初三《圆》课时基础练习题(含答案)

合集下载

中考数学总复习《圆的综合题》练习题(附答案)

中考数学总复习《圆的综合题》练习题(附答案)

中考数学总复习《圆的综合题》练习题(附答案)班级:___________姓名:___________考号:_____________一、单选题1.在平面直角坐标系xOy中以点(3,4)为圆心,4为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离2.如图,在平面直角坐标系xOy中以原点O为圆心的圆过点A(13,0)直线y=kx-3k+4与⊙O交于B、C两点,则弦BC的长的最小值为()A.22B.24C.10√5D.12√33.如图,四边形ABCD内接于⊙O,若∠BOD=100°,则∠DCB等于()A.90°B.100°C.130°D.140°4.如图,在正五边形ABCDE中连接AD,则∠DAE的度数为()A.46°B.56°C.36°D.26°5.如图,PA、PB为∠O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交∠O 于点D.下列结论不一定成立的是()A.△BPA为等腰三角形B.AB与PD相互垂直平分C.点A,B都在以PO为直径的圆上D.PC为△BPA的边AB上的中线6.如图,四边形ABCD内接于半径为6的∠O中连接AC,若AB=CD,∠ACB=45°,∠ACD=12∠BAC,则BC的长度为()A.6 √3B.6 √2C.9 √3D.9 √27.如图,点A,B,D,C是∠O上的四个点,连结AB,CD并延长,相交于点E,若∠BOD=20°,∠AOC=90°,则∠E的度数为()A.30°B.35°C.45°D.55°8.∠ABC中∠C=Rt∠,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB,BC分别交于点E,D,则AE的长为()A.95B.125C.185D.3659.如图,AB为∠O的直径,点C在∠O上,若∠B=60°,则∠A等于()A.80°B.50°C.40°D.30°10.两个圆的半径分别是2cm和7cm,圆心距是5cm,则这两个圆的位置关系是() A.外离B.内切C.相交D.外切11.已知正三角形的边长为12,则这个正三角形外接圆的半径是()A.B.C.D.12.一个扇形的弧长为4π,半径长为4,则该扇形的面积为()A.4πB.6πC.8πD.12π二、填空题13.在Rt∠ABC中∠C=90°,AB=5,BC=4,求内切圆半径14.如图,∠C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内弧OB上一点,∠BMO=120°,则∠C的半径为.15.一个立体图形的三视图如图所示,根据图中数据求得这个立体图形的侧面积为.16.一个半径为5cm的球形容器内装有水,若水面所在圆的直径为8cm,则容器内水的高度为cm.17.如图,在直角坐标系中以点P为圆心的圆弧与x轴交于A,B两点,已知P(4,2)和A(2,0),则点B的坐标是.18.下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作法:如图①作射线AB;②在射线AB取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;③以C为圆心,OC C为半径作弧,与⊙O交于点D,作射线AD.则∠DAB即为所求的角.请回答:该尺规作图的依据是.三、综合题19.如图,在△ABC中AC=BC=BD,点O在AC边上,OC为⊙O的半径,AB是⊙O 的切线,切点为点D,OC=2,OA=2√2.(1)求证:BC是⊙O的切线;(2)求阴影部分的面积.20.如图,△ABC内接于⊙O,CD是直径,∠CBG=∠BAC,CD与AB相交于点E,过点E作EF⊥BC,垂足为F,过点O作OH⊥AC,垂足为H,连接BD、OA.(1)求证:直线BG与⊙O相切;(2)若BEOD=54,求EFAC的值.21.如图,四边形ABCD 内接于∠O,BD是∠O的直径,过点A作∠O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE∠CD;(2)已知AE=4cm,CD=6cm,求∠O的半径.22.如图,∠O是∠ABC的外接圆,BC为∠O的直径,点E为∠ABC的内心,连接AE并延长交∠O 于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为∠O的切线.23.公元前5世纪,古希腊哲学家阿那克萨哥拉因“亵渎神灵罪”而被投人监狱,在狱中他对方铁窗和圆月亮产生了兴趣.他不断变换观察的位置,一会儿看见圆比正方形大,一会儿看见正方形比圆大,于是伟大的古希腊尺规作图几何三大问题之--的化圆为方问题诞生了:作一个正方形,使它的面积等于已知圆的面积(1)设有一个半径为√3的圆,则这个圆的周长为,面积为,作化圆为方得到的正方形的边长为(计算结果保留π)(2)由于对尺规作图的限制(只能有限次地使用没有刻度的直尺和圆规进行作图),包括化圆为方在内的几何三大问题都已被证明是不可能的.但若不受标尺的限制,化圆为方并非难事。

《圆的周长、面积》练习题丨精品(含答案)

《圆的周长、面积》练习题丨精品(含答案)

《圆的周长、面积》练习题一.选择题(共10题,共20分)1.如下图所示的比赛场中(弯道部分为半圆R=150m、r=50m),左右轮子的距离为2.5米.如果把弯道半径都扩大2倍,若绕赛场一圈,两个轮子行走的距离之差()。

A.不变B.扩大2倍C.缩小2倍D.无法确定2.用两个不可能拼成下面的哪个图形?()A.长方形B.圆C.三角形3.一个钟表的时针长10cm,从中午12时到当天晚上9时,时针针尖走过了()cm。

A.31.4B.62.8C.314D.47.14.圆规两脚间的距离为2分米,那么画出的圆的半径为()。

A.1分米B.2分米C.4分米5.连接圆上任意两点的线段,它的长度一定()直径。

A.小于B.大于C.不大于6.要画一个直径是5厘米的圆,圆规两脚之间的距离是()。

A.5厘米B.2.5厘米C.10厘米7.赛车行进的过程中,右、左两个轮子行走的路程()。

A.相同B.不同C.走直道时相同D.走弯道时相同8.某点到一圆的圆心距离大于半径,该点在()。

A.圆内B.圆上C.圆外9.在一块长12m,宽8m的长方形铁皮上剪半径是1.5m的小圆,至多能剪()个。

A.8B.10C.11D.1310.在400米道上进行200米赛跑,弯道部分是半圆,半径为36米,每条跑道宽1.2米,第4道与第1道起跑线相差()米。

A.1.21πB.2.4πC.3.6πD.36π二.判断题(共10题,共20分)1.圆周率π是一个无限不循环小数。

()2.小圆半径是大圆半径的,那么小圆周长也是大圆周长的。

()3.周长相等的长方形、正方形、圆形,圆的面积最大。

()4.圆的周长与直径的比值是3.14。

()5.把一张圆形纸片对折,沿折痕剪开,得到两个半圆.每个半圆的周长等于原来圆周长的一半。

()6.圆只有一条对称轴。

()7.由一条弧和两条半径围成的图形叫做扇形。

()8.大圆的圆周率与小圆的圆周率相等。

()9.圆的一部分就是扇形。

()10.两端都在圆上的线段叫做直径。

人教版九年级数学上册第24章《圆》选择专项练习题(含答案)

人教版九年级数学上册第24章《圆》选择专项练习题(含答案)

人教版九年级数学上册第24章《圆》选择专项练习题 1.若⊙A 的半径为5,圆心A 与点P 的距离是25,则点P 与⊙A 的位置关系是( ) A .P 在⊙A 上 B .P 在⊙A 外 C .P 在⊙A 内 D .不确定 2.扇形的半径为20cm ,扇形的面积2100cm π,则该扇形的圆心角为( ) A .120︒ B .100︒ C .90︒ D .60︒ 3.在下列命题中,正确的是( )A .长度相等的弧是等弧B .直径所对的圆周角是直角C .三点确定一个圆D .三角形的外心到三角形各边的距离相等 4.如图,点A 、B 、C 是⊙O 上的三个点,若∠AOB =82°,则∠C 的度数为( )A .82°B .38°C .24°D .41° 5.如图,AB 是O 的直径,点E ,C 在O 上,点A 是EC 的中点,过点A 画O 的切线,交BC 的延长线于点D ,连接EC .若58.5ADB ∠=︒,则ACE ∠的度数为( )A .29.5︒B .31.5︒C . 58.5︒D .63︒ 6.如图,在⊙O 中,半径r =5,弦AB =8,P 是弦AB 上的动点(不含端点A ,B ),若线段OP 长为正整数,则点P 的个数有( )A .2个B .5个C .4个D .3个 7.已知⊙O 的直径为12,直线l 上有一点P ,OP =6,则直线l 与⊙O 的位置关系是( )A.相交B.相切C.相离D.相切或相交8.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16cm,则球的半径为()A.103cm B.10cm C.102cm D.83cm9.一个圆锥体底面半径为3cm,高为4cm,则这个圆锥体的侧面积为()A.12πcm²B.28πcm²C.15πcm²D.20πcm²10.如图,A,B,C是⊙O上的三个点,若∠B=32°,则∠AOC=()A.64°B.58°C.68°D.55°11.如图,BD是⊙O的直径,点A、C在圆上,且CD=OB,则∠BAC=()A.120°B.90°C.60°D.30°12.下列命题:①平⾏四边形是中⾏对称图形,也是轴对称图形;②直径是最长的弦,半径是最短的弦;③过切点的直线是圆的切线;④三角形的外⾏是三条边垂直平分线的交点;⑤三角形的内⾏是三条内角平分线的交点;其中正确的有()A.1个B.2个C.3个D.4个13.如图,PA、PB切⊙O于点A、B,PA=10,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是()A.10 B.18 C.20 D.2214.下列关于圆的说法,正确的是()A.在同圆或等圆中,相等的弦所对的圆周角相等B.平分弦的直径垂直于弦C.圆的每一条直径所在的直线都是它的对称轴D.过三点可以作一个圆15.一个适当大的正六边形,它的一个顶点与一个边长为定值的小正六边形ABCDEF的中心O重合,且与边AB、CD相交于G、H(如图).图中阴影部分的面积记为S,三条线段GB、BC、CH的长度之和记为l,大正六边形在绕点O旋转过程中,下列说法正确的是()A.S变化,l不变B.S不变,l变化C.S变化,l变化D.S与l均不变16.下列四个命题:①直角三角形斜边上的中线等于斜边的一半;②对角线相等的平行四边形是菱形;③一组邻边相等的矩形是正方形;④三角形三条角平分线的交点是三角形的外心.其中真命题共有()A.1个B.2个C.3个D.4个17.下列说法正确的是()A.三角形三条中线的交点是三角形重心B.等弦所对的圆周角相等C.长度相等的两条弧是等弧D.三角形的外心到三边的距离相等18.如图,四边形ABCD内接于⊙O,若∠C=100°,则∠A的度数是()A .80°B .100°C .110°D .120°19.下列说法正确的是( )A .等弧所对的圆心角相等B .同弦所对的圆周角相等C .经过三点可以作一个圆D .相等的圆心角所对的弧相等20.如图,P 是O 外一点,PA 、PB 切O 于点A 、B ,点C 在优弧AB 上,若68P ∠=︒,则ACB ∠等于( )A .22︒B .34︒C .56︒D .68︒21.有四个命题:①直径相等的两个圆是等圆 ②长度相等的两条弧是等弧;③圆中最大的弦是过圆心的弦;④圆周角是圆心角的一半.其中真命题是( )A .①③B .①③④C .①④D .④22.⊙O 的直径是10,两平行弦的长度分别是6和8,那么这两弦的距离是( ) A .1 B .7 C .8 D .1或723.△ABC 的顶点都在⊙O 上,若∠BOC =120°,则∠BAC 等于( )A .60°B .90°C .120°D .60°或120° 24.如图,OA 为⊙O 的半径,弦BC ⊥OA 于点P .若BC =8,AP =2,则⊙O 的半径长为( )A .5B .6C .10D 1725.如图,两个同心圆的半径分别是3cm 和5cm ,大圆的一条弦AB 与小圆相切,则弦ABA .3cmB .4cmC .6cmD .8cm26.如图,已知O 的半径为2,AC 与O 相切,连接AO 并延长,交O 于点B ,过点C 作CD AB ⊥,交O 于点D ,连接BD ,若30A ∠=︒,则弦BD 的长为( )A .3B .5C .23D .3227.下列说法正确的是( )A .在同一平面内,三点确定一个圆B .等弧所对的圆心角相等C .旋转会改变图形的形状和大小D .平分弦的直径垂直于弦28.如图,⊙O 内切于ABC ,切点分别为D ,E ,F .已知50B ∠=︒,60C ∠=°,连接OE ,OF ,DE ,DF ,那么EDF ∠等于( )A .40︒B .55︒C .65︒D .70︒29.下列语句中:①平分弦的直径垂直于弦;②相等的圆心角所对的弧相等;③长度相等的两条弧是等弧;④圆是轴对称图形,任何一条直径都是它的对称轴;⑤圆内接四边形的对角互补;⑥在同圆或等圆中,如果两条弦相等,那么他们所对的圆周角相等,不正确的有( )A .5个B .4个C .3个D .2个30.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应该假设这个三角A .有一个内角小于60°B .每一个内角都小于60°C .有一个内角大于60°D .每一个内角都大于60°31.AB =12cm ,过A 、B 两点画半径为6cm 的圆,能画的圆的个数为( ) A .0个 B .1个 C .2个 D .无数个 32.“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺.问:径几何?”用现在的几何语言表达即:如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为点E ,CE =1寸,AB =10寸,则直径CD 的长度是( )A .12寸B .24寸C .13寸D .26寸33.如图,将边长为a 的正六边形123456A A A A A A 在直线l 上由图1的位置按顺时针方向向右作无滑动滚动,当正六边形旋转一周滚动到图2位置时,顶点1A 所经过的路径( )A 843a +B 423a +C 43a +D 423a + 34.已知⊙O 的半径为1,点P 在⊙O 外,则OP 的长( )A .大于1B .小于1C .大于2D .小于235.如图,在Rt △ABC 中,∠ACB =90°, AC =3,以点C 为圆心、CA 为半径的圆与AB 交于点D ,若点D 巧好为线段AB 的中点,则AB 的长度为( )A.32B.3 C.6 D.936.如图所示,在⊙O中,AB AC=,∠A=30°,则∠B=()A.150°B.75°C.60°D.15°37.如图,F为正方形ABCD的边CD上一动点,AB=2.连接BF,过A作AH⊥BF交BC于H,交BF于G,连接CG,当CG为最小值时,CH的长为()A.2B.225C.3﹣5D.3+538.如图,ABC内接与O,50A∠=,E是边BC的重点,连接OE并延长,交O于点D,连接BD,则DBC∠的大小为()A.55°B.6 C.25°D.75°39.已知圆心角为120°的扇形的面积为12π,则扇形的半径为( )A .4B .6C .43D .6240.如图O 的直径AB 垂直于弦CD ,垂足是E ,225A ∠=︒.,4OC =,CD 的长为( )A .22B .4C .42D .841.如图,AB 是⊙O 的直径,点C 在⊙O 上,∠ABC =30°,AC =1,则⊙O 的半径为( )A .1B .2C .3D .2342.如图,点A 、B 、C 是⊙O 上的三个点,若∠AOB =66°,则∠C 的度数为( )A .33°B .34°C .44°D .46°43.已知⊙O 的直径是10,圆心O 到直线l 的距离是5,则直线l 和⊙O 的位置关系是( ) A .相离 B .相交 C .相切 D .无法确定 44.下列说法中一定正确的是( )A .相等的圆心角所对的弧相等B .圆上任意两点间的部分叫做圆弧C .平分弦的直径垂直于弦D .圆周角等于圆心角的一半45.已知O 的半径为2,点P 为O 内一定点,且1PO =,过点P 作O 的弦,其中最短的弦的长度是()A.4 B.3C.23D.246.如图,AB是☉O的直径,∠CAB=40°,则∠D=()A.60°B.30°C.40°D.50°47.下列说法:①优弧比劣弧长;②三点可以确定一个圆;③长度相等的弧是等弧;④经过圆内的一个定点可以作无数条弦;其中不正确的个数是()A.1个B.2个C.3个D.4个48.将一个底面半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是( )A.54︒B.126︒C.136︒D.144︒49.如图,⊙O的直径CD垂直弦AB于点E,且CE=4,OB=8,则AB的长为()A.3B.4 C.6 D.350.已知⊙O半径为6,圆心O在坐标原点上,点P的坐标为(3,4),则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.不能确定51.⊙O的半径为5,点P到圆心O的距离为5,点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.无法确定52.如图.在⊙O中,直径AB⊥CD,下列说法不正确的是()A.AB是最长的弦B.∠ADB=90°C.PC=PD D.∠ABD=2∠ADC53.如图,在Rt ABC中,∠ACB=90°,∠A=54°,以BC为直径的⊙O交AB于点D.E是⊙O上一点,且CE=CD,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为()A.92°B.108°C.112°D.124°54.如图,Rt△ABC的直角顶点C在⊙O上滑动,且各边与⊙O分别交于点D,E,F,G,若EF,DG,DE的度数比为2:3:5,BE=BF,则∠A的度数为()A.30°B.32°C.34°D.36°55.如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=40°,B为弧AN的中点,P 是直径MN上一动点,则PA+PB的最小值为()A.5B.3C.5D.356.如图,正方形ABCD的四个顶点分别在⊙O上,点P是弧CD上不同于点C的任意一点,则∠BPC=()A.45°B.60°C.75°D.90°57.如图,点A、B、P在⊙O上,且∠APB=50°.若点M是⊙O上的动点,要使△ABM为等腰三角形,则所有符合条件的点M有()A.1个B.2个C.3个D.4个58.O的半径为6cm,圆心O到直线l的距离为7cm,则直线l与O的位置关系是()A.相交B.相切C.相离D.不能确定59.如图,已知直线334y x=-与x轴、y轴分别交于A、B两点,P在以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB,则△PAB面积的最小值为()A.5.5 B.10.5 C.8 D.1260.如图,⊙O的半径为2,定点P在⊙O上,动点A,B也在⊙O上,且满足∠APB=30°,C为PB的中点,则点A,B在圆上运动的过程中,线段AC的最大值为()A.3B3C.3 2 D.3参考答案1.C2.C3.B4.D5.B6.D7.D8.B9.C10.A11.C12.B13.C14.C15.D16.B 17.A18.A19.A20.C21.A22.D23.D24.A25.D26.C27.B28.B29.A30.D 31.B32.D33.B34.A35.C36.B37.C38.C39.B40.C41.A42.A43.C44.B 45.C46.D47.C48.D49.D50.A51.C52.D53.B54.D55.B56.A57.D58.C 59.A60.A。

人教版九年级数学上册:24.1 圆(第一课时 )同步测试题及答案【新】

人教版九年级数学上册:24.1 圆(第一课时 )同步测试题及答案【新】

第二十四章圆24.1 圆(第一课时)知识点1、圆的定义:⑴形成性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转形成的图形叫做圆,固定的端点叫,线段OA叫做。

⑵描述性定义:圆是到定点的距离等于的点的集合【特别注意】:1、在一个圆中,圆心决定圆的,半径决定圆的。

2、直径是圆中的弦,弦不一定是直径。

2、弦与弧:弦:连接圆上任意两点的叫做弦。

弧:圆上任意两点间的叫做弧,弧可分为、、三类。

3、圆的对称性:⑴轴对称性:圆是轴对称图形,有条对称轴,的直线都是它的对称轴。

⑵中心对称性:圆是中心对称图形,对称中心是。

一、选择题1.下列命题正确的有()①弦是圆上任意两点之间的部分②半径是弦③直径是最长的弦④弧是半圆,半圆是弧A.1个B.2个C.3个D.4个2.如图所示,MN为⊙O的弦,∠N=52°,则∠MON的度数为()A.38°B.52°C.76°D.104°3.如图,已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C 的度数是()A.25°B.40°C.30°D.50°4.一个点到圆上的最小距离是4cm,最大距离是9cm,则圆的半径是().A.2.5cm或6.5 cmB.2.5cmC.6.5cmD.5cm或13cm5.如图,已知在⊙O中,AB、CD为直径,则AD与BC的关系是().A.AD =BCB.AD ∥BCC.AD ∥BC 且AD =BCD.不能确定6.如图,已知AB 为⊙O 的直径,点C 在⊙O 上,∠C=15°,则∠BOC 的度数为( )A .15°B . 30°C . 45°D .60°二、填空题1.⊙O 的半径为2cm ,则它的弦长d cm 的取值范围是.2.⊙O 中若弦AB 等于⊙O 的半径,则△AOB 的形状是 .3.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,点D 是BC 的中点,若AC =10cm ,则OD = cm.4.如图4,AB 是⊙O 的直径,CD 是⊙O 的弦,AB ,CD 的延长线交于E ,若AB=2DE , ∠E=18°,∠C=______,∠AOC=________;5. P 为⊙O 内一点,OP=3cm ,⊙O 半径为5cm ,则经过P 点的最长弦长为_______,最短弦长为________;三、解答题BDO CAABCOBCDO1.在Rt△ABC中,∠C=90°,BC=3cm,AC=4cm,D为AB的中点,E为AC的中点,以B为圆心,BC为半径作⊙B,A、C、D、E与⊙B的位置关系如何?A2、如图,M,N为线段AB上的两个三等分点,点A、B在⊙O上,求证:∠OMN=∠ONM。

人教版 九年级数学上册 第24章 圆 同步课时训练 (含答案)

人教版 九年级数学上册 第24章 圆 同步课时训练 (含答案)

人教版九年级数学第24章圆同步课时训练一、选择题1. 如图半径为1的⊙O与正五边形ABCDE相切于点A,C,则劣弧AC的长度为()图A.35π B.45π C.34π D.23π2. 如图所示,AB是⊙O的直径,C,D是⊙O上的两点,CD⊥AB.若∠DAB=65°,则∠BOC等于()A.25°B.50°C.130°D.155°3. 如图某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以点A为圆心,AB长为半径的扇形(忽略铁丝的粗细),则所得扇形ADB的面积为()A.6 B.7 C.8 D.94. 如图,已知⊙O1,⊙O2,⊙O3,⊙O4是四个半径为3的等圆,在这四个圆中,若某圆的圆心到直线l的距离为6,则这个圆可能是()A.⊙O1B.⊙O2C.⊙O3D.⊙O45.如图,AP为⊙O的切线,P为切点,若∠A=20°,C、D为圆周上两点,且∠PD C=60°,则∠OBC等于( )A. 55°B. 65°C. 70°D. 75°6. 如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为P,则OP的长为() A.3 B.2.5 C.4 D.3.57.如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠A OD的度数为( )A. 70°B. 35°C.20°D. 40°8. 一条排水管的截面如图所示,已知排水管的半径OA=1 m,水面宽AB=1.2 m,某天下雨后,排水管水面上升了0.2 m,则此时排水管水面宽为()A.1.4 m B.1.6 mC.1.8 m D.2 m二、填空题9. 如图所示,AB是☉O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则☉O 的半径是.10. 如图是一个圆锥形冰激凌外壳(不计厚度),已知其母线长为12 cm,底面圆的半径为3 cm,则这个冰激凌外壳的侧面积等于________ cm2(结果精确到个位).11. 2018·孝感已知⊙O 的半径为10 cm ,AB ,CD 是⊙O 的两条弦,AB ∥CD ,AB =16 cm ,CD =12 cm ,则弦AB 和CD 之间的距离是________cm.12. 如图,点A ,B ,C 都在⊙O 上,OC ⊥OB ,点A 在BC ︵上,且OA =AB ,则∠ABC =________°.13. 已知一个圆心角为270°,半径为3 m 的扇形工件未搬动前如图示,A ,B 两点触地放置,搬动时,先将扇形以点B 为圆心,做如图示的无滑动翻转,再使它紧贴地面滚动,当A ,B 两点再次触地时停止,则圆心O 所经过的路线长为________m .(结果用含π的式子表示)14. 如图,在扇形ABC 中,CD ⊥AB ,垂足为D ,⊙E 是△ACD 的内切圆,连接AE ,BE ,则∠AEB 的度数为________.15. 如图,⊙O与正五边形ABCDE 的边AB ,DE 分别相切于点B ,D ,则BD ︵所对的圆心角∠BOD 的大小为________度.16. 如图中的小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”(阴影部分)图案的面积为________.三、解答题17. 已知:如图5,在⊙O 中,M ,N 分别为弦AB ,CD 的中点,AB =CD ,AB不平行于CD.求证:∠AMN =∠CNM.18. 如图,在正六边形ABCDEF中,点O是中心,AB=10,求这个正六边形的半径、边心距、周长、面积.19. 在平面直角坐标系中,圆心P的坐标为(-3,4),以r为半径在坐标平面内作圆:(1)当r为何值时,⊙P与坐标轴有1个公共点?(2)当r为何值时,⊙P与坐标轴有2个公共点?(3)当r为何值时,⊙P与坐标轴有3个公共点?(4)当r为何值时,⊙P与坐标轴有4个公共点?20.(2020·临沂)已知的半径为,的半径为.以为圆心,以的长为半径画弧,再以线段的中点为圆心,以的长为半径画弧,两弧交于点,连接,,交于点,过点作的平行线交于点.(1)求证:是的切线;(2)若,,,求阴影部分的面积.人教版九年级数学第24章圆同步课时训练-答案一、选择题1. 【答案】B[解析] 连接OA,OC,则∠OAE=∠OCD=90°.∵五边形ABCDE 为正五边形,∴∠E=∠D=108°,∴∠AOC=540°-∠OAE-∠OCD-∠E-∠D=144°,∴劣弧AC的长度为144180×π×1=45π.2. 【答案】C3. 【答案】D[解析] ∵正方形的边长为3,∴BD ︵的长度为6,∴S 扇形ADB =12lR =12×6×3=9.4. 【答案】B5.【答案】B【解析】连接OP ,如解图,则OP ⊥AP .∵∠D =60°,∴∠COP =120°,∵∠A =20°,∠APO =90°,∴∠AOP =70°,∴∠AOC =50°,∵OB =OC ,∴∠OBC =180°-50°2=65°.解图6. 【答案】C7.【答案】D【解析】∵AB 是⊙O 的直径,AC 切⊙O 于点A ,∴∠BAC =90°,∵∠C =70°,∴∠B =20°,∴∠AOD =∠B +∠BDO =2∠B =2×20°=40°.8. 【答案】B[解析] 如图,过点O 作OE ⊥AB 于点E ,交CD 于点F ,连接OC.∵AB=1.2 m,OE⊥AB,OA=1 m,∴AE=0.6 m,∴OE=0.8 m. ∵排水管水面上升了0.2 m,∴OF=0.8-0.2=0.6(m).由题意可知CD∥AB.∵OE⊥AB,∴OE⊥CD,∴CF=OC2-OF2=0.8 m,CD=2CF,∴CD=1.6 m.故选B.二、填空题9. 【答案】2[解析]连接OC,则OA=OC,∴∠A=∠ACO=30°,∴∠COH=60°.∵OB⊥CD,CD=2,∴CH=,∴OH=1,∴OC=2.10. 【答案】113[解析] 这个冰激凌外壳的侧面积=12×2π×3×12=36π≈113(cm2).故答案为113.11. 【答案】2或14[解析] ①当弦AB和CD在圆心同侧时,连接OA,OC,过点O作OE⊥CD于点F,交AB于点E,如图①,∵AB=16 cm,CD=12 cm,∴AE=8 cm,CF=6 cm.∵OA=OC=10 cm,∴EO=6 cm,OF=8 cm,∴EF=OF-OE=2 cm;②当弦AB和CD在圆心异侧时,连接OA,OC,过点O作OE⊥CD于点E并反向延长交AB于点F,如图②,∵AB=16 cm,CD=12 cm,∴AF=8 cm,CE=6 cm.∵OA=OC=10 cm,∴OF=6 cm,OE=8 cm,∴EF=OF+OE=14 cm.∴AB与CD之间的距离为2 cm或14 cm.12. 【答案】15[解析] ∵OC⊥OB,∴∠COB=90°.又∵OC=OB,∴△COB是等腰直角三角形,∴∠OBC=45°.∵OA=AB,OA=OB,∴OA=AB=OB,∴△AOB是等边三角形,∴∠OBA=60°,∴∠ABC=∠OBA-∠OBC=15°.13. 【答案】6π [解析] 由题意易知∠AOB =90°,OA =OB ,∴∠ABO =45°,圆心O 旋转的长度为2×45π×3180=3π2(m),圆心O 平移的距离为270π×3180=9π2(m),则圆心O 经过的路线长为3π2+9π2=6π(m).14. 【答案】135° [解析] 连接CE.∵∠ADC =90°,∴∠DAC +∠DCA =90°.∵⊙E 内切于△ADC ,∴∠EAC +∠ECA =45°,∴∠AEC =135°.由“边角边”可知△AEC ≌△AEB ,∴∠AEB =∠AEC =135°.15. 【答案】144 [解析] ∵⊙O 与正五边形ABCDE 的边AB ,DE 分别相切于点B ,D ,∴OB ⊥AB ,OD ⊥DE.∵正五边形每个内角均为108°,∴∠BOD =∠C +∠OBC +∠ODC =108°×3-90°×2=144°.16. 【答案】2π-4 [解析] 如图所示,由题意,得阴影部分的面积=2(S 扇形OAB-S △OAB)=2(90π×22360-12×2×2)=2π-4.故答案为2π-4.三、解答题17. 【答案】证明:连接OM ,ON ,OA ,OC ,如图所示.∵M ,N 分别为AB ,CD 的中点,∴OM ⊥AB ,ON ⊥CD ,AM =12AB ,CN =12CD.又∵AB =CD ,∴AM =CN.在Rt △AOM 和Rt △CON 中,⎩⎨⎧OA =OC ,AM =CN , ∴Rt △AOM ≌Rt △CON(HL),∴OM =ON ,∴∠OMN =∠ONM ,∴∠AMO +∠OMN =∠CNO +∠ONM ,即∠AMN =∠CNM.18. 【答案】解:连接OB ,OC ,过点O 作OH ⊥BC 于点H.∵正六边形的中心角为360°6=60°,OB =OC ,∴△OBC 是等边三角形,∴半径R =OB =BC =AB =10.∵OH ⊥BC ,∴∠BOH =30°,∴BH =12OB =5.在Rt △OBH 中,边心距r =OH =102-52=5 3,周长l =6AB =6×10=60.∵S △OBC =12BC·OH =12×10×5 3=25 3,∴正六边形的面积S=6S△OBC=6×25 3=150 3.19. 【答案】解:(1)根据题意,知⊙P和y轴相切,则r=3.(2)根据题意,知⊙P和y轴相交,和x轴相离,则3<r<4.(3)根据题意,知⊙P和x轴相切或经过坐标原点,则r=4或r=5.(4)根据题意,知⊙P和x轴相交且不经过坐标原点,则r>4且r≠5.20. 【答案】证明:(1)连接AP,过点作直线BC的垂线,垂足为点M,如下图:∵线段的中点是点,以的长为半径画弧∴∴∠PAO1=∠PO1A,∠PAO2=∠PO2A,∴∠O1A O2=∠PAO1+∠PAO2=90°∴△O1A O2是直角三角形∵∴∠O1A O2=∠ABC=90°又∵∠O2MB=90°∴四边形ABM O2是平行四边形∴O2M=AB= O1A-O1B=∴是的切线;M(2)∵,,,∴O1A =又∵∠O1A O2=90°∴cos∠A O1 O2=∴∠A O1 O2=60°在Rt△B O1 C中:设O1 O2与的交点为点N,则阴影部分的面积为:.NM【解析】(1)证切线常用的方法有“作垂线证半径”和“作半径证垂直” ,考虑到题目中的已知条件,用“作垂线证半径”更简便一些,为此我们可以过点作直线BC的垂线,垂足为点M;同时考虑到∠O1A O2可能是直角,可以连接AP用等腰三角形的等角对等边和三角形内角和定理进行证明;条件中还给出了平行线,因此可以证明∠ABC=90°,则四边形ABM O2是平行四边形,最后证明O2M=AB= O1A-O1B=,问题得以解决.(2)求阴影部分的面积,可以根据割补法来求.解决问题的关键是分别求出△BO1C和扇形BO1N的面积,根据已知条件,可以先求出O1A =,然后根据三角函数求出∠A O1 O2的度数,需要的数据再通过三角函数求出,问题得解.。

(word版)九年级圆基础测试题参考答案

(word版)九年级圆基础测试题参考答案

九年级上册 圆的根底测试题 一、选择题:〔每题2分,共20分〕 1.有4个命题:①直径相等的两个圆是等圆;②长度相等的两条弧是等弧;③圆中最大的弧是过圆心的弧;④一条弦把圆分为两条弧,这两条弧不可能是等弧. 其中真命题是〔 〕〔A 〕①③ 〔B 〕①③④ 〔C 〕①④ 〔D 〕①2.如图,点 I 为△ABC 的内心,点 O 为△ABC 的外心,∠O =140°,那么∠I 为〔 〕〔A 〕140° 〔B 〕125° 〔C 〕130° 〔D 〕110°3.如果正多边形的一个外角等于60°,那么它的边数为〔〔A 〕4 〔B 〕5 〔C 〕6 〔D 〕74.如图,AB 是⊙O 的弦,点 C 是弦AB 上一点,且 BC ︰CA =2︰1,连结OC 并延长交⊙ O 于,又 =2厘米, =3厘米,那么圆心 O 到 的距离为〔〕D DC OCAB〔A 〕6厘米 〔B 〕7厘米 〔C 〕2厘米 〔D 〕3厘米5.等边三角形的周长为 18,那么它的内切圆半径是〔〕〔A 〕63 〔B 〕33〔C 〕3 〔D 〕 33OAE6.如图,⊙ 的弦 、 相交于点,=4厘米, =3厘米, =6厘米, 切⊙ 于点 , 与 的ABCD PPAPB PC EAO ACD 延长线交于点 E ,AE =2 5 厘米,那么PE 的长为〔 〕〔A 〕4厘米 〔B 〕3厘米〔C 〕5厘米 〔D 〕 2厘米 47.一个扇形的弧长为 20 厘米,面积是 240 厘米2,那么扇形的圆心角是〔 〕〔A 〕120° 〔B 〕150° 〔C 〕210° 〔D 〕240°8.两圆半径之比为2︰3,当两圆内切时,圆心距是 4厘米,当两圆外切时,圆心距为〔 〕〔A 〕5厘米〔B 〕11厘米〔C 〕14厘米 〔D 〕20厘米9.一个圆锥的侧面积是底面积的2倍,那么这个圆锥的侧面展开图的圆周角是〔〕1〔A〕60°〔B〕90°〔C〕120°〔D〕180°AB10.如图,等腰直角三角形AOB的面积为S,以点O为圆心,OA为半径的弧与以1为直径的半圆围成的图形的面积为S2,那么S1与S2的关系是〔〕〔A〕S>S〔B〕S<S〔C〕S=S〔D〕S≥S12121212二、填空题〔每题2分,共20分〕11.⊙O1和⊙O2的半径分别为2和3,两圆相交于点A、B,且AB=2,那么O1O2=______.12.四边形ABCD是⊙O的外切等腰梯形,其周长为20,那么梯形的中位线长为_____.13.如图,在△ABC中,AB=AC,∠C=72°,⊙O过A、B两点,且与BC切于点B,与AC交于D,连结BD,假设BC=5-1,那么AC=______.14.用铁皮制造一个圆柱形的油桶,上面有盖,它的高为80厘米,底面圆的直径为50厘米,那么这个油桶需要铁皮〔不计接缝〕厘米2〔不取近似值〕.15、两圆的半径分别为3和7,圆心距为5,那么这两个圆的公切线有_____条.16.如图,以为直径的⊙O与直线相切于点,且⊥,⊥,AB CD E ACCDBDCDAC=8cm,BD=2cm,那么四边形ACDB的面积为______.17.如图,、、分别切⊙O 于、、,⊙的半径长为6cm,=10cm,PA PB DE ABC O PO那么△PDE的周长是_____。

中考数学模拟题汇总《圆》专项练习(附答案)

中考数学模拟题汇总《圆》专项练习(附答案)

中考数学模拟题汇总《圆》专项练习(附答案)一、选择题1.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于( )A.60°B.70°C.120°D.140°2.如图,⊙O直径为10,圆心O到弦AB的距离OM长为3,那么弦AB长是( )A.4B.6C.7D.83.如图,Rt△ABC中,∠C=90°,AC=4,BC=3.以点A为圆心,AC长为半径作圆.则下列结论正确的是( )A.点B在圆内B.点B在圆上C.点B在圆外D.点B和圆的位置关系不确定4.在平面直角坐标系中,以点(3,2)为圆心,3为半径的圆,一定( )A.与x轴相切,与y轴相切B.与x轴相切,与y轴相交C.与x轴相交,与y轴相切D.与x轴相交,与y轴相交5.有一条弧的长为2πcm,半径为2cm,则这条弧所对的圆心角的度数是( )A.90°B.120°C.180°D.135°6.如图,将△ABC 绕点C 按顺时针旋转60°得到△A ′B ′C,已知AC=6,BC=4,则线段AB 扫过图形面积为( )A.πB.πC.6πD.π7.已知圆锥的底面半径为4cm ,母线长为6cm ,则它的侧面展开图的面积等于( )A.24cm 2B.48cm 2C.24πcm 2D.12πcm 28.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问锯几何?”用现代的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD 垂足为E ,CE =1寸,AB =10寸,求直径CD 的长”,依题意,CD 长为( )A.12寸B.13寸C.24寸D.26寸9.下列关于三角形的外心的说法中,正确的是( )A.三角形的外心在三角形外B.三角形的外心到三边的距离相等C.三角形的外心到三个顶点的距离相等D.等腰三角形的外心在三角形内10.如图,⊙C 过原点O ,且与两坐标轴分别交于点A 、B ,点A 的坐标为(0,4),点M 是第三象限内OB ︵ 上一点,∠BMO =120°,则⊙C 的半径为( )A.4B.5C.6D.2 311.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O过A点的切线交于点B,且∠APB=60°.设OP=x,则△PAB的面积y关于x的函数图象大致是( )12.如图,AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是( )A. 5π3-2 3 B.5π3+2 3 C. 23-5π3D. 3+5π3二、填空题13.如图,AB是⊙O的直径,△ACD内接于⊙O,若∠BAC=42°,则∠ADC=______.14.如图,正方形网格中每个小正方形边长都是l,则△ABC的外接圆的圆心坐标为 .15.如图,四边形ABCD为⊙O的内接四边形,连接AC、BO,已知∠CAB=36°,∠ABO=30°,则∠D= .16.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,问勾中容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步.”该问题的答案是________步.17.将一个边长为1的正八边形补成如图所示的正方形,这个正方形的边长等于________.(结果保留根号)18.如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1∶r2= .三、解答题19.赵州桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙.如图,若桥跨度AB约为40米,主拱高CD约10米,(1)如图1,尺规作图,找到桥弧所在圆的圆心O(保留作图痕迹);(2)如图2,求桥弧AB所在圆的半径R.20.如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD=AB,∠D=30°.(1)求证:直线AD是⊙O的切线;(2)若直径BC=4,求图中阴影部分的面积.21.如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C.(1)若∠ADE=25°,求∠C的度数;(2)若AC=4,CE=2,求⊙O半径的长.22.如图,在△ABC中,以AB为直径的⊙O分别于BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为5,∠CDF=30°,求的长(结果保留π).23.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC 的延长线于点G.求证:(1)FC=FG;(2)AB2=BC·BG.24.如图,在△ABC中,AB=AC,以AB为直径作⊙O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是⊙O的切线;(2)若A为EH的中点,求EFFD的值;(3)若EA=EF=1,求⊙O的半径.参考答案1.D 2.D 3.C. 4.C. 5.C 6.D 7.C8.D. 9.C. 10.A. 11.D. 12.A13.答案为:48°.14.答案为:(172,2).15.答案为:96°.16.答案为:617.答案为:1+ 218.答案为:3∶2;19.解:(1)如图1所示;(2)连接OA.如图2.由(1)中的作图可知:△AOD为直角三角形,D是AB的中点,CD=10,∴AD=0.5AB=20.∵CD=10,∴OD=R﹣10.在Rt△AOD中,由勾股定理得,OA2=AD2+OD2,∴R2=202+(R﹣10)2.解得:R=25.即桥弧AB所在圆的半径R为25米.20.证明:(1)连接OA,则∠COA=2∠B,∵AD =AB ,∴∠B =∠D =30°,∴∠COA =60°,∴∠OAD =180°﹣60°﹣30°=90°,∴OA ⊥AD ,即CD 是⊙O 的切线;(2)∵BC =4,∴OA =OC =2,在Rt △OAD 中,OA =2,∠D =30°,∴OD =2OA =4,AD =23,所以S △OAD =12OA •AD =12×2×23=23,因为∠COA =60°,所以S 扇形COA =2π3,所以S 阴影=S △OAD ﹣S 扇形COA =23﹣2π3.21.解:(1)连接OA ,∵∠ADE =25°,∴由圆周角定理得:∠AOC =2∠ADE =50°,∵AC 切⊙O 于A ,∴∠OAC=90°,∴∠C=180°﹣∠AOC﹣∠OAC=180°﹣50°﹣90°=40°;(2)设OA=OE=r,在Rt△OAC中,由勾股定理得:OA2+AC2=OC2,即r2+42=(r+2)2,解得:r=3,答:⊙O半径的长是3.22.(1)证明:连接OD,如图所示.∵DF是⊙O的切线,D为切点,∴OD⊥DF,∴∠ODF=90°.∵BD=CD,OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∴∠CFD=∠ODF=90°,∴DF⊥AC.(2)解:∵∠CDF=30°,由(1)得∠ODF=90°,∴∠ODB=180°﹣∠CDF﹣∠ODF=60°.∵OB=OD,∴△OBD是等边三角形,∴∠BOD=60°,∴的长===π.23.证明:(1)如解图,∵EF∥BC,AB⊥BG,∴EF⊥AD.∵E是AD的中点,∴FA=FD,∴∠FAD=∠D.又∵GB⊥AB,∴∠GAB+∠G=∠D+∠1=90°,∴∠1=∠G,∵∠1=∠2,∴∠2=∠G,∴FC=FG;(2)如图,连接AC,∵AB⊥BG,∴AC是⊙O的直径,∵FD是⊙O的切线,切点为C,∴AC⊥DF,∴∠1+∠4=90°,∵∠3+∠4=90°,∴∠1=∠3,由(1)可知∠1=∠G,∴∠3=∠G,又∵∠ABC=∠GBA=90°,∴△ABC∽△GBA,∴ABGB=BCBA,∴AB2=BC·BG.24. (1)证明:如图,连接OD,∵AB=AC,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥AC,∵DH⊥AC,∴OD⊥DH,∵OD是⊙O的半径,∴DH是⊙O的切线;(2)解:由圆周角定理知,∠1=∠5,又∵∠1=∠2,∴∠2=∠5,∴△EDC是等腰三角形,∵DH⊥AC,∴H是EC的中点,∵A是EH的中点,∴EA=AH=12HC=13AC,由(1)知OD∥AC,∵O是AB的中点,∴OD=12 AC,∴EFFD=AEOD=2AEAC=23;(3)解:设OD=x,∵OD∥EC,EA=EF=1,∴OD=FD=x,∴ED=DC=x+1,又∵AC=2OD=2x,∴EC=2x+1,∵在△CDE与△CAB中,∠2=∠2,∠1=∠5,∴△CDE∽△CAB,∴CDCA=CECB,即CD·CB=CA·CE,得(x+1)(2x+2)=2x(2x+1),解得x1=5+12,x2=1-52(舍去),5+1 2.∴⊙O的半径为。

九年级圆知识点及习题(含答案)

九年级圆知识点及习题(含答案)

圆圆的有关概念与性质1.圆上各点到圆心的距离都等于半径。

2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形,圆心是它的对称中心。

3.垂直于弦的直径平分这条弦,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量相等,那么它们所对应的其余各组量都分别相等。

5.同弧或等弧所对的圆周角相等,都等于它所对的圆心角的一半。

6.直径所对的圆周角是 90°,90°所对的弦是直径。

7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫外心,是三角形三边垂直平分线的交点。

8.与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点的交点,叫做三角形的内心。

9.圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.10.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角与圆有关的位置关系1.点与圆的位置关系共有三种:①点在圆外,②点在圆上,③点在圆内;对应的点到圆心的距离d和半径r之间的数量关系分别为:①d > r,②d = r,③d < r.2.直线与圆的位置关系共有三种:①相交,②相切,③相离;对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:①d < r,②d = r,③d > r.3.圆与圆的位置关系共有五种:①内含,②相内切,③相交,④相外切,⑤外离;两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为:①d < R-r,②d = R-r,③ R-r < d < R+ r,④d = R+r,⑤d > R+r.4.圆的切线垂直于过切点的半径;经过直径的一端,并且垂直于这条直径的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线, 切线长 相等,这点与圆心之间的连线 平分 这两条切线的夹角。

九年级(上)《圆》-同步练习(A4有答案)

九年级(上)《圆》-同步练习(A4有答案)

九年级《圆》1 圆的基本性质(1)学习要求:理解圆的定义,理解弦、直径、圆弧、半圆、优弧、劣弧等有关概念.做一做:填空题:1.确定一个圆的要素是______和______.2.平面上,与已知点P的距离为3cm的所有点组成的图形是______.3.A、B是⊙O上不同的两点,⊙O的半径为r,则弦AB长的取值范围是______选择题:4.如图,⊙O中的点A、O、D以及点B、O、C分别在不同的两直线上,图中弦的条数为( )(A)2 (B)3 (C)4 (D)55.下列说法中,正确的是( )(A)过圆心的线段是直径(B)小于半圆的弧是优弧(C)弦是直径(D)半圆是弧6.下列说法中:①直径相等的两个圆是等圆;②圆中最长的弦是直径;③一条弦把圆分成两条弧,一条是优弧,另一条是劣弧;④顶点在圆心的角是圆心角.其中正确的是( )(A)①②(B)①②④(C)①②(D)②③解答题:7.已知:如图,OA、OB为⊙O的半径,C、D分别为OA、OB上的点,且AC=BD.求证:AD=BC.8.如图,在△ABC中,∠ACB=90°,AC=12,BC=5,分别以A为圆心,12为半径,以B为圆心,5为半径画弧,分别交斜边AB于M、N两点,求线段MN的长度.9.如图,在⊙O中,AB,CD为⊙O的两条直径,AE=BF,求证四边形CEDF是平行四边形.10.已知:如图,矩形ABCD的对角线AC和BD相交于O点,E、F、C、H分别为OD、OA、OB、OC 的中点.试说明:E、F、G、H四个点在以点O为圆心、OE为半径的同一个圆上.问题探究:11.如图,点A、D、G、M在半圆O上,四边形ABOC、DEOF、HMNO均为矩形,设BC=a,EF=b,NH=c,则下列各式中正确的是( )(A)a>b>c(B)a=b=c(C)c>a>b(D)b>c>a九年级《圆》2 圆的基本性质(2)学习要求:探索并认识圆的轴对称性、中心对称性及圆的旋转不变性.掌握圆心角、弧、弦和弦心距之间的关系以及垂径定理.做一做:填空题:1.如图1,在⊙O中,=,若∠AOB=40°,则∠COD=______°.2.如图2,⊙O的半径为5,弦AB的长为6,OC⊥AB于C,则OC的长为______.3.如图3,四边形ABCD中,AB=AC=AD,若∠CAD=82°,则∠CBD=______度.图1 图2 图34.已知⊙O的半径为r,那么垂直平分半径的弦长为______.5.AB是⊙O的直径,弦CD⊥AB,E为垂足,若AB=9,BE=1,则CD=______.6.⊙O的直径为10cm,弦AB为8cm,P是弦AB上一点,若OP的长为整数,则满足条件的点P有_个.选择题:7.在同圆或等圆中,若的长度=的长度,则下列说法正确的个数是( )①的度数等于;②所对的圆心角等于所对的圆心角;③和是等弧;④弦AB所对的弦心距等于弦CD所对的弦心距.(A)1个(B)2个(C)3个(D)4个8.下面四个命题中正确的一个是( )(A)平分一条直径的弦必垂直于这条直径(B)平分一条弧的直线垂直于这条弧所对的弦(C)弦的垂线必过这条弦所在圆的圆心(D)在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心9.如图,AB是⊙O直径,CD是⊙O的弦,AB⊥CD于E,则图中不大于半圆的相等弧有( )(A)1对(B)2对(C)3对(D)4对10.过⊙O内一点M的最长弦为4cm,最短的弦长为2cm,则OM的长为( )(A)3m (B)2m (C)1cm (D)3cm11.如图,AB 是⊙O 的直径,弦CD ⊥AB 于P ,35=CD ,25=OP ,则弦AC 的长为( )(A)56(B)36(C)35(D)55解答题:12.⊙O 的半径为5,弦AB ∥CD ,CD =6,AB =8,求AB 和CD 之间的距离.13.如图,CE 为⊙O 的直径,AB 为⊙O 的弦,且AB ⊥CE ,垂足为点D ,设⊙O 的半径为r ,AB +CD =2r ,CD =1,求⊙O 的半径.14.如图,半径为5的⊙P 与轴交于点M (0,-4),N (0,-10),函数)0(<=x xky的图像过点P ,求k 的值.问题探究:15.如图,在⊙O 中,AB =2CD .试判断与2是否相等,并说明理由.九年级《圆》3 圆的基本性质(3)学习要求:了解圆周角与圆心角的区别和联系,掌握圆周角的概念及性质,并学会应用圆周角的性质解决问题.做一做:填空题:1.如图1,已知圆心角∠AOB=100°,则圆周角∠ACB的度数为______.2.如图2,在⊙O中,=,若∠BOC=70°,则∠ABC=______°.3.如图3,AB为直径,∠BED=40°,则∠ACD=______度.图1 图2 图34.如图4,AB是⊙O的直径,点C在⊙O上,∠BAC=30°,点P在线段OB上运动.设∠ACP=x,则x的取值范围是____________.5.若一条弦把圆周分成2∶3的两段弧,则劣弧所对圆心角的度数是______度,弦所对的圆周角的度数是______.6.如图5,A、B、C、D是⊙O上四点,且点D是的中点,CD交OB于E,∠AOB=100°,∠OBC =55°,则∠OEC=______度.7.如图6,图中圆周角的个数是( )图4 图5 图6(A)9个(B)12个(C)8个(D)14个8.如图,C是以AB为直径的半圆弧上的一点,已知BC的弦心距与直径AB的比为3∶4,则所对的圆心角为( )(A)100°(B)90°(C)115°(D)120°9.下列命题中,正确的个数为( )(1)相等的圆周角所对的弧相等(2)同圆或等圆中,同弦或等弦所对的圆周角相等(3)一边上的中线等于这条边的一半的三角形是直角三角形(4)等弧所对的圆周角相等(A)1个(B)2个(C)3个(D)4个10.使用直角钢尺检查某一工件是否恰好是半圆形的凹面,成半圆形的为合格,如图所示的四种情况中的合格的是( )11.如图8,BD 为圆O 直径,弦AC 、BD 相交于点E ,下列结论一定成立的是( )(A)∠BAO =∠C (B)∠B =∠D (C)∠OAE =∠C (D)∠BAO =∠D 12.如图9,A 、B 、C 是⊙O 上的三点,∠α =140°,那么∠A 等于( )(A)70° (B)110° (C)140° (D)220° 13.如图10,A 点是半圆上一个三等分点,B 点是的中点,P 点是直径MN 上一动点,⊙O 的半径为1,则AP +BP 的最小值为( )图8 图9 图10(A)1 (B)22(C)2 (D)13-解答题:14.如图,△ABC 中,已知AB =AC ,∠BAC =50°,以AB 为直径的圆分别交BC 、AC 于D 、E ,求,,的度数.15.如图,射线AM 交一圆于点B 、C ,射线AN 交该圆于点D 、E ,且=,求证:AC =AE .问题探究: 16.如图,△ABC 是⊙O 的内接三角形,点C 是优弧AB 上一点(点C 不与A ,B 重合),设∠OAB =α ,∠C =β .(1)当α =35°时,求β 的度数;(2)猜想α 与β 之间的关系,并给予证明.九年级《圆》4 与圆有关的位置关系(1)学习要求:理解点和圆的位置关系,以及确定一个圆的条件,了解三角形的外接圆的概念.做一做:填空题:1.若⊙O的半径为r,点A到圆心O的距离为d,当点A在圆外时,d______r;当点A在圆上时,d______r;当点A在圆内时,d______r.5长为半径画圆,2.在△ABC中,∠C=90°,AC=2cm,BC=4cm,CM是中线,以C为圆心,以cm 则A、B、C、M四点在圆外的有点______,在圆上的有点______,在圆内的有点______.3.已知⊙O的半径为1,点P与O的距离为d,且方程x2-2x+d=0有实数根,则P在⊙O的______.4.过一点A可作______个圆,过两点A、B可作______个圆,且圆心在线段AB的______上,过三点A、B、C,当这三点______时能且只能作一个圆,且圆心在______上.5.等边三角形的边长为6cm,则它的外接圆的面积为______.6.在Rt△ABC中,已知两直角边的长分别为6cm和8cm,那么Rt△ABC的外接圆的面积是7.锐角三角形的外心在______,直角三角形的外心在______,钝角三角形的外心在______.选择题:8.两个圆的圆心都是O,半径分别为r1和r2,且r1<OA<r2,那么点A在( )(A)⊙r1内(B)⊙r2外(C)⊙r1外,⊙r2内(D)⊙r1内,⊙r2外9.⊙O的半径r=10cm,圆心到直线L的距离OM=8cm,在直线L上有一点P,且PM=6,则点P( )(A)在⊙O内(B)在⊙O上(C)在⊙O外(D)可能在⊙O内也可能在⊙O外10.⊙O的半径为5,圆心O的坐标为(0,0),点P的坐标为(4,2),则点P与⊙O的位置关系是( )(A)点P在⊙O内(B)点P在⊙O上(C)点P在⊙O外(B)点P在⊙O上或在⊙O外11.三角形的外心是( )(A)三条中线的交点(B)三条中垂线的交点(C)三条高的交点(D)三条角平分线的交点解答题:12.如图1,使用直尺和圆规确定如图所示的破残轮片的圆心位置.图113.点P到⊙O上的点的最大距离是6cm,最小距离是2cm,求⊙O的半径.14.某商场有三个销量较大的柜台,经理想修建一个收银台,使得三个柜台到收银台的距离相等.如果三个柜台的位置如图2所示,那么如何确定收银台的位置?图2问题探究:15.已知:如图3,三个边长为2a个单位长度的正方形如图所示方式摆放.图①图②图③图3∴______为所求作的圆.∴______为所求作的圆.(1)画出覆盖图①的最小圆;(2)将图①中上面的正方形向右平移a个单位长度,得到图②,请用尺规作出覆盖新图形的最小圆(不写作法,保留作图痕迹);(3)可以利用图③,比较(1)和(2)中的两个圆的大小,通过计算简要说明理由.九年级《圆》5 与圆有关的位置关系(2)学习要求:探索与了解直线与圆的位置关系.掌握切线的识别方法,理解切线长定理和三角形的内切圆的概念.做一做:填空题:1.直线和圆的位置关系有:______、______、______.2.两个同心圆,大圆半径R=3cm,小圆半径r=2cm,d是圆心到直线l的距离,当d=2cm,l与小圆的交点个数为______,l与大圆的交点个数为______,当d=2.5cm,l与小圆的交点个数为______,l与大圆的交点个数为______.3.如图1,AB是⊙O的直径,点D在AB的延长线上,BD=OB,CD与⊙O切于C,那么∠CAB=______度.图14.两个同心圆的半径分别为3cm和5cm,大圆的弦AB与小圆相切,则AB=______cm.5.如图2,AB是半圆直径,直线MN切半圆于C,AM⊥MN,BN⊥MN,如果半圆直径为m,则AM+BN =______.图26.在△ABC中,若∠C=90°,∠A=30°,AC=3,则内切圆的直径为______.选择题:7.下列说法正确的是( )(A)若直线与圆有一个交点则直线是圆的切线(B)经过半径的外端的直线是圆的切线(C)和半径垂直的直线是圆的切线(D)经过圆心且垂直于切线的直线,必经过切点8.若CD是⊙O的切线,要判定AB⊥CD,还需要添加的条件是( )(A)AB经过圆心O(B)AB是直径(C)AB是直径,B是切点(D)AB是直线,B是切点9.在△ABC中,∠C=90°,AC=12cm,BC=5cm,若以C为圆心,5cm为半径作圆,则斜边AB与⊙O 的位置关系是( )(A)相离(B)相切(C)相交(D)不能确定10.如图,P A、PB分别与⊙O相切于A、B两点,C是⊙O上一点,且∠ACB=55°,则∠P等于( )(A)70°(B)65°(C)110°(D)55°11.如图,AB是半⊙O直径、P点是AB延长线上一点,PC切半⊙O于C,若∠P=32°,则∠A等于( )(A)30°(B)32°(C)29°(D)31°12.如图,⊙O的外切梯形ABCD中,若AD∥BC,那么∠DOC的度数为( )(A)70°(B)90°(C)60°(D)45°13.如图,以正方形ABCD的BC边为直径作半圆O,过点D作直线切半圆于点F,交AB边于E.则三角形ADE和直角梯形EBCD周长之比为( )(A)3∶4 (B)4∶5 (C)5∶6 (D)6∶714.如图,⊙O是△ABC的内切圆,D、E、F是切点,∠A=50°,∠C=60°,则∠DOE=( )(A)70°(B)110°(C)120°(D)130°解答题:15.在△ABC 中,AB =4cm ,AC =,cm 22若以A 为圆心,2cm 为半径的圆与直线BC 相切,求∠BAC的度数.16.如图,AB 是⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为D . 求证:AC 平分∠DAB .17.(08福州)如图,AB 是⊙O 的直径,AD 是弦,∠DAB =22.5°,延长AB 到点C ,使∠ACD =45°(1)求证:CD 是⊙O 的切线; (2)若,22 AB 求BC 的长.问题探究:18.已知:如图,正方形ABCD 中,有一个直径为BC 的半圆,BC =2cm ,现有两点E 、F ,分别从点B 、点A 同时出发,点E 沿线段BA 以1cm/s 的速度向点A 运动,点F 沿折线A -D -C 以2cm/s 的速度向点C 运动,设点E 离开点B 的时间为t 秒. (1)当t 为何值时,线段EF 与BC 平行? (2)设1<t <2,当t 为何值时,EF 与半圆相切?九年级《圆》6 与圆有关的位置关系(3)学习要求:探索并了解圆与圆的五种位置关系及数量关系,学会区别的方法.做一做:填空题:1.两个同心圆,大圆的半径为9,小圆的半径为5,如果⊙O与这两圆都相切,那么⊙O的半径等于______.2.相切两圆的圆心距为18cm,其中小圆半径为7cm,则大圆半径为______.3.两圆半径分别为5cm和x cm,圆心距离为7cm,若两圆相交时,则x的取值范围是4.已知两圆的半径分别为7cm和11cm,当圆心距为3cm时,两圆位置关系为______;当圆心距为12cm 时,两圆位置关系为______.5.如图1,在12×6的网格图中(每个小正方形的边长均为1个单位),⊙A的半径为1,⊙B的半径为2,要使⊙A与静止的⊙B相切,那么⊙A由图示位置需向右平移______个单位.图16.如图2,图中各圆两两相切,⊙O的半径为6,⊙A和⊙B的半径相等,则⊙C的半径r=______.图27.两圆半径的比为5∶3,当这两圆外切时,圆心距是24,若这两圆相交,则圆心距d的取值范围是______.8.已知两圆内切,一个圆的半径是3,圆心距是2,那么另一个圆的半径是______.选择题:9.半径分别为5.5cm和4.5cm的两个圆内切,这两圆的圆心距是( )(A)0.5cm (B)1cm (C)5cm (D)10cm10.设两圆半径分别为R和r(R>r),圆心距d,若这两圆内含,则下列不等式成立的是( )(A)R+r<d(B)R-r>d(C)R-r<d(D)R+r>d>R-r11.两圆半径分别为3和5,圆心距d,若两圆相切,那么( )(A)d=2 (B)d=8(C)2<d<8 (D)d=2或d=8解答题:12.若两圆的圆心距d满足等式|d-4|=3,且两圆半径是方程x2-7x+12=0的两个根,判断这两圆的位置关系.13.已知:如图3,⊙O1与⊙O2交于A,B两点,O1A切⊙O2于A,若O1A=2cm,⊙O2半径为1cm,求AB的长.图3问题探究:14.在种植农作物时,一个很重要的问题就是“合理密植”.如图4是栽植一种蔬菜时的两种方法,A、B、C、D四株顺次连结成为一个菱形,且AB=BD;A′、B′、C′、D′四株顺次连结成为一个正方形.这两种图形的面积为四株作物所占的面积,两行作物间的距离为行距;一行中相邻两株作物的距离为株距;设这两种作物充分生长后,每株在地面上的影子近似成一个圆面(相邻两圆如图相切),其中阴影部分的面积表示生长后空隙地面积.在株距都为a,其他客观原因也相同的条件下,请从栽植的行距,蔬菜所占地面积,充分生长后空隙地面积三个方面比较两种栽植方法,哪种方法能更充分地利用土地.图4九年级《圆》7 正多边形与圆学习要求:理解正多边形的中心、半径、中心角、边心距等概念,学会用等分圆周的方法画正多边形.做一做:填空题:1.正六边形内接于⊙O,⊙O的半径为4cm,则这个正六边形的边长为______cm,面积为______cm2.2.等边三角形外接圆半径与内切圆半径之比为______.3.若等边三角形的边长为3,则它的外接圆的半径的长为______.4.一个正三角形与一个正六边形的周长相等,则它们的面积之比为______.解答题:5.已知正四边形的边心距为2,求它的外接圆的面积.6.如图1,圆内接正六边形ABCDEF中,对角线BD,EC相交于点G,求∠BGC的度数.图17.一个不等边三角形是不是一定有外接圆和内切圆?画图试一试.如果有,这两个圆是不是同心圆? 8.如图2,已知点A、B、C、D、E是⊙O的5等分点,画出⊙O的内接和外切正五边形.图29.要用圆形铁片截出边长为a的正方形铁片,选用的圆铁片的直径最小要多长?10.如图3,正六边形的螺帽的边长a =12mm ,这个搬手的开口b 最小应是多少?(结果精确到0.1mm)图311.试画出下列图形:问题探究:12.如图4,八边形A B C D E F G H 中,∠A =∠B =∠C =∠D =∠E =∠F =∠G =∠H =135°,AB =CD =EF =GH =1cm ,BC =DE =FG =HA =,cm 2则这个八边形的面积等于( )图4(A)7cm 2 (B)8cm 2(C)9cm 2(D)2cm 214九年级《圆》8 有关圆的计算学习要求:学会计算弧长及扇形的面积,学会计算圆锥的侧面积和全面积.做一做: 填空题:1.若⊙O 的半径为4cm ,其中一条弧长为2πcm ,则这条弧所对的圆心角是______ 2.一个扇形的圆心角为60°,半径是10cm ,则这个扇形的弧长是______cm .3.如图1,在正方形铁皮上剪下一个圆形和扇形,使之恰好围成一个圆锥模型,设圆的半径为r ,扇形半径为R ,则圆的半径与扇形半径之间的关系为______.4.如图2,矩形ABCD 的长为a ,宽为b ,以A ,B ,C ,D 为圆心的四个圆的半径都是r (a >b >2r ),则图中阴影部分的面积是______.5.圆锥可以看作是由______旋转而得的,圆锥的侧面展开图是______.6.一个圆锥的底面圆半径为4cm ,母线长为9cm ,则该圆锥的全面积为______.7.一个圆锥的侧面积是底面积的4倍,这个圆锥的侧面展开图圆心角的度数为______. 8.如图3是一人用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF 长为10cm .母线OE (OF )长为10cm .在母线OF 上的点A 处有一块爆米花残渣,且F A =2cm ,一只蚂蚁从杯口的点E 处沿圆锥表面爬行到A 点.则此蚂蚁爬行的最短距离为______cm .图1 图2 图3选择题: 9.如图4,以O 为圆心的两个同心圆中,两圆半径分别为2和1,∠AOB =120°,则阴影部分的面积为( ) (A)4π(B)2π(C)π34(D)π10.如图5,图中实线部分是半径为9cm 的两条等弧组成的游泳池.若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为( ) (A)12πcm (B)18πcm (C)20πcm (D)24πcm11.如图6,在△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC于F ,点P 是⊙A 上的一点,且∠EPF =40°,则图中阴影部分的面积是( )(A)π944-(B)π984-(C)π948-(D)π988-图4 图5 图612.如图7,在下列边长相同的正方形中,阴影部分的面积相同的有( )图7(A)1个(B)2个(C)3个(D)4个13.如图8,有六个等圆按甲、乙、丙三种摆放,使相邻两圆互相外切,圆心连线分别构成正六边形、平行四边形、正三角形,圆心连线外侧的六个扇形(阴影部分)的面积之和依次记为S、P、Q,则( )图8(A)S>P>Q(B)S>Q>P(C)S>P=Q(D)S=P=Q14.如图,圆锥形烟囱帽的底面直径是40cm,母线长是25cm,则这个圆锥形零件的展开图面积是( )(A)200πcm2(B)300πcm2(C)50πcm2(D)500πcm215.一个扇形的半径为30cm,圆心角为150°,若用它做成一个圆锥的侧面,则这个圆锥的底面半径为( )(A)12.5cm (B)30cm (C)25cm (D)35cm解答题:16.如图10,有一个半径为12米的圆形花坛,现要用两个同心圆把花坛的面积三等分,以便种植三种不同颜色的花卉,求这两个同心圆的半径.图1017.如图11,AB为半圆O的直径,C、D是的三等分点,若⊙O的半径为1,E为直线AB上任意一点,求图中阴影部分的面积.图1118.如图12,扇形AOB 的圆心角为直角,正方形OCDE 内接于扇形,点C 、E 、D 分别在OA 、OB 、上,过A 作AF ⊥ED 交ED 的延长线于F .如果正方形的边长为1,那么阴影部分的面积为多少?图1219.如图13,是一块从生日蛋糕中切下的楔型蛋糕.(1)计算扇形OAD 的面积;(2)计算楔型蛋糕的整个表面积.图1320.若△ABC 为等腰直角三角形,其中∠ABC =90°,,cm 22==BC AB ,求将等腰直角三角形绕其直线AC 旋转一周所得圆锥的表面积.问题探究:21.如图14所示的曲边三角形可按下述方法作出:分别以正三角形的一个顶点为圆心,边长为半径,画弧使其经过另外两个顶点,然后擦去正三角形,三段圆弧所围成的图形就是一个曲边三角形.如果一个曲边三角形的周长为π,求它的面积.图14圆 9 复 习学习要求:通过复习,进一步理解圆中的概念、性质,掌握运用圆的有关知识解决问题的方法.做一做: 选择题:1.如图1,在两半径不同的同心圆中,∠AOB =∠A ′OB ′=60°,则( )图1 (A)= (B)> (C)的度数=的度数 (D)的长度=的长度 2.下列说法正确的是( ) (A)两个半圆是等弧 (B)同圆中优弧与半圆的差必为劣弧 (C)同圆中优弧与劣弧的差必为劣弧 (D)由弦和弧组成的图形叫弓形3.已知⊙O 的直径是6cm ,若P 是⊙O 内部的一点,则OP 的长度的取值范围是( ) (A)OP <6cm (B)OP ≤3cm (C)0≤OP <3cm (D)0<OP <3cm4.如图2,已知O 为圆锥的顶点,M 为圆锥底面上一点,点P 在OM 上,一只蜗牛从P 点出发,绕圆锥侧面爬行,回到P 点时所爬过的最短路线的痕迹如右图所示.若沿OM 将圆锥侧面剪开并展开,所得侧面展开图是( )图25.已知⊙O 的半径为2cm ,弦AB 长cm 32,则这条弦的中点到弦所对劣弧的中点的距离为( ) (A)1cm(B)2cm(C)cm 2(D)cm 36.如图3,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C 、D 两点,AB =10cm ,CD =6cm ,则AC 的长为( )图3 (A)0.5cm(B)1cm(C)1.5cm(D)2cm7.在⊙O 中,圆心角∠AOB =90°,点O 到弦AB 的距离为4,则⊙O 的直径的长为( ) (A)24(B)28(C)24( D)168.⊙O 的弦AB 等于半径,那么弦AB 所对的圆周角一定是( ) (A)30° (B)150° (C)30°或150° (D)60°9.如图,有一圆心角为120°、半径长为6cm 的扇形,若将OA 、OB 重合后围成一圆锥侧面,那么圆锥的高是( )(A)cm 24(B)cm 35(C)cm 62(D)cm 32 10.如图,A 、B 、C 、D 是圆上四点,AB 、DC 延长线交于点E ,、分别为120°、40°,则∠E 等于( )(A)40° (B)35°(C)60°(D)30°11.如图,D 是的中点,与∠ABD 相等的角的个数是( )(A)7个 (B)3个 (C)2个 (D)1个12.如图,⊙O 与直线MN 相切于C 、AB 是⊙O 的直径,∠ABC =56°,则∠BCN 等于( )(A)34°(B)56° (C)24°(D)124°13.等边三角形的内切圆半径、外接圆半径和高的比为( )(A)321::(B)321::(C)231::(D)1∶2∶314.已知△ABC 的三边长分别为6,8,10,分别以A ,B ,C 三点为圆心,作两两相外切的三个圆,那么这三个圆的半径分别为( ) (A)3,4,5 (B)2,4,6 (C)6,8,10 (D)4,6,8填空题:15.一个圆的最大的弦长为10cm ,则此圆的半径为______. 16.已知:⊙O 的半径为4cm ,弦AB 所对的劣弧为圆的31,则弦AB 的长为______cm ,AB 的弦心距为______cm .17.圆内接三角形三个内角所对的弧长之比为3∶4∶5,那么这个三角形内角的度数分别为 18.如图8,圆锥的底面半径为6cm ,高为8cm ,那么这个圆锥的侧面积是______cm 2.图819.如图9,小丽要制作一个圆锥模型,要求圆锥的母线长为9cm ,底面圆的直径为10cm ,那么小丽要制作的这个圆锥模型的侧面展开扇形的纸片的圆心角度数是______.图920.如图10,矩形ABDC 中,AC =2,DC =4,以 AB 为直径的半圆O 与DC 相切于点E ,则阴影部分的面积为______(结果保留 )图1021.如图11①,O 1,O 2,O 3,O 4为四个等圆的圆心,A ,B ,C ,D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是______;如图11②,O 1,O 2,O 3,O 4,O 5为五个等圆的圆心,A ,B ,C ,D ,E 为切点,请你在图中画出一条直线,将这五个圆...分成面积相等的两部分,并说明这条直线经过的两个点是______.图11解答题:22.已知:⊙O的半径OA=1,弦AB、AC的长分别是2、3,求∠BAC的度数.23.如图12,在矩形ABCD中,AB=24,AD=7,以A为圆心作圆,如果B、C、D三点中,至少有一个点在圆内,且至少有一个点在圆外,求⊙A的半径R的取值范围.图1224.如图13,在平面直角坐标系中,点A的坐标是(10,0),点B的坐标为(8,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形.求点C的坐标.图1325.如图14,BC为直径,G为半圆上任一点,A为中点,AP⊥BC于P.求证:AE=BE=EF.图1426.已知:如图15,AB是⊙O的直径,AC⊥l,BD⊥l,C、D是垂足,且AC+BD=AB.求证:DC是⊙O的切线.图1527.已知:如图16,A、C为⊙O上两点,AD为直径,∠1=∠2(1)求证:AB是⊙O的切线;(2)若AC=10cm,∠2=30°,求图中阴影部分面积.图1628.在一次数学探究性学习活动中,某学习小组要制作一个圆锥体模型,操作规则是:在一块边长为16cm 的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面.他们首先设计了如图所示的方案一,发现这种方案不可行,于是他们调整了扇形和圆的半径,设计了如图17所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切)(1)请说明方案一不可行的理由;(2)判断方案二是否可行?若可行,请确定圆锥的母线长及其底面圆半径;若不可行,请说明理由.方案一方案二图17圆10 测试题选择题:(每题4分,共40分)1.如图,是一个由四个同心圆构成的靶子示意图,点O 为圆心,且OA =AB =BC =CD =1,则周长更接近于20的是( )(A)以OA 为半径的圆 (B)以OB 为半径的圆 (C)以OC 为半径的圆 (D)以OD 为半径的圆2.在同圆或等圆中,如果=2,则AB 与CD 的关系是( )(A)AB >2CD (B)AB =2CD (C)AB <2CD (D)AB =CD3.在⊙O 中,两弦AB <CD ,OM ,ON 分别为这两条弦的弦心距,则OM ,ON 的关系是( ) (A)OM >ON (B)OM =ON (C)OM <ON (D)无法确定 4.一个点到一个圆的最短距离是3cm ,最长距离是6cm ,则这个圆的半径是( ) (A)4.5cm (B)1.5cm (C)4.5cm 或1.5cm (D)9cm 或3cm 5.在下列三角形中,外心在它一条边上的三角形是( ) (A)边长分别为2cm 、2cm 、3cm (B)三角形的边长都等于5cm(C)三角形的边长分别为5cm 、12cm 、13cm (D)三角形的边长为4cm 、6cm 、8cm 6.如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A 、B 两点)上移动时,点P ( )(A)到CD 的距离保持不变 (B)位置不变 (C)等分 (D)随C 点的移动而移动7.圆的弦与直径相交成30°角,并且分直径为6cm 和4cm 两部分,则弦心距为( ) (A)33 (B)3(C)21 (D)23 8.△ABC 中,∠B =90°,以BC 为直径作圆交AC 于E ,若BC =12,312=AB 则的度数为( )(A)60° (B)80°(C)100°(D)120°9.如图,BC 为半圆O 直径,A 、D 为半圆O 上两点,3=AB ,BC =2,则∠D 的度数是( ) (A)60° (B)120° (C)135°(D)150°10.如图,P A 、PB 切⊙O 于点A 、B ,C 是优弧上的点,∠C =64°,那么∠P 等于( )(A)26° (B)62° (C)60° (D)52°填空题:(每题4分,共28分)11.如图5,在⊙O 的内接四边形ABCD 中,若∠BAD =110°,则∠BCD 等于______.12.如图6,一把宽为2cm 的刻度尺在⊙O 上移动,当刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数恰好为“2”和“8”(单位:cm),则该圆的半径为______cm .13.已知圆锥的侧面展开图是一个半圆,则这个圆锥的母线长与底面半径长的比是______.14.如图7,是一个水平放置的圆柱形水管的截面,已知水面高cm 22+=CD 水面宽AB =22cm ,那么水管截面圆的半径是______cm图5 图6 图715.如图8,∠ABC =90°,O 为射线BC 上一点,以点O 为圆心、BO 21长为半径作⊙O ,当射线BA 绕点B 按顺时针方向旋转______度时与⊙O 相切. 16.如图9,外接圆半径为r 的正六边形周长为______.17.如图10,AB 是半圆O 的直径,点C 、点D 是半圆O 的三等分点,若CD 为cm 3,则图中阴影部分的面积为______.图8 图9 图10解答题:(每题8分,共32分)18.已知:如图11,在Rt △ABC 中,∠C =90°,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AC ,AB 分别交于点D ,E ,且∠CBD =∠A .判断直线BD 与⊙O 的位置关系,并证明你的结论.图1119.如图12,AB 是⊙O 的直径,过圆上一点D 作⊙O 的切线DE ,与过点A 的直线垂直于E ,弦BD 的延长线与直线AE 交于C 点,若=21,⊙O 的半径为r ,求由线段DE 、AE 、和所围成的阴影部分的面积.图1220.如图13,已知△ABC 内接于⊙O ,AB 为⊙O 的直径,AB =8cm ,以OA 为直径的⊙D 与⊙O 的弦AC交于E 点,若CE =2cm . 求:(1)AC 的长;(2)所对的圆周角.图1321.如图14,六边形ABCDEF 内接于半径为r (常数)的⊙O ,其中AD 为直径,且AB =CD =DE =F A . (1)当∠BAD =75°时,求的长;(2)求证:BC ∥AD ∥FE .图14参考答案第二十四章 圆九年级《圆》1 圆的基本性质(1)1.圆心,半径 2.以点P 为圆心,3cm 长为半径的圆 3.0<AB ≤2r 4.B 5.D 6.B 7.提示:可证△AOD ≌△BOC 8.4 9.证OC =OD ,OE =OF 即可 10.提示:证明E 、F 、G 、H 四个点到点O 的距离相等 11.B九年级《圆》1 圆的基本性质(2)1.40 2.4 3.41 4.r 3 5.24 6.5 7.D 8.D9.C 10.A 11.C 12.AB 、CD 在圆心O 的同侧时,距离为1;AB 、CD 在圆心O 的异侧时,距离为7 13.25=r 14.28 15.提示:取的中点E ,则= ∴AE =EB ∵AE +EB >AB =2CD ∴2AE >2CD ∴AE >CD ,∴>,∴2>2∴>2九年级《圆》1 圆的基本性质(3)1.50° 2.72.5 3.50 4.30°≤x ≤90° 5.144;72度或108度 6.80 7.B 8.D 9.B 10.C 11.A 12.B 13.C 14.连OD ,OE .,,的度数分别是50°,50°,80° 15.连接C E ,利用“在同圆中等弧所对圆周角相等”,证出 ∠DEC =∠BCE ,∴AC =AE 16.(1)连接OB ,β =55° (2)α +β =90°九年级《圆》2 与圆有关的位置关系(1)1.>,=,< 2.B ,M ,A 、C 3.P 在⊙O 的内部或圆周上 4.无数个,无数个,垂直平分线,不在同一条直线上,其中任意两条线段的中垂线的交点 5.12πcm 2 6.25πcm 2 7.三角形内部,斜边中点上,三角形外部 8.C 9.B 10.A 11.B 12.提示:在圆弧上任取两条不平行的弦,分别作它们的垂直平分线,交点即为圆心 13.点P 在⊙O 外,21=r (PB -P A )=2cm ;点P 在⊙O 内,21=r (PB +P A )=4cm 14.提示:过不共线的三点作圆,找出圆心的位置 15.(1)∴⊙O 为所求作的圆(2)方法一: 方法二:∴⊙O '为所求作的圆.(3)计算过程略,(1)中的圆比 (2)中的圆大.九年级《圆》2 与圆有关的位置关系(2)1.相交,相切,相离 2.一个,两个;没有,两个 3.30 4.8 5.m 6.33- 7.D 8.C 9.C 10.A 11.C 12.B 13.D 14.B 15.∠BAC =105°或∠BAC =15° 16.提示:连结OC 17.(1)连接OD ,∠ODC =90° (2)BC =OC -OB =22-18.(1)34(2)222+九年级《圆》2 与圆有关的位置关系(3)1.2或7 2.11cm 或25cm 3.2<x <12 4.内含;相交 5.2、4、6、86.2 7.6<d <24 8.5或1 9.B 10.B 11.D 12.d =1时,两圆内切,d =7时,两圆外切 13.cm 55414.种植方法 (1)比种植方法 (2)能更充分地利用土地 九年级《圆》3 正多边形与圆1.4,324 2.2 3.1 4.2∶3 5.8π 6.60° 7.有,不是同心圆 8.图略 9.a 2 10.约为20.8mm 11.提示:先画圆的三等分点,再利用对称 12.A九年级《圆》4 有关圆的计算1.90 2.π3103.R =4r 4.ab -πr 2 5.一个直角三角形,扇形 6.52πcm 2 7.90° 8.412 9.B 10.D 11.A 12.D 13.D 14.D 15.A 16.34米和64米 12.43 18.提示:连结OD ,OD =OA =2,S阴影=S矩形ACDF =(OA -OC )CD =(OD -OC )CD =12-19.(1)20πcm 2 (2)3220240(+π)cm 2 20.提示:作BD ⊥AC 于D ,2πcm 28=表S 21.232π-复 习1.C 2.B 3.C 4.D 5.A 6.D 7.B 8.C9.A 10.A 11.B 12.A 13.D 14.B 15.5cm 16.2,3417.45°,60°,75° 18.60π 19.200° 20.π 21.O 1,O 3,如图①(答案不惟一,过O 1O 3与O 2O 4交点O 的任意直线都能将四个圆分成面积相等的两部分);O 5,O ,如图②(答案不惟一,如AO 4,DO 3,EO 2,CO 1等均可).图① 图②22.当AC 、AB 位于OA 同侧时,∠BAC =15°;当AC 、AB 位于OA 两侧时,∠BAC =75° 23.7<R <25 24.(1,3)25.连AB .证∠EAB =∠EBA ,∠EAF =∠EF A。

《圆》知识点及练习题

《圆》知识点及练习题

《圆》知识点及练习题一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;A四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

2021-2022学年基础强化北师大版九年级数学下册第三章 圆课时练习试题(含答案及详细解析)

2021-2022学年基础强化北师大版九年级数学下册第三章 圆课时练习试题(含答案及详细解析)

北师大版九年级数学下册第三章圆课时练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,BD是⊙O的切线,∠BCE=30°,则∠D=()A.40°B.50°C.60°D.30°2、在半径为6cm的圆中,120︒的圆心角所对弧的弧长是()A.12πcm B.3πcm C.4πcm D.6πcm3、下列说法正确的是()A.弧长相等的弧是等弧B.直径是最长的弦C.三点确定一个圆D.相等的圆心角所对的弦相等4、如图,正ABC的边长为3cm,边长为1cm的正RPQ的顶点R与点A重合,点P,Q分别在AC,AB 上,将RPQ 沿着边AB ,BC ,CA 连续翻转(如图所示),直至点P 第一次回到原来的位置,则点P 运动路径的长为( )A .cm πB .2cm πC .3cm πD .6cm π5、如图,△ABC 内接于圆,弦BD 交AC 于点P ,连接AD .下列角中,AB 所对圆周角的是( )A .∠APB B .∠ABDC .∠ACBD .∠BAC6、如图,两个等圆⊙O 1和⊙O 2相交于A 、B 两点,且⊙O 1经过⊙O 2的圆心,则∠O 1AB 的度数为( )A .45°B .30°C .20°D .15°7、如图,正方形ABCD 内接于⊙O ,点P 在AB 上,则下列角中可确定大小的是( )A.∠PCB B.∠PBC C.∠BPC D.∠PBA8、如图,点A,B,C都在⊙O上,连接CA,CB,OA,OB.若∠AOB=140°,则∠ACB为()A.40°B.50°C.70°D.80°9、如图,点A、B、C在⊙O上,∠BAC=56°,则∠BOC的度数为()A.28°B.102°C.112°D.128°10、如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分图形的周长为()A.2πB.4πC.2π+12D.4π+12第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)π,则此扇形的圆心角等于______.1、若一个扇形的半径是18cm,且它的弧长是6cm2、若扇形的圆心角为60°,半径为2,则该扇形的弧长是_____(结果保留π)3、圆形角是270°的扇形的半径为4cm,则这个扇形的面积是______2cm.4、如图,AB是O的直径,AC是O的切线,切点为A,BC交O于点D,点E是AC的中AC=,则阴影部分的面积为________.点.若O的半径为2,50∠=, 4.8B5、如图,点D是⊙O上一点,C是弧AB的中点,若∠ACB=116°,则∠BDC的度数是_____°.三、解答题(5小题,每小题10分,共计50分)1、如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连接AD.已知CAD B∠=∠.(1)求证:AD是⊙O的切线.(2)若OB=2,∠CAD=30°,则BD的长为.∠=∠,2、如图,ABC内接于O,弦AE与弦BC交于点D,连接BO,CAE ABO(1)求证:AE BC⊥;∠的度数;(2)若ED=,求ABCAP=,求O (3)在(2)的条件下,过点O作OH BC⊥于点H,延长HO交AB于点P,若1HO=,6半径的长.3、如图,AB是⊙O的直径,弦CD⊥AB于点E,AM是△ACD的外角∠DAF的平分线.(1)求证:AM 是⊙O 的切线;(2)连接CO 并延长交AM 于点N ,若⊙O 的半径为2,∠ANC = 30°,求CD 的长.4、已知:如图,射线AM .求作:ABC ,使得点B 在射线AM 上,90C ∠=︒,60A ∠=︒.作法:①在射线AM 上任取一点O ;②以点O 为圆心,OA 的长为半径画圆,交射线AM 于另一点B ;③以点A 为圆心,AO 的长为半径画弧,在射线AM 上方交O 于点C ;④连接AC 、BC .(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:AB 为O 的直径,点C 在O 上,90ACB ∴∠=︒(___________________________)(填推理依据).连接OC .OA OC AC ==,AOC ∴为等边三角形(___________________________)(填推理依据).所以ABC 为所求作的三角形.5、在平面直角坐标系xOy 中,点A (0,-1),以O 为圆心,OA 长为半径画圆,P 为平面上一点,若存在⊙O 上一点B ,使得点P 关于直线AB 的对称点在⊙O 上,则称点P 是⊙O 的以A 为中心的“关联点”.(1)如图,点1(1,0)-P ,211,2()2P ,36(0,)5P 中,⊙O 的以点A 为中心的“关联点”是________; (2)已知点P (m ,0)为x 轴上一点,若点P 是⊙O 的以A 为中心的“关联点”,直接写出m 的取值范围;(3)C 为坐标轴上一点,以OC 为一边作等边△OCD ,若CD 边上至少有一个点是⊙O 的以点A 为中心的“关联点”,求CD 长的最大值.-参考答案-一、单选题1、D【分析】连接OB ,根据同弧所对的圆周角相等,等角对等边,三角形的外角性质可得60BOD ∠=︒,根据切线的性质可得90OBD ∠=︒,根据直角三角形的两个锐角互余即可求得D ∠.【详解】=BE BE∴∠=∠=︒30BAE BCE=OB OA30∴∠=∠=︒OBA OAB∴∠=∠+∠=︒60BOD OBA OABBD是⊙O的切线90∴∠=︒OBD∴∠=︒30D故选D【点睛】本题考查了切线的性质,等弧所对的圆周角相等,直角三角形的两锐角互余,掌握切线的性质是解题的关键.2、C【分析】直接根据题意及弧长公式可直接进行求解.【详解】解:由题意得:120︒的圆心角所对弧的弧长是12064180180n r πππ⨯==; 故选C .【点睛】 本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键.3、B【分析】利用圆的有关性质、等弧的定义、确定圆的条件及圆心角定理分别判断后即可确定正确的选项.【详解】解:A 、能够完全重合的弧是等弧,故错误,是假命题,不符合题意;B 、直径是圆中最长的弦,正确,是真命题,符合题意;C 、不在同一直线上的三点确定一个圆,故错误,是假命题,不符合题意;D 、同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等,故原命题错误,是假命题,不符合题意;故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是了解圆的有关性质、等弧的定义、确定圆的条件及圆心角定理,难度不大.4、B【分析】从图中可以看出在AB 边,翻转的第一次是一个120度的圆心角,半径是1,第二次是以点P 为圆心,所以没有路程,同理在AC 和BC 上也是相同的情况,由此求解即可.【详解】解:从图中可以看出在AB 边,翻转的第一次是一个120度的圆心角,半径是1,所以弧长=1201180⨯π,第二次是以点P 为圆心,所以没有路程,在BC 边上,第一次1201180⨯π,第二次同样没有路程,AC 边上也是如此,点P 运动路径的长为1201180⨯π×3=2π. 故选:B .【点睛】 本题主要考查了等边三角形的性质,求弧长,解题的关键在于能够根据题意得到P 点的运动轨迹.5、C【分析】根据题意可直接进行求解.【详解】解:由图可知:AB 所对圆周角的是∠ACB 或∠ADB ,故选C .【点睛】本题主要考查圆周角的定义,熟练掌握圆周角是解题的关键.6、B【分析】连接O 1O 2,AO 2,O 1B ,可得△AO 2O 1是等边三角形,再根据圆周角定理即可解答.【详解】解:连接O 1O 2,AO 2,O 1B ,∵O 1B = O 1A ∴112112O AB O BA AO O ∠=∠=∠∵⊙O 1和⊙O 2是等圆,∴AO 1=O 1O 2=AO 2,∴△AO 2O 1是等边三角形,∴∠AO 2O 1=60°,∴∠O 1AB =12∠AO 2O 11602=⨯︒ =30°. 故选:B .【点睛】此题主要考查了相交两圆的性质以及等边三角形的判定与性质,得出△AO 2O 1是等边三角形是解题关键.7、C【分析】由题意根据正方形的性质得到BC 弧所对的圆心角为90°,则∠BOC =90°,然后根据圆周角定理进行分析求解.【详解】解:连接OB 、OC ,如图,∵正方形ABCD 内接于⊙O ,∴BC 所对的圆心角为90°,∴∠BOC=90°,∴∠BPC=1∠BOC=45°.2故选:C.【点睛】本题考查圆周角定理和正方形的性质,确定BC弧所对的圆心角为90°是解题的关键.8、C【分析】根据圆周角的性质求解即可.【详解】解:∵∠AOB=140°,根据同弧所对的圆周角是圆心角的一半,可得,∠ACB=70°,故选:C.【点睛】本题考查了圆周角定理,解题关键是明确同弧所对的圆周角是圆心角的一半.9、C【分析】直接由圆周角定理求解即可.【详解】解:∵∠A=56°,∠A与∠BOC所对的弧相同,∴∠BOC=2∠A=112°,故选:C.【点睛】此题考查了圆周角定理,熟练掌握圆周角定理是解答本题的关键,同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.10、D【分析】根据正多边形的外角求得内角FAB ∠的度数,进而根据弧长公式求得FB l ,即可求得阴影部分的周长.【详解】 解:正六边形ABCDEF 的边长为6,1180360120,66FAB AF AB ∴∠=︒-⨯︒=︒== ∴FB l 12064180ππ⨯== ∴阴影部分图形的周长为412FB AF AB l π++=+故选D【点睛】本题考查了求弧长公式,求正多边形的内角,牢记弧长公式和正多边形的外角与内角的关系是解题的关键.二、填空题1、60°度【分析】 根据=180n r l π变形为n =180l rπ计算即可. 【详解】∵扇形的半径是18cm ,且它的弧长是6cm π,且=180n r l π ∴n =180l r π=180618ππ⨯⨯=60°,故答案为:60°.【点睛】本题考查了弧长公式,灵活进行弧长公式的变形计算是解题的关键.2、23π 【分析】已知扇形的圆心角为60︒,半径为2,代入弧长公式计算.【详解】解:依题意,n =60︒,r =2,∴扇形的弧长=6022==1801803n r πππ⨯︒︒. 故答案为:23π. 【点睛】本题考查了弧长公式的运用.关键是熟悉公式:扇形的弧长=180n r π. 3、12π【分析】根据扇形的面积公式计算即可.【详解】 ∵222704=360360n r S ππ⨯⨯=扇形 =12π,故答案为:12π.【点睛】本题考查了扇形的面积,熟记扇形面积公式是解题的关键.4、241059π- 【分析】根据题意先得出△AOE ≌△DOE ,进而计算出∠AOD =2∠B =100°,利用四边形ODEA 的面积减去扇形的面积计算图中阴影部分的面积.【详解】解:连接EO 、DO ,∵点E 是AC 的中点,O 点为AB 的中点,∴OE ∥BC ,∴∠AOE =∠B ,∠EOD =∠BDO ,∵OB =OD ,∴∠B =∠BDO ,∴∠AOE =∠EOD ,在△AOE 和△DOE 中OA OD AOE DOE OE OE =⎧⎪∠=∠⎨⎪=⎩, ∴△AOE ≌△DOE ,∵点E 是AC 的中点,∴AE =12AC =2.4,∵∠AOD =2∠B =2×50°=100°, ∴图中阴影部分的面积=2•12×2×2.4-21002360π⋅⋅=241059π-. 故答案为:241059π-.【点睛】本题考查切线的性质以及圆周角定理和扇形的面积公式和全等三角形判定性质,注意掌握圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.5、32【分析】根据圆内接四边形的性质得出∠ADB+∠ACB=180°,求出∠ADB=64°,根据C是弧AB的中点求出AC BC=,根据圆周角定理得出∠BDC=∠ADC=12ADB,再求出答案即可.【详解】解:∵A、C、B、D四点共圆,∴∠ADB+∠ACB=180°,∵∠ACB=116°,∴∠ADB=180°﹣116°=64°,∵C是弧AB的中点,∴AC BC=,∴∠BDC=∠ADC=12ADB=32°,故答案为:32.【点睛】本题考查四点共圆性质,圆周角与弧的关系,掌握四点共圆性质,圆周角与弧的关系是解题关键.三、解答题1、(1)见解析;(2)43π.【分析】(1)连接OD ,由OD =OB ,利用等边对等角得到3B ∠=∠,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;(2)首先根据题意得到3130B ∠=∠=∠=︒,进而求出DOB ∠的度数,然后利用扇形的弧长公式求解即可.【详解】(1)证明:连接OD ,OB OD =,3B ∴∠=∠,1B ∠=∠,13∠∠∴=,在Rt ACD ∆中,1290∠+∠=︒,()41802390∴∠=︒-∠+∠=︒,OD AD ∴⊥,则AD 为圆O 的切线;(2)∵∠CAD =30°,∴由(1)可得,3130B ∠=∠=∠=︒,∴1803120DOB B ∠=︒-∠-∠=︒,∵OB =2,∴120241803BD l ππ︒⨯⨯=︒. 【点睛】此题考查了切线的判定与性质,扇形的弧长公式,熟练掌握切线的判定与性质以及扇形的弧长公式是解本题的关键.2、(1)见解析;(2)30°;(3)【分析】(1)如图所示,连接OA ,则1=2ACB AOB ∠∠,由OA =OB ,得到∠OAB =∠OBA ,即可推出1=902OBA AOB +︒∠∠,即∠OBA +∠ACB =90°,再由∠OBA =∠CAE ,则∠ACB +∠CAE =90°,由此即可证明;(2)如图所示,连接CE ,则∠ABC =∠AEC ,由tan =CD AEC DE =∠,可得∠AEC =30°,则∠ABC =30°;(3)如图所示,过点O 作OF ⊥AB 于F ,则BF =AF ,设FP =x ,可得BP =BF +PF =6+2x ,OP =2FP =2x ,推出PH =OP +OH =1+2x ,则BP =2+4x ,从而得到2+4x =6+2x ,由此求解即可.【详解】解:(1)如图所示,连接OA ,∴1=2ACB AOB ∠∠, ∵OA =OB ,∴∠OAB =∠OBA ,∵∠OAB +∠OBA +∠AOB =180°,∴1=902OBA AOB +︒∠∠,即∠OBA +∠ACB =90°, 又∵∠OBA =∠CAE ,∴∠ACB +∠CAE =90°,∴∠ADC =90°,∴AE ⊥BC ;(2)如图所示,连接CE ,∴∠ABC =∠AEC ,∵ED =,AE ⊥BC ,∴tan =CD AEC DE =∠, ∴∠AEC =30°,∴∠ABC =30°;(3)如图所示,过点O 作OF ⊥AB 于F ,∴BF =AF ,设FP =x ,∴BF =AF =AP +PF =6+x ,∴BP =BF +PF =6+2x∵∠ABC=30°,PH⊥BC,∴∠BPH=60°,BP=2PH,又∵OF⊥AB,∴∠OFP=90°,∴∠POF=30°,∴OP=2FP=2x,∴PH=OP+OH=1+2x,∴BP=2+4x,∴2+4x=6+2x,解得x=2,∴PF=2,BF=8,PO=4,∴OF=∴OB=,∴圆O的半径长为【点睛】本题主要考查了圆周角定理,含30度角的直角三角形的性质,等腰三角形的性质,特殊角三角形函数值求度数,勾股定理,垂径定理等等,解题的关键在于能够正确作出辅助线求解.3、(1)见解析(2)CD=【分析】∠DAF,则有∠CAB=∠DAB,进而可得∠BAM=90°,然后问题可求(1)由题意易得BC=BD,∠DAM=12证;(2)由题意易得CD//AM,∠ANC=∠OCE=30°,然后可得OE=1,(1)证明:∵AB是⊙O的直径,弦CD⊥AB于点E∴BC=BD∴∠CAB=∠DAB∵AM是∠DAF的平分线∠DAF∴∠DAM=12∵∠CAD+∠DAF=180°∴∠DAB+∠DAM=90°即∠BAM=90°,AB⊥AM∴AM是⊙O的切线(2)解:∵AB⊥CD,AB⊥AM∴CD//AM∴∠ANC=∠OCE=30°在R t△OCE中,OC=2∴OE=1,∵AB是⊙O的直径,弦CD⊥AB于点E∴CD=2CE=【点睛】本题主要考查切线的判定定理、垂径定理及含30度直角三角形的性质,熟练掌握切线的判定定理、垂径定理及含30度直角三角形的性质是解题的关键.4、(1)图形见解析(2)直径所对的圆周角是直角;三边相等的三角形是等边三角形.【分析】(1)根据要求作出图形即可;(2)根据圆周角定理等边三角形的判定和性质解决问题即可.(1)如图,△ABC即为所求作.(2)∵AB为⊙O的直径,点C在⊙O上,∴∠ACB=90°(直径所对的圆周角是直角),连接OC.∵OA=OC=AC,∴△AOC为等边三角形(三边相等的三角形是等边三角形),∴∠A=60°.故答案为:直径所对的圆周角是直角,三边相等的三角形是等边三角形.【点睛】本题考查作图-复杂作图,等边三角形的判定和性质,圆周角定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.CD.5、(1)P1,P2;(2)m≤(3)1【分析】(1)根据题意,点P的对称点的轨迹是以A为圆心2为半径的圆,则平面上满足条件的点P在以A 为圆心2为半径的圆上或圆内,据此即可判断;(2)根据(1)的结论求得A与x轴的交点即可求解;(3)根据题意可知,平面上满足条件的点P在以A为圆心2为半径的圆上或圆内,根据题意求CD的最大值,即求得OC的最大值,故当C点位于y轴负半轴时,画出满足条件的等边三角形△OCD,进而根据切线的性质以及解直角三角形求解即可【详解】(1)根据题意,点P的对称点的轨迹是以A为圆心2为半径的圆,则平面上满足条件的点P在以A 为圆心2为半径的圆上或圆内,,P P符合条件,由图可知12故答案为:P1,P2;M N,(2)如图,设A与坐标轴交于点,AM AQ AO===,AO MN2,1⊥∴=MO则OM NO==∴m≤(3)如图,由题意可知,平面上满足条件的点P 在以A 为圆心2为半径的圆上或圆内 因此满足条件的等边三角形△OCD 如图所示放置时,CD 长度最大,设切点为G ,连接AG∵∠AGC =90°,∠OCD =60°,AG =2∴sin 60AG AC ==︒∴1CD OC ==【点睛】本题考查了轴对称的性质,解直角三角形,切线的性质,等边三角形的性质,从题意分析得出“点P 的对称点的轨迹是以A 为圆心2为半径的圆”是解题的关键.。

九年级数学练习题(圆的基本性质)5

九年级数学练习题(圆的基本性质)5

九年级数学下练习题(圆的基本性质)一、 填空题:(21分)1、如图,在⊙O 中,弦AB ∥OC ,115AOC ∠=︒,则BOC ∠=_________2、如图,在⊙O 中,AB 是直径,15C ∠=︒,则BAD ∠=__________3、如图,点O 是ABC ∆的外心,已知40OAB ∠=︒,则ACB ∠=___________(((44、如图,AB 是⊙O 的直径,弧BC=弧BD ,25A ∠=︒,则BOD ∠= . 5、如图,⊙O 的直径为8,弦CD 垂直平分半径OA ,则弦CD = .6、已知⊙O 的半径为2cm ,弦AB =2cm ,P 点为弦AB 上一动点,则线段OP 的范围是 .7、如图,在⊙O 中,∠B=50º,∠C=20º,则∠BOC 的=____________(5题图) (6题图) (7题图) (二、解答题1题) 二、解答题(70分)1、如上图4,AB 是⊙O 的直径. (1)若OD ∥AC ,与 的大小有什么关系?为什么? (2)把(1)中的条件和结论交换一下,还能成立吗?说明理由.2、已知:如图,在⊙O 中,弦AB=CD.求证:⑴弧AC=弧BD ; ⑵∠AOC=∠BOD3、如图,已知:⊙O 中,AB 、CB 为弦,OC 交AB 于D ,求证:(1)∠ODB>∠OBD ,BBBDCA(2)∠ODB =∠OBC ;4、已知如图,AB 为⊙O 的弦,半径OE 、OF 分别交AB 于点C 、D ,且AC=BD 。

求证:CE=DF5、已知如图,,AB 、AC 为弦,OM ⊥AB 于M ,ON ⊥AC 于N ,MN 是△ABC 的中位线吗?6、已知⊙O 中,M 、N 分别是不平行的两条弦AB 和CD 的中点,且AB = CD , 求证:∠AMN=∠CNM7、已知如图,AB 、CD 是⊙O 的直径,DF 、BE 是弦,且DF=BE ,CDC求证:∠D=∠B8、已知如图,AB 是⊙O 的直径,C 是⊙O 上的一点,CD ⊥AB 于D ,CE 平分∠DCO ,交⊙O 于E , 求证:弧AE=弧EB9、已知如图,以等腰△ABC 的一腰AB 为直径的⊙O 交另一腰于F ,交底边BC 于D ,则BC 与DF 的关系,证明你的观点。

九年级圆大题练习

九年级圆大题练习

九年级圆的大题练习一.解答题(共8小题)1.如图,在△ABC中,AB=AC,以AB为直径作⊙O,分别交AC、BC于点D、E,点F在AC的延长线上,且∠A=2∠CBF.(1)求证:BF与⊙O相切.(2)若BC=CF=4,求BF的长度.2.如图,以△ABC的边AB为直径的⊙O交AC的中点D,DE与⊙O相切,且交BC于E.若⊙O的直径为5,AC=8.求DE的长.3.如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO 于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.4.如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC分别交AC、AB的延长线于点E、F.(1)求证:EF是⊙O的切线;(2)若AC=4,CE=2,求的长度.(结果保留π)5.如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD的延长线上有一点F,使DF=DA,AE∥BC交CF于E.(1)求证:EA是⊙O的切线;(2)求证:BD=CF.6.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)求证:直线DE是⊙O的切线;(2)若AB=5,BC=4,OA=1,求线段DE的长.7.如图,∠BAC的平分线交△ABC的外接圆于点D,交BC于点F,∠ABC的平分线交AD于点E.(1)求证:DE=DB:(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径;(3)若BD=6,DF=4,求AD的长8.如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA 的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若=,求证;A为EH的中点.(3)若EA=EF=1,求圆O的半径.圆的大题练习一.解答题(共8小题)1.如图,在△ABC中,AB=AC,以AB 为直径作⊙O,分别交AC、BC于点D、E,点F在AC的延长线上,且∠A=2∠CBF.(1)求证:BF与⊙O相切.(2)若BC=CF=4,求BF的长度.(1)证明:连接AE,如图,∵AB为直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE,AE平分∠BAC,∴∠1=∠2,∵∠BAC=2∠4,∴∠1=∠4,∵∠1+∠3=90°,∴∠3+∠4=90°,∴AB⊥BF,∴BF与⊙O相切;(2)解:∵BC=CF=4,∴∠F =∠4,而∠BAC=2∠4,∴∠BAC=2∠F,∴∠F=30°,∠BAC=60°,∴△ABC 为等边三角形,∴AB=AC=4,∴BF===4.2.如图,以△ABC的边AB为直径的⊙O交AC的中点D,DE与⊙O相切,且交BC于E.若⊙O的直径为5,AC=8.求DE的长.解:∵AB为直径,∴∠ADB=90°,∴BD⊥AC,∵D点为AC的中点,∴BA=BC,AD=CD=AC=4,∴∠A=∠C,∵OA=OD,∴∠A=∠ADO,∴∠ADO=∠C,∴OD∥BC,∵DE与⊙O相切,∴OD⊥DE,∴BC ⊥DE,在Rt△ABD中,BD==3,∵∠A=∠C,∠ADB=∠DEC=90°,∴△ABD∽△CDE,∴=,即=,∴DE=.3.如图,在⊙O中,AB 为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.解:(1)CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90°,∵AB为直径,∴∠ACB=90°,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线;(2)∵∠1+∠3+∠4=90°,∠5+∠3+∠4=90°,∴∠1=∠5,而∠1=∠G,∠5=∠A,∴∠G=∠A,∵∠4=2∠A,∴∠4=2∠G,而∠EMC=∠G+∠1=2∠G,∴∠EMC=∠4,而∠FEC=∠CEM,∴△EFC∽△ECM,∴==,即==,∴CE=4,EF=,∴MF=ME﹣EF=6﹣=.4.如图,⊙O是△ABC的外接圆,AB 为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC分别交AC、AB的延长线于点E、F.(1)求证:EF是⊙O的切线;(2)若AC=4,CE=2,求的长度.(结果保留π)解:(1)如图,连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠EAF,∴∠DAE=∠DAO,∴∠DAE=∠ADO,∴OD ∥AE,∵AE⊥EF,∴OD⊥EF,∴EF是⊙O的切线;(2)如图,作OG⊥AE于点G,连接BD,则AG=CG=AC=2,∠OGE=∠E=∠ODE=90°,∴四边形ODEG是矩形,∴OA=OB=OD=CG+CE=2+2=4,∠DOG=90°,∵∠DAE=∠BAD,∠AED =∠ADB=90°,∴△ADE∽△ABD,∴=,即=,∴AD2=48,在Rt △ABD中,BD==4,在Rt△ABD中,∵AB=2BD,∴∠BAD=30°,∴∠BOD=60°,则的长度为=.5.如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD的延长线上有一点F,使DF=DA,AE∥BC交CF于E.(1)求证:EA是⊙O的切线;(2)求证:BD=CF.证明:(1)连接OA,∵⊙O是等边三角形ABC 的外接圆,∴∠OAC=30°,∠BCA=60°,∵AE∥BC,∴∠EAC=∠BCA=60°,∴∠OAE=∠OAC+∠EAC=30°+60°=90°,∴AE是⊙O的切线;(2)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,∵A、B、C、D四点共圆,∴∠ADF =∠ABC=60°,∵AD=DF,∴△ADF是等边三角形,∴AD=AF,∠DAF=60°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAD=∠CAF,在△BAD和△CAF中,∵,∴△BAD≌△CAF,∴BD=CF.6.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)求证:直线DE是⊙O 的切线;(2)若AB=5,BC=4,OA=1,求线段DE的长.(1)证明:连接OD,如图,∵EF垂直平分BD,∴ED=EB,∴∠EDB=∠B,∵OA=OD,∴∠A=∠ODA,∵∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=90°,∴OD⊥DE,∴直线DE是⊙O的切线;(2)解:作OH⊥AD于H,如图,则AH=DH,在Rt△OAB中,sin A==,在Rt △OAH中,sin A==,∴OH=,∴AH==,∴AD=2AH=,∴BD=5﹣=,∴BF=BD=,在Rt△ABC中,cos B=,在Rt△BEF中,cos B==,∴BE=×=,∴线段DE的长为.7.如图,∠BAC的平分线交△ABC的外接圆于点D,交BC于点F,∠ABC的平分线交AD于点E.(1)求证:DE=DB:(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径;(3)若BD=6,DF=4,求AD的长(1)证明:∵AD平分∠BAC,BE平分∠ABD,∴∠1=∠2,∠3=∠4,∴∠BED=∠1+∠3=∠2+∠4=∠5+∠4=∠DBE,∴DB=DE;(2)解:连接CD,如图,∵∠BAC=90°,∴BC为直径,∴∠BDC=90°,∵∠1=∠2,∴DB=BC,∴△DBC为等腰直角三角形,∴BC=BD=4,∴△ABC 外接圆的半径为2;(3)解:∵∠5=∠2=∠1,∠FDB=∠BDA,∴△DBF∽△ADB,∴=,即=,∴AD=9.8.如图,在△ABC 中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若=,求证;A为EH的中点.(3)若EA=EF=1,求圆O的半径.证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)如图1,在⊙O中,∵∠E=∠B,∴由(1)可知:∠E=∠B=∠C,∴△EDC是等腰三角形,∵=,∵AE∥OD,∴△AEF∽△ODF,∴==,设OD=3x,AE=2x,∵AO=BO,OD∥AC,∴BD=CD,∴AC=2OD=6x,∴EC=AE+AC=2x+6x=8x,∵ED=DC,DH⊥EC,∴EH=CH=4x,∴AH=EH﹣AE=4x﹣2x=2x,∴AE=AH,∴A是EH的中点;(3)如图1,设⊙O的半径为r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,则∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF =r+1,∴BD=CD=DE=r+1,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF是等腰三角形,∴BF=BD=r+1,∴AF=AB ﹣BF=2OB﹣BF=2r﹣(1+r)=r﹣1,∵∠BFD=∠EFA,∠B=∠E,∴△BFD∽△EFA,∴,∴,解得:r1=,r2=(舍),综上所述,⊙O的半径为.。

部编数学九年级上册第24章圆(基础卷)(解析版)含答案

部编数学九年级上册第24章圆(基础卷)(解析版)含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!第24章圆(基础卷)一.选择题(每小题3分,共24分)1.已知AB=12 cm,过A,B两点画半径为8 cm的圆,则能画的圆的个数为( )A.0个B.1个C.2个D.无数个【答案】C【解析】分别以A、B为圆心,以8cm为半径画弧,两弧交于C、D,如下图,得以C为圆心,以8cm为半径的圆经过点A和点B,以D为圆心,以8cm为半径的圆经过点A和点B,即能画的圆的个数是2个.故选:C.2.如图,AB是⊙O的直径,弦CD⊥AB于点E,若BE=5,AE=1,则弦CD的长是()A.5B C.D.6【答案】C【解析】解:连接OC,∵AB是⊙O的直径,弦CD⊥AB,BE=5,AE=1,∴CD=2CE,∠OEC=90°,AB=AE+BE=6,∴OC=OA=3,∴OE=OA-AE=3-1=2,在Rt△COE中,由勾股定理得:CE===∴CD=2CE=3.下列语句不正确的有( )个.①直径是弦;②优弧一定大于劣弧;③长度相等的弧是等弧;④半圆是弧.A .1B .2C .3D .4【答案】B【解析】解:①直径是弦,①正确;②在同圆或等圆中,优弧大于劣弧,②错误;③在同圆或等圆中,长度相等的弧是等弧,③错误;④半圆是弧,④正确;故不正确的有2个.故选:B .4.如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA =8,则△PCD 的周长为( )A .8B .12C .16D .20【答案】C 【解析】解:∵PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,∴PA =PB =6,AC =EC ,BD =ED ,∴PC +CD +PD =PC +CE +DE +PD =PA +AC +PD +BD =PA +PB =8+8=16,即△PCD 的周长为16.故选:C .5.如图,边长为2的菱形ABCD 绕点A 旋转,当B 、C 两点恰好落在扇形AEF 的EF 上时,弧BC 的长度等于( )A .6pB .23pC .3pD .4p【解析】解:连接AC ,∵菱形ABCD 中,AB =BC ,又AC =AB ,∴AB =BC =AC ,即△ABC 是等边三角形.∴∠BAC =60°,又∵AB =2,∴»60221803BC l p p ´==故选B .6.如图,AB 是⊙O 的直径,PA 与⊙O 相切于点A ,∠ABC =25°,OC 的延长线交PA 于点P ,则∠P 的度数是( )A .25°B .35°C .40°D .50°【答案】C 【解析】»»AC AC =Q ,∠ABC =25°,250AOC ABC \Ð=Ð=°,Q AB 是⊙O 的直径,\90PAO Ð=°,9040P AOC \Ð=°-Ð=°.故选C .7.如图,AB 是O e 的直径,将弦AC 绕点A 顺时针旋转30°得到AD ,此时点C 的对应点D 落在AB 上,延长CD ,交O e 于点E ,若4CE =,则图中阴影部分的面积为( )A .2pB .C .24p -D .2p -【答案】C 【解析】解:如图,连接OE ,OC ,过点O 作OF ⊥CE 于点F ,则114222EF CE ==´=,由旋转得,,AC AD =∴∠ADC ACD =Ð,∵∠30,A °=∴∠1(18030)752ADC ACD °°°=Ð=´-=,∴∠2150AOE ACD °=Ð=,∴∠30,EOD °=又∠75,OED EOD ODC °+Ð=Ð=∴∠75753045,OED EOD °°°°=-Ð=-=∴∠45,EOF OEF °=Ð=∴2OF EF ==∴OE ===∵OE OC =∴∠OEC °=Ð90°=∴42=EOFEOF S S S D -´阴影扇形2 4.p =-故选:C .8.如图,矩形ABCD 是由边长为1的五个小正方形拼成,O 是第2个小正方形的中心,将矩形ABCD 绕O 点逆时针旋转90°得矩形A B C D ¢¢¢¢,现用一个最小的圆覆盖这个图形,则这个圆的半径是( )A B C D 【答案】C 【解析】作线段BC 、A D ¢¢的垂直平分线MH 、NH ,两线的交点为H 点,连接BH ,如图,∵MH 、NH 为线段BC 、A D ¢¢的垂直平分线,∴BM =12BC =52,A N ¢=12A D ¢¢=52,∴HM =A N ¢-1=53122-=,∴BH ==故选:C .二.填空题(每小题2分,共16分)9.如图所示,O 为△ABC 的外心,若∠BAC =70°,则∠OBC =____.【答案】20°【解析】连接OC∵∠BAC =70°,∴∠BOC =140°∵OB=OC ,∴∠OBC =(180°-∠BOC )÷2,∴∠OBC =20°10.如图,从一个腰长为60cm ,顶角为120°的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,则此扇形的弧长为______cm.【答案】20p【解析】解:过O 作OE ⊥AB 于E ,∵OA =OB =60cm ,∠AOB =120°,∴∠A =∠B =30°,∴OE =12OA =30cm ,∴弧CD 的长=1203020180p p ´=(cm),故答案为:20p .11.如图,AB 是⊙O 的直径,CD 为⊙O 的弦,CD ⊥AB 于点E ,已知AB =10,CD =8,则OE =______.【答案】3【解析】解:连接OC ,如图所示:∴152OC AB ==,∵CD ⊥AB ,∴142CE DE CD ===,在Rt △OCE 中,∠CEO =90°,OC =5,CE =4,∴OE ,故答案为:3.12.如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,∠ADC =130°,连接AC ,则∠BAC 的度数为___________.【答案】40°【解析】解:∵四边形ABCD 内接与⊙O ,∠ADC =130°,∴∠B =180°-∠ADC =180°-130°=50°,∵AB 为直径,∴∠ACB =90°,∴∠CAB =90°-∠B =90°-50°=40°,故答案为:40°.13.如图,AC 、AD 为正六边形ABCDEF 的两条对角线,若该正六边形的边长为2,则△ACD 的周长为 _____.【答案】6【解析】解:∵正六边形ABCDEF,∴∠B=∠BCD(62)1806°-´==120°,AB=BC,∴∠ACB=∠BCA=30°,∴∠ACD=120°﹣30°=90°,由对称性可得,AD是正六边形的对称轴,∴∠ADC=∠ADE12=∠CDE=60°,在Rt△ACD中,CD=2,∠ADC=60°,∴AD=2CD=4,AC==∴△ACD的周长为AC+CD+AD=2+4=6,故答案为:+6.14.如图所示,O为△ABC的外心,若∠BAC=70°,则∠OBC=____.【答案】20°【解析】连接OC∵∠BAC=70°,∴∠BOC=140°∵OB=OC,∴∠OBC=(180°-∠BOC)÷2,∴∠OBC=20°15.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,⊙O为Rt△ABC的内切圆,则图中阴影部分的面积为(结果保留π)________.【答案】112-34p 【解析】解:设切点分别为D 、E 、F ,连接OD 、OE 、OF ,∵⊙O 为Rt △ABC 的内切圆,∴AE =AF 、BD =BF 、CD =CE ,OD ⊥BC ,OE ⊥AC ,∵∠C =90°,∴四边形CDOE 为正方形,∴∠EOF+∠FOD =360°-90°=270°,设⊙O 的半径为x ,则CD =CE =x ,AE =AF =4-x ,BD =BF =3-x ,∴4-x +3-x =5,解得x =1,∴S 阴影=S △ABC -( S 扇形EOF + S 扇形DOF )- S 正方形CDOE =12×3×4-2270113602p ´-×1×1=112-34p .故答案为:112-34p .16.如图,在四边形ABCD 中,,,AD BC AB BC O ^P e 是四边形ABCD 的内切圆,,CD BC 分别切O e 于F ,E 两点,若3,6AD BC ==,则EF 的长是【解析】连接OC ,与EF 相交于点M ,作DG ⊥BC 于点G ,连接OE ,设AD 与圆的切点为H ,如图,∵,,AD BC AB BC DG BC ^^∥, ∴四边形ABGD 是矩形,∴BG =AD =3,CG =BC -BG =6-3=3,∵点E 、F 、H 是切点,∴DF =DH ,CF =CE ,OC 平分∠ECF ,∴△ECF 是等腰三角形,OC 是EF 的垂直平分线,∴EM =FM ,设圆O 半径为R ,则BE =R ,DG =2R ,∴CE =CF =6-R ,DF =DH =3-R ,∵222DG CG CD +=,∴()()()22223[36]R R R +=-+-解得:R =2,∴CE =6-2=4,∴OC ==∵1122OEC S OE CE OC EM =×=×V ,∴OE CE EM OC ×==∴22EF EM ==三.解答题(共60分)17.(6分)如图,在⊙O 中,D ,E 分别为半径OA ,OB 上的点,且AD =BE .点C 为»AB 上一点,连接CD ,CE ,CO ,∠AOC =∠BOC ,求证:CD =CE .【答案】见解析【解析】证明:∵,OA OB AD BE ==,∴OA AD OB BE -=-,即OD OE =,在ODC △和OEC △中,OD OE DOC EOC OC OC =ìïÐ=Ðíï=î,∴()SAS ODC OEC @V V ,∴CD CE =.18.(8分)已知:如图,AB 为O e 的直径,AB AC =,O e 交BC 于D ,DE AC ^于E .(1)请判断DE 与O e 的位置关系,并证明.(2)连接AD ,若O e 的半径为2.5,3AD =,求DE 的长.e相切,【解析】(1)DE与O19.(8分)如图,AB为⊙O的直径,点C是AB右侧半圆上的一个动点,点D是AB左侧半圆的中点,DE 是⊙O的切线,切点为D,连接CD交AB于点P,点Q为射线DE上一动点,连接AD,AC,BQ,PQ.(1)当PQ∥AD时,求证:△DPQ≌△PDA.(2)若⊙O的半径为2,请填空:①当四边形BPDQ为正方形时,DQ=;②当∠BAC=时,四边形ADQP为菱形.【答案】(1)见解析;(2)①2;②22.5°【解析】(1)证明:连接OD,∵点D 为的中点,∵DE 是⊙O 的切线,又∵PQ ∥AD ,∴∵四边形BPDQ 是正方形,∵DE 是⊙O 的切线,20.(8分)如图,ABC V 中,40BAC Ð=°,AB AC =,过点A ,C ,B 的弧的半径为6,点P 在»AC 上.PC AB ∥,切线PD 交OC 的延长线于点D .(1)求»BC的长;(2)求D Ð的度数.B 为6,∴6OB =,∴»BC 的长为80681803p p ×´=,∴»BC 的长为83p .(2)如图,连接OP 80BOC Ð=°,∴OCB ÐPC AB ∥,∴PCA Ð=21.(10分)如图,在△ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,过点D 作AD 的垂线交AB 于点E .(1)请画出△ADE 的外接圆⊙O (尺规作图,不写作法,保留作图痕迹);(2)求证:BC 是⊙O 的切线;(3)过点D作DF⊥AE于点F,延长DF交⊙O于点G,若DG=8,EF=2.求⊙O的半径.【答案】(1)见解析;(2)见解析;(3)5【解析】(1)解:如图1所示,⊙O即为所求;(3)证明:如图2,连接OD,∵AD平分∠CAB,∴∠CAD=∠OAD,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AC,∵∠C=90°,∴OD⊥BC,∵OD为⊙O的半径,∴BC是⊙O的切线;22.(10分)如图,C是圆O被直径AB分成的半圆上一点,过点C的圆O的切线交AB的延长线于点P,连接CA,CO,CB.(1)求证:∠ACO=∠BCP;(2)若∠ABC=2∠BCP,求∠P的度数;(3)在(2)的条件下,若AB=4,求图中阴影部分的面积(结果保留π和根号).∠OCP ,∴∠ACO =∠BCP ;23.(10分)如图,AB 为⊙O 的直径,C 为圆上的一点,D 为劣弧»BC的中点,过点D 作⊙O 的切线与AC 的延长线交于点P ,与AB 的延长线交于点F ,AD 与BC 交于点E .(1)求证:BC PF ∥;(2)若⊙O DE =1,求AE 的长度;(3)在(2)的条件下,求DCP V 的面积.【解析】(1)解:证明:如图,连接,为劣弧BC的中点,CD BD \=,,又Q PF 为⊙O 的切线,OD PF \⊥,//BC PF \;(2)解:如图,连接OD CD BD DCE \=Ð=Ð,21(CD DE AD x \=×=´+(3)解:如图,设OD 与中,4cos 25AD DAB AB Ð===OA OD =Q ,EDH DAB \Ð=Ð,cos cos EDH DAB \Ð=Ð=,又1DE =Q ,252555DH DE \=´=,OH OD DH \=-=OH BC ^Q ,CH BH \=AB Q 为⊙O 的直径,90ACB \Ð=°,由(1)可知OD PD ^,OH BC ^,\四边形HDPC 为矩形,CP DH \==DP CH =114225DCP HDPC S S \===V 矩形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

i n
b e
i n g
o o
B .3
C .4
J24-1-1 图J24-1-2 图J24-1-3
.如图J24-1-2,在半径为的⊙O 内有长为的弦AB ,则∠60° B .90° 150°二、填空题(每小题.过圆内的一点(非圆心________条弦,有条直径..如图J24-1-3,OE 图J24-1-4
a
n d
A
l l t h i n
g s
i n
t h
e i r
b e
i n g
a r
e 时间:10分钟 满分:25分
一、选择题(每小题3分,共6分)
1.如图J24-1-5,AB 是⊙O 的直径,=,∠BOD =60°,则∠AOC =( )A BD
A CD A .30°
B .45°
C .60°
D .以上都不正确
2.如图J24-1-6,AB ,CD 是⊙O 的直径,=,若∠AOE =32°,则A
AE A BD ∠COE 的度数是( )
A .32°
B .60°
C .68°
D .64°
图J24-1-5 图J24-1-6 图J24-1-7 图J24-1-8二、填空题(每小题4分,共8分)
3.如图J24-1-7,CD ⊥AB 于点E ,若∠B =60°,则∠A =________.4.如图J24-1-8,D ,E 分别是⊙O 的半径OA ,OB 上的点,
CD ⊥OA ,CE ⊥OB ,CD =CE ,则与的弧长的大小关系是A
AC A CB ______________.
三、解答题(共11分)
5.如图J24-1-9,已知AB =AC ,∠APC =60°.(1)求证:△ABC 是等边三角形;(2)求∠APB 的度数.
图J24-1-9
时间:10分钟 满分:25分
一、选择题(每小题3分,共9分)
1.已知圆的半径为3,一点到圆心的距离是5,则这点在( )A .圆内 B .圆上
C .圆外
D .都有可能答案
2.在△ABC 中,∠C =90°,AC =BC =4 cm ,点D 是AB 边的中点,以点C 为圆心,4 cm 长为半径作圆,则点A ,B ,C ,D 四点中在圆内的有( )
A .1个
B .2个
C .3个
D .4个
3.⊙O 的半径r =5 cm ,圆心到直线l 的距离OM =4 cm ,在直线l 上有一点P ,且PM =3 cm ,则点P ( )
A .在⊙O 内
B .在⊙O 上
C .在⊙O 外
D .可能在⊙O 上或在⊙O 内二、填空题(每小题4分,共8分)
4.锐角三角形的外心在________;直角三角形的外心在________;钝角三角形的外心在________.
5.在Rt △ABC 中,∠C =90°,AC =5 cm ,BC =12 cm ,则Rt △ABC 其外接圆半径为________cm.
三、解答题(共8分)
6.通过文明城市的评选,人们增强了卫生意识,大街随地乱扔生活垃圾的人少了,人们自觉地将生活垃圾倒入垃圾桶中,如图J24-2-1所示,A ,B ,C 为市内的三个住宅小区,环保公司要建一垃圾回收站,为方便起见, 要使得回收站建在三个小区都相等的某处,请问如果你是工程师,你将如何选址.
图J24-2-1
h
e i r
b e
i n g
a r
e g
时间:10分钟 满分:25分
图J24-2-2 图J24-2-3 图J24-2-4 J24-2-5
二、填空题(每小题4分,共12分3.已知⊙O 的直径为10 cm ,圆心到直线l 的距离分别是:①3 cm ;③7 cm.那么直线和⊙O 的位置关系是:________;②________;③________.
的延长线上,过点D 作⊙DCF =32°,求∠A 的度数.
图J24-2-6
i n
e
i 时间:10分钟 满分:25分
ABCDEF 内接于⊙图J24-3-1
D .22.5°分)
________.
,它的边心距等于的圆形纸片上裁出一个最大的正方形,则此正方形的图J24-3-2
g s
i n
b e
i n 时间:10分钟 满分:25分
图J24-4-1图J24-4-2
,在两个同心圆中,两圆半径分别为2,1,∠____________.
分)
,在正方形ABCD 边的长为1,点为半径作圆,分别交M ,N 两点,与图J24-4-3
i r
b e
i n g
a 时间:10分钟 满分:25分
B .180°
C .
图J24-4-4图J24-4-5 图二、填空题(每小题4分,共J24-4-5,小刚制作了一个高12 cm ,底面直径为10 cm 的圆锥,这个圆锥的侧面积是________cm J24-4-6,Rt △ABC 分别绕直角边AB ,BC 旋转一周,旋转后得到的两个圆锥的母线长分别为____________。

相关文档
最新文档