持bc正在纸外,a d边在纸内,由图中的位置I经过位置Ⅱ到位置Ⅲ,这三个位置都靠得很近,在这个过程中,绕圈中感应电流的方向是()A.沿a→b→c→d的方向流动B.沿d→c→b→a的方向流动C.由I到Ⅱ是沿a→b→c→d的方向流动,从Ⅱ到Ⅲ是沿d→c→b→a的方向流动D.由I到Ⅱ是沿d→c→b→a的方向流动,从Ⅱ到Ⅲ是沿a→b→c→d的方向流动例5.如图所示,一个N极朝下的条形磁铁竖直下落,恰能穿过水平放置的固定矩形导线框,则( )A.磁铁经过位置①时,线框中感应电流沿abcd方向;经过位置②时,沿adcb方向B.磁铁经过位置①时,线框中感应电流沿adcb方向;经过位置②时,沿abcd方向C.磁铁经过位置①和②时,线框中的感应电流都沿abcd方向D.磁铁经过位置①和②时,线框中感应电流都沿a dcb方向例6.如图所示,矩形导线框从通电直导线EF左侧运动到右侧的过程中,关于导线框中产生的感应电流的说法正确的是()A.感应电流方向是先沿abcd方向流动,再沿adc b方向流动B.感应电流方向是先沿adcb方向流动,然后沿a bcd方向流动,再沿adcb方向流动C.感应电流始终是沿adcb方向流动D.感应电流始终是沿abcd方向流动1.如图所示,在通电长直导线AB的一侧悬挂一可以自由摆动的闭合矩形金属线圈P,AB在线圈平面内.当发现闭合线圈向右摆动时( )A.AB中的电流减小,用楞次定律判断得线圈中产生逆时针方向的电流B.AB中的电流不变,用楞次定律判断得线圈中产生逆时针方向的电流C.AB中的电流增大,用楞次定律判断得线圈中产生逆时针方向的电流D.AB中的电流增大,用楞次定律判断得线圈中产生顺时针方向的电流2.MN、GH为光滑的水平平行金属导轨,ab、cd为跨在导轨上的两根金属杆,匀强磁场垂直穿过MN、GH所在的平面,如图所示,则( )A.若固定ab,使cd向右滑动,则abdc回路有电流,电流方向由a到b到d到cB.若ab、cd以相同的速度一起向右滑动,则abdc 回路有电流,电流方向由c到d到b到aC.若ab向左、cd向右同时运动,则abdc回路电流为0D.若ab、cd都向右运动,且两棒速度v cd>v ab,则a bdc回路有电流,电流方向由c到d到b到a 3.如图所示,通电导线旁边同一平面有矩形线圈abcd。

2022物理第十一章电磁感应专题6电磁感应现象中的综合应用问题学案

2022物理第十一章电磁感应专题6电磁感应现象中的综合应用问题学案

专题6 电磁感应现象中的综合应用问题必备知识预案自诊知识梳理一、电磁感应现象中的电路问题 1。

内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于 。

(2)该部分导体的电阻或线圈的电阻相当于电源的 ,其余部分是 。

2.电源电动势和路端电压①(1)电动势:E= 或E= 。

(2)路端电压:U=IR= 。

二、电磁感应现象中的动力学问题 1.安培力的大小安培力公式:F = 感应电动势:F =感应电流:F =F F}⇒F=F 2F 2FF2.安培力的方向(1)先用 判定感应电流方向,再用 判定安培力方向。

(2)根据楞次定律,安培力的方向一定和导体切割磁感线运动方向 。

三、电磁感应现象中的能量问题 1.能量的转化感应电流在磁场中受安培力,外力克服安培力,将机械能转化为,电流做功再将电能转化为。

2。

实质电磁感应现象的能量转化,实质是其他形式的能和之间的转化。

3。

电磁感应现象中能量的三种计算方法②注:电磁感应现象中,有机械能和电能之外的其他形式的能参与转化时,电能增加时,机械能不一定在减小。

考点自诊1.判断下列说法正误.(1)闭合电路的欧姆定律同样适用于电磁感应电路。

()(2)电流一定从高电势流向低电势。

()(3)闭合电路中外电阻越大,电源的输出功率越大。

()(4)电磁感应中,感应电流引起的安培力一定做阻力。

() (5)在有安培力的作用下,导体棒不能做加速运动。

()(6)克服安培力做功的过程,就是其他形式的能转化为电能的过程。

()2.(新教材人教版选择性必修第二册P44习题改编)如图所示,一质量为m、边长为a的均匀正方形导线框ABCD放在光滑绝缘的水平面上.现以速度v水平向右进入以虚线为边界的匀强磁场中,磁场的磁感应强度大小为B,方向垂直于纸面向外,最终线框静止在桌面上。

线框刚进入磁场时,AB间的电势差是多少?整个过程中通过A点的电荷量是多少?整个过程线框中产生的热量是多少?3。

(新教材人教版选择性必修第二册P45习题改编)如图所示,由某种粗细均匀的金属条制成的矩形线框abcd固定在纸面内,匀强磁场垂直纸面向里.一导体棒PQ放在线框上,在水平拉力F作用下沿平行ab的方向匀速滑动,滑动过程PQ始终与ab垂直,且与线框接触良好,不计摩擦.在PQ从靠近ad处向bc滑动的过程中PQ两端电压如何变化?拉力F的功率如何变化?关键能力学案突破考点一电磁感应中的电路问题(师生共研)1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第11讲电磁感应规律及应用网络构建高考概况考什么1.楞次定律的理解及应用,感应电动势的计算方法;2.对自感现象的理解,电磁感应定律的综合应用。

怎么考1.结合电磁感应的图象,综合考查楞次定律和法拉第电磁感应定律的中、高难度的选择题;2.以“杆+轨”模型为载体,结合运动学、动力学、功能关系等学问的电磁感应综合题,以中、高难度的选择题或计算题为主。

怎么办1.重视对基本规律的理解及应用,如楞次定律,要深刻理解其含义;法拉第电磁感应定律公式的适用范围及公式中每个字母具体的含义及留意事项;2.能娴熟运用楞次定律解释一些电磁感应现象;3.把握计算感应电动势的公式,能综合分析与电磁感应有关的电路问题、力学问题和能量转化问题。

对应同学用书P0771.楞次定律中“阻碍”的表现(1)阻碍磁通量的变化(增反减同)。

(2)阻碍物体间的相对运动(来拒去留)。

(3)阻碍原电流的变化(自感现象)。

2.感应电动势的计算(1)法拉第电磁感应定律:E=nΔΦΔt,常用于计算平均电动势。

①若B变,而S不变,则E=nΔBΔt S;②若S变,而B不变,则E=nBΔSΔt。

(2)导体棒垂直切割磁感线:E=Bl v,主要用于求电动势的瞬时值。

B、l与v 三者必需两两垂直,l为有效长度,v为有效速度。

(3)如图所示,导体棒Oa围绕棒的一端O在垂直磁场的平面内做匀速圆周运动而切割磁感线,产生的电动势E=12Bl2ω。

1.感应电荷量的计算回路中发生磁通量变化时,在Δt时间内迁移的电荷量(感应电荷量)为q=I·Δt =ER·Δt=nΔΦRΔt·Δt=nΔΦR。

可见,q仅由回路电阻R和磁通量的变化量ΔΦ打算,与发生磁通量变化的时间Δt无关。

2.电磁感应电路中产生的焦耳热当电路中电流恒定时,可用焦耳定律计算;当电路中电流变化时,则用功能关系或能量守恒定律计算。

对应同学用书P0771 电磁感应的图象问题电磁感应中的图象多在选择题中消灭,有时也在计算题中考查,主要综合考查楞次定律、法拉第电磁感应定律及电路、安培力及功能关系等相关学问,在计算题中也会考查同学的识图力量。

答案 B解析 当ab 棒在磁场中切割磁感线时,ab 棒相当于电源,等效电路:由法拉第电磁感应定律可知:E 1=Bl v 由欧姆定律可知:E 1=I ab (r +R 并) I cd =I ab 2=Bl v3R方向c →dU cd =I cd ·R =Bl v3U cd >0当cd 棒在磁场中切割磁感线时,cd 棒相当于电源,等效电路:由法拉第电磁感应定律可知:E 2=Bl v由欧姆定律可知:E 2=I cd (r +R 并) I cd =2Bl v 3R 方向d →cU cd =I cd ·R =2Bl v3U cd >0所以B 选项是正确的。

U cd 随时间变化如图:,C 、D 选项都错误。

拓展提升电磁感应图象问题的处理方法1.电磁感应的图象问题分类和思路分析(1)分类在电磁感应现象中,回路产生的感应电动势、感应电流及磁场对导线的作用力随时间的变化规律,也可用图象直观地表示出来。

如I -t 、B -t 、E -t 、E -x 、I -x 、F 安-t 图象等。

此问题可分为两类:①由给定的电磁感应过程选出或画出相应的物理量的函数图象。

②由给定的有关图象分析电磁感应过程,确定相关的物理量。

(2)分析思路①明确图象的种类(看纵横坐标表示什么物理量)。

②分析电磁感应的具体过程。

③结合相关规律写出函数表达式。

④依据函数关系进行图象分析。

2.电磁感应图象问题的应试技巧(1)利用图象思维法求解电磁感应问题应用图象思维法的优点在于可以直观地观看出物理过程的动态特征,使思路更加清楚,常能找到奇妙的解题途径。

(2)解答图象问题的三个关注①关注初始时刻,如初始时刻感应电流是否为零,是正方向还是负方向。

②关注变化过程,看电磁感应发生的过程分为几个阶段,这几个阶段是否和图象变化相对应。

③关注大小、方向的变化趋势,看图象斜率的大小、图象的曲、直是否和物理过程对应。

(3)两类图象问题的分析技巧①图象选择问题求解物理图象的选择类问题可用“排解法”,即排解与题目要求相违反的图象,留下正确图象;也可用“对比法”,即依据题目要求画出正确的草图,再与选项对比,选出正确选项。

解决此类问题的关键就是把握图象特点、分析相关物理量的函数关系、分析物理过程的变化规律或关键物理状态。

②图象分析问题在定性分析物理图象时,要明确图象中的横轴与纵轴所代表的物理量,要弄清图象的物理意义,借助有关的物理概念、公式、定理和定律作出分析推断;而对物理图象定量计算时,要搞清图象所揭示的物理规律或物理量间的函数关系,并要留意物理量的单位换算问题,要擅长挖掘图象中的隐含条件,明确有关图线所包围的面积、图象在某位置的斜率(或其确定值)、图线在纵轴和横轴上的截距所表示的物理意义。

类题演练1.[2021·山东高考]如图甲,R0为定值电阻,两金属圆环固定在同一绝缘平面内。

左端连接在一周期为T0的正弦沟通电源上,经二极管整流后,通过R0的电流i始终向左,其大小按图乙所示规律变化。

规定内圆环a端电势高于b端时,a、b间的电压u ab为正,下列u ab-t图象可能正确的是()答案 C解析由安培定则知:0~0.25T0,圆环内的磁场垂直纸面对里渐渐增大,由楞次定律知,若圆环闭合,感应电流是逆时针方向,渐渐减小至0;0.25T~0.5T,圆环内的磁场垂直纸面对里渐渐减小,由楞次定律知,若圆环闭合,感应电流是顺时针方向,渐渐增大。

以后周期性变化,选项C正确。

2.[2021·山西质监](多选)如图,竖直平面(纸面)两水平线间存在宽度为d的匀强磁场,磁场方向垂直纸面对里。

一质量为m、边长也为d的正方形线圈从磁场上方某处自由落下,t1时刻线圈的下边进入磁场,t2时刻线圈的上边进入磁场,t3时刻线圈上边离开磁场。

已知线圈平面在下落过程中始终与磁场方向垂直,且线圈上、下边始终与磁场边界平行,不计空气阻力,则线圈下落过程中的v-t图象可能正确的是()答案AB解析进入磁场前和通过磁场后,线圈只受重力,加速度恒为g。

设线圈下边,进入磁场时速度为v,则线圈中感应电动势E=Bd v,由闭合电路欧姆定律有I=ER 安培力F=BId,解得:F=B2d2v,若F=mg,则线圈匀速穿过磁场,A项正确;R-mg=ma1,可知线若F>mg,则线圈减速通过磁场,由牛顿其次定律有:B2d2vR圈加速度不断减小,B项正确;若F<mg,线圈在磁场中刚开头做加速运动,由牛顿其次定律有mg-B2d2v=ma2,所以线圈加速度不断减小,当F=mg时线圈匀R速运动,故C、D项错。

2电磁感应与电路的综合应用一般以选择题或计算题消灭,涉及楞次定律、法拉第电磁感应定律、右手定则、闭合电路或部分电路的欧姆定律,串、并联电路学问,电功、电功率的计算等学问。

答案(1)1 W(2)3 m/s (3)1.08 J解析(1)由于灯泡亮度始终不变,MN棒在t1时刻进入磁场以后,做匀速直线运动,受力平衡,受力如右图:列平衡方程:mg sinθ=F安F安=BIL 联立得I=1 AMN切割磁感线,相当于电源,等效电路如右图:由电路的并联关系得I灯=I R 1R1+R2=0.5 A所以P灯=I2灯R2=1 W(2)由法拉第电磁感应定律可知E=BL vE=I(r+R并)1R并=1R1+1R2代入得v=3 m/s(3)灯泡亮度始终不变,在MN进入ef之间的等效电路如图:1R′并=1R1+1rE′=I灯(R2+R′并)MN进入磁场前做匀加速直线运动,v=g sinθt1t1=0.6 s由法拉第电磁感应定律可知E′=Lx eiΔBΔt其中ΔBΔt=2t1=103,联立得x ei=3625m从ef到ij做匀速直线运动:x ei=v t2t 2=1225s整个过程小灯泡的热量Q =P 灯(t 1+t 2)= 1.08 J拓展提升解决电磁感应与电路问题的方法和步骤(1)解决与电路相联系的电磁感应问题的基本方法①用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向。

②画等效电路图。

③运用全电路欧姆定律、串并联电路性质、电功率等公式联立求解。

(2)解决电磁感应中电路问题的基本步骤①“源”的分析:用法拉第电磁感应定律算出E 的大小,用楞次定律或右手定则确定感应电动势的方向(感应电流方向是电源内部电流的方向),从而确定电源正负极,明确内阻r 。

②“路”的分析:依据“等效电源”和电路中其他各元件的连接方式画出等效电路。

③依据E =Bl v 或E =n ΔΦΔt ,结合闭合电路欧姆定律、串并联电路学问和电功率、焦耳定律等关系式联立求解。

类题演练3.[2021·衡水一调](多选)如图所示,边长为L 、不行形变的正方形导线框(电阻不计)内有半径为r 的圆形磁场区域。

其磁感应强度B 随时间t 的变化关系为B =kt (常量k >0)。

回路中滑动变阻器R 的最大阻值为R 0,滑动片P 位于滑动变阻器中心。

定值电阻R 1=R 0、R 2=R 02,闭合开关S ,电压表的示数为U ,不考虑虚线MN 右侧导体的感应电动势。

则( )A .R 2两端的电压为U7B .电容器的a 极板带正电C .滑动变阻器R 的热功率为电阻R 2的5倍D .正方形导线框中的感应电动势为kL 2 答案 AC解析 由法拉第电磁感应定律可知:E =πr2ΔBΔt=k πr 2,因此D 选项是错误的。

由于导线框不计电阻,所以路端电压等于电动势,外电路是R 2与R2并联,再与R 1和另外R 2串联,由闭合电路欧姆定律可知I =U R 1+R 2+R 并=U 7R 04,R 2的电压与并联电压相等,UR 2=I ·R 并=U7,所以A 选项是正确的。

由于滑片P 在滑动变阻器的中心,与R 2阻值相等,因此过R 2的电流为I 2,过滑动变阻器的右端的电流也为I2,所以PR 2=(I 2)2R 2=I 2R 08,而P 滑动变阻器=(I 2)2R 2+I 2R 2=5I 2R 08,P 滑动变阻器=5PR 2,因此C 选项是正确的。

由楞次定律可知,在正方形线框内产生逆时针的感应电流,因此可知b 板电势高,带正电,a 电势低,带负电,所以B 选项是错误的。

4. [2021·安徽高考]如图所示,abcd 为水平放置的平行“匚”形光滑金属导轨,间距为l ,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B ,导轨电阻不计。

已知金属杆MN 倾斜放置,与导轨成θ角,单位长度的电阻为r ,保持金属杆以速度v 沿平行于cd 的方向滑动(金属杆滑动过程中与导轨接触良好)。

相关文档
最新文档