遗传算法学习心得

合集下载

遗传算法的基本原理和对生活的启示

遗传算法的基本原理和对生活的启示

遗传算法的基本原理和对生活的启示一、遗传算法的基本原理遗传算法是一种受自然界进化机制启发的优化算法,其基本原理主要包括基因编码、初始种群的产生、适应度函数的确定、选择操作、交叉操作和变异操作等几个方面。

1.基因编码:遗传算法需要对问题进行编码,将问题的解空间映射到基因空间。

常见的编码方式有二进制编码、实数编码等。

2.初始种群的产生:通过随机方式生成一定数量的初始解,构成初始种群。

3.适应度函数的确定:根据问题的目标函数,定义适应度函数,用于评估种群中每个个体的优劣。

4.选择操作:根据适应度函数,选择适应度较高的个体进行遗传操作,生成下一代种群。

5.交叉操作:通过交叉配对和重组,生成新的个体。

6.变异操作:对个体的一定概率发生基因位的变异,增加种群的多样性。

遗传算法通过不断的迭代,不断优化种群中的个体,最终得到满足要求的最优解。

二、对生活的启示遗传算法的原理不仅在计算机科学中有着广泛的应用,而且也能给我们的生活带来很多启示。

以下是一些主要的启示:1.适应环境:在自然界中,生物通过进化适应环境。

同样,在生活中,我们也应该积极适应环境,不断学习和改进自己。

2.多样性思维:遗传算法中的变异操作增加了种群的多样性,使得算法能够更好地搜索解空间。

在解决问题时,我们也应该尝试多种方法,不要局限于一种思路。

3.持续优化:遗传算法通过不断迭代优化种群中的个体,最终得到最优解。

在生活中,我们也应该不断优化自己的行为和思维,提升自己的能力和素质。

4.合作与竞争:遗传算法中的选择和交叉操作体现了竞争和合作的机制。

在竞争中,优秀的个体得以保留;在合作中,新的个体得以产生。

这启示我们在生活中要学会竞争与合作,互相促进,共同成长。

遗传算法报告

遗传算法报告

遗传算法实验报告一、实验目的1、 掌握遗传算法原理;2、 学会编写遗传算法程序寻找函数最大值。

二、实验设备装有matlab7.0以上版本软件的PC 机一台三、实验原理传统的优化理论都是通过调整模型的参数来得到期望的结果,而遗传优化算法是根据生物界的遗传和自然选择的原理来实现的,它的学习过程是通过保持和修改群体解中的个体特性,并且保证这种修改能够使下一代的群体中的有利于与期望特性相近的个体在整个群体份额中占有的比例越来越多。

与基于代数学的优化方法一样,遗传算法是通过连续不断地队群体进行改进来搜索函数的最大值。

遗传算法的搜索结果会有很大的差异。

遗传学习的基本机理是使那些优于群体中其他个体的个体具有生存、繁殖以及保持更多基因给下一代的机会。

遗传算法实质上是在群体空间中寻求较优解。

四、实验步骤及内容1、实验步骤:(1)群体初始化;(2)评价群体中每一个体性能;(3)选择下一代个体;(4)执行简单的操作算子(如交叉、变异);(5)评价下一代群体的性能;(6)判断终止条件满足否?若不,则转(3)继续,若满足,则结束。

2、实验内容:寻找函数 22212121(,)100()(1)f x x x x x =-+- 的最大值及所对应的x1和x2的值。

( 2.048 2.048i x -≤≤)五、实验程序clc;clear;%**************************遗传算法*****************************num=80;A1=rand(num,10); %生成随机数A2=rand(num,10);A1=round(A1); %编码A2=round(A2);times=100;for k=1:times %遗传次数SIZE(k)=size(A1,1);for i=1:size(A1,1)B1(i)=binvec2dec(A1(i,:));%二进制转换十进制B2(i)=binvec2dec(A2(i,:));X1(i)=4.096*B1(i)/1023-2.048;%映射到实际取值范围X2(i)=4.096*B2(i)/1023-2.048;H(i)=100*(X1(i)^2-X2(i))^2+(1-X1(i))^2;%计算函数值endJ=1./H;[J1,IX]=sort(J);Hm(k)=H(IX(1)); %得本次迭代的函数最大值Xm1(k)=X1(IX(1));%得本次迭代的使函数值最大的X1值Xm2(k)=X2(IX(1));%得本次迭代的使函数值最大的X2值S=sum(H)/size(H,2); %求适应度C1=[];C2=[];for i=1:size(A1,1)%复制过程if round(H(i)/S)==0 %为0则淘汰C1=C1;C2=C2;elseif round(H(i)/S)==1 %为1保留一次C1=[C1;A1(i,:)];C2=[C2;A2(i,:)];elseif round(H(i)/S)==2 %为2保留两次C1=[C1;A1(i,:);A1(i,:)];C2=[C2;A2(i,:);A2(i,:)];elseif round(H(i)/S)==3 %为3保留三次C1=[C1;A1(i,:);A1(i,:);A1(i,:)];C2=[C2;A2(i,:);A2(i,:);A2(i,:)];elseif round(H(i)/S)==4 %为4保留四次C1=[C1;A1(i,:);A1(i,:);A1(i,:);A1(i,:)];C2=[C2;A2(i,:);A2(i,:);A2(i,:);A2(i,:)];else %其他值时保留五次C1=[C1;A1(i,:);A1(i,:);A1(i,:);A1(i,:);A1(i,:)]; C2=[C2;A2(i,:);A2(i,:);A2(i,:);A2(i,:);;A2(i,:)]; endendA1=C1;A2=C2;for i=1:size(A1,1) %交叉a=rand;%生成本次交叉概率b=round(rand*9+1);%确定交叉位置if a>=0.6c=round(rand*(size(A1,1)-1)+1);%开始交叉D=A1(i,1:b);A1(i,1:b)=A2(c,1:b);A2(c,1:b)=D;endendfor i=1:size(A1,1) %变异e=rand;%生成变异概率f=round(rand*9+1);%确定变异位置if e<=0.1A1(i,f)=~A1(i,f);%开始变异A2(i,f)=~A2(i,f);endendendHH=1./Hm;[Q,IY]=sort(HH);Hmax=Hm(IY(1)) %最优解X1you=Xm1(IY(1)) %最优解时X1值X2you=Xm2(IY(1)) %最优解时X2值t=IY(1)%寻得最优解时的迭代次数s=SIZE(t)%训得最优解时种群中个体个数%************************寻优曲线********************** count=1:times;%figure(1);subplot(2,1,1);plot(count,Hm,'r.-');grid on;title('寻优曲线');xlabel('迭代次数');ylabel('函数取值');%figure(2);subplot(2,1,2);plot(count,SIZE,'b.-');grid on;title('种群个数曲线');xlabel('迭代次数');ylabel('种群个数');六、实验结果第一次运行结果:Hmax = 3.9059e+003 ,X1you = -2.0480,X2you = -2.0480,t =26,s = 42(此结果是最优解)第二次运行结果:Hmax = 3.8855e+003,X1you =-2.0440,X2you =-2.0480,t = 27,s =44(此结果不为最优解)第三次运行结果:Hmax = 3.9059e+003,X1you = -2.0480,X2you =-2.0480,t =17,s =60(此结果是最优解)改变初始种群个体个数为30Hmax = 3.8308e+003,X1you = -2.0440,X2you =-2.0040,t = 7,s = 24 (此结果不为最优解)改变迭代次数为30Hmax =3.8805e+003,X1you = -2.0440,X2you =-2.0440,t = 28,s = 57(此次不为最优解)七、分析实验结果在初始种群为80,迭代次数为100情况下,第一次和第三次运行结果寻得了最优解,而第二次并没寻得最优解,并且第一次和第三次寻得最优解时的迭代次数t和寻得最优解时的种群中个体个数s也不一样。

人工智能导论学习体会及遗传算法应用

人工智能导论学习体会及遗传算法应用

《人工智能》课程学习体会兼论遗传算法在最优化问题的应用与发展一、《人工智能》课程学习体会1.课程学习历程这学期,在《人工智能》课程学习中,我们以中国大学MOOC网上浙江工业大学王万良教授主讲的《人工智能导论》课程为主。

课上老师给我们讲解了一些课程中的难点,课下老师发放了很多的人工智能课外阅读资料,供我们参考学习。

在学习的过程中,我们先对智能有了初步了解,之后再谈人工智能的概念。

要想实现人工智能,就需要把我们人的思维形式化,于是学习了谓词逻辑知识表示,之后是产生式,然后是概率论和数理统计的一些内容。

掌握了这些之后,我们就可以根据知识去解决问题了。

可是怎么去解决,如何去推出结果,又是一个问题,于是我们学习了一些推理方法,如模糊推理等。

按照智能的定义,那么现在已经基本实现智能了。

即实现了智能=知识+智力,虽然不是真正意义上的智能。

虽然现在可以去处理一些问题了,但是很明显的,它的效率非常的低,甚至于有些问题找到答案花费的时间特别长,是我们无法接受的。

于是我们学习了如A*算法、遗传算法、粒子群优化算法、蚁群算法等一些加快处理问题的算法。

最后,我们学习了神经网络、专家系统、机器学习和智能体系等内容。

对于这些学习的知识,基本上还处于一个了解的水平,要想实际应用还需要更深入的学习。

课下,我们也看了一些和人工智能的书籍,诸如《浪潮之巅》,向我们讲述了科技公司像IBM,微软,英特尔等公司的兴衰;《智能革命》向我们讲述了AI 与我们的生活密切相关,并且越来越离不开智能。

通过阅读这些课外读物,也使得我们对人工智能有了更深的理解与思考。

2.课程学习体会与感悟学习完主要课程之后,给我的第一感觉就是:“哎!怎么还没有学呢!课程就结束了”。

有这样的感觉主要还是受到疫情的影响,在家不能像在学校一样学的那么精细。

很多的知识几乎是走一个概念便草草离场了,同时,人工智能这门课程本身涉及的知识面也比较广,如讲到神经网络的时候提到了生物学中的神经元、突触等这些结构,想一下子掌握这些内容是不可能的。

遗传算法——耐心看完,你就掌握了遗传算法

遗传算法——耐心看完,你就掌握了遗传算法

遗传算法入门到掌握读完这个讲义,你将基本掌握遗传算法,要有耐心看完。

想了很久,应该用一个怎么样的例子带领大家走进遗传算法的神奇世界呢遗传算法的有趣应用很多,诸如寻路问题,8数码问题,囚犯困境,动作控制,找圆心问题(这是一个国外网友的建议:在一个不规则的多边形中,寻找一个包含在该多边形内的最大圆圈的圆心。

),TSP问题(在以后的章节里面将做详细介绍。

),生产调度问题,人工生命模拟等。

直到最后看到一个非常有趣的比喻,觉得由此引出的袋鼠跳问题(暂且这么叫它吧),既有趣直观又直达遗传算法的本质,确实非常适合作为初学者入门的例子。

这一章将告诉读者,我们怎么让袋鼠跳到珠穆朗玛峰上去(如果它没有过早被冻坏的话)。

问题的提出与解决方案让我们先来考虑考虑下面这个问题的解决办法。

已知一元函数:图2-1现在要求在既定的区间内找出函数的最大值。

函数图像如图2-1所示。

极大值、最大值、局部最优解、全局最优解在解决上面提出的问题之前我们有必要先澄清几个以后将常常会碰到的概念:极大值、最大值、局部最优解、全局最优解。

学过高中数学的人都知道极大值在一个小邻域里面左边的函数值递增,右边的函数值递减,在图里面的表现就是一个“山峰”。

当然,在图上有很多个“山峰”,所以这个函数有很多个极大值。

而对于一个函数来说,最大值就是在所有极大值当中,最大的那个。

所以极大值具有局部性,而最大值则具有全局性。

因为遗传算法中每一条染色体,对应着遗传算法的一个解决方案,一般我们用适应性函数(fitness function)来衡量这个解决方案的优劣。

所以从一个基因组到其解的适应度形成一个映射。

所以也可以把遗传算法的过程看作是一个在多元函数里面求最优解的过程。

在这个多维曲面里面也有数不清的“山峰”,而这些最优解所对应的就是局部最优解。

而其中也会有一个“山峰”的海拔最高的,那么这个就是全局最优解。

而遗传算法的任务就是尽量爬到最高峰,而不是陷落在一些小山峰。

遗传算法学习心得体会

遗传算法学习心得体会

遗传算法学习心得体会引言遗传算法是一种搜索算法,它模仿了生物进化的过程。

它通过模拟自然选择过程,获取最优解决方案。

遗传算法已经成为优化问题中常用的方法之一。

本文将介绍我在学习遗传算法时的心得体会。

遗传算法的基本模型遗传算法的基本模型包含4个步骤,即初始化、选择、交叉、变异。

1.初始化:随机生成一组初始解,也称为种群。

2.选择:根据适应度函数,选择一些个体作为父代。

3.交叉:将父代之间随机交换染色体的一部分,产生一个新的个体。

4.变异:对新个体的某些基因进行修改,以增加解的多样性。

以上步骤依次执行,产生新的种群。

新种群中的个体的适应度一般比前一代的要好。

遗传算法的应用遗传算法已经被广泛应用于各种问题的优化中,比如函数优化、组合优化、旅行商问题等。

在函数优化问题中,遗传算法可以帮助我们找到一个全局最优解,而不是一个局部最优解。

在组合优化问题中,遗传算法可以帮助我们找到最优的组合方案,比如电路布局问题和调度问题。

在旅行商问题中,遗传算法可以帮助我们找到最短的旅行路线。

遗传算法的优化在使用遗传算法解决问题时,我们需要进行一些优化。

第一个优化点是种群大小的选择。

如果种群太小,则可能会陷入局部最优解;如果种群太大,则可能会增加计算复杂度。

因此,我们需要选择一个适当的种群大小,以便在不牺牲算法效率的情况下,获得较好的结果。

第二个优化点是交叉概率和变异概率的选择。

交叉概率决定了父代个体交叉产生新后代的概率,变异概率决定了新后代染色体上基因变异的概率。

如果交叉概率过大,则可能会导致过早收敛;如果交叉概率过小,则可能会导致收敛速度过慢。

如果变异概率过大,则可能会导致搜索过于随意;如果变异概率过小,则可能会导致陷入局部最优解。

因此,我们需要根据问题的特点,选择一个适当的交叉概率和变异概率。

第三个优化点是适应度函数的定义方式。

适应度函数是遗传算法的核心,它反映了每个个体的生存能力。

如果适应度函数定义方式不当,则可能会导致算法收敛速度下降。

遗传算法实验报告

遗传算法实验报告

1.定义种群和个体定义种群为S , 种群数N=50, 其中x,y 是染色体中的两个基因组。

2. 算法设计(1)确定编码设计由于原函数的变量取值包含负数,不方便进行编码,所以将原函数的变量进行转换,从[-10 10]转换成[0 20],相应的,函数也要进行变换。

根据要求分辨率为0.0001,即编码范围至少为[0 200000],设编码位数为n+1,则20/(2^(n+1)-1)<=0.0001,所以求得n=18。

因此将变量域[0 20]离散化为二值域[0 2^18-1]即[0 262143],若由a, b 代表随机二值数,则x=20*a/262143, y=20*b/262143。

(2)确定目标函数和适应度函数由于所求目标函数值包含负数,若直接当做适应度函数值,负数无法被选择,会产生一定的不公平现象,故采用下界构造法,将函数值整体上移,使得被选择的机会相对公平。

而且由于变量域进行了变化,故目标函数为sin(10)sin(10)(,)*11010x y f x y x y --=+-- 而适应度函数,还要将负值转化为零(一般采用下界构造法后没有负值)。

(3)产生种群Init 函数实现种群的初始化,函数变量为种群规模N 以及染色体位数length 。

采用随机函数rand 生成随机矩阵,并使用round 函数对产生的随机数进行四舍五入,即进行二值化操作,每一行代表一个个体。

(4)选择复制选择和复制操作是可以决定哪些个体可以进入下一代。

选择的方法通常有轮盘赌选择法、锦标赛选择法、随机遍历选择法等。

由于相对来说轮盘赌选择法编程简单,故本次采用轮盘赌选择法,但是这里采用连续均匀分布的随机函数unifrnd ,可以提高公平性。

根据方程i f i i i sumf f P f ==∑ 1)计算fsum 和Pi2)产生{0,1}的随机数,求s=unifrnd(0,1,1,36)*fsum3) 求fi 和>=s 中最小的个体并选择复制。

遗传算法入门到掌握

遗传算法入门到掌握

遗传算法入门到掌握遗传算法是一种模拟自然进化过程的优化算法,常用于解决复杂的优化问题。

它模拟了自然界中的进化过程,通过不断地迭代和交叉变异来最优解。

遗传算法的基本思想是通过对种群中的个体进行选择、交叉和变异,逐步优化个体的适应度,从而找到更接近于最优解的解决方案。

下面是遗传算法的基本步骤:1.初始化种群:随机生成初始种群,种群中的每个个体都表示问题的一个可能解,可以是一个二进制串、一个实数向量等。

2.评估适应度:对于每个个体,根据问题的具体要求计算其适应度值,适应度值一般用来评估个体对问题的解决能力,值越大表示个体的解决能力越好。

3.选择操作:从当前种群中选择一部分个体作为父代,通常选择适应度较高的个体,可以使用轮盘赌选择、竞争选择等算法。

4.交叉操作:选取父代中的两个个体,通过其中一种方式将它们的基因表达进行交换,产生下一代的个体。

交叉操作可以有单点交叉、多点交叉、均匀交叉等方式。

5.变异操作:对新生成的个体进行基因的随机变异,引入新的基因信息,增加种群的多样性。

变异操作可以有位变异、插入变异、颠倒变异等方式。

6.更新种群:将新生成的个体加入到种群中,替代原来的个体,形成新一代种群。

7.终止条件检测:判断是否满足终止条件,如达到最大迭代次数或找到满意的解决方案。

8.返回结果:返回满足终止条件的最优个体作为算法的解。

通过不断的迭代和优化,遗传算法能够到较优的解决方案。

它的优点是可以解决很多实际问题,不依赖于问题的具体形式,且能够在搜素空间中快速收敛到最优解。

然而,遗传算法也有一些缺点,如易陷入局部最优解、运算速度较慢等问题。

因此,要掌握遗传算法,首先需要了解它的基本思想和步骤,理解各个步骤的作用及参数的选择。

然后需要学习遗传算法的编程实现方法,掌握如何将具体问题抽象成遗传算法的模型,如何实现适应度评估、选择、交叉、变异等操作。

此外,还需要了解一些遗传算法的变种和改进方法,如进化策略、粒子群优化等。

学习算法的心得体会

学习算法的心得体会

学习算法的心得体会篇一:计算智能学习心得体会计算智能学习心得体会本学期我们水利水电专业开了“计算智能概论”这门课,有我们学院的金菊良教授给我们授课,据说这门课相当难理解,我们课下做了充分的准备,借了计算智能和人工智能相关方面的书籍,并提前了解了一点相关知识,我感觉看着有点先进,给我们以往学的课程有很大区别,是一种全新的概念和理论,里面的遗传算法、模糊集理论、神经网络更是闻所未闻,由于课前读了一些书籍,我以为课堂上应该能容易理解一点,想不到课堂上听着还是相当玄奥,遗传算法还好一点,因为高中学过生物遗传,遗传算法还能理解一点。

像模糊集理论神经网络便不知所云了。

虽然金老师讲课生动形象,幽默风趣,而且举了好多实际的例子,但有一些理论有点偏难。

计算智能(Computational Interlligence,简称CI)并不是一个新的术语,早在1988年加拿大的一种刊物便以CI为名。

1992年,美国学者在论文《计算智能》中讨论了神经网络、模式识别与智能之间的关系,并将留能分为生物智能、人工智能和计算智能三个层次。

1993年,Bob Marks 写了一篇关于计算留能和人工留能区别的文章,并在文中给出了对CI的理解。

1994年的国际计算智能会议(WCCL)的命名就部分地源于Bob的文章,这次IEEE会议特国际神经网络学会(NNC)发起的神经网络(ICNN)、模糊系统(FuZZ)和进化计算(ICEc)三个年度性会议合为一体,并出版了名为《计算智能》的论文集。

此后,CI这个术语就开始被频繁地使用,同时也出现了许多关于CI的解释。

1992年,James C .Bezdek提出,CI是依靠生产者提供的数字、数据材料进行加工处理,而不是依赖于知识;而AIglJ必须用知识进行处理.1994年,James在F1orida,Orlando,IEEE WCCI会议上再次阐述他的观点,即智能有三个层次:(1)生物智能(Biological Intelligence,简称BI),是由人脑的物理化学过程反映出来的,人脑是有机物,它是智能的基础。

对于遗传算法实验报告

对于遗传算法实验报告
;)loob(noitarepO_naPnuL diovﻩ double Function(double);
void Extreme_Value(bool);
;)tni,loob(yalpsiD diovﻩ
;)(M_yalpsiD diovﻩ}; // Find the max and min value void GA::Extreme_Value(bool flag){
;))LLUN(emit(dnarsﻩ
;)(raelc、poPﻩ
;)(tinI_AGﻩ
;)galf(eulaV_emertxEﻩ
;)0,galf(yalpsiDﻩ*/
/*;))LLUN(emit(dnarsﻩ for(int i=1;i<=Num_Iteration;++i){
;)galf(noitarepO_naPnuLﻩ ﻩ //for(vector<double>::iterator iter=LunPan、begin();iter!=LunPan、end();++iter){
;0=1muNceD elbuodﻩ
ﻩ /*string p=*iter;*/
{)i--;0=>i;1-)(htgnel、)reti*(=i tni(rofﻩ
t=t*2;
ﻩ ;t*)84-]i[)reti*((=+1muNceDﻩ

ﻩ DecNum1=DecNum1*((2*PI)/ValueOfString);
ﻩ Optimal_Min_Function_Value=Temp;
ﻩ ﻩ ﻩ
;1muNceD=noituloS_X_niM_lamitpOﻩ
ﻩ Optimal_Individual=*iter;

读书报告-遗传算法

读书报告-遗传算法

遗传算法读书报告遗传算法是基于生物进化思想的一种优化方法,因此遗传算法与数学规划类优化方法在原理、实现手段等方面有着明显的差别。

一、基本概念及遗传算法简介1、基本概念(1)个体个体是遗传算法中用来模拟生物染色体的一定数目的二进制位串,该二进制位串用来表示优化问题的设计点。

(2)群体群体是由一定数量的个体组成的集合。

(3)基因模式基因模式是指二进制位串表示的个体中,某一或某些位置上具有相似性的个体组成的集合。

(4)模式阶次模式阶次是指基因模式中包含相似位置的数目。

(5)模式定义长度模式定义长度是基因模式中相似位间相距的最大距离。

(6)适应度适应度是以数值方式来描述个体优劣程度的指标。

(7)平均适应度平均适应度是若干个个体的适应度值的算是平均值。

(8)繁殖繁殖是由一代群体繁衍产生另外一代群体的方式总称。

(9)选择选择算子是指在上一代群体中按照某些指标挑选参与繁殖下一代群体的一定数量的个体。

(10)杂交杂交算子是指对于优选后的父代个体进行基因模式的重组而产生后代个体的繁衍机制。

(11)一点杂交一点杂交是指在代表个体的二进制位串中选择一截断位,将截断位前后的二进制位串互相交换产生后代个体的方式。

(12)两点杂交两点杂交是指在代表个体的二进制位串中选择两个截断位,将两个截断位间的二进制位串互相交换产生后代个体的方式。

(13)突变突变算子是指模拟生物在自然的遗传进化环境中由于各种偶然因素引起的基因模式突然改变的个体繁殖方式。

2、遗传算法简介1)遗传算法主要包括以下内容:(1)构造适应度函数(2)群体的初始化(3)后代群体的繁殖(4)群体进化收敛判断(5)最优个体转化为优化解在优化设计中,设计变量、目标函数、约束条件是优化模型的三个要素。

一般可以利用编码技术对设计变量进行编码,将设计变量转化为适使其蕴含于遗传算法的适应度函数。

这样,在群数。

当群体进化结束后,目标函数数值最小,这样,优化模型可以利用遗传算法来求解。

遗传算法实验报告

遗传算法实验报告

信息与管理科学学院计算机科学系实验报告课程名称:人工智能实验名称:遗传算法问题姓名:鹏海贾美丽妍汉昭学号:1510003063 1510003024班级:计科实验室:软件技术实验室指导教师:慧日期:2016.11.09&&遗传算法问题一、实验目的1.熟悉和掌握遗传算法的原理、实质;2.学会使用遗传算法解决问题;3.学会编写遗传算法程序寻找函数最值;二、实验原理遗传算法是仿真生物遗传学和自然选择机理,通过人工方式所构造的一类搜索算法,从某种程度上说遗传算法是对生物进化构成进行的数学方式仿真。

在遗传算法中染色体对应的是一系列符号序列,在标准的遗传算法(即基本遗传算法)中,通常用0, 1组成的位串表示,串上各个位置对应基因座,各位置上的取值对应等位基因。

遗传算法对染色体进行处理,染色体称为基因个体。

一定数量的基因个体组成基因种群。

种群中个体的数目为种群的规模,各个体对环境的适应程度称为适应度。

三、实验容用遗传算法求根号2,也就是求方程f(x)=x*x-2=0的正整数解,x=1时f(1)<0,x=2时f(2)>0,由介值定理,则1到2中间存在一个根,根据代数基本定理和根的对称性知这就是我们要找的根,由目标函数得到适应度函数,我们选择个体都在[1,2]之间,那适应度函数我可以取j(x)=40/(2+|x*x-2|)-10,由x的取值围知j的围是(0,10)x和y交叉就用取平均(x+y)/2,交叉概率取0.9,变异概率为0,四、步骤分析1.选择目标函数,确定变量定义域及编码精度,形成编码方案2.随机产生一个规模为(即该种群中含有个体)的种群23.个体评价:计算群体P(t)中各个个体适应度4.选择运算:将选择算子作用于群体。

选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。

选择操作是建立在群体中个体的适应度评估基础上的。

(选择运算用轮盘赌算法)5.对被选择进入匹配池中的个体进行交叉操作,形成新种群6.以小概率在种群中选择个体进行变异操作形成新种群7.计算每个个体的适值8.根据适值概率选择新个体形成新种群9.检查结束条件,若满足则算法结束,当前种群中适值最高的个体即所求解;否则转3选择操作:首先要知道适应度函数,所谓的适应度函数就是评价函数,通常是问题的目的函数(或它的倒数),它描述了个体的优劣程度同时也决定了选择操作的概率,设fi表示第i个个体的适应度值,那选择第i个个体的概率就是fi/∑fj,简单来说,这个概率的大小就决定了该个体是被淘汰还是被保留。

遗传算法总结

遗传算法总结

遗传算法总结简介遗传算法(Genetic Algorithm,简称GA)是一种基于生物进化过程中的遗传机制和自然选择原理的优化方法。

它模拟了自然界的进化过程,通过对问题空间中的个体进行选择、交叉和变异等操作,逐步搜索并优化解的过程。

遗传算法被广泛应用于解决各种优化、搜索和机器学习问题。

基本原理遗传算法的基本原理是通过模拟自然选择和遗传机制,寻找问题空间中的最优解。

其主要步骤包括初始化种群、选择操作、交叉操作、变异操作和确定终止条件等。

1.初始化种群:遗传算法的第一步是生成一个初始种群,其中每个个体代表一个可能的解。

个体的编码可以使用二进制、整数或实数等形式,具体根据问题的特点而定。

2.选择操作:选择操作通过根据适应度函数对种群中的个体进行评估和排序,选择较优的个体作为下一代种群的父代。

通常采用轮盘赌选择、竞争选择等方法来进行选择。

3.交叉操作:交叉操作模拟了生物遗传中的交配过程。

从父代个体中选择一对个体,通过交叉染色体的某个位置,生成下一代个体。

交叉操作可以通过单点交叉、多点交叉或均匀交叉等方式进行。

4.变异操作:变异操作引入了种群中的一定程度的随机性,通过改变个体的染色体或基因,以增加种群的多样性。

变异操作可以是位变异、部分反转、插入删除等方式进行。

5.确定终止条件:遗传算法会循环执行选择、交叉和变异操作,直到满足一定的终止条件。

常见的终止条件有达到最大迭代次数、找到最优解或达到计算时间限制等。

优点和局限性优点•遗传算法可以在大规模问题空间中进行全局搜索,不受问题的线性性和连续性限制。

它适用于解决多目标和多约束问题。

•遗传算法具有自适应性和学习能力,通过不断的进化和优胜劣汰过程,可以逐步收敛到最优解。

•遗传算法易于实现和理解,可以直观地表示问题和解决方案。

局限性•遗传算法需要选择合适的编码方式和适应度函数,以及调整交叉和变异的概率等参数。

这些参数的选择对算法的性能和结果有较大影响,需要经验和调整。

人工智能算法实训课程学习总结遗传算法在优化问题中的应用实践

人工智能算法实训课程学习总结遗传算法在优化问题中的应用实践

人工智能算法实训课程学习总结遗传算法在优化问题中的应用实践人工智能算法实训课程学习总结:在人工智能领域中,算法是至关重要的工具,能够帮助解决各种复杂的问题。

而在人工智能算法实训课程中,我学习到了很多不同类型的算法,并深入了解了其中一种算法——遗传算法在优化问题中的应用实践。

本文将对我在学习过程中的体验和理解进行总结。

首先,遗传算法是一种模拟自然界中生物进化过程的优化算法。

它通过在候选解之间模拟遗传操作,不断地进化和改进当前最优解,以寻找问题的最佳解决方案。

遗传算法的应用非常广泛,包括旅行商问题、背包问题、机器学习中的参数优化等。

在实训课程中,我们学习了遗传算法的基本原理和操作过程。

首先,我们需要定义适应度函数,来度量每个候选解的优劣程度。

适应度函数通常根据问题的特点而定,可以是最大化或最小化的函数。

接下来,在遗传算法的运行过程中,我们应用了一些基本的遗传操作,如选择、交叉和变异。

选择操作通过选取适应度较高的个体作为父代,保留优秀的基因,以提高下一代的品质。

而交叉和变异则是模拟基因的组合与变异过程,使得种群能够具备更好的探索和搜索能力。

除了基本的遗传操作,我们还学习了进化策略、多目标优化等高级的遗传算法变体。

进化策略是一种通过调整参数来实现更精确的优化结果的方法。

而多目标优化则是在解决多个目标的情况下,如何通过适应度函数和遗传操作来找到一组最优解。

在实践环节中,我们运用遗传算法解决了多个优化问题。

其中一个例子是旅行商问题,即在给定一系列城市之间的距离,如何找到一条最短路径,使得旅行商能够经过每个城市一次并最终回到起点。

通过定义适应度函数以及选择、交叉、变异等遗传操作,我们成功地找到了不同规模下的最优解。

另一个例子是背包问题,即在给定一些物品的重量和价值,如何在背包容量有限的情况下,选择物品放入背包,使得背包中的物品总价值最大。

我们将每个物品看作一个基因,通过遗传操作逐步优化选择的物品组合,从而找到最佳解决方案。

人工智能部分学生的实验体会

人工智能部分学生的实验体会

1 这次实验总的来说收获不少,在编写程序前,我以为根据遗传算法的思想,模拟自然界的生物进化,则最后得到的种群一定是适应度非常高的种群,即最后的解一定是最优解或是次优解。

然而动手操作以后发现情况并没有这么简单。

最突出的情况是已经达到了一个比较好的种群后,经过一定的遗传代数后,又向坏的方向发展了,而且往往得不到最优解。

分析原因后,我改进了交叉算子,加大了变异率。

同时设置了一个变量,用于记录所有代数的染色体中的最优解。

经过这些改进,最后结果得到最优解的概率明显提高了。

通过这次实验,我更深刻的理解了遗传算法及有关算子。

动手能力也得到了不少提高。

2 通过独立完成本次实验,加深了我对产生式系统的控制策略及常用算法(正向推理和反向推理)的理解,并学会了使用数字表示推理的方法,我受益匪浅。

3 总之遗传算法原理并不难,但要使效率高并且结果精确地话就非常难了,要用到很多数学方面的知识了,还要联想大自然中的实际来改进,比如老师给的论文中就有将染色体分为幼体和成年体的,还有用周期性种族灭绝的,感觉很有意思啊。

4 通过独立完成本次实验,我加深了对遗传算法的理解,慢慢学会了应用遗传算法解决具体问题。

遗传算法难点在于针对具体问题如何实现编码和三个算子的实现,本次实验老师提供了很多参考资料,我通过阅读论文,发现了遗传算法的灵活性,使我对人工智能产生了浓厚的兴趣。

我受益匪浅。

5 刚接触遗传算法的时候感觉这么随机的一种算法怎么能够选出最优解呢?后来,通过一步步的写程序、调程序,发现就这是因为随机性,同时还有优胜劣汰的规则,就使得能进化出最有解,同时算法耗时也不是很多,让我们更意识到大自然的伟大呀!我发现结果和老师的参考结果相差很多,结果很不好,然后,我从发现问题就出在参数的选择上,不同的参数,结果还是会有很大的差距的。

6到现在,人工智能实验已经全部结束,感觉自己还是很有进步的。

可惜我没能好好利用这仅有的三次机会对自己的编程水平进行大幅度的提高,而是陷入了各种考试和自己的事务的怪圈中去了。

人工智能导论学习体会及遗传算法应用

人工智能导论学习体会及遗传算法应用

人工智能导论学习体会及遗传算法应用
一、学习体会
本次学习了人工智能导论,从中主要学习了人工智能的基本概念、发
展历史、定义、原理、方法及其应用等内容。

在此,我结合学习情况,对
学习内容作出总结如下:
2.人工智能的原理是基于计算机科学和统计学原理,它将大量的数据
通过数据挖掘、模式识别、机器学习、自然语言处理等技术进行分析,最
后获得有用信息,从而支持智能机器的设计,实现智能化。

3.人工智能的方法包括:机器学习、深度学习、自然语言处理、机器
人和传统方法。

其中,机器学习是人工智能的核心,它利用统计学原理和
数学模型来解决实际问题,以达到克服软件开发的复杂性而获得可靠的解
决方案。

4.人工智能的应用领域涉及医学、法律、金融、交通等,可以为公司
提供有效的高精度的商业决策。

如在医学的应用中,人工智能技术可以帮
助医生更准确的诊断症状和分析患者的病情,有助于提高医疗服务的质量。

随着人工智能的发展。

遗传算法学习心得体会

遗传算法学习心得体会

遗传算法概念遗传算法是模仿自然界生物进化机制发展起来的随机全局搜索和优化方法,它借鉴了达尔文的进化论和孟德尔的遗传学说。

其本质是一种高效、并行、全局搜索的方法,它既能在搜索中自动获取和积累有关空间知识,并自适应地控制搜索过程以求得最优解遗传算法操作使用适者生存的原则,在潜在的解决方案种群中逐次产生一个近视最优方案。

在遗传算法的每一代中,根据个体在问题域中的适应度值和从自然遗传学中借鉴来的再造方法进行个体选择,产生一个新的近视解。

这个过程导致种群中个体的进化,得到的新个体比原个体更适应环境,就像自然界中的改造一样。

应用遗传算法在人工智能的众多领域具有广泛应用。

例如,机器学习、聚类、控制(如煤气管道控制)、规划(如生产任务规划)、设计(如通信网络设计、布局设计)、调度(如作业车间调度、机器调度、运输问题)、配置(机器配置、分配问题)、组合优化(如tsp、背包问题)、函数的最大值以及图像处理和信号处理等等。

遗传算法多用应与复杂函数的优化问题中。

原理遗传算法模拟了自然选择和遗传中发生的复制、交叉、和变异等现象,从任一初始种群出发,通过随机选择、交叉、变异操作,产生一群更适合环境的个体,使群体进行到搜索空间中越来越好的区域,这样一代一代地不断繁衍进化,最后收敛到一群最适合环境的个体求得问题的最优解。

算法流程 1. 编码:解空间中的解数据x,作为作为遗传算法的表现型形式。

从表现型到基本型的映射称为编码。

遗传算法在进行搜索之前先将解空间的解数据表示成遗传空间的基本型串结构数据,这些串结构数据的不同的组合就构成了不同的点。

2. 初始种群的形成:随机产生n个初始串数据,每个串数据称为一个个体,n个串数据构成了一个群体。

遗传算法以这n个串结构作为初始点开始迭代。

设置进化代数计数器t 0;设置最大进行代数t;随机生成m个个体作为初始群体p(0)。

3. 适应度检测:适应度就是借鉴生物个体对环境的适应程度,适应度函数就是对问题中的个体对象所设计的表征其优劣的一种测度。

遗传算法总结(#看了就能懂和用系列#)

遗传算法总结(#看了就能懂和用系列#)

遗传算法总结(#看了就能懂和⽤系列#)Word害我重写=_=顺便重新整理下思路背景:写论⽂时⽤到遗传算法,花了近⼀周时间,还算理解了算法以及能够进⾏基础的编程实现(保持谦虚)。

说明:具体的实现没敢细讲,主要是原理的⽅法上的介绍(讲解都算不上)。

先说说算法学习,个⼈觉得⾸先需要了解这个算法是拿来⼲嘛的,然后学习它的理论原理,多看懂⼏遍总是好的;结合实际例⼦,接着把算法的每⼀块⼉研究清楚,通篇理解后,⾃⼰试着编程实现,这样学起来感觉也还不错。

关于遗传算法原理:模拟⾃然界优胜劣汰的进化现象,把搜索空间(问题解的组成空间)映射为遗传空间,把可能的解编码成⼀个向量——染⾊体,向量的每个元素称为基因。

通过不断计算各染⾊体的适应值,选择最好的染⾊体,获得最优解。

简单说,就是给你⼀堆⼈⼉(解和种群),让你选择⼀部分基因优良(解的适应度更⾼,⽐如值更⼤)的⼈出来,让他们⽣⼩孩组成后代(选择交叉和变异),把这些后代和之前选出来的⽗代,再⽐较基因优良,再选择,再遗传,这样循环,最后找出⼀个超级英雄(最优解)就达到⽬的了。

这样类似于⼀种⽆⽬的的搜索式寻找最优,不过遗传算法的效率更⾼。

关于原理,知乎上有些通俗好玩的⽂章可以看下:https:///question/23293449关于算法步骤:从原理也可以总结出,主要步骤包括,适应度函数的设计,编码,选择,交叉,变异。

即是说,我们主要能⽤代码实现这些操作,⼀个算法就能基本实现了。

这也算是⾯向对象编程了。

给⼀张流程图:图有点⼤这流程图在整篇⽂字看完后在回来看⼀遍。

(坚持,看完d===( ̄▽ ̄*)b)关于算法术语(偷懒截图):来源某不知源课件,⼤学资源多先从个体开始,我总是乐意把个体和染⾊体⼀起理解,因为染⾊体就是编码过后的个体,两者本质⼀样,只是表现⽅式不⼀样。

个体就是算法的⼀个解,⽐如⼀个函数在某个区间内,有⽆数个解。

⽽染⾊体,是为了让算法能更好的理解和操作我们的个体,进⾏的编码结果。

遗传算法之我见

遗传算法之我见

随机化均匀设计遗传算法摘要:众所周知,遗传算法的运行机理及特点是具有定向制导的随机搜索技术,其定向制导的原则是:导向以高适应度模式为祖先的“家族”方向.以此结论为基础.利用随机化均匀设计的理论和方法,对遗传算法中的交叉操作进行了重新设计,给出了一个新的GA算法,称之为随机化均匀设计遗传算法.最后将随机化均匀设计遗传算法应用于求解函数优化问题,并与简单遗传算法和佳点集遗传算法进行比较.通过模拟比较,可以看出新的算法不但提高了算法的速度和精度,而且避免了其它方法常有的早期收敛现象。

关键词:遗传算法(GA) 佳点集理论佳点集遗传算法(GGA) 随机化均匀设计(RUD) 随机化均匀设计遗传算引言20世纪60年代,美国Michigan大学的John Holland教授提出了模拟生物进化的仿生智能算法,即遗传算法(Genetic Algorithms,GA).其基本原理是模仿生物在进化过程中,通过选择淘汰基因突变和遗传等方式产生适应环境变化的优良个体.遗传算法以其简单易行性和可靠性,在组合优化问题,机器学习问题,图像处理与模式识别,通信网络设计等很多领域取得了广泛的应用.遗传算法通过适当的编码方式把实际问题转化成生物种群的进化问题,经过多代的选择,变异,交叉操作最终得到可接受的问题的解.算法中“选择,变异,交叉”等操作直接关系遗传算法的效率,一直是遗传算法的研究热点.文献[1]根据算法初期需要采用较大的交叉,变异概率来产生更多的新优秀个体;算法后期,则需采用较小的交叉,变异概率来保护优良模式,使算法尽快收敛.提出了自适应遗传算法,由条件发生器来自适应调整交叉变异概率,提高算法的效率.文献[2]为了改善遗传搜索性能,通过分析基因池遗传算法的无限种群动力系统,刻画了双峰函数局部极值解的适值差与系统不动点之间的解析关系,提出了针对多模态优化问题的两阶段遗传算法.文献[3]提出了一种结合模拟退火,最优个体迁移以及参数空间动态退化的混合遗传算法,来加快算法的收敛和提高搜索全局最优值的能力.文献[4]提出了量子遗传算法,在量子个体上实施量子杂交,这一操作有利于保留相对较好的基因段,并且为了加快算法的收敛速度,还引入了两阶段局部搜索.文献[5]指出遗传算法的本质是一个具有定向制导的随机搜索技术,其定向制导的原则是:导向以高适应度模式为祖先的“家族”方向.而在高适应度模式为祖先的“家族”中寻找更高的适应度模式主要靠交叉操作来实现.1.遗传算法交叉操作分析通常GA算法中的交叉操作,是按赌轮法随机取两个染色体进行单点交叉操作(或多点交叉),其子孙必属于父辈模式中,所以GA算法中的交叉操作即在以高适应度模式为祖先的“家族”中取一点作为交叉后的后代.这种取法当然有其片面性,并不能保证取到的后代的适应度比母体的高.由数论方法知:在高适应度模式空间中产生的均匀散布点集,它们的平均适应度能代表高适应度模式空间的平均适应度.也就是说,这些点能很好的代表高适应度模式空间的其他点,即要求此空间中的最优值,只要在这些点中找即可.故有研究者提出在以高适应度模式为祖先的“家族”中利用正交试验的方法求出几点来作为交叉后的后代,这是一个好主意,不过当因素的个数和等级增多时,不但试验的规模迅速增加,而且对应的试验正交表也很难得到,这些问题给正交交叉法的运用带来一定的困难.张铃提出了佳点集遗传算法,即利用数论中的佳点集方法求出几点来作为交叉后的后代,这可使其精度与维数无关,且这些点有很好的散布性,克服了用正交设计法的不足.但是,佳点集的选取在n取定后是确定的,且佳点集分布点有方向性,不带随机性,所以很多格子是取不到的,其上的点也就不能作为交叉后的后代了,这将影响算法的整体搜索效果.为了克服上述不足,本文提出了随机化均匀设计遗传算法,利用随机化均匀设计来设计一个新的交叉算法,提高GA的效率.实验证明不管在求解精度上还是在求解速度上,随机化均匀设计遗传算法不仅优于GA,也优于佳点集遗传算法.2.佳点集遗传算法设在传统的GA算法基础上,在进行过复制后,对池中的元素按赌轮法选择两个元素A1,A2进行佳点交叉操作不妨设A1与A2的前t个分量不同, 后L-t个分量相同由A1与A2进行交叉(不管是单点交叉或是多点交叉),其子孙必属于H,于是要在“高适应度模式为祖先的家族方向”上搜索出更好的样本,就是要在H中搜索出更好的样本来.现在我们要在H 上利用佳点集方法求出好样本来, 其方法是:将H 的前t 个分量看成一个t 维的立方体(仍记为H ),然后在H 上求佳点集.或将H 的每d 个分量分成一组(不妨设共分成s组),每组表示一个实数,于是s个组就表示s 个实数, 这样就将H 变换成一个s 维的实空间, 可将其归一化变换成一个s维的单位立方体, 然后在其上求佳点集.如(1,1,0,0,1,0,1,0,1,1,0,1)是12维二进制单位立方体中的一点, 我们可以将它化成三维的实值空间的点(每4个分量合成一个实数) (1100,1010,1101)=(12,10,13);再将它归一化, 得点(12/16,10/16,13/16)=(3/4,5/8,13/16),即为实单位立方体中的一点,t维的单位立方体. 取定后,下面就是如何取佳点集的问题:在t 维空间中取佳点的方法如下:在t维空间H 中作含n个点的佳点集(当H是二进制立方体时)其中p是满足p >=2t+ 3的最小素数,或{a}表示a 的小数部分.令交叉后产生的n 个后代中第k 个染色体,其中:其中〈a 〉表示, 若a 的小数部分小于0.5, 则〈a 〉= 0;否则〈a 〉= 1 这样在其“家族”中产生出n 个后代, 取其中适应值最大者(或最大的几个) , 作为交叉后的后代,上述的交叉操作, 称为佳点集交叉操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本概念
遗传算法(Genetic Algorithms, GA)是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法。

它模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保留一组候选解,并按某种指标从解群中选取较优的个体,利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止。

GA的组成:
(1)编码(产生初始种群)
(2)适应度函数
(3)遗传算子(选择、交叉、变异)
(4)运行参数
编码
基因在一定能够意义上包含了它所代表的问题的解。

基因的编码方式有很多,这也取决于要解决的问题本身。

常见的编码方式有:
(1)二进制编码,基因用0或1表示(常用于解决01背包问题)
如:基因A:00100011010 (代表一个个体的染色体)
(2)互换编码(用于解决排序问题,如旅行商问题和调度问题)
如旅行商问题中,一串基因编码用来表示遍历的城市顺序,如:234517986,表示九个城市中,先经过城市2,再经过城市3,依此类推。

(3)树形编码(用于遗传规划中的演化编程或者表示)
如,问题:给定了很多组输入和输出。

请你为这些输入输出选择一个函数,使得这个函数把每个输入尽可能近地映射为输出。

编码方法:基因就是树形结构中的一些函数。

(4)值编码(二进制编码不好用时,解决复杂的数值问题)
在值编码中,每个基因就是一串取值。

这些取值可以是与问题有关任何值:整数,实数,字符或者其他一些更复杂的东西。

适应度函数
遗传算法对一个个体(解)的好坏用适应度函数值来评价,适应度函数值越大,解的质量越好。

适应度函数是遗传算法进化过程的驱动力,也是进行自然选择的唯一标准,它的设计应结合求解问题本身的要求而定。

如TSP问题,遍历各城市路径之和越小越好,这样可以用可能的最大路径长度减去实际经过的路径长度,作为该问题的适应度函数。

遗传算子——选择
遗传算法使用选择运算来实现对群体中的个体进行优胜劣汰操作:适应度高的个体被遗传到下一代群体中的概率大;适应度低的个体,被遗传到下一代群体中的概率小。

选择操作的任务就是按某种方法从父代群体中选取一些个体,遗传到下一代群体。

SGA(基本遗传算法)中采用轮盘赌选择方法。

轮盘赌选择又称比例选择算子,基本思想:各个个体被选中的概率与其适应度函数值大小成正比。

设群体大小为n ,个体i 的适应度为Fi,则个体i 被选中遗传到下一代群体的概率为:
遗传算子——交叉
所谓交叉运算,是指对两个相互配对的染色体依据交叉概率按某种方式相互交换其部分基因,从而形成两个新的个体。

交叉运算在GA中起关键作用,是产生新个体的主要方法。

1. 单交叉点法(用于二进制编码)
选择一个交叉点,子代在交叉点前面的基因从一个父代基因那里得到,后面的部分从另外一个父代基因那里得到。

如:交叉前:
00000|01110000000010000
11100|00000111111000101
交叉后:
00000|00000111111000101
11100|01110000000010000
2. 双交叉点法(用于二进制编码)
选择两个交叉点,子代基因在两个交叉点间部分来自一个父代基因,其余部分来自于另外一个父代基因.
如:交叉前:
01 |0010| 11
11 |0111| 01
交叉后:
11 |0010| 01
01 |0111| 11
3. 基于“ 与/或”交叉法(用于二进制编码)
对父代按位"与”逻辑运算产生一子代A;按位”或”逻辑运算产生另一子代B。

该交叉策略在解背包问题中效果较好 .
如:交叉前:
01001011
11011101
交叉后:
01001001
11011111
4. 单交叉点法(用于互换编码)。

相关文档
最新文档