电路理论基础课后习题答案 陈希有主编 第一章

合集下载

电路基础第1章习题解答.docx

电路基础第1章习题解答.docx

第一章 电路的基本概念和基本定律习题解答1-1 题 1-1 图所示电路,求各段电路的电压U ab 及各元件的功率,并说明元件是消耗功率还是对外提供功率2Ab 1Ab a-8Aba- a+6V+-8V-+-10V -(a)(b)(c)-2Aba-1Aa-2Aa+ -b-+ b--6V+-8V 16V (d)(e)(f)题 1-1 图解 根据功率计算公式及题给条件,得( a ) U =6V, P =6×2= 12W消耗功率ab( b ) U ab =-8V , P =1×(-8)=-8W 提供功率( c ) U ab =-10V, P =-(-8) (-10)=-80W提供功率( d ) U =-8V, P =-(-2)(-8)=-16W提供功率ab( e ) ab =-(-6)=6V,=-(-1)(-6)=-6W提供功率UP( f ) U ab =-16V, P =(-2)16=-32W提供功率1-2 在题 1-2 图所示各元件中, 已知:元件 A 吸收 66W 功率,元件 B 发出 25W 功率; 元件 C 吸收负 68W 功率,求 i 、 u 和 i 。

ABCi A-5Ai CA--B++C-+u B-4V6V题 1-2 图解 根据题意,对元件A ,有A=6 A =66,i A==11APi对元件 B ,有B=-5 B =-25,B==5VP uu对元件 C ,有P C =-4 i C =-68, i C ==17A1-3 题 1-3 图所示电路中, 5 个元件代表电源或负载。

通过实验测量得知: I 1=-2A ,I 2=3A , I 3=5A , U =70V ,U =-45V , U =30V , U =-40V , U =-15V 。

1 2 3 45(1)试指出各电流的实际方向和各电压的实际极性 (2)判断那些元件是电源;那些元件是负载(3)计算各元件的功率,验证功率平衡U 4U 5I 1+-4+-I3-+5+-I 2++++-+U1 1U 33U2 2----+ -题1-3 图解( 1)图中虚线箭头为各支路电流的实际方向。

电路理论基础(哈尔滨工业大学陈希有第3版) 第1章-第5章

电路理论基础(哈尔滨工业大学陈希有第3版) 第1章-第5章

a 电位: 任选一点p作为电位参考点,电路中某点与参考点之间的电压称为该点的电 位,用 表示。有了电位的概念,两点之间的电压便等于这两点的电位之差。
uab Ec dl
a A
(a)
a A
(b)
u ab
u ba
A
(c)
a uA

b
b
b
电压参考方向的表示法
一个元件上的电压和电流的参考方向取成相同的,并称为关联参考方向。

2 基尔霍夫电流定律
基尔霍夫电流定律(Kirchhoff's Current Law,简称KCL)表述为:在集中 参数电路中,任一时刻流出(或流入)任一节点的支路电流代数和等于零, 即
i
k
0
( ik 表示第 k 条支路电流)
规定: ik 参考方向为流出节点时, ik 前面 取“+”号; 流入节点时, ik 前面取“-”号。
i1
A
i2
1、在集中参数电路中,任一时刻流出(或流入) 任一闭合边界 S 的支路电流代数和等于零。
KCL的其它表述
2、任一时刻,流出任一节点(或闭合边界)电 流的代数和等于流入该节点电流的代数和。
根据右图,列写KCL方程 1)基本表述方 式——对节点
3 i3

S
4 i4 i6 7 i7 ③
节点① :
① u1 1
u
电压降
= u电压升
6 ③ u6 l1 5 u5 l2 7 u7 ⑤ 基尔霍夫电压定律示例
u2
l3 ②
2
说明:平面电路网孔上的KVL方程是一组独立方程。设电路有b个支路n个节 点,可以证明:平面电路的网孔数即独立KVL方程的个数等于b-(n-1)。当然 取网孔列方程只是获得独立KVL方程的充分条件,而不是必要条件。

电路基础课后习题答案[1]

电路基础课后习题答案[1]

第1章 章后习题解析一只“100Ω、100 W ”的电阻与120 V 电源相串联,至少要串入多大的电阻 R 才能使该电阻正常工作?电阻R 上消耗的功率又为多少?解:电阻允许通过的最大电流为1100100'===R P I A 所以应有 1120100=+R ,由此可解得:Ω=-=201001120R电阻R 上消耗的功率为 P =12×20=20W图(a )、(b )电路中,若让I =0.6A ,R =? 图(c )、(d )电路中,若让U =,R =? 解:(a)图电路中,3Ω电阻中通过的电流为 I ˊ=2-=1.4AR 与3Ω电阻相并联,端电压相同且为 U =×3= 所以 R =÷=7Ω(b)图电路中,3Ω电阻中通过的电流为 I ˊ=3÷3=1A R 与3Ω电阻相并联,端电压相同,因此 R =3÷=5Ω (c)图电路中,R 与3Ω电阻相串联,通过的电流相同,因此R =÷2=Ω(d)图电路中,3Ω电阻两端的电压为 U ˊ=3-= R 与3Ω电阻相串联,通过的电流相同且为 I =÷3=0.8A 所以 R =÷=Ω两个额定值分别是“110V ,40W ”“110V ,100W ”的灯泡,能否串联后接到220V 的电源上使用?如果两只灯泡的额定功率相同时又如何?解:两个额定电压值相同、额定功率不等的灯泡,其灯丝电阻是不同的,“110V ,40W ”灯泡的灯丝电阻为: Ω===5.302401102240P U R ;“110V ,100W ”灯泡的灯丝电阻为:Ω===12110011022100P U R ,若串联后接在220V 的电源上时,其通过两灯泡的电流相同,且为:52.01215.302220≈+=I A ,因此40W 灯泡两端实际所加电压为:3.1575.30252.040=⨯=U V ,显然这个电压超过了灯泡的额定值,而100 W 灯泡两端实际所加电压为:U 100=×121=,其实际电压低于额定值而不能正常工作,因此,这两个功率不相等的灯泡是不能串联后接到220V 电源上使用的。

《电工基础》课后习题解答

《电工基础》课后习题解答

1-18 测得一个元件[如图1-42(a)所示的端纽变量值,画出它们 的关系曲线如图1-42(b)所示,试问这是什么元件?其参数为多 少?

图1-42(a)
图1-42(b)
根据i与du/dt的关系曲线可确定
du 1 iK K dt 2 1 du i 2 dt
这是一个线性电容元件,其电容为1/2F
U 2 Q 2 / C2 U 3 Q 3 / C3 Q 2 Q 3 Q2 1.8 105
Q 2 / C2 Q3 / C3 Q 2 Q3 Q2 1.8 105
1 Q 2 Q 3 1.8 105 0.9 105 9 106 C 2 9 106 U 2 U 3 Q 2 / C2 9V 6 110
1-4 下述结论中错误的是( A )。(题中所说的元件,除电压源、 电流源外都是指线性元件) A.电阻元件的电压与电流之间的关系是线性关系(线性函数),其电压 与电流的关系曲线是一条通过原点的直线,且总是位于一、三象限。 B.电容元件和电感元件的电压与电流之间的关系是线性关系,但其电压 与电流的关系曲线的形状是不确定的,曲线形状取决于电压或电流的 波形。 C.电压源的电压与电流之间的关系是非线性关系,其电压与电流的关系 曲线是一条平行于电流轴的直线。 D.电流源的电压与电流之间的关系是非线性关系,其电压与电流的关系 曲线是一条平行于电压轴的直线。
1-9 有两只灯泡,一只标明220V、60W,另一只标明220V、100W, 若将它们串联起来,接于220V的电源上,设灯泡都能发光,试问哪只 灯泡亮些? 解
U12N 2202 U2 由P ,得R1 806.67 R P 60 1N
2 U2 2202 N R2 484 P2 N 100

电工基础课本习题答案(1-4)

电工基础课本习题答案(1-4)

第一章电路的基础知识1-1电路及其主要物理量思考题解答P8 1-1-1 在图1-1-18所示电路中,已知R2=R4,UAD=15V,UCE=10V,试用电位差的概念计算UAB。

图1-1-18[答] 由R2=R4,有U CD=U EB,故UAB=U AC+U CD+U DE+U EB=(U AC+U CD)+(U DE+ U CD )=UAD+UCE=15+10=25V1-1-2 指出图1-1-19所示电路中A、B、C三点的电位。

图1-1-19[答] A、B、C三点的电位分别为:(a) 图:6V、3V、0V;(b)图:4V、0V、-2V;(c)图:开关S断开时6V、6V、0V;开关S闭合时6V、2V、2V;(d)图:12V、4V、0V;(e)图:6V、-2V、-6V。

1-1-3 在检修电子仪器时,说明书上附有线路图,其中某一局部线路如图1-1-20所示。

用电压表测量发现UAB=3V,UBC=1V,UCD=0,UDE=2V,UAE=6V。

试判断线路中可能出现的故障是什么?[答] 由UBC=1V,UDE=2V可知电阻R2、R4支路上有电流通过,而UCD=0,故判定电阻R3短路。

1-1-4 上题的线路故障可否用测量电位的方法进行判断?如何测量?[答] 可以用测量电位的方法进行判断。

只需测出B、C、D三点的电位,就可知R3支路上有电流,而R3电阻短路。

1-1-5 在图1-1-21所示电路中,已知U=-10V,I=2A,试问A、B两点,哪点电位高?元件P是电源还是负载?图1-1-20 图1-1-21 [答] 因U为负值,电压的实际方向与参考方向相反,故b点电位高。

又因P=UI=-10×2=-20W<0,产生功率,故元件P是电源。

1-2电路模型 思考题P191-2-1 以下说法中,哪些是正确的,哪些是错误的?(1)所谓线性电阻,是指该电阻的阻值不随时间的变化而变化。

(2)电阻元件在电路中总是消耗电能的,与电流的参考方向无关。

电路理论课后答案,带步骤

电路理论课后答案,带步骤
题图3-4
解:(1)该电路有三个网孔。设网孔电流分别为 、 ,
参考方向如图3-4所示。并设受控源两端电压为U。
(2)列写网孔方程:
辅助方程为:
联立求解得:
U= V
所以: mW
3-5电路如题图3-5所示,试用网孔分析法求电流 和电压 。
题图3-5题图3-5(b)
解:(1)将原图中20A电流源与2 电阻并联部分等效为40V电压源与2 电阻串联,如图3-5(b)所示。
(2)列写节点方程:
整理得:
求解得: V
V
所以: V
3-7电路如题图3-7所示,①试用节点分析法列写电路的节点方程;②该电路能否用网孔分析法分析?为什么?
题图3-7题图3-7(b)
①解:
(1)将原图中的 电压源与 串联部分等效为 电流源与 并联。
且 。如图3-7(b)所示。
(2)该电路有5个节点,以节点5为参考点,节点电压分别设为: 、 、 ,
Ua=10-3I=4V
Ub=2I=4V
Uab=Ua–Ub=0V
题图1-2
1-3试计算题图1-3所示电路中I、Us、R和电源Us产生的功率。
解:做节点标识,A、B、C:
I1=6+12=18A
I2=I1-15=3A
I2+I3=12+5 I3=14A
I=15- I3=1A
US=3I1+12I2=90V
题图1-3
2-15题图2-15所示电路,试问当电阻R等于何值时,可获得最大功率,最大功率等于多少?
题图2-15图2-15(b)
解:先将a,b与R断开,则
得:
所以:共戴维南等效电路为图(a)所示
所以:当 时,获得最大功率

电路理论基础第四版第1章习题答案详解

电路理论基础第四版第1章习题答案详解

答案解:如下图所示(1)由KCL 方程得节点①:12A 1A 3A i =--=-节点②:411A 2A i i =+=-节点③:341A 1A i i =+=-节点④:231A 0i i =--=若已知电流减少一个,不能求出全部未知电流。

(2)由KVL 方程得回路1l :1412233419V u u u u =++=回路2l :15144519V-7V=12V u u u =+=回路3l :52511212V+5V=-7V u u u =+=-回路4l :5354437V 8V 1V u u u =+=-=-若已知支路电压减少一个,不能求出全部未知电压。

答案解:各元件电压电流的参考方向如图所示。

元件1消耗功率为:11110V 2A 20W p u i =-=-⨯=-对回路l 列KVL 方程得21410V-5V 5V u u u =+==元件2消耗功率为:2215V 2A 10W p u i ==⨯=元件3消耗功率为:333435V (3)A 15W p u i u i ===-⨯-=对节点①列KCL 方程4131A i i i =--=元件4消耗功率为:4445W p u i ==-答案解:对节点列KCL 方程节点①:35A 7A 2A i =-+=节点③:47A 3A 10A i =+=节点②:5348A i i i =-+=对回路列KVL 方程得:回路1l :13510844V u i i =-⨯Ω+⨯Ω=回路2l :245158214V u i i =⨯Ω+⨯Ω=答案解:由欧姆定律得130V 0.5A 60i ==Ω对节点①列KCL 方程10.3A 0.8A i i =+= 对回路l 列KVL 方程1600.3A 5015V u i =-⨯Ω+⨯Ω=-因为电压源、电流源的电压、电流参考方向为非关联,所以电源发出的功率分别为S 30V 30V 0.8A 24W u P i =⨯=⨯=S 0.3A 15V 0.3A 4.5W i P u =⨯=-⨯=-即吸收4.5W 功率。

电路理论基础习题答案

电路理论基础习题答案

电路理论基础习题答案第一章1-1. (a)、(b)吸收10W ;(c)、(d)发出10W. 1-2. –1A; –10V; –1A; – 4mW.1-3. –0.5A; –6V; –15e –t V; 1.75cos2t A; 3Ω; 1.8cos 22t W.1-4. u =104 i ; u = -104 i ; u =2000i ; u = -104 i ; 1-5.1-6. 0.1A. 1-7.1-8. 2F; 4C; 0; 4J. 1-9. 9.6V,0.192W, 1.152mJ; 16V , 0, 3.2mJ.1-10. 1– e -106t A , t >0 取s .1-11. 3H, 6(1– t )2 J; 3mH, 6(1–1000 t ) 2 mJ;1-12. 0.4F, 0 .1-13. 供12W; 吸40W;吸2W; (2V)供26W, (5A)吸10W. 1-14. –40V , –1mA; –50V, –1mA; 50V , 1mA. 1-15. 0.5A,1W; 2A,4W; –1A, –2W; 1A,2W. 1-16. 10V ,50W;50V ,250W;–3V ,–15W;2V ,10W. 1-17. (a)2V;R 耗4/3W;U S : –2/3W, I S : 2W; (b) –3V; R 耗3W; U S : –2W, I S :5W; (c)2V ,–3V; R 耗4W;3W;U S :2W, I S :5W; 1-18. 24V , 发72W; 3A, 吸15W;24V 电压源; 3A ↓电流源或5/3Ω电阻. 1-19. 0,U S /R L ,U S ;U S /R 1 ,U S /R 1 , –U S R f /R 1 . 1-20. 6A, 4A, 2A, 1A, 4A; 8V, –10V , 18V . 1-21. K 打开:(a)0, 0, 0; (b)10V , 0, 10V; (c)10V,10V ,0; K 闭合: (a)10V ,4V ,6V; (b)4V ,4V ,0; (c)4V,0,4V; 1-22. 2V; 7V; 3.25V; 2V. 1-23. 10Ω.1-24. 14V .1-25. –2.333V , 1.333A; 0.4V , 0.8A.1-26. 12V , 2A, –48W; –6V , 3A, –54W . ※第二章2-1. 2.5Ω; 1.6R ; 8/3Ω; 0.5R ; 4Ω; 1.448Ω; . R /8; 1.5Ω; 1.269Ω; 40Ω; 14Ω. 2-2. 11.11Ω; 8Ω; 12.5Ω. 2-3. 1.618Ω.2-4. 400V;363.6V;I A =.5A, 电流表及滑线电阻损坏. 2-6. 5k Ω. 2-7. 0.75Ω.2-8. 10/3A,1.2Ω;–5V ,3Ω; 8V ,4Ω; 0.5A,30/11Ω. 2-9. 1A,2Ω; 5V,2Ω; 2A; 2A; 2A,6Ω. 2-10. –75mA; –0.5A.2-11. 6Ω; 7.5Ω; 0; 2.1Ω. 2-12. 4Ω; 1.5Ω; 2k Ω. 2-13. 5.333A; 4.286A. 2-14. (a) –1 A ↓; (b) –2 A ↓, 吸20W. 2-16. 3A. 2-17. 7.33V . 2-18. 86.76W. 2-19. 1V , 4W. 2-20. 64W.2-21. 15A, 11A, 17A. 2-23. 7V , 3A; 8V ,1A. 2-24. 4V , 2.5V, 2V. 2-26. 60V . 2-27. 4.5V. 2-28. –18V .2-29. 原构成无解的矛盾方程组; (改后)4V ,10V . 2-30. 3.33 k , 50 k . 2-31. R 3 (R 1 +R 2 ) i S /R 1 .2-32. 可证明 I L =-u S /R 3 . 2-33. –2 ; 4 .2-34. (u S1 + u S2 + u S3 )/3 . ※第三章3-1. –1+9=8V; 6+9=15V; sin t +0.2 e – t V. 3-2. 155V . 3-3. 190mA.i A0 s 1 12 3 1-e -t t 0 t ms i mA 410 0 t ms p mW 4 100 2 25i , A 0.4 .75 t 0 .25 1.25 ms -0.4 (d) u , V 80 0 10-20 t , ms(f ) u , V 1000 10 t , ms (e)p (W) 100 1 2 t (s) -103-4. 1.8倍.3-5. 左供52W, 右供78W. 3-6. 1; 1A; 0.75A.3-7. 3A; 1.33mA; 1.5mA; 2/3A; 2A. 3-8. 20V , –75.38V.3-9. –1A; 2A; –17.3mA. 3-10. 5V , 20; –2V, 4. 3-12. 4.6. 3-13. 2V; 0.5A. 3-14. 10V , 5k .3-15. 4/3, 75W; 4/3, 4.69W. 3-16. 1, 2.25W. 3-18. 50. 3-19. 0.2A. 3-20. 1A. 3-21. 1.6V . 3-22. 4A; –2A.3-23. 23.6V; 5A,10V . 3-24. 52V . ※第四章4-1. 141.1V , 100V , 50Hz, 0.02s,0o , –120o ; 120 o.4-2. 7.07/0 o A, 1/–45 o A, 18.75/–40.9 oA. 4-3. 3mU , 7.75mA .4-4. 10/53.13o A, 10/126.87o A, 10/–126.87oA,10/–53.13oA ;各瞬时表达式略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

答案 1.8 解:由欧姆定律得
i1
30V 60
0.5A
对节点①列 KCL 方程
i i1 0.3A 0.8A 对回路 l 列 KVL方程
u i1 60 0.3A 50 15V 因为电压源、电流源的电压、电流参考方向为非关联,所以电源发出的功率
分别为
PuS 30Vi 30V0.8A 24W
PiS u 0.3A 15V0.3A 4.5W 即吸收 4.5W 功率。
答案 1.9 解:(a)电路各元件电压、电流参考方向如图(a)所示。 由欧姆定律得
iR uS / R 10 cos(t)V / 2A 5cos(t)A
又由 KCL 得
i iR iS (5cost 8)A
电压源发出功率为 puS uS i 10cos(t)V (5cost 8)A (50cos2 t 80cost)W
pR uRiS 16cos(t)V 8cos(t)A 128cos2 (t)W
答案 1.10 解:取电阻元件和网络 N 电压、电流为关联参考方向如图所示。

3A
i1 10 + 5A 5
10V
u2
l1 -
l2 50
N
25V 对节点①列 KCL 方程
i1 5A 3A 2A 对回路列 KVL方程 回路 l1 :
u() (5 9e )V 5V >0
其真实极性与参考方向相同, 即 a 为高电位端,b 为低电位端。
答案 1.3 解:(a)元件 A 电压和电流为关联参考方向。元件 A 消耗的功率为
pA uAiA 则
uA
pA iA
10W 2A
5V
ቤተ መጻሕፍቲ ባይዱ
真实方向与参考方向相同。 (b) 元件 B 电压和电流为关联参考方向。元件 B 消耗的功率为
i2
2i
1V l2 l1
2V
对回路列 KVL方程:
回路 l1 :
1 i2 2V 2V 1V 得 i2 1A
回路 l2 :
2i 2V 1V 得
i 0.5A 对节点列 KCL 方程: 节点①:
i1 i i2 0.5A 节点②:
i3 i i2 2i 0.5A 1V 电压源发出的功率:
节点②: i4 i1 1A 2A
节点③: i3 i4 1A 1A
节点④: i2 1A i3 0
若已知电流减少一个,不能求出全部未知电流。 (2)由 KVL 方程得
回路 l1 : u14 u12 u23 u34 19V
回路 l2 : u15 u14 u45 19V-7V=12V
i1 10 3A 5 uN 25V 10V 得
uN 10V
回路 l2 :
u2 5 3A uN 5A 50 25V 得
u2 280V 网络 N 吸收的功率
PN uN 3A 30W 电流源发出的功率
PiS u2 5A 1400W 注释:根据电流源的特性,图中与电流源串联的电阻只影响电流源端电压或者说 只影响电流源提供的功率。
i2 8A-3A+1A-2A 0 解得
i2 8A 3A 1A 2A 4A
① 1A
A ⑤ i2 8A i1 3A
i3 i4


2A
B

(b)
答案 1.5 解:如下图所示
5V
① l1
i1

l3
2A
l2
1A
7V

i4
1A

6V
1A
l4
i2 i3

8V
(1)由 KCL 方程得 节点①:
i1 2A 1A 3A
回路 l3 : u52 u51 u12 12V+5V=-7V
回路 l4 : u53 u54 u43 7V 8V 1V
若已知支路电压减少一个,不能求出全部未知电压。
答案 1.6 解:各元件电压电流的参考方向如图所示。 元件 1 消耗功率为: p1 u1i1 10V 2A 20W 对回路 l 列 KVL 方程得 u2 u1 u4 10V-5V 5V 元件 2 消耗功率为: p2 u2i1 5V 2A 10W 元件 3 消耗功率为: p3 u3i3 u4i3 5V (3)A 15W 对节点①列 KCL 方程 i4 i1 i3 1A 元件 4 消耗功率为: p4 u4i4 5W
u 32V 电压源发出的功率
PUS 8Vi1 8V4.5A 36W 电流源发出的功率
PiS u3A 32V3A 96W
答案 1.12 解: i 4V 1A , u 12A 2V 4 受控电压源发出的功率
PCCVS 3i 2A 3 1A 2A 6W 受控电流源发出的功率
PVCCS 4V 0.25u 4V 0.25u 4V 0.25S 2V=-2W 注释:受控电源可能处于供电状态,例如图中的 CCVS,也可能处于用电状 态,例如图中的 VCCS
答案 1.7 解:对节点列 KCL 方程 节点①:
i3 5A 7A 2A
节点③: i4 7A 3A 10A
节点②: i5 i3 i4 8A
对回路列 KVL 方程得: 回路 l1 :
u1 i3 10 i5 8 44V 回路 l2 :
u2 i4 15 i5 8 214V
i
gR2i2
i
得 i2
i 1 gR2
由 KVL 得
u
R1i
ri
R2i2
(r
R1
R2 1 gR2
)i
注释:图(c)电路中不含独立电源,其 u i 关系为比例关系。
答案 1.16 解: (a) S 断开时,电压源的电压、电流及功率与右侧电阻的电压、电流及功率
对应相同;S 闭合时,由于中间电阻 R 是并联接入电路,故右侧电阻 R 的电压、 电流及功率不受影响。但由于所接入的电阻电流和功率与右侧电阻相同,故电压 源的电流及提供功率要增大一倍。
pB uBiB 则
iB
pB uB
10W 10V
1A
真实方向与参考方向相反。 (c) 元件 C 电压和电流为非关联参考方向。元件 C 发出的功率为
pC uCiC 则
uC
pC iC
10W 1A
10V
真实方向与参考方向相反。
答案 1.4
解:对节点列 KCL 方程
节点③: i4 2A 3A 0 ,得 i4 2A 3A=5A 节点④: i3 i4 8A 0 ,得 i3 i4 8A 3A 节点①: i2 i3 1A 0 ,得 i2 i3 1A 4A 节点⑤: i1 i2 3A 8A 0 ,得 i1 i2 3A 8A 1A 若只求 i2 ,可做闭合面如图(b)所示,对其列 KCL 方程,得
电流源发出功率为 piS uSiS 10 cos(t)V 8A 80 cos(t)W
电阻消耗功率为
pR iR2R [5cos(t)A]2 2 50 cos2 (t)W
(b) 电路各元件电压、电流参考方向如图(b)所示。 电压源发出功率为
puS uSiS 10V8cos(t)A 80cos(t)W 由 KVL 可得 u uR uS 8cos(t) 2 10V (16 cost 10)V 电流源发出功率为 piS uiS [16cos(t) 10]V8cos(t)A [128cos2(t) 80cos(t)]W 电阻消耗功率为
P1V 1V i1 1V 0.5A 0.5W 与1 串联的 2V 电压源发出的功率:
P2V,1 2V i2 2V 1A 2W 2V 纯电压源发出的功率:
P2V 2V i3 2V (0.5A) 1W 受控电流源发出的功率:
PCCCS 2V 2i 2V 2 (0.5A) 2W , 实际吸收 2W 功率。
答案 1.13 解:对回路列 KVL方程
2
i1
+ 2A
1V
l1 1 ri1
l2 u -
回路 l1 :
i1 1 1V i1 1A
回路 l2 :
u 2 2A ri1 将 u 6V, i1 1A 代入,解得 r 2
答案 1.14 解: 设各元件电流参考方向如图所示。
2

2V
i ② i3
i1 1
(b) S 断开时,两个电阻的电流、电压和功率相同,电流源的电流与两个电 阻的电流相同,电压和功率是每个电阻的二倍。当 S 闭合时,上侧电阻被短路, 由于右侧电阻始终与电流源相串联,故右侧电阻 R 的电压、电流及功率不受影 响。电流源的电压、电流和功率与右侧电阻的电压、电流和功率相同,电压和功 率均降低了一半。
答案 1.11 解:设各元件电压电流方向如图所示。
i2 3A 0.5A 2.5A
i3
8V 4
2A
对节点列 KCL 方程
节点①:
i2 3A 0.5A 2.5A 节点②:
i1 i2 i3 2.5A 2A 4.5A 对回路 l 列 KVL方程:
10 i2 5 3A u 8V 得
答案 1.1 解:图示电路电流的参考方向是从 a 指向 b。当时间 t<2s 时电流从 a 流向 b,
与参考方向相同,电流为正值;当 t>2s 时电流从 b 流向 a,与参考方向相反,电 流为负值。所以电流 i 的数学表达式为
答案 1.2
i
2A -3A
t 2s t 2s
解:当 t 0 时
u(0) (5 9e0 )V 4V <0 其真实极性与参考方向相反,即 b 为高电位端,a 为低电位端; 当t 时
答案 1.15 解:
(a)对节点①列 KCL 方程得
i1 i i 由 KVL 得
u uR uS i1R uS (1 )iR uS
(b)由 KCL 得
i0 iS i
由 KVL 得
u ri0 Ri0 (r R)i0 (r R)(iS i)
相关文档
最新文档