完整word高一数学解三角形综合练习题.docx
高一数学解三角形试题

高一数学解三角形试题1.△ABC中,a、b、c成等差数列,∠B=30°,=,那么b =【答案】【解析】由已知得,【考点】等差数列性质,余弦定理2.为绘制海底地貌图,测量海底两点,间的距离,海底探测仪沿水平方向在,两点进行测量,,,,在同一个铅垂平面内. 海底探测仪测得,两点的距离为海里.(1)求的面积;(2)求,之间的距离.【答案】(1)平方海里;(2)海里【解析】(1)在△ABD中,由题可知∠BAD=,∠ADB=,利用正弦定理,即可求得AD,代入三角形面积公式即可求得三角形ABD的面积;(2)由题可知∠ABC=,又知所以∠BCA=,所以AB=AC=,在△DBC中,利用余弦定理即可求出CD.试题解析:(1)如图所示,在中由正弦定理可得,, 4分则的面积(平方海里) 8分(2),12分在中,由余弦定理得,即(海里)答:的面积为平方海里,,间的距离为海里. 16分考点:正弦定理;余弦定理;三角形面积公式;运算求解能力3.在中,内角所对的边分别为,给出下列结论:①若,则;②若,则为等边三角形;③必存在,使成立;④若,则必有两解.其中,结论正确的编号为(写出所有正确结论的编号).【答案】①④【解析】对于①,在中,当时,有,又由正弦定理,则,,,由有>>,所以有成立,故①正确;对于②,由正弦定理,且因为,所以且,则,且角B,C为锐角,所以,故②不正确;对于③,=,故③不正确;对于④,如图:因为,且,所以必有两解,故④正确.【考点】正弦定理,三角形边角关系,化归与转化的数学思想.4.已知是的三条边的长,对任意实数,有()A.B.C.D.【答案】B【解析】因为为的三边长,判别式,又三角形中两边之和大于第三边,,又,关于x的方程与x轴没有交点,二次项系数,故恒成立【考点】根的判别式,三角形三边的关系5.在分别是角A、B、C的对边,,且.(1).求角B的大小;(2).求sin A+sin C的取值范围.【答案】(1)B=;(2).【解析】(1)由,可得,等式中边角混在了一起,需要进行边角的统一,根据正弦定理可得,进一步变形化简可得,∴B;(2)由(1)可得,即,因此可以将sinA+sinC进行三角恒等变形转化为关于A的函数,即,从而可以得到sinA+sinC取值范围是.(1)由,得由正弦定理得:,又又又;∵,∴,∴,∵,∴,∴,∴.故sin A+sin C的取值范围是.【考点】1、平面向量垂直的坐标表示;2、三角恒等变形.6.在钝角三角形ABC中,若,,则边长的取值范围是( )A.B.C.D.【答案】D【解析】因为,所以,且中必有一角为钝角,由正弦定理得,代入得,化简得,当时,,所以,当时,,所以,综合选D.【考点】解三角形与不等式的综合运用.7.已知点A(1,3), B(3,1 ), C(-1,0),则的面积为()A.5B.6C.7D.8【答案】A【解析】根据题意,由于A(1,3),B(3,1 ),C(-1,0)那么可知该三角形的AB=,AC=,BC=结合三边的长度可知,该三角形的一个角A, ,结合正弦面积公式可知得到,的面积为5,故答案为A.【考点】三角形的面积点评:主要是考查了解三角形的面积公式的运用,属于基础题。
高一数学暑假作业:必修五第一部分解三角形 解三角形(1) Word版含答案

必修五第一部分解三角形解三角形(1)一、知识点1、正弦定理及其变形2(sin sin sin a b cR R A B C===为三角形外接圆半径)12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式)2sin ,sin ,sin 222a b cA B C R R R===()(角化边公式) 3::sin :sin :sin a b c A B C =()sin sin sin (4),,sin sin sin a A a A b Bb Bc C c C===2、余弦定理及其推论2222222222cos 2cos 2cos a b c bc Ab ac ac B c a b ab C=+-=+-=+-222222222cos 2cos 2cos 2b c a A bc a c b B aca b c C ab+-=+-=+-=二、练习1.在△ABC 中,下列关系式中一定成立的是( )A .a >sin b A B. a =sin b A C. a <sin b A D. a ≥sin b A2.△ABC 中,角A ,B ,C 的对边分别为a,b,c ,,13A a b π===,则c 等于( )13.在△ABC 中,15,10,60a b A ===︒,则sin B 等于( )A . B.± C. D.4.在△ABC 中,若cos cos cos a b cA B C ==,则△ABC 是( )A .直角三角形 B.等边直角三角形 C .钝角三角形 D.等腰直角三角形5.在锐角△ABC 中,若C=2B ,则cb 的范围是( )A .()0,2B.)2C.D.(6.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若1,2,a b A C B ==+=则sin _______C =7在△ABC 中,15,10,60,a b A ===︒则cos B 等于( ).3A -.3B.C -D 8.在△ABC 中,cos .cos AC B AB C =(1)求证 B C =;(2)若1cos 3A =-,求sin 43B π⎛⎫+ ⎪⎝⎭的值。
高一数学解三角形试题

高一数学解三角形试题1.△ABC的内角、、的所对的边、、成等比数列,且公比为,则的取值范围为()A.B.C.D.【答案】B.【解析】∵,,成等比数列,∴,,再由正弦定理可得,又∵,根据二次函数的相关知识,可知的取值范围是.【考点】三角形与二次函数一元二次不等式综合.2.在中,角所对的边分别为,若,且,则下列关系一定不成立的是()A.B.C.D.【答案】B【解析】将代入可得,所以或,当时有有.【考点】解三角形.3.如图,要测出山上石油钻井的井架的高,从山脚测得m,塔顶的仰角,塔底的仰角,则井架的高为()A.m B.m C.m D.m【答案】B【解析】依题意,在三角形ABC中,,角B=45°,角BAC=45°-15°=30°,所以由正弦定理得,,故选B。
【考点】正弦定理的应用点评:简单题,利用三角形内角关系,确定角创造了应用正弦定理的条件。
4.有一道解三角形的题,因为纸张破损,在划横线地方有一个已知条件看不清.具体如下:在中角所对的边长分别为,已知角,,,求角.若已知正确答案为,且必须使用所有已知条件才能解得,请你选出一个符合要求的已知条件.()A.B.C.D.【答案】D【解析】根据题意,由于在中角所对的边长分别为,已知角,,,那么根据正弦定理可知,,由于b<a,则可知角A有两个解,舍去,对于A中,同理可知不成立,对于C,可知A=B,不成立,故选D.【考点】解三角形点评:主要是考查了正弦定理以及余弦定理的运用,属于基础题5.如图,在中,,,(1)求;(2)记BC的中点为D,求中线AD的长.【答案】(1)(2)AD【解析】解:(1)由,C是三解形内角,得2分4分---5分(2)在中,由正弦定理 -7分,又在中,,由余弦定理得, 910分本题也可利用向量法。
注意。
【考点】解三角形点评:主要是考查了三角函数的恒等变换以及解三角形的运用属于基础题。
6.在中,.(1)求边长的值;(2)求的面积.【答案】(1);(2).【解析】(1)由正弦定理得……5分(2)由余弦定理 7分8分所以 10分【考点】正弦定理、余弦定理的应用,三角形的面积。
(完整word版)高一下学期解三角形数列综合测试题.docx

一、选择题1.在ABC中,已知 a 6,b 4, C120 ,则 c的值为A.76B. 76C.28 D . 282.观察数列 1,1,2,3,5,8,x,21,34,55的规律, x应等于A.11B.12C.13D.143.在 ABC 中,已知 a6, C60 , c 3,则 A的值为A.45B.135C.45 或135D.60 或1204..已知等差数列{ a n }中, a5a11 16, a41,则 a12的值为A.15B.30C.31D.645.某船开始看见灯塔在南偏东 30 方向,后来船沿南偏东 60 的方向航行 90海里后,看见灯塔在正西方向,这时船与灯塔的距离为A.302海里B.30 3海里C.453海里D.452海里已知等差数列{ a n }中,a1a3,a8,则的值为6.. 4 a420a15A.26B.30C.28D.367..已知 { a n } 为等差数列, S n是其前 n项和 , 且S1122,则 tan a6的值为3A. 3B.3 C .3 D .33在 ABC中,已知 a, B2,当 ABC的面积等于 23时,sin C等于8.43A.7B.14C.14 D .2114147149.在ABC 中,若a7, b3, c8, 则面积为()A 12B 21 C.28 D .6 32等差数列 an }的前n项和为 S ,若 a5,a a14,则使S 取最小值的 n为10..{n1410nA.3B.4C.5D.6在ABC中,已知a,,13,则最大角正弦值等于11.7 b8 cosC14A.3B. 2 3C .3 3D .4 37777112.等比数列{ a n}前n项乘积记为M n,若M1020, M 2010,则 M 30()A. 1000B. 40251 C.D.4813.某人朝正方向走x km 后,向右 150°,然后朝新方向走3km ,果他离出点恰好 3 km,那么x的()A .3B . 2 3 C. 2 3或3 D. 314.在等差数列{ a n}中,前 n 和 S n,若 S16— S5 =165,a8a9 a16的是()A.90B.90C. 45D.4515.数列{ a n}的前 n 和S n,令T n S1S2 L S n,称 T n数列 a1, a2,⋯⋯,na n的“理想数” ,已知数列 a1, a2,⋯⋯, a500的“理想数” 2004 ,那么数列2,a1, a2,⋯⋯, a500的“理想数” ()A. 2002B.2004C. 2006D. 2008二、填空设为等差数列a n 的前n项和若S33, S624,则S916. S n.在等比数列中,是方程2的两个根,则17.a n a5 , a97 x18x7 0a7 ___在ABC 中,B60,=,ABC外接圆半径R73 ,则18.S ABC1033ABC 的周长为19 已知ABC 的三边分别为 a, b, c; 且 3a 23b 2 - 3c22ab0,则 sin C20.已知△ ABC的三分是a, b, c ,且面 S =a2b2 c 2,角 C =_____4a c21.若 a、 b、 c 成等比数列, a、x、 b 成等差数列, b、y、c 成等差数列,x y 三. 解答在ABC 中,若sin22B sin2,b2, c求及a.22. A sin C sinBsinC 4. A23.在 ABC 中,若tan A2c b ,求A的值. tan B b224.( 12 分)有四个数:前三个成等差数列,后三个成等比数列。
高一数学解三角形试题

高一数学解三角形试题1.如图,半圆O的直径为2,A为直径延长线上的一点,OA=2,B为半圆上任意一点,以AB 为一边作等边三角形ABC.问:点B在什么位置时,四边形OACB面积最大?【答案】点B在使∠AOB=的位置时,四边形OACB面积最大【解析】在中,由已知OA=2,OB=1,设∠AOB=,则可应用余弦定理将AB的长用的三角函数表示出来,进而四边形OACB面积S=S△AOB +S△AB表示成为的三角函数,再注意将三角函数化简成为的形式,就可求得使四边形OACB面积最大的角的值,从而就可确定点B的位置.试题解析:设∠AOB=α, .1分在△AOB中,由余弦定理得AB2=OA2+OB2-2×OA×OBcos∠AOB=12+22-2×1×2×cosα=5-4cosα, .4分于是,四边形OACB的面积为S=S△AOB +S△ABC=OA·OBsinα+AB2 6分=×2×1×sinα+(5-4cosα)=sinα-cosα+=2sin+. .10分因为0<α<π,所以当α-=,α=,即∠AOB=时,四边形OACB面积最大12分 12分【考点】1.解三角形;2.三角函数的性质.2.△ABC中,若sinA<cosB,则△ABC为A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【答案】C【解析】,,,是钝角三角形.【考点】三角形的形状判断.3.如图,公园有一块边长为2的等边△ABC的边角地,现修成草坪,图中DE把草坪分成面积相等的两部分,D在AB上,E在AC上.(1).设AD=x(x≥0),DE=y,求用x表示y的函数关系式,并求函数的定义域;(2).如果DE是灌溉水管,为节约成本,希望它最短,DE的位置应在哪里?如果DE是参观线路,则希望它最长,DE的位置又应在哪里?请予证明.【答案】(1);(2)如果DE是水管,DE的位置在AD=AE=处,如果DE是参观路线,则DE为AB中线或AC中线时,DE最长,证明过程详见解析.【解析】(1)在△ADE中,利用余弦定理可得,又根据面积公式可得,消去AE后即可得到y与x的函数关系式,又根据可以得到x的取值范围;(2)如果DE是水管,则问题等价于当时,求的最小值,利用基本不等式即可求得当时,y有最小值为,如果DE是参观路线,则问题等价于问题等价于当时,求的最小值,根据函数在[1,2]上的单调性,可得当x=1或2时,y有最小值.(1)在△ADE中,由余弦定理:①又∵②②代入①得(y>0), ∴,由题意可知,所以函数的定义域是,;(2)如果DE是水管,当且仅当,即x=时“=”成立,故DE∥BC,且DE=.如果DE是参观线路,记,可知函数在[1,]上递减,在[,2]上递增,故∴y=.即DE为AB中线或AC中线时,DE最长.max【考点】1、平面向量的数量积;2、三角形面积计算.4.为测量一座塔的高度,在一座与塔相距20米的楼的楼顶处测得塔顶的仰角为,测得塔基的俯角为,那么塔的高度是()米.A.B.C.D.【答案】A【解析】如图,=,故选A.【考点】解斜三角形的实际应用.5.给出下列四个命题,其中错误的命题是()①若,则是等边三角形②若,则是直角三角形;③若,则是钝角三角形;④若,则是等腰三角形;A.①②B.③④C.①③D.②④【答案】D【解析】①中三者乘积为1,则其中一个应当大于1,另外两个乘积小于1,显然后者可以成立,但是前者不成立,故前者只能取到1,所以剩余两个乘积为1,同理只能都为1,因为,所以,正确;②当时, ,三角形是等边三角形,错误;③三角形中,当内角是钝角时,余弦值为负数,所以三个内角中必有一个是钝角,两个是锐角,三角形必然是钝角三角形,正确;④当时,有所以,三角形为等腰三角形或是直角三角形,错误.【考点】利用角判断三角形的形状.6.在△ABC中,,,,则△ABC的面积为 .【答案】【解析】根据三角形面积公式.【考点】三角形面积.7.如图,在△中,已知,D是BC边上一点,AD=10,AC=14,DC=6,求AB的长.【答案】【解析】解:在△中,∵AD=10,AC=14,DC=6∴, 5分∴, ∴ 7分∴在△中,∵,∴, 11分∴ 15分【考点】解三角形点评:主要是考查了正弦定理的运用,属于基础题。
2022届高三数学(理)一轮总复习练习-第三章 三角函数、解三角形 3-6 Word版含答案

课时规范训练[A级基础演练]1.在锐角△ABC中,角A,B所对的边长分别为a,b,若2a sin B=3b,则角A等于()A.π12 B.π6C.π4D.π3解析:选D.在△ABC中,利用正弦定理得2sin A sin B =3sin B,∴sin A=3 2.又A为锐角,∴A=π3.2.(2022·高考天津卷)在△ABC中,若AB=13,BC=3,∠C=120°,则AC=() A.1 B.2C.3 D.4解析:选A.在△ABC中,角A,B,C的对边分别为a,b,c,则a=3,c=13,∠C=120°,由余弦定理得13=9+b2+3b,解得b=1,即AC=1.3.在△ABC,已知∠A=45°,AB=2,BC=2,则∠C等于()A.30°B.60°C.120°D.30°或150°解析:选A.在△ABC中,ABsin C=BCsin A,∴2sin C=2sin 45°,∴sin C=12,又AB<BC,∴∠C<∠A,故∠C=30°.4.一艘海轮从A处动身,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观看灯塔,其方向是南偏东70°,在B处观看灯塔,其方向是北偏东65°,那么B,C两点间的距离是()A.102海里B.103海里C.203海里D.202海里解析:选A.如图所示,易知,在△ABC中,AB=20海里,∠CAB=30°,∠ACB=45°,依据正弦定理得BCsin 30°=ABsin 45°,解得BC=102(海里).5.(2022·高考山东卷)△ABC中,角A,B,C的对边分别是a,b,c.已知b=c,a2=2b2(1-sin A),则A=()A.3π4B.π3C.π4D.π6解析:选C.由余弦定理得a2=b2+c2-2bc cos A=2b2-2b2cos A,所以2b2(1-sin A)=2b2(1-cos A),所以sin A=cos A,即tan A=1,又0<A<π,所以A=π4.6.(2022·高考北京卷)在△ABC中,∠A=2π3,a=3c,则bc=.解析:∵a=3c,∴sin A=3sin C,∵∠A=2π3,∴sin A=32,∴sin C=12,又∠C必为锐角,∴∠C=π6,∵∠A+∠B+∠C=π,∴∠B=π6,∴∠B=∠C,∴b=c,∴bc=1.答案:17.在△ABC中,已知AB=3,A=120°,且△ABC的面积为1534,则BC边的长为.解析:由S△ABC=1534得12×3×AC sin 120°=1534,所以AC=5,因此BC2=AB2+AC2-2AB·AC·cos 120°=9+25+2×3×5×12=49,解得BC=7.答案:78.已知△ABC的内角A,B,C的对边分别为a,b,c,且c-bc-a=sin Asin C+sin B,则B=() A.π6B.π4C.π3 D .3π4解析:选C.依据正弦定理:a sin A =b sin B =csin C =2R ,得c -b c -a=sin Asin C +sin B =a c +b,即a 2+c 2-b 2=ac ,得cos B =a 2+c 2-b 22ac =12,故B =π3,故选C.9.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .(1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C ); (2)若a ,b ,c 成等比数列,且c =2a ,求cos B 的值. 解:(1)证明:∵三角形的三边a ,b ,c 成等差数列, ∴a +c =2b .由正弦定理得sin A +sin C =2sin B . ∵sin B =sin [π-(A +C )]=sin(A +C ), ∴sin A +sin C =2sin(A +C ).(2)由题设有b 2=ac ,c =2a ,∴b =2a ,由余弦定理得cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 24a 2=34.10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知4sin 2A -B2+4sin A sin B =22.(1)求角C 的大小;(2)已知b =4,△ABC 的面积为6,求边长c 的值.解:(1)由已知得2[1-cos(A -B )]+4sin A sin B =2+2,化简得-2cos A cos B +2sin A sin B 2,故cos(A +B )=-22,所以A +B =3π4,从而C =π4. (2)由于S △ABC =12ab sin C ,由S △ABC =6,b =4,C =π4,得a =3 2.由余弦定理c 2=a 2+b 2-2ab cos C ,得c =10. [B 级 力量突破]1.(2021·辽宁五校联考)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,若b +c =2a ,3sin A =5sin B ,则角C =( )A.2π3 B .π3 C.3π4D .5π6解析:选A.由3sin A =5sin B ,得3a =5b . 又由于b +c =2a , 所以a =53b ,c =73b ,所以cos C =a 2+b 2-c 22ab =⎝ ⎛⎭⎪⎫53b 2+b 2-⎝ ⎛⎭⎪⎫73b 22×53b ×b=-12.由于C ∈(0,π),所以C =2π3.2.(2021·北京东城一模)在锐角△ABC 中,AB =3,AC =4,S △ABC =33,则BC =( ) A .5 B .13或37 C.37D .13解析:选D.由S △ABC =12AB ·AC ·sin ∠BAC =12×3×4×sin ∠BAC =33,得sin ∠BAC =32,由于△ABC 为锐角三角形,所以∠BAC ∈⎝ ⎛⎭⎪⎫0,π2,故∠BAC =π3,在△ABC 中,由余弦定理得,BC 2=AC 2+AB 2-2AC ·AB ·cos ∠BAC =42+32-2×4×3×cos π3=13.所以BC =13,故选D.3.(2021·厦门模拟)在不等边三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中a 为最大边,假如sin 2(B +C )<sin 2B +sin 2C ,则角A 的取值范围为( )A.⎝ ⎛⎭⎪⎫0,π2 B .⎝ ⎛⎭⎪⎫π4,π2C.⎝ ⎛⎭⎪⎫π6,π3 D .⎝ ⎛⎭⎪⎫π3,π2解析:选D.由题意得sin 2A <sin 2B +sin 2C , 再由正弦定理得a 2<b 2+c 2, 即b 2+c 2-a 2>0. 则cos A =b 2+c 2-a 22bc >0, ∵0<A <π,∴0<A <π2.又a 为最大边,∴A =A ,A >B ,A >C , 即3A >A +B +C =π,∴A >π3. 因此得角A 的取值范围是⎝ ⎛⎭⎪⎫π3,π2.4.(2021·云南第一次检测)已知a 、b 、c 分别为△ABC 三个内角A ,B ,C 的对边,若cos B =45,a =10,△ABC 的面积为42,则b +asin A的值等于 . 解析:依题意可得sin B =35,又S △ABC =12ac sin B =42,则c =14.故b =a 2+c 2-2ac cos B =62,所以b +a sin A =b +bsin B =16 2.答案:16 25.海上一观测站测得方位角240°的方向上有一艘停止待修的商船,在商船的正东方有一艘海盗船正向它靠近,速度为每小时90海里.此时海盗船距观测站107海里,20分钟后测得海盗船距观测站20海里,再过 分钟,海盗船即可到达商船.解析:如图,设开头时观测站、商船、海盗船分别位于A 、B 、C 处,20分钟后,海盗船到达D 处,在△ADC 中,AC =107,AD =20,CD =30,由余弦定理得cos ∠ADC =AD 2+CD 2-AC 22AD ·CD=400+900-7002×20×30=12.∴∠ADC =60°,在△ABD 中由已知得∠ABD =30°. ∠BAD =60°-30°=30°,∴BD =AD =20,2090×60=403(分钟). 答案:4036.(2021·成都外国语学校模拟)已知函数f (x )=23sin 2⎝ ⎛⎭⎪⎫π4+x +2sin ⎝ ⎛⎭⎪⎫π4+x ·cos ⎝ ⎛⎭⎪⎫π4+x . (1)求函数f (x )的单调递增区间;(2)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c 且角A 满足f (A )=3+1.若a =3,BC 边上的中线长为3,求△ABC 的面积S .解:(1)由题意知,f (x )=3⎣⎢⎡⎦⎥⎤1-cos ⎝ ⎛⎭⎪⎫π2+2x +sin ⎝ ⎛⎭⎪⎫π2+2x=3()1+sin 2x +cos 2x =3+3sin 2x +cos 2x =3+2sin ⎝ ⎛⎭⎪⎫2x +π6,由2k π-π2≤2x +π6≤2k π+π2,k ∈Z ,解得 k π-π3≤x ≤k π+π6,k ∈Z ,∴函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6,k ∈Z .(2)由f (A )=3+1,得sin ⎝ ⎛⎭⎪⎫2A +π6=12,∴2A +π6=π6或5π6,即A =0或π3. 又A 为△ABC 的内角,∴A =π3. 由A =π3,a =3.得|BC→|=|AC →-AB →|=a =3,① 又BC 边上的中线长为3,知|AB →+AC →|=6.②联立①②,解得AB →·AC→=274,即|AB →|·|AC →|·cos π3=274, ∴|AB →|·|AC →|=272. ∴△ABC 的面积为S =12|AB →|·|AC →|·sin π3=2738.。
(完整word版)三角形、平行四边形、梯形的面积综合练习题

梯形的面积练习题:一、求下面梯形的面积:上底2米下底3米高5米上底4分米下底5分米高2分米上底48米,下底56米,高35米. 上底124米,下底76米,高82米。
上底80米,下底50米,高60米. 上底15分米,下底9分米,高比下底长1分米.下底24厘米,上底是下底的一半,高1分米。
上底5厘米,下底8厘米,高6厘米上底2。
4分米,下底7.6分米,高8分米二、填空:1、两个完全一样的梯形可以拼成一个( )形,这个拼成的图形的底等于梯形的( )与()的和,高等于梯形的(),每个梯形的面积等于拼成的平行四边形面积的( ).2、梯形的上底是a,下底是b,高是c,则它的面积=()3、一个梯形上底与下底的和是15米,高是4米,面积是()平方米。
4、一个梯形的面积是8平方厘米,如果它的上底、下底和高各扩大2倍,它的面积是()平方厘米。
5、用两个完全一样的梯形拼成一个平行四边形,已知每个梯形的面积是24平方分米,拼成的平行四边形的面积是多少平方分米?三、判断:1、梯形的面积等于平行四边形的面积的一半。
()2、两个完全相同的直角梯形,可以拼成一个长方形. ( )3、一个上底是5厘米,下底是8厘米,高是3厘米的梯形,它的面积是12平方厘米。
()4、一个梯形的上底是3分米,下底是5分米,高是4分米,面积就是32平方分米.()四、应用题1、一座小型拦河坝,横截面的上底5米,下底131米,高21米。
这座拦河坝的横截面积是多少?2、一块梯形稻田,上底长8米,下底比上底长1。
2米,高是上底的2倍。
这块稻田的面积是多少平方米?3、一块梯形草坪的面积是90平方米,上底是6米,下底是12米,高是多少米?4、一块梯形的果园,它的上底是160米,下底是120米,高30米。
如果每棵果树占地10平方米,这个果园共有树多少棵?5、用65米长的篱笆沿墙边围一个直角梯形的鸡舍,梯形的直角边是15米,你能计算出围成的鸡舍的面积吗?6、一块三角形地,底长38米,高是27米,如果每平方米收小麦0。
(完整word)高一数学解三角形综合练习题

必修五 解三角形一、选择题1. 在ABC ∆中,若::1:2:3A B C ∠∠∠=,则::a b c 等于 ( )A.1:2:3B.3:2:1C.2D.22.在△ABC 中,222a b c bc =++ ,则A 等于 ( )A .60°B .45°C .120°D .30° 3.有一长为1公里的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要伸长A. 1公里B. sin10°公里C. cos10°公里D. cos20°公里4.等腰三角形一腰上的高是3,这条高与底边的夹角为ο60,则底边长= ( )A .2B .23C .3D .32 5.已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是 ( ) A .135<<x B .13<x <5 C .2<x <5 D .5<x <56. 在ABC ∆中,60A ∠=o,a =3b =,则ABC ∆解的情况 ( )A. 无解B. 有一解C. 有两解D. 不能确定7.在△ABC 中,若)())((c b b c a c a +=-+,则∠A= ( )A .090 B .060 C .0120 D .0150 8.在△ABC 中,A 为锐角,lg b +lg(c1)=lgsin A =-lg 2, 则△ABC 为( ) A. 等腰三角形 B. 等边三角形 C. 直角三角形 D. 等腰直角三角形 9.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,测得75BCD ︒∠=,60BDC ︒∠=,60CD =米,并在点C 测得塔顶A 的仰角为60︒,则塔高AB = ( )A .B .90米C .D .10.某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于 他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离1d 与第二辆车与第三 辆车的距离2d 之间的关系为 ( )A. 21d d >B. 21d d =C. 21d d <D. 不能确定大小二、填空题(本大题共5个小题,每小题5分,共25分)11.在ABC ∆中,三边a 、b 、c 所对的角分别为A 、B 、C ,已知23a =,2b =,ABC ∆的面积S=3,则C = ;12.在△ABC 中,已知AB =4,AC =7,BC 边的中线72AD =,那么BC = ; 13.在△ABC 中,|AB |=3,|AC |=2,AB 与AC 的夹角为60°,则|AB -AC |=____ __; 14.三角形的一边长为14,这条边所对的角为60o,另两边之比为8:5,则这个三角形的 面积为 ;15.下面是一道选择题的两种解法,两种解法看似都对,可结果并不一致,问题出在哪儿? 【题】在△ABC 中,a =x ,b =2,B =45o,若△ABC 有两解,则x 的取值范围是( ) A.()2,+∞ B.(0,2) C.()2,22 D.()2,2【解法1】△ABC 有两解,a sin B <b <a ,x sin 45o<2<x , 即222,x << 故选C.【解法2】,sin sin a b AB=sin sin 452sin .24a B x x Ab ===o△ABC 有两解,b sin A <a <b , 222,4x x ⨯<< 即0<x <2, 故选B.你认为 是正确的 (填“解法1”或“解法2”) 16.在中,若,则的形状是A.正三角形B.等腰三角形C.直角三角形D.等腰直角形三、解答题:(共 6 小题,共75分;解答应写出文字说明、证明过程或演算步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修五解三角形
一、选择题
1. 在ABC 中,若 A :B :C1: 2:3 ,则 a : b : c 等于()
A. 1: 2:3
B.3: 2:1
C. 2 : 3 :1
D.1: 3 : 2
2.在△ABC中,a2b2c2bc,则 A等于()
A. 60° B .45°C. 120 ° D .30°3.有一长为1公里的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要伸长
A. 1公里
B. sin10°公里
C. cos10 °公里
D. cos20 °公里
4.等腰三角形一腰上的高是 3 ,这条高与底边的夹角为60,则底边长 =()
A . 2
B .
3
C. 3D.2 3 2
5.已知锐角三角形的边长分别为2、 3、 x,则 x 的取值范围是()
A . 5 x13B.13< x< 5C. 2< x<5D.5< x<5
.在
ABC 中,A60o, a 6 ,
b 3
,则
ABC
解的情况()
6
A. 无解
B.有一解
C.有两解
D. 不能确定7.在△ ABC 中,若(a c)( a c)b(b c) ,则∠A=()
A.900B.600C.1200D.1500
8.在△ ABC 中, A 为锐角, lg b+lg(1
2 ,则△ABC为()
)=lgsin A=- lg
c
A.等腰三角形
B.等边三角形
C.直角三角形
D.等腰直角三角形9.如图,测量河对岸的塔高AB 时,可以选与塔底 B 在
同一水平面内的两个测点C与 D,测得BCD75 ,
BDC60 ,CD60米,并在点 C 测得塔顶 A 的
仰角为 60,则塔高 AB =()
A.45 3米B.90 米
C.902米D.452米
10.某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于
他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离d1与第二辆车与第三辆车的距离 d 2之间的关系为()
A.d1d2
B.d1 d 2
C.d1d2
D. 不能确定大小
二、填空题(本大题共 5 个小题,每小题 5 分,共 25 分)
11.在ABC b A
、
B C
,已知
a2 3 b2
,
ABC 中,三边 a 、、c 所对的角分别为、,
的面积 S=3,则C;
12.在△ ABC 中,已知 AB=4, AC=7 , BC 边的中线 AD 7
,那么 BC=;2
13.在△ ABC 中,| AB |= 3,| AC |= 2,AB与AC的夹角为60°,则 | AB -AC |=______;
14.三角形的一边长为14,这条边所对的角为60o,另两边之比为8: 5,则这个三角形的
面积为;
15.下面是一道选择题的两种解法,两种解法看似都对,可结果并不一致,问题出在哪儿?
【题】在△ ABC 中, a= x, b= 2, B=45o,若△ ABC 有两解,则 x 的取值范围是()
A.2,
B.( 0,2)
C. 2,22
D.2,2
【解法1】△ ABC 有两解, asinB<b<a, xsin 45o <2<x, 即2 x 2 2,故选 C.
【解法】a b
,sin A a sin B x sin 45o 2 x .
2
sin A sin B b24
△ ABC 有两解, bsinA<a<b, 22x
2,即 0<x<2, 故选 B. 4
x
你认为是正确的(填“解法 1”或“解法 2”)
16. 在中,若,则的形状是
A. 正三角形
B.等腰三角形
C. 直角三角形
D. 等腰直角形
三、解答题:(共 6 小题,共 75 分;解答应写出文字说明、证明过程或演算步骤。
)16.(本题 12 分) a,b,c 为△ ABC 的三边,其面积S△ABC= 12 3 ,bc=48,b-c=2,求a.
17. (本题 12 分)一缉私艇发现在北偏东 45 方向 ,距离 12 nmile 的海面上有一走私船正以
10 nmile/h 的速度沿东偏南 15 方向逃窜 .缉私艇的速度为 14 nmile/h,
北
若要在最短的时间内追上该走私船 C
东
,缉私艇
应沿北偏东 45
的方向去追 ,.求追及所需
B
的时间和
角的正弦值 .
A
18. (本题 12 分)在△ ABC 中,a, b, c 分别为内角 A, B, C 的对边, 且 2asinA=( 2b+c )sinB+
( 2c+b ) sinC
(Ⅰ)求 A 的大小; (Ⅱ)求 sin B
sin C 的最大值 .
19. (本题 12 分)在数学研究性学习活动中, 某小组要测量河对面
C 和
D 两个建筑物的距
离,作图如下,所测得的数据为
AB 50 米,
DAC 75o ,
CAB
45o ,
o
, CBD 75
o
,请你帮他们计算一下,
D
DBA 30
河对岸建筑物 C 、 D 的距离?
A B
20. (本题13 分)已知A、B、C为ABC 的三内角,且其对边分别为 a 、b、 c ,若
cosB cosC sin B sin C 1
.2
(Ⅰ)求 A ;(Ⅱ)若a 2 3, b c 4 ,求ABC的面积.。