有理数应用题经典30题

合集下载

有理数运算应用题

有理数运算应用题

知识点三:有理数的应用有理数的加减典型例题例1、某巡警骑摩托车在一条东西大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向东方向为正,当天行驶纪录如下:(单位:千米)+10,-9,+7,-15,+6,-14,+4,-2(1)A在岗亭何方?距岗亭多远?(2)若摩托车行驶1千米耗油0.5升,这一天共耗油多少升?有理数的乘除例2、某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃。

若该地地面温度为13℃,高空某处温度为-47℃,求此处的高度是多少千米?有理数的乘方例3、一个池塘的水浮莲,每天都在生长,且每天的面积是前一天的两倍,如果16天能把整个池塘遮满,那么水浮莲长到遮住半个池塘需要多少天?变式训练变式1、在“十·一”黄金周期间,杭州市风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):日期1日2日3日4日5日6日7日人数变化单位:万人 1.6 0.8 0.4 -0.4 -0.8 0.2 -1.2(1)请判断七天内游客人数最多的是哪天?最少的是哪天?它们相差多少万人?(2) 若9月30日的游客人数为2万人,求这7天的游客总人数是多少万人?变式2、一天,甲乙两人利用温差测量山峰的高度,甲在山顶测得温度是-1ºC,乙此时在山脚测得温度是5ºC,已知该地区每增加100米,气温大约降低0.6ºC,这个山峰的高度大约是多少米?变式3、把一个木棍第一次折成两节,第二次同时折这两节就得到四节,……,依次这样进行下去,当折十次时,将得到多少节木棍?(选做)1、出租车司机小李某天下午的营运全是在东西走向的长江路上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+15、-2、+5、-1、+10、-3、-2、+12、+4、-5、+6(1)小李下午出发地记为0,他将最后一名乘客送抵目的地时,小李距下午出车时的出发地有多远?(2)若汽车耗油量为0.41升/千米,这天下午小李共耗油多少升?(3)若小李家距离出车地点的西边35千米处,送完最后一名乘客,小李还要行驶多少千米才能到家?知识点四:阶梯收费问题典型例题:例1、学校组织同学到博物馆参观,小明因事没有和同学同时出发,于是准备在学校门口搭乘出租车赶去与同学们会合,出租车的收费标准是:起步价为6元,3千米后每千米收1.2元,不足1千米的按1千米计算。

有理数应用题

有理数应用题

1、某商店买进60件羊毛衫,每件进价240元,卖出时每件标价360元,由于销售情况不好,商店决定降价出售,但希望售完后总利润率不低于20%,那么羊毛衫最多降价多少元出售?A. 48元B. 60元C. 72元D. 96元(答案)C2、甲、乙两地相距50km,A骑自行车,B乘汽车,同时从甲城出发去乙城,已知汽车的速度是自行车速度的2.5倍,B中途休息了0.5小时还比A早到2小时,求自行车和汽车的速度。

设自行车的速度是x千米/小时,则下列方程正确的是:A. (50/x) - (50/(2.5x)) = 2.5B. (50/(2.5x)) - (50/x) = 2.5 - 0.5C. (50/x) - (50/(2.5x)) = 2 + 0.5D. (50/x) + 2.5 = 50/(2.5x) + 0.5(答案)C3、某企业前年缴税30万元,今年缴税36.3万元,那么该企业缴税的平均增长率为:A. 10%B. 15%C. 20%D. 22%(答案)A4、一家商店将某件服装按成本价提高30%后,又以8折优惠卖出,结果每件仍获利12元,那么这件商品的成本价为:A. 200元B. 300元C. 400元D. 500元(答案)B5、某车间共有90名工人,每名工人平均每天可加工甲种部件15个或乙种部件8个,应安排加工甲、乙两种部件各多少人,才能使每天加工后每3个甲种部件与2个乙种部件恰好配套?设安排加工甲种部件x人,则下列方程正确的是:A. 15x/8(90-x) = 3/2B. 15x/8(90-x) = 2/3C. 8(90-x)/15x = 3/2D. 8(90-x)/15x = 2/3(答案)B6、某商品的进价为100元,提高40%后标价,则标价为:A. 120元B. 130元C. 140元D. 150元(答案)C7、某工厂计划为地震灾区生产A,B两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A型桌椅(一桌两椅)需木料0.5m³,一套B型桌椅(一桌三椅)需木料0.7m ³,工厂现有木料302m³。

有理数的应用题

有理数的应用题

1、某商店进行促销活动,一种商品原价为100元,现打八折销售,则该商品的现价为:A. 20元B. 50元C. 80元D. 120元(答案)C2、某城市冬季某天的温度是-5℃,中午上升了8℃,则中午的温度是:A. -13℃B. 3℃C. -3℃D. 13℃(答案)B3、某学生参加数学竞赛,共有10道题,每做对一道题得10分,不做或做错扣5分,该学生最后得分为70分,则他做对了:A. 6道题B. 7道题C. 8道题D. 9道题(答案)C4、一潜水艇从海面先下潜20米,然后又上升了15米,此时潜水艇的高度是:A. +5米B. -5米C. +15米D. -20米(答案)B5、某公司去年盈利50万元,今年由于改进技术,盈利比去年增加了20%,则今年盈利为:A. 40万元B. 50万元C. 60万元D. 70万元(答案)C6、小明从家出发,先向正东方向走50米,再向正南方向走30米到达学校,如果以家为坐标原点,正东方向为x轴正方向,正北方向为y轴正方向,则学校的坐标为:A. (50, 30)B. (50, -30)C. (-50, 30)D. (-50, -30)(答案)B7、某股票开盘价为10元,上午11时跌了1.5元,下午收盘时又涨了0.5元,则该股票收盘价为:A. 8元B. 8.5元C. 9元D. 10元(答案)C8、某地区海拔高度为-100米,表示该地区:A. 比海平面高100米B. 比海平面低100米C. 与海平面相平D. 无法确定(答案)B9、某班级进行数学测试,满分为100分,及格分数为60分,小明得了75分,则小明的成绩:A. 低于及格线B. 刚好及格C. 高于及格线但低于满分D. 满分(答案)C10、某商品原价为a元,第一次降价10%,第二次又降价10%,则两次降价后的价格为:A. 0.8a元B. 0.9a元C. 0.81a元D. 0.99a元(答案)C。

含有理数原理的实际应用题

含有理数原理的实际应用题

含有理数原理的实际应用题题目一:购物计算假设你去超市购物,购买了以下商品:•牛奶:14元•面包:6元•鸡蛋:12元请计算你购买这些商品的总价格。

解答:不难发现,购物的总价格等于各种商品的价格之和。

我们可以用数学中的加法来表示这个关系。

所以,购物的总价格 = 牛奶的价格 + 面包的价格 + 鸡蛋的价格将每个商品的价格代入公式:购物的总价格 = 14元 + 6元 + 12元 = 32元所以,购买这些商品的总价格是32元。

题目二:温度转换假设现在的室外温度是摄氏30度,要将它转换为华氏温度,请计算。

解答:温度的转换关系有一个转换公式,我们可以使用这个公式来计算。

华氏温度 = 摄氏温度 × 1.8 + 32将摄氏30度代入公式进行计算:华氏温度 = 30 × 1.8 + 32 = 86所以,将摄氏30度转换为华氏温度是86度。

题目三:速度计算假设一辆汽车以每小时60公里的速度行驶,经过3个小时,它行驶了多远?请计算。

解答:速度的计算公式是:距离 = 速度 × 时间将题目中给出的速度和时间代入公式进行计算:距离 = 60公里/小时 × 3小时 = 180公里所以,经过3个小时,汽车行驶了180公里。

题目四:货币兑换假设你去国外旅行,想要将100美元兑换为人民币,汇率是1美元兑换为6.5人民币,请计算你可以得到多少人民币。

解答:货币兑换的计算公式是:兑换获得的货币 = 要兑换的货币 × 汇率将题目中给出的数据代入公式进行计算:兑换获得的人民币 = 100美元 × 6.5人民币/美元 = 650人民币所以,你可以得到650人民币。

题目五:面积计算假设一个正方形的边长是5米,求其面积。

请计算。

解答:正方形的面积计算公式是:面积 = 边长²将题目中给出的边长代入公式进行计算:面积 = 5米 × 5米 = 25平方米所以,这个正方形的面积是25平方米。

有理数应用题经典30题(学生版)

有理数应用题经典30题(学生版)

有理数应用题经典30题(学生版)一、题目:有理数应用题经典30题(学生版)1. 均匀缩小小明购买了一副长方形的相框,长和宽的比例是3:2。

如果将宽缩小10%,那么长也需要缩小多少才能保持原来的比例?解析:设原来宽为x,则长为1.5x。

缩小10%后的宽为0.9x,新的长应为1.5x*0.9=1.35x。

所以,长需要缩小15%。

2. 装满水壶一个16升的水壶和一个9升的水壶都是空的。

现在需要得到恰好4升的水,问如何操作才能实现?解析:首先,将9升水壶装满水,再倒入16升水壶中,此时9升水壶中剩余5升水。

然后,倒空16升水壶,将9升水壶中的5升水倒入16升水壶中。

最后,将9升水壶重新装满水,再倒入16升水壶中,此时16升水壶中已经有4升水。

3. 倒水比例小明用相同的速度向两个相同容积的杯子中倒水,第一个杯子先倒水,第二个杯子稍后开始倒水,小明一直保持恒定的速度进行倒水。

如果要使两个杯子中的水量一直保持比例3:5,那么第二个杯子开始倒水的时间点在第一个杯子开始倒水后的多久?解析:设第一个杯子开始倒水后经过t时间,第二个杯子开始倒水。

根据题意可得:水量比例=倒水时间比例。

即3/(3+t) = 5/t,解方程可得t=5/2,所以第二个杯子开始倒水的时间点在第一个杯子开始倒水后的2.5分钟。

4. 数字排列将1、2、3、4、5、6、7、8、9这九个数字分别填入以下的方框中,使得相邻的两个数字之和为偶数。

每个数字只能使用一次。

□□□□□□□□□解析:填入以下数字即可满足条件:1234567895. 数轴运动一只蚂蚁在数轴上从0点开始向右爬,并且每次只能移动1个单位。

如果这只蚂蚁每次以等概率向左或向右爬,那么在第5次移动后,它距离0点的期望距离是多少?解析:蚂蚁在第1次、第3次、第5次移动时一定是在偶数点上,而第2次、第4次移动时一定是在奇数点上。

所以在第5次移动后,它距离0点的期望距离为0。

6. 周长比较一个矩形的长和宽之比是3:2,另一个矩形的长和宽之比是2:3。

完整版)有理数专题训练

完整版)有理数专题训练

完整版)有理数专题训练专题一有理数的概念及其应用例1:已知a,b互为相反数,c,d互为倒数,x的绝对值是2,求(a+b+c*d)*m-cd的值。

解:根据题意可得a=-b,c=1/d,|x|=2,代入原式得:a+b+c*d)*m-cd=(0+c*d)*m-cd=cd*(m-1)练:已知a,b互为相反数,c,d互为倒数,|x|=3,求代数式a+b-cdx+x/3的值。

解:根据题意可得a=-b,c=1/d,|x|=3,代入原式得:a+b-cdx+x/3=-2b-cd*x+x/3=-2b-cd*3+x/3=-2b-3c+x/3巩固:已知a,b互为相反数,c,d互为倒数,x的平方等于4,试求x^2-cd*x+(a+b)*2010-cd*2009的值。

解:根据题意可得a=-b,c=1/d,x^2=4,代入原式得:x^2-cd*x+(a+b)*2010-cd*2009=4-cd*x-2b+2010c-2009cd=2010c-2b-3cd专题二非负数的性质例2:若x+1+(y-2)^2=0,求xy的值。

解:由非负数的性质可知,(y-2)^2>=0,所以x+1<=0,即x<=-1.又因为x+1+(y-2)^2=0,所以(y-2)^2=-(x+1)<=0,所以y=2.因此,xy=-2.练:已知有理数满足a-1+b+3+3c-1=0,求(a*b*c)^(1/7)*2011的值。

解:整理得a+b+3c=1,代入原式得:a*b*c)^(1/7)*2011=(a*b*c)^(1/7)*(a+b+3c)^2011=(a*b*c)^(1/7)巩固:若x-1与(y+2)^2互为相反数,求x^2015+y^3的值。

解:由非负数的性质可知,(y+2)^2>=0,所以x-1<=0,即x<=1.又因为x-1=-(y+2)^2,所以(y+2)^2=1-x<=2,所以y<=sqrt(2)-2.因此,x^2015+y^3<=1+(sqrt(2)-2)^3,具体值需要进一步计算。

有理数应用题经典例题

有理数应用题经典例题

有理数应用题经典例题一、温度变化问题1. 例题- 某地一天中午12时的气温是7℃,过5小时气温下降了4℃,又过7小时气温又下降了4℃,第二天0时的气温是多少?2. 解析- 中午12时过5小时后的气温为7 - 4=3℃。

- 再过7小时(此时是第二天0时)后的气温为3-4 = - 1℃。

二、海拔高度问题1. 例题- 某一矿井的示意图如下,以地面为基准,A点的高度是+4.2米,B、C两点的高度分别是 - 15.6米与 - 30.5米。

A点比B点高多少?比C点呢?2. 解析- A点比B点高的高度为A - B=( + 4.2)-(-15.6)=4.2 + 15.6 = 19.8米。

- A点比C点高的高度为A - C=( + 4.2)-(-30.5)=4.2+30.5 = 34.7米。

三、行程问题(正负数表示方向)1. 例题- 一辆汽车沿着一条南北方向的公路来回行驶。

某一天早晨从A地出发,晚上到达B地。

约定向北为正,向南为负,当天记录如下(单位:千米):+18.3, - 9.5,+7.1, - 14, - 6.2,+13, - 6.8, - 8.5。

- (1)B地在A地何处,相距多少千米?- (2)若汽车行驶每千米耗油0.2升,那么这一天共耗油多少升?2. 解析- (1)将所有数相加:( + 18.3)+(-9.5)+( + 7.1)+(-14)+(-6.2)+( + 13)+(-6.8)+(-8.5)- =18.3 - 9.5+7.1 - 14 - 6.2 + 13 - 6.8 - 8.5- =(18.3+7.1 + 13)-(9.5 + 14+6.2+6.8 + 8.5)- =38.4 - 45- =- 6.6千米。

- 所以B地在A地正南方向,相距6.6千米。

- (2)汽车行驶的总路程为|+18.3|+|-9.5|+|+7.1|+|-14|+|-6.2|+|+13|+|-6.8|+|-8.5|- =18.3 + 9.5+7.1+14+6.2 + 13+6.8+8.5- =83.4千米。

有理数的实际应用题专项训练(30题)(原卷版)

有理数的实际应用题专项训练(30题)(原卷版)

专题2.5 有理数的实际应用题专项训练(30题)考卷信息:本卷试题共30道大题,本卷试题针对性较高,覆盖面广,选题有深度,涵盖了有理数实际应用题的所有情况!一.解答题(共30小题)1.(2022秋•淇县期末)在今年720特大洪水自然灾害中,一辆物资配送车从仓库O出发,向东走了4千米到达学校A,又继续走了1千米到达学校B.然后向西走了9千米到达学校C,最后回到仓库O.解决下列问题:(1)以仓库O为原点,以向东为正方向,用1个单位长度表示1千米,画出数轴.并在数轴上表示A、B、C的位置;(2)结合数轴计算:学校C在学校A的什么方向,距学校A多远?(3)若该配送车每千米耗油升,在这次运送物资回仓的过程中共耗油多少升?2.(2022秋•望城区期末)出租车司机小刘某天上午营运全是在南北走向的某条大街上进行的,如果规定向北为正,向南为负,他这天上午的行程是(单位:千米):+12,﹣8,+10,﹣13,+10,﹣12,+6,﹣15,+11,﹣14.(1)将最后一名乘客送达目的地时,小张距上午出发点的距离是多少千米?在出发点的什么方向?(2)若汽车耗油量为升/千米,出车时,邮箱有油升,若小张将最后一名乘客送达目的地,再返回出发地,问小张今天下午是否需要加油?若要加油至少需要加多少才能返回出发地?若不用加油,请说明理由.3.(2022春•香坊区期末)如图是某一条东西方向直线上的公交线路的部分路段,西起A站,东至L站,途中共设12个上下车站点,某天,小明参加该线路上的志愿者服务活动,从C站出发,最后在某站结束服务活动.如果规定向东为正,向西为负,当天的乘车站数按先后顺序依次记录如下(单位:站):+5,﹣3,+4,﹣5,+8,﹣2,+1,﹣3,﹣4,+1.(1)请通过计算说明结束服务的“某站”是哪一站?(2)若相邻两站之间的平均距离约为千米,求这次小明志愿服务期间乘坐公交车行进的总路程约是多少千米?(3)已知油箱中要保持不低于10%的油量才能保证汽车安全行驶,若小明开始志愿服务活动时该汽车油量占油箱总量的11,每行驶1千米耗油升,活动结束时油量恰好能保证汽车安全行驶,则该汽车油箱能70存储油多少升?4.(2022秋•濮阳期末)如表为本周内某农产品每天的批发价格比前一天的涨跌情况(上周末该农产品的批发价格为元/斤).星期一二三四五六日与前一天的价格涨跌情况(元)﹣﹣﹣注:正号表示价格比前一天上涨,负号表示价格比前一天下跌.(1)本周哪天该农产品的批发价格最高,批发价格是多少元/斤?本周哪天该农产品的批发价格最低,批发价格是多少元/斤?(2)与上周末相比,本周末该农产品的批发价格是上升了还是下降了?变化了多少?5.(2022秋•莱西市期末)一辆公共汽车从起点站开出后,途中经过6个停靠站,最后到达终点站.下表记录了这辆公共汽车全程载客变化情况,其中正数表示上车人数.停靠站起点站中间第1站中间第2站中间第3站中间第4站中间第5站中间第6站终点站上下车人数+21﹣3+8﹣4+2+4﹣7+1﹣9+6﹣7﹣12(1)中间第4站上车人数是人,下车人数是人;(2)中间的6个站中,第站没有人上车,第站没有人下车;(3)中间第2站开车时车上人数是人,第5站停车时车上人数是人;(4)从表中你还能知道什么信息?6.(2022秋•玉门市期末)随着人们生活水平的提高,家用轿车越来越多地进入家庭,小亮家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km为标准,多于50km的记为“+”,不足50km的记为“﹣”,刚好50km的记为“0”.第一天第二天第三天第四天第五天第六天第七天路程(km)﹣7﹣12﹣130﹣17+40+9(1)请求出这7天中平均每天行驶多少千米?(2)若每行驶50km需用汽油4升,汽油价元/升,计算小亮家这7天的汽油费用大约是多少元?7.(2022秋•龙泉驿区校级期中)出租车司机小王某天下午营运全是在南北走向的公路上进行的.如果向南记作“+”,向北记作“﹣”,他这天下午行车情况如下:(单位:千米)﹣2,+5,﹣8,﹣3,+6,﹣2(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若出租车每公里耗油升,求小王回到出发地共耗油多少升?(3)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米(不足1千米按1千米计算)还需收4元钱,小王今天是收入是多少元?8.(2022秋•韩城市期中)某集团公司对所属甲、乙两分厂上半年经营情况记录如下:(其中“+”表示盈利,“﹣”表示亏损,单位:亿元)月份一月份二月份三月份四月份五月份六月份甲厂﹣﹣0乙厂﹣﹣﹣0(1)计算二月份乙厂比甲厂多亏损多少亿元?(2)分别计算甲、乙两个工厂上半年平均每月盈利或亏损多少亿元?9.(2022秋•榆次区期中)中秋节时,小雨陪妈妈一起去购买月饼,妈妈买了一盒某品牌月饼(共计6枚).回家后他仔细地看了标签和包装盒上的有关说明,然后把6枚月饼的质量称重后统计列表如下(单位:克):第n枚123456质量71(1)小雨为了简化运算,选取了一个恰当的标准质量,依据这个标准质量,他把超出的部分记为正,不足的部分记为负,列出下表(不完整).请把下列表格补充完整:第n枚123456质量﹣+1(2)小雨看到包装说明上标记的总质量为(420±2)克,他告诉妈妈买的月饼在总质量上是合格的.你知道为什么吗?请通过计算说明.10.(2022秋•青岛期中)2021年7月,我国河南省由于受台风灯因素的影响,出现了千年难遇的特大洪涝灾害.国家防总部署强降雨防范,各级水利部门加强了检测预报预警,及时发布洪水预警信息,为调度决策、防范应对和抢险救灾提供了有力支撑.下表是我国河南省某水库一周内的水位变化情况单位:(米)星期一二三四五六日水位记录﹣﹣﹣(注:该水库的警戒水位是米,表格中“+”表示比警戒水位高,“﹣”表示比警戒水位低)(1)该水库本周水位最高的一天是星期,这一天的实际水位是米.(2)若规定水位比前一天上升用“+”,比前一天下降用“﹣”,不升不降用“0”,请补全下面的本周水位变化表:单位(米)星期一二三四五六日水位变化﹣﹣1(3)与上周末相比,本周末该水库水位是上升了,还是下降了?变化了多少?11.(2022秋•阜阳月考)某学习平台开展打卡集点数的活动,所获得点数可以换学习用品.规则如下:首日打卡领3个点数,连续打卡每日再递增3个,每日可领取的点数最高为15个.若中断,则下次打卡作首日打卡,点数从3个重新开始领取.(1)按规则,第1天打卡领取3个,若连续打卡,则第2天领取6个,第5天领取个,第6天领取个,连续打卡一周,一共领取点数个;(2)小琦同学从9月1日开始打卡,以后连续打卡不中断,结果一共领取了255个点数,问:他连续打卡了几天?(3)小冉同学从9月1日开始坚持每天打卡,在某天领取了15个点数后,因故有2天(不连续)忘记打卡,到9月15日打卡完成时,她发现自己一共领取了108个点数,请直接写出她没有打卡日期的所有可能结果.12.(2022秋•陆川县期中)登山队员傅叔叔以二号营地为基准,向距二号营地500米的顶峰冲击,由于天气骤变,攀岩过程中不得不几次下撤躲避强高空风.记傅叔叔向上爬升的海拔高度为正数,向下撤退时下降的海拔高度为负数,行进过程记录如下:(单位:米)+260,﹣50,+90,﹣20,+80,﹣25,+105.(1)傅叔叔最终有没有登上顶峰?若没有,距顶峰还有多少米?(2)这次登山过程中,每上升或下降一米,平均消耗8千卡的能量.傅叔叔这天共消耗了多少能量?(3)登山消耗的能量预估为:一千克身体重量(体重或负重),一天大约需要60~63千卡的能量,已知傅叔叔负重14千克,在(2)的条件下,请你计算傅叔叔的体重.13.(2022秋•玄武区期中)某景区旅游观光小火车从起点站出发途中停靠A、B、C、D四站,到达终点站后,乘客全部下车.某小火车从起点站到终点站,每一站乘客上、下车人数(单位:个)如表.起点站A站B站C站D站终点站上车的人数281715680下车的人数089329(1)将表格填写完整;(2)本趟小火车行驶在哪两个站之间,车上的乘客人数最多:;A.起点站与A站;B.A站与B站;C.B站与C站;D.C站与D站(3)若观光小火车的收费标准为每人每站5元,这趟小火车能收入多少元?14.(2022秋•威远县校级期中)某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km)第1批第2批第3批第4批第5批5km2km﹣4km﹣3km6km (1)接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km收费8元,超过3km的部分按每千米加元收费,在这过程中该驾驶员共收到车费多少元?15.(2022秋•河南月考)2021年5月20日,信阳市第六届“市长杯”校园足球比赛在信阳大别山高级中学拉开帷幕.某场比赛中,根据场上攻守形势,守门员在球门前来回跑动,如果以球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,守门员的跑动情况记录如下(单位:m):+10,﹣2,+5,+12,﹣6,﹣9,+4,﹣14.(假定开始计时时,守门员正好在球门线上)(1)守门员最后是否回到球门线上?(2)守门员离开球门线的最远距离达多少米?(3)如果守门员离开球门线的距离超过10m(不包括10m),则对方球员挑射极可能造成破门.问:当守门员在记录的8个点位上时,对方球员有几次挑射破门的机会?简述理由.16.(2022秋•游仙区校级月考)为了庆祝中华人民共和国成立72周年,空军航空开放活动在其机场举行,某特技飞行队做特技表演时,其中一架J31型飞机起飞千米后的高度变化如表:高度变化记作上升千米千米下降千米千米上升千米千米下降千米千米(1)完成上表;(2)飞机完成上述四个表演动作后,飞机离地面的高度是多少千米?(3)已知飞机平均上升1千米需消耗5升燃油,平均下降1千米需消耗3升燃油,那么这架飞机在做完这4个动作表演过程中,一共消耗了多少升燃油?17.(2022秋•内江期末)2020年的“新冠肺炎”疫情的蔓延,市场上医用口罩销量大幅增加,某口罩加工厂为满足市场需求,计划每天生产6000个,由于各种原因与实际每天生产量相比有出入,下表是三月份某一周的生产情况(超产为正,减产为负,单位:个).星期一二三四五六日增减+150﹣200+300﹣100﹣50+250+150(1)产量最多的一天比产量最少的一天多生产多少个;(2)与原计划产量比较,这周产量超产或减产多少个?(3)若口罩加工厂实行计件工资制,每生产一个口罩元,则本周口罩加工厂应支付工人的工资总额是多少元?18.(2022秋•中原区校级期中)“人民至上,生命至上”,全国人民团结一致抗击新冠疫情,成效显著,全国经济迅速复苏,2020年“十一”8天假期(1日﹣8日),实现国内旅游收入亿元,厉害了我的国!“十一”期间,某风景区在后7天中每天游客的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数);若10月1日的游客人数为万人.日期10月2日10月3日10月4日10月5日10月6日10月7日10月8日人数变化﹣﹣﹣(万人)(1)10月2日的游客人数为(万人).(2)请判断这8天内游客人数最多的是哪天?请说明理由.(3)此风景区一方面给广大市民提供一个休闲游玩的好去处;另一方面拉动了内需,促进了消费.若在此风景区每人平均消费100元,请求出“十一”8天假期所有游客的总消费是多少万元?19.(2022秋•花都区期末)农历新年来临之际,某公益团体购买了10箱苹果赠送给敬老院,苹果每箱以15千克为标准,称重记录如下(超过标准的千克数为正数)(单位:千克),﹣1,,0,,﹣,1,﹣,﹣,这10箱苹果一共多少千克?20.(2022秋•鞍山期末)某玩具厂计划一周生产某种玩具700件,平均每天生产100件,但由于种种原因,实际每天生产量与计划量相比有出入.如表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减+5﹣2﹣4+13﹣6+6﹣3(1)根据记录的数据可知该厂星期四生产玩具件;(2)产量最多的一天比产量最少的一天多生产玩具件;(3)根据记录的数据可知该厂本周实际生产玩具件;(4)该厂实行每周计件工资制,每生产一件玩具可得20元,若超额完成任务,则超过部分每件另奖5元;少生产一件扣4元,那么该厂工人这一周的工资总额是多少元?21.(2022秋•永城市期末)旭东中学附近某水果超市最近新进了一批百香果,每斤8元,为了合理定价,在第一周试行机动价格,卖出时每斤以10元为标准,超出10元的部分记为正,不足10元的部分记为负,超市记录第一周百香果的售价情况和售出情况:星期一二三四五六日每斤价格相对于标准价格(元)+1﹣2+3﹣1+2+5﹣4售出斤数2035103015550(1)这一周超市售出的百香果单价最高的是星期,最高单价是元.(2)这一周超市出售此种百香果的收益如何?(盈利或亏损的钱数)(3)超市为了促销这种百香果,决定从下周一起推出两种促销方式:方式一:购买不超过5斤百香果,每斤12元,超出5斤的部分,每斤打8折;方式二:每斤售价10元.于老师决定买35斤百香果,通过计算说明用哪种方式购买更省钱.22.(2022秋•揭西县期中)下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京时间早的小时数).城市时差巴黎﹣7东京+1芝加哥﹣14(1)如果现在北京时间是晚上8点,那么现在东京时间是多少?(2)如果现在北京时间是晚上8点,那么小明现在给在巴黎的朋友打电话,你认为合适吗?说明理由.23.(2022秋•青羊区校级月考)海峰上星期六(周日股市不交易)买进某公司股票1000股,每股30元,下表为本周内每日股票的涨跌情况:星期一二三四五六单股涨跌(元)+4﹣1﹣﹣6+2(1)星期三收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价是多少元?(3)已知海峰买进股票时付了0.15%的手续费,卖出时需付成交额的0.15%的手续费和0.1%的交易税,如果海峰在星期六收盘前将全部股票卖出,他的收益为多少元?24.(2022秋•温江区月考)一位病人发高烧进医院治疗,医生给他开了药、挂了水,同时护士每隔1小时为病人测体温,及时了解病人的好转情况.下表记载的是护士对病人测体温的变化数据:时间7:008:009:0010:0011:0012:0013:0014:0015:00体温(与前一次比较)升降降降降升降降降0注:病人早晨进院时医生测得病人体温是℃.问:(1)把上升的体温记为正数,下降的体温记为负数,请填写上表;(2)病人什么时候体温达到最高,最高体温是多少?(3)病人中午12点时体温多高?(4)病人几点后体温稳定正常(正常体温是37℃).25.(2022秋•米易县期末)2020年“双十一”期间某淘宝商家提前搞促销活动,计划平均每天销售某品牌学习机100台,但由于种种原因,实际每天的销售量与计划量相比有出入.如表是双十一的一周销售倩况(超额记为正、不足记为负):星期一二三四五六日与计划量的差值+2﹣3+25+8﹣4+2﹣6(1)根据记录的数据,计算该店一周日销量最多比最少多多少台?(2)本周实际销售总量达到了计划数量吗,通过计算说明理由.(3)该店实行每日按销售台数计算工资,每销售一台学习机可得10元,若超额完成任务,则超过部分每台另奖20元;少销售一台扣30元,那么该店铺的销售人员这一周的工资总额是多少元?26.(2022秋•饶平县校级期末)某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(当天运进大米8吨,记作+8吨;当天运出大米15吨,记作﹣15吨.)某粮仓大米一周进出情况表(单位:吨)星期一星期二星期三星期四星期五星期六星期日﹣32+26﹣23﹣16m+42﹣21(1)若经过这一周,该粮仓存有大米88吨,求m的值,并说明星期五该粮仓是运进还是运出大米,运进或运出大米多少吨?(2)若大米进出库的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用.27.(2022秋•简阳市期中)某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):星期一二三四五六日增减+5﹣2﹣4+13﹣10+16﹣9(1)根据记录可知前三天共生产辆;(2)产量最多的一天比产量最少的一天多生产辆;(3)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?28.(2022秋•瑶海区期中)今年“十•一”黄金周期间,西安曲江遗址公园风景区在8天假期中每天旅游的人次数变化如下表(正数表示比前一天多的人次数,负数表示比前一天少的人次数):(单位:万人),若9月30日的游客人次数记为万,日期1日2日3日4日5日6日7日8日人次数变化﹣﹣﹣﹣(1)10月1日的游客人次数是多少?(2)请判断8天内游客人次数最多的是哪天?最少的是哪天?他们相差多少万人?(3)求今年黄金周期间游客在该地的总人次数.29.(2022秋•夹江县期末)某股民上周五买进甲公司股票1000股,每股20元,星期六、星期天股市不交易,下表是本周内每日该股票的涨跌情况(单位:元):星期一二三四五每股跌价+3﹣1﹣2(1)该股票在本周星期五收盘时,收盘价是每股多少元?(2)该股票在本周内的最高价是每股多少元?最低价是每股多少元?(3)已知买进股票时需付买入成交额1.5%的手续费,卖出股票时还需付卖出成交额1.5%的手续费和卖出成交额1%的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民买卖这只股票的收益情况如何?(4)如果该股民在本周内的最高价位时卖出这只股票,那么他还可以多获利多少?30.(2022秋•海陵区校级月考)下表列出了国外几个城市与首都北京的时差(带正号的表示同一时刻比北京时间早的时数),如北京时间的上午10:00时,东京时间的10点已过去了1小时,现在已是10+1=11:00.(1)如果现在是北京时间9:00,那么现在的纽约时间是多少?(2)此时(北京时间9:00)小明想给远在巴黎的姑妈打电话,你认为合适吗?为什么?(3)如果现在是芝加哥时间上午7:00,那么现在北京时间是多少?城市时差/时纽约﹣13巴黎﹣7东京+1芝加哥﹣14。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数应用题专项练习30题(教师版)组题:秦老师1.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在A处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.(1)A处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油a升,这一天上午共耗油多少升?解:(1)∵+5﹣4+3﹣7+4﹣8+2﹣1=﹣6,又∵规定向北方向为正,∴A处在岗亭的南方,距离岗亭6千米.(2)∵|+5|+|﹣4|+|+3|+|﹣7|+|+4|+|﹣8|+|+2|+|﹣1|=34,又∵摩托车每行驶1千米耗油a升,∴这一天上午共耗油34a升.2.某工厂生产一批零件,根据要求,圆柱体的内径可以有0.03毫米的误差,抽查5个零件,超过规定内径的记作正数,不足的记作负数,检查结果如下:+0.025,﹣0.035,+0.016,﹣0.010,+0.041(1)指出哪些产品合乎要求?(2)指出合乎要求的产品中哪个质量好一些?解:(1)第一、三、四个产品符合要求,即(+0.025,+0.016,﹣0.010).(2)其中第四个零件(﹣0.010)误差最小,所以第四个质量好些3.某奶粉每袋的标准质量为454克,在质量检测中,若超出标准质量2克,记作为+2克,若质量低于3克以上的,则这袋奶粉为不合格,现在抽取10袋样品进行质量检测,结果如下(单位:克).袋号12345678910记作﹣203﹣4﹣3﹣5+4+4﹣6﹣3(1)这10袋奶粉中有哪几袋不合格?(2)质量最多的是哪袋?它的实际质量是多少?(3)质量最少的是哪袋?它的实际质量是多少?解:(1)4、6、9号袋不合格;(2)质量最多是7,8号袋,它的实际质量是454+4=458克;(3)质量最少是9号袋,它的实际质量是454﹣6=448克4.蜗牛从某点0开始沿一东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬过的各段路程依次为(单位:厘米):+4,﹣3,+10,﹣9,﹣6,+12,﹣10.①求蜗牛最后的位置在点0的哪个方向,距离多远?②在爬行过程中,如果每爬1厘米奖励一粒芝麻,则蜗牛一共得到多少粒芝麻?③蜗牛离开出发点0最远时是多少厘米?解:①(+4)+(﹣3)+(+10)+(﹣9)+(﹣6)+(+12)+(﹣10)=(﹣3)+(﹣9)+(﹣6)+(+4)+(+12)+(+10)+(﹣10)=(﹣18)+(+16)+0=﹣2(厘米),所以蜗牛最后的位置在点0西侧,距离点0为2厘米;②|+4|+|﹣3|+|+10|+|﹣9|+|﹣6|+|+12|+|﹣10|=4+3+10+9+6+12+10=54(厘米),所以蜗牛一共得到54料芝麻;③如图所示,最远时为11厘米.5.某巡警车在一条南北大道上巡逻,某天巡警车从岗亭A处出发,规定向北方向为正,当天行驶纪录如下(单位:千米)+10,﹣9,+7,﹣15,+6,﹣5,+4,﹣2(1)最终巡警车是否回到岗亭A处?若没有,在岗亭何方,距岗亭多远?(2)摩托车行驶1千米耗油0.2升,油箱有油10升,够不够?若不够,途中还需补充多少升油?解:(1)﹣10﹣9+7﹣15+6﹣5+4﹣2=﹣24,∴最终巡警车在岗亭A处南方24千米处.(2)行驶路程=10+9+7+15+6+5+4+2=58千米,需要油量=58×0.2=11.6升,故油不够,需要补充 1.6升6.某市公交公司在一条自西向东的道路旁边设置了人民公园、新华书店、实验学校、科技馆、花园小区站点,相邻两个站点之间的距离依次为3km、1.5km、2km、3.5km.如果以新华书店为原点,规定向东的方向为正,向西的方向为负,设图上1cm长的线段表示实际距离1km.请画出数轴,将五个站点在数轴上表示出来.解:数轴如图所示:7.生活与应用:在一条笔直的东西走向的马路上,有少年宫、学校、超市、医院四家公共场所.已知少年宫在学校东300米,超市在学校西200米,医院在学校东500米.(1)你能利用所学过的数轴知识描述它们的位置吗?(2)小明放学后要去医院看望生病住院的奶奶,他从学校出发向西走了200米,又向西走了﹣700米,你说他能到医院吗?解:(1)(2)(﹣200)+700=500米,则他在医院的东500米,他能到医院8.东方红中学位于东西方向的一条路上,一天我们学校的李老师出校门去家访,他先向西走100米到聪聪家,再向东走150米到青青家,再向西走200米到刚刚家,请问:(1)如果把这条路看作一条数轴,以向东为正方向,以校门口为原点,请你在这条数轴上标出聪聪家与青青家的大概位置(数轴上一格表示50米).(2)聪聪家与刚刚家相距多远?(3)聪聪家向西20米所表示的数是多少?(4)你认为可用什么办法求数轴上两点之间的距离?解:(1)依题意可知图为:(2)∵|﹣100﹣(﹣150)|=50(m),∴聪聪家与刚刚家相距50米.(3)聪聪家向东20米所表示的数是﹣100+20=﹣80.(4)求数轴上两点间的距离可用右边的点表示的数减去左边的点表示的数9.小明到坐落在东西走向的大街上的文具店、书店、花店和玩具店购物,规定向东走为正.已知小明从书店购书后,走了100m到达玩具店,再走﹣65m到达花店,又继续走了﹣70m到达文具店,最后走了10m到达公交车站.(1)书店距花店有多远?(2)公交车站在书店的什么位置?(3)若小明在四个店各逗留10min,他的步行速度大约是每分钟35m,小明从书店购书一直到公交车站一共用了多少时间?解:如图所示:(1)书店距花店35米;(2)公交车站在书店的西边25米处;(3)小明所走的总路程:100+|﹣65|+|﹣70|+10=245(米),245÷35=7(分钟),7+4×10=47(分钟),答:小明从书店购书一直到公交车站一共用了47分钟.10.王老师到坐落在东西走向的阜城大街上的文具店、书店、花店和玩具店购物,规定向东为正.已知王老师从书店购书后,走了110m到达玩具店,再走﹣75m到达花店,又继续走了﹣50m到达文具店,最后走了25m到达公交车站牌.(1)书店距花店有多远?(2)公交车站牌在书店的什么位置?(3)若王老师在四个店各逗留10min,他的步行速度大约是每分钟26m,王老师从书店购书一直到公交车站一共用了多少时间?10.如图所示:(1)书店距花店35米;(2)公交车站牌在书店的东边10米处;(3)王老师所走的总路程:110+|﹣75|+|﹣50|+25=260(米),260÷26=10(分钟),10+4×10=50(分钟).答:王老师从书店购书一直到公交车站一共用了50分钟.11.已知蜗牛从A点出发,在一条数轴上来回爬行,规定:向正半轴运动记作“+”,向负半轴运动记作“﹣”,从开始到结束爬行的各段路程(单位:cm)依次为:+7,﹣5,﹣10,﹣8,+9,﹣6,+12,+4(1)若A点在数轴上表示的数为﹣3,则蜗牛停在数轴上何处,请通过计算加以说明;(2)若蜗牛的爬行速度为每秒,请问蜗牛一共爬行了多少秒?解:(1)依题意得﹣3+(+7)+(﹣5)+(﹣10)+(﹣8)+(+9)+(﹣6)+(+12)+(+4)=0,∴蜗牛停在数轴上的原点;(2)(|+7|+|﹣5|+|﹣10|+|﹣8|+|+9|+|+12|+|+4|+|﹣6|)÷=122cm.∴蜗牛一共爬行了122秒12.上午8点,某人驾驶一辆汽车从A地出发,向东记为正,向西记为负.记录前4次行驶过程如下:﹣15公里,+25公里,﹣20公里,+30公里,若要汽车最后回到A地,则最后一次如何行驶?已知汽车行驶的速度为55千米/小时,在这期间他办事花去2小时,问他回到A地的时间.解:汽车共行驶15+25+20+30+20=110公里,用时为:110÷55=2,∴共用时2+2=4小时∴回到A地的时间为8+4=12点13.有一只小虫从某点出发,在一条直线上爬行,若规定向右爬行的路程记为正,向左爬行的路程记为负,小虫爬行各段路程依次记为(单位:厘米):﹣5,﹣4,+10,﹣3,+8.(1)小虫最后离出发点多少厘米?(2)如果小虫在爬行过程中,每爬行一厘米就得到一粒芝麻,问小虫最终一共可得到多少粒芝麻?(3)若小虫爬行的速度始终不变,并且爬完这段路程用了6分钟,求小虫的爬行速度是多少?解:(1)(﹣5)+(﹣4)+10+(﹣3)+8=[(﹣5)+(﹣4)+(﹣3)]+(10+8)=﹣12+18=6(厘米).答:小虫最后离出发点6厘米.(2)|﹣5|+|﹣4|+|10|+|﹣3|+|8|=30.答:小虫最终一共可得到30粒芝麻.(3)由(2)知:小虫共爬行了30厘米,故其爬行速度为:30÷6=5(厘米/分钟).答:小虫的爬行速度为5厘米/分钟14.一个小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程为负数,爬行的路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)小虫最后是否能回到出发点O?(2)小虫离开出发点O最远时是多少厘米?(直接写出结果即可.)(3)在爬行过程中,如果每爬1厘米奖励两粒芝麻,则小虫共可得多少粒芝麻?解:(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=5﹣3+10﹣8﹣6+12﹣10,=5+10+12﹣3﹣8﹣6﹣10=27﹣27=0,∴小虫最后可以回到出发点;(2)+5+(﹣3)=2,(+5)+(﹣3)+(+10)=12,(+5)+(﹣3)+(+10)+(﹣8)=4,(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)=﹣2,(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+12=10;所以,小虫离开出发点O最远时是12厘米;(3)(|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|)×2=(5+3+10+8+6+12+10)×2=54×2=108,所以小虫共可得108粒芝麻表示成绩15.体育课全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”大于18秒,“﹣”表示成绩小于18秒.﹣1+0.80﹣1.2﹣0.10+0.5﹣0.6这组女生的达标率为多少平均成绩为多少秒?解:由题意可知,达标的人数为6人,所以达标率6÷8×100%=75%.平均成绩为:18+=18+(﹣0.2)=17.8(秒)16.体育课上对七年级(1)班的8名女生做仰卧起坐测试,若以16次为达标,超过的次数用正数表示,不足的次数用负数表示.现成绩抄录如下:+2,+2,﹣2,+3,+1,﹣1,0,+1.问:(1)有几人达标?(2)平均每人做几次?解:(1)达标的人数6人(2)八名女生所做的总次数是:(16+2)+(16+2)+(16﹣2)+(16+3)+(16+1)+(16﹣1)+16+(16+1)=134,所以平均次数是=16.7517.一振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位mm):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求停止时所在位置距A点何方向,有多远?(2)如果每毫米需时0.02秒,则共用多少秒?解:(1)根据题意可得:向右为正,向左为负,由8次振动记录可得:10﹣9+8﹣6+7.5﹣6+8﹣7=5.5,∴停止时所在位置在A点右边 5.5mm处;(2)一振子从一点A开始左右来回振动8次,共10+9+8+6+7.5+6+8+7=61.5mm.如果每毫米需时0.02秒。

相关文档
最新文档