计量经济学简答题 (2)

合集下载

计量经济学简答题

计量经济学简答题

1.为什么在计量经济模型中要引入随机扰动项?影响因素过多模型中的X不能完全解释Y。

2.什么是内生变量和外生变量,有什么联系?内生变量,是指模型要解释的变量。

外生变量指由模型以外的因素所决定的已知变量,它是模型据以建立的外部条件。

外生变量决定内生变量,外生变量的变化会引起内生变量的变化。

3.什么是线性模型和非线性模型?线性:所有的变量都是一次的,非线性:模型中的方程中的变量至少有1个是以高于1次方的形式出现的4.计量经济学方法研究经济问题的完整步骤是什么?1)建立模型2)估计参数 3)验证理论4)使用模型。

5.对随机扰动项作了哪些基本(古典)假定?这些假定有何作用?1、条件均值假设;2、严格外生性假设;3、同方差假设;其余两个假设(随机抽样和非完全线性相关)与随机误差项无关。

假设1、2是对参数估计一致性的要求,即中心极限定理的规定;假设3是对假设检验做的基本要求,不满足则假设检验失效6.在多元线性回归模型估计中,判定系数2R可用于衡量拟合优度,为什么还要计算修正判定系数2R?因为随着模型中解释变量的增多,人们认为要使模型拟合的好,就必须增加解释变量。

但是,在样本容量一定的情况下,增加解释变量必定使得待估参数的个数增加,从而损失自由度,而实际中如果引入的解释变量并非必要的话可能会产生很多问。

为此用修正的决定系数来估计模型对样本观测的拟合优度。

7.修正判定系数2R?回归参数的显著性检验(t检验)和回归方程的显著性检验(F检验)的区别是什么?是为了克服多重决定系数会随着解释变量的增加而增大的缺陷提出来的,(1)方程的显著性检验,旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显著成立作出推断。

(2)方程的总体线性关系显著每个解释变量对被解释变量的影响都是显著的。

(3)因此,必须对每个解释变量进行显著性检验,以决定是否作为解释变量被保留在模型中,这一检验是由对变量的 t 检验完成的。

8.回归模型的总体显著性检验与参数显著性检验相同吗?是否可以互相替代?答:t检验与F 检验都是检验解释变量对被解释变量的显著性,不同的是t检验是检验单个解释变量的显著性,而F检验则检验的是所有解释变量对被解释变量的显著性,是对整体拟合的一种检验。

计量经济学名词解释和简答题

计量经济学名词解释和简答题

计量经济学 第一部分:名词解释第一章1、模型:对现实的描述和模拟。

2、广义计量经济学:利用经济理论、统计学和数学定量研究经济现象的经济计量方法的统称,包括回归分析方法、投入产出分析方法、时间序列分析方法等。

3、狭义计量经济学:以揭示经济现象中的因果关系为目的,在数学上主要应用回归分析方法。

第二章1、总体回归函数:指在给定Xi 下Y 分布的总体均值与Xi 所形成的函数关系(或者说总体被解释变量的条件期望表示为解释变量的某种函数)。

2、样本回归函数:指从总体中抽出的关于Y ,X 的若干组值形成的样本所建立的回归函数。

3、随机的总体回归函数:含有随机干扰项的总体回归函数(是相对于条件期望形式而言的)。

4、线性回归模型:既指对变量是线性的,也指对参数β为线性的,即解释变量与参数β只以他们的1次方出现。

5、随机干扰项:即随机误差项,是一个随机变量,是针对总体回归函数而言的。

6、残差项:是一随机变量,是针对样本回归函数而言的。

7、条件期望:即条件均值,指X 取特定值Xi 时Y 的期望值。

8、回归系数:回归模型中βo ,β1等未知但却是固定的参数。

9、回归系数的估计量:指用01,ββ等表示的用已知样本提供的信息所估计出来总体未知参数的结果。

10、最小二乘法:又称最小平方法,指根据使估计的剩余平方和最小的原则确定样本回归函数的方法。

11、最大似然法:又称最大或然法,指用生产该样本概率最大的原则去确定样本回归函数的方法。

12、估计量的标准差:度量一个变量变化大小的测量值。

13、总离差平方和:用TSS 表示,用以度量被解释变量的总变动。

14、回归平方和:用ESS 表示:度量由解释变量变化引起的被解释变量的变化部分。

15、残差平方和:用RSS 表示:度量实际值与拟合值之间的差异,是由除解释变量以外的其他因素引起的被解释变量变化的部分。

16、协方差:用Cov (X ,Y )表示,度量X,Y 两个变量关联程度的统计量。

计量经济学简答题整理

计量经济学简答题整理

简答题一、计量经济学的步骤答:选择变量和数学关系式 —— 模型设定 确定变量间的数量关系 —— 估计参数 检验所得结论的可靠性 —— 模型检验 作经济分析和经济预测 —— 模型应用 二、模型检验答:所谓模型检验,就是要对模型和所估计的参数加以评判,判定在理论上是否有意义,在统计上是否有足够的可靠性。

对计量经济模型的检验主要应从以下四方面进行:1、经济意义的检验。

2、统计推断检验。

3、计量经济学检验。

4、模型预测检验。

三、模型应用 答:(1)经济结构分析,是指用已经估计出参数的模型,对所研究的经济关系进行定量的考查,以说明经济变量之间的数量比例关系。

(2)经济预测,是指利用估计了参数的计量经济模型,由已知的或预先测定的解释变量,去预测被解释变量在所观测的样本数据以外的数值。

(3)政策评价,是利用计量经济模型对各种可供选择的政策方案的实施后果进行模拟测算,从而对各种政策方案作出评价。

(4)检验与发展经济理论,是利用计量经济模型去验证既有经济理论或者提出新的理论。

四、普通方法的思想和它的计算方法答:计量经济学研究的直接目的是确定总体回归函数12,然而能够得到的知识来自总体的若干样本的观测值,要用样本信息建立的样本回归函数尽可能“接近”地去估计总体回归函数。

为此,可以以从不同的角度去确定建立样本回归函数的准则,也就有了估计回归模型参数的多种方法。

例如,用生产该样本概率最大的原则去确定样本回归函数,成为极大似然发展;用估计的剩余平方和的最小的原则确定样本回归函数。

称为最小二乘法则。

为了使样本回归函数尽可能接近总体回归函数,要使样本回归函数估计的与实际的的误差尽量小,即要使剩余项越小越好。

可是作为误差有正有负,其简单代数和∑最小的准则,这就是最小乘准则,即∑∑∑五、简单线性回归模型基本假定 答:(1)对模型和变量的假定,如12i i iY X u ββ=++①假定解释变量x 是确定性变量,是非随机的,这是因为在重复抽样中是取一组固定的值.或者虽然是随机的,但与随机扰动项也是不相关;②假定模型中的变量没有测量误差。

计量经济学简答题

计量经济学简答题

1.计量经济学与经济理论、统计学、数学的联系是什么?计量经济学与经济理论、统计学、数学的联系主要体现在计量经济学对经济理论、统计学、数学的应用方面,分别如下:1)计量经济学对经济理论的利用主要体现在以下几个方面(1)计量经济模型的选择和确定(2)对经济模型的修改和调整(3)对计量经济分析结果的解读和应用2)计量经济学对统计学的应用(1)数据的收集、处理、(2)参数估计(3)参数估计值、模型和预测结果的可靠性的判断3)计量经济学对数学的应用(1)关于函数性质、特征等方面的知识(2)对函数进行对数变换、求导以及级数展开(3)参数估计(4)计量经济理论和方法的研究2.模型的检验包括哪几个方面?具体含义是什么?模型的检验主要包括:经济意义检验、统计检验、计量经济学检验、模型的预测检验。

①在经济意义检验中,需要检验模型是否符合经济意义,检验求得的参数估计值的符号、大小、参数之间的关系是否与根据人们的经验和经济理论所拟订的期望值相符合;②在统计检验中,需要检验模型参数估计值的可靠性,即检验模型的统计学性质,有拟合优度检验、变量显著检验、方程显著性检验等;③在计量经济学检验中,需要检验模型的计量经济学性质,包括随机扰动项的序列相关检验、异方差性检验、解释变量的多重共线性检验等;④模型的预测检验,主要检验模型参数估计量的稳定性以及对样本容量变化时的灵敏度,以确定所建立的模型是否可以用于样本观测值以外的范围。

1.为什么计量经济学模型的理论方程中必须包含随机干扰项?计量经济学模型考察的是具有因果关系的随机变量间的具体联系方式。

由于是随机变量,意味着影响被解释变量的因素是复杂的,除了解释变量的影响外,还有其他无法在模型中独立列出的各种因素的影响。

这样,理论模型中就必须使用一个称为随机干扰项的变量来代表所有这些无法在模型中独立表示出来的影响因素,以保证模型在理论上的科学性。

3.为什么用可决系数R2评价拟合优度,而不是用残差平方和作为评价标准?可决系数R2=ESS/TSS=1-RSS/TSS,含义为由解释变量引起的被解释变量的变化占被解释变量总变化的比重,用来判定回归直线拟合的优劣,该值越大说明拟合的越好;而残差平方和与样本容量关系密切,当样本容量比较小时,残差平方和的值也比较小,尤其是不同样本得到的残差平方和是不能做比较的。

计量经济学名词解释及简答

计量经济学名词解释及简答

一、名词解释第一章1、计量经济学:计量经济学是以经济理论和经济数据的事实为依据,运用数学、统计学的方法,借助计算机为辅助工具,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

2、虚拟变量数据:虚拟变量数据是人为构造的,通常取值为1或0的,用来表征政策等定性事实的数据。

3、计量经济学检验:计量经济学检验主要是检验模型是否符合计量经济方法的基本假定。

4、政策评价:政策评价是利用计量经济模型对各种可供选择的政策方案的实施后果进行模拟测算,从而对各种政策方案做出评价第二章1、回归平方和:回归平方和用ESS 表示,是被解释变量的样本估计值与其平均值的离差平方和。

2、拟和优度检验:拟和优度检验指检验模型对样本观测值的拟合程度,用表示,该值越接近1,模型对样本观测值拟合得越好。

3、相关关系:当一个或若干个变量X 取一定数值时,与之相对应的另一个变量Y 的值虽然不确定,但却按某种规律在一定范围内变化,变量之间的这种关系,称为不确定性的统计关系或相关关系,可表示为Y=f(X ,u),其中u 为随机变量。

4、高斯-马尔科夫定理:在古典假定条件下,O LS 估计式是其总体参数的最佳线性无偏估计式。

第三章1、偏回归系数:在多元线性回归模型中,回归系数j (j=1,2,……,k )表示的是当控制其他解释变量不变的条件下,第j 个解释变量的单位变动对被解释变量平均值的影响,这样的回归系数称为偏回归系数。

2、多重可决系数:“回归平方和”与“总离差平方和”的比值,用表示。

3、修正的可决系数:用自由度修正多重可决系数 中的残差平方和与回归平方和。

4、回归方程的显著性检验(F 检验):对模型中被解释变量与所有解释变量之间的线性关系在总体上是否显著做出推断。

5、回归参数的显著性检验(t 检验):当其他解释变量不变时,某个回归系数对应的解释变量是否对被解释变量有显著影响做出推断。

6、无多重共线性假定:假定各解释变量之间不存在线性关系,或者说各解释变量的观测值之间线性无关,在此条件下,解释变量观测值矩阵X 列满秩Rank(X)=k ,此时,方阵X`X 满秩, Rank(X`X)=k从而X`X 可逆,(X`X) 存在。

计量经济学简答题

计量经济学简答题
(1)各个解释变量对被解释变量的影响很难精准鉴别。
(2)模型回归系数估计量的方差会很大,从而使模型参数的显著性检验失效。
(3)模型参数的估计量对删除或增添少量的观测值及删除一个不显著的解释变量都可能非常敏感。
5.计量模型的检验包括几个方面?
模型的检验主要包括经济意义检验,统计检验,计量经济学检验和模型的预测检验四个方面。
过程是:(1)利用OLS法估计结构方程中所有内生变量的简化式方程。
(2)利用估计出的简化式方程计算内生变量的估计值。
(3)用内生变量的估计值替代解释变量中的内生变量,再利用OLS法估计变量替代后的结构方程。
4.模型存在多重共线性可能产生的后果主要有哪些?
2.在计量经济模型中为什么要引入随机误差项?
(1)对模型中省略的变量用随机误差项来统统反映。
(2)用随机误差项来反映一些随机因素的影响。
(3)用随机误差项来反映统计误差。
(4)模型形式的误差。
3.试述联立方程模型的参数估计的二段最小二乘估计法的原理与估计过程。
原理是:寻找一个变量Y^来替代模型方程中解释变量中的内生变量Y,然后对替代后的结构方程用OLS法进行估计。
(2)t检验的可靠性降低
(3)增大模型的预测误差
8.什么是序列相关性,其表现形式是什么?
(1)序列相关性是对模型的随机误差项来说的,当模型的随机误差项在不同的样本点之间不相互独立的,也即模型违背了基本假定3的时候,则此就称模型存在序列相关性。
(2)序列相关性表现于一阶序列相关性和高阶序列相关性,此二种情况下的表现形式可以表示如下
6.一元线性回归模型的基础假设主要有哪些?
答:线性回归模型的基本假设有两大类:一类是关于随机干扰项的,包括零均值,同方差,不序列相关,满足正态分布等假设;另一类是关于解释变量的,主要有,解释变量是非随机的,如果是随机变量,则与随即干扰项不相关。

计量经济学简答题

计量经济学简答题

简答:1.简述最小二乘估计量的性质:(1)线性性,即它是否是另一随机变量的线性函数;(2)无偏性,即它的均值或期望值是否等于总体的真实值;(3)有效性,即它是否在所有线性无偏估计量中具有最小方差。

(4)一致性,即样本容量趋于无穷大时,它是否依概率收敛于总体的真值;(5)渐近无偏性,即样本容量趋于无穷大时,是否它的均值序列趋于总体真值;(6)渐近有效性,即样本容量趋于无穷大时,是否它在所有的一致估计量中具有最小的渐近方差。

(1)-(3)准则也称作估计量的小样本性质,拥有这类性质的估计量称为最佳线性无偏估计量(BLUE)。

(4)-(6)准则考察估计量的大样本或渐进性质。

2.单方程OLS基本假设与条件:P64 或 P303.违背假设条件的情况:(1)随机误差项序列存在异方差性;(2)随机误差项序列存在序列相关性;(3)解释变量之间存在多重共线性;(4)解释变量是随机变量;(5)模型设定有偏误;(6)解释变量的方差不随样本容量递增而收敛。

4.异方差性的后果即克服:1.参数估计量仍然是线性无偏的,但不是有效的;异方差模型中的方差不再具有最小方差性;t检验失去作用;模型的预测作用遭到破坏。

2 .加权最小二乘法、异方差稳健标准误法。

5.序列相关性的后果及补救:(1)参数估计量无偏非有效;(2)模型的显著性检验失效;(3)区间估计和预测区间的精度降低。

广义最小二乘法、广义差分法、序列相关稳健标准误法。

6.多重共线性的后果及补救:完全共线性:(1)无法估计模型的参数,即不能独立分辨各个解释变量对因变量的影响。

(2)参数估计量的方差无穷大。

近似共线性:(1)可以估计参数,但参数估计不稳定。

OLS参数估计量的方差变大。

(2)参数估计量经济意义不合理。

(3)变量的显著性检验和模型的预测功能失去意义排除引起共线性的变量、差分法、减小参数估计量的方差。

7.随机解释变量的后果及补救:1 如果X与μ相互独立,得到的参数估计量仍然是无偏一致估计量。

(完整版)计量经济学名词解释和简答

(完整版)计量经济学名词解释和简答

(完整版)计量经济学名词解释和简答三、名词解释经济计量学:是经济学、统计学和数学合流⽽构成的⼀门交叉学科。

理论经济计量学:是寻找适当的⽅法,去测度由经济计量模型设定的经济关系式。

应⽤经济化量学:以经济理论和事实为出发点,应⽤计量⽅法,解决经济系统运⾏过程中的理论问题或实践问题。

内⽣变量:具有⼀定概率分布的随机变量,由模型⾃⾝决定,其数值是求解模型的结果。

外⽣变量:是⾮随机变量,在模型体系之外决定,即在模型求解之前已经得到了数值。

随机⽅程:根据经济⾏为构造的函数关系式。

⾮随机⽅程:根据经济学理论或政策、法规⽽构造的经济变量恒等式。

时序数据:指某⼀经济变量在各个时期的数值按时间先后顺序排列所形成的数列。

截⾯数据:指在同⼀时点或时期上,不同统计单位的相同统计指标组成的数据。

回归分析:就是研究被解释变量对解释变量的依赖关系,其⽬的就是通过解释变量的已知或设定值,去估计或预测被解释变量的总体均值。

相关分析:测度两个变量之间的线性关联度的分析⽅法。

总体回归函数:E (Y /X i )是X i 的⼀个线性函数,就是总体回归函数,简称总体回归。

它表明在给定X i 下Y 的分布的总体均值与X i 有函数关系,就是说它给出了Y 的均值是怎样随X 值的变化⽽变化的。

随机误差项:为随机或⾮系统性成份,代表所有可能影响Y ,但⼜未能包括到回归模型中来的被忽略变量的代理变量。

有效估计量:在所有线性⽆偏估计量中具有最⼩⽅差的⽆偏估计量叫做有效估计量。

判定系数:TSS ESS Y Y Y Y R i i=--=∑∑222)()?(,是对回归线拟合优度的度量。

R 2测度了在Y 的总变异中由回归模型解释的那个部分所占的⽐例或百分⽐。

异⽅差:在回归模型中,随机误差项1u ,2u ,…,n u 不具有相同的⽅差,即 ()()≠i j Var u Var u ,当j i ≠时,则称随机误差的⽅差为异⽅差。

异⽅差的补救⽅法:已知时,⽤加权最⼩⼆乘法;未知时,⽤普通最⼩⼆乘法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章三、简答题1、简述计量经济学与经济学、统计学、数理统计学学科间的关系。

答:计量经济学就是经济理论、统计学与数学的综合。

经济学着重经济现象的定性研究,而计量经济学着重于定量方面的研究。

统计学就是关于如何惧、整理与分析数据的科学,而计量经济学则利用经济统计所提供的数据来估计经济变量之间的数量关系并加以验证。

数量统计各种数据的惧、整理与分析提供切实可靠的数学方法,就是计量经济学建立计量经济模型的主要工具,但它与经济理论、经济统计学结合而形成的计量经济学则仅限于经济领域。

计量经济模型建立的过程,就是综合应用理论、统计与数学方法的过程。

因此计量经济学就是经济理论、统计学与数学三者的统一。

2、计量经济模型有哪些应用。

答:①结构分析,即就是利用模型对经济变量之间的相互关系做出研究,分析当其她条件不变时,模型中的解释变量发生一定的变动对被解释变量的影响程度。

②经济预测,即就是利用建立起来的计量经济模型对被解释变量的未来值做出预测估计或推算。

③政策评价,对不同的政策方案可能产生的后果进行评价对比,从中做出选择的过程。

④检验与发展经济理论,计量经济模型可用来检验经济理论的正确性,并揭示经济活动所遵循的经济规律。

3、简述建立与应用计量经济模型的主要步骤。

答:一般分为5个步骤:①根据经济理论建立计量经济模型;②样本数据的收集;③估计参数;④模型的检验;⑤计量经济模型的应用。

4、对计量经济模型的检验应从几个方面入手。

答:①经济意义检验;②统计准则检验;③计量经济学准则检验;④模型预测检验。

第二章三、简答题1、 简述用普通最小二乘法求解模型ii i X Y μββ++=10的参数估计量的过程。

答:一元线性回归模型i i i X Y μββ++=10,采用普通最小二乘法进行参数估计的基本准则:22010111ˆˆˆˆmin (,)()nni i i i i Q e Y X ββββ====--∑∑ (1) 利用微积分多元函数极值原理,要使01ˆˆ(,)Q ββ达到最小,(1)式对01ˆˆββ、的一阶偏导数都等于零,即: 01011ˆˆ(,)=0ˆˆˆ(,)=0ˆQ Q ββββββ⎧∂⎪∂⎪⎨∂⎪⎪∂⎩ 201010100201010111ˆˆ()ˆˆ(,)ˆˆ==2()ˆˆˆˆ()ˆˆ(,)ˆˆ==2()ˆˆi i i ii i i i iY X Q Y X Y X Q Y X X ββββββββββββββββ⎧⎡⎤∂--∂⎣⎦⎪---⎪∂∂⎪⎨⎡⎤∂--⎪∂⎣⎦---⎪∂∂⎪⎩∑∑∑∑0101ˆˆ()0ˆˆ()=0 i i i i i Y X Y X X ββββ⎧--=⎪⎨--⎪⎩∑∑(2)(3) 由(2)式可知,01011ˆˆ01ˆ ˆˆ()11== (4)ii i i i i Y n X Y X Y X n Y Y X X n nβββββ+-=⇒=-=-∑∑∑∑∑∑(令,)并将式(4)代入(3),可得:2011122111221ˆˆˆ ˆ0()()ˆˆ()0ˆ ()i i ii i i i i i i i i i i i i i i i i i Y X X X Y Y X X X n n X Y X Y X n X n X Y X Y n X X βββββββ=--=---⇒-+⇒-=-=-∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑ 或0111112ˆˆˆˆ0()()ˆ()()()()()ˆ=()()()(==)0?i i i i i i i i i i iiiii iiiiiii i i i Y X X Y Y X X X Y Y X X X X X Y Y X X Y Y x y X X X X X X X xx X X y Y Y ββββββ=--=-+-⇒------==-----=⇒∑∑∑∑∑∑∑∑∑∑令,因此,可得0101112221ˆˆˆˆ()()()ˆˆ()()()i i i i i i i i i i i i i i i Y X Y X nn X Y X Y X X Y Y x y n X X X X X X x ββββββ=-=----===---∑∑∑∑∑∑∑∑∑∑∑或或2、 计量经济学模型中随机误差项一般包括哪几个因素?答: ①内在随机性的因素,有人们的随机行为与客观存在的随机因素;②模型中被忽略掉的影响因素造成的误差;③模型的设定误差;④经济变量之间的合并误差;⑤变量的测量误差(数据观测误差);⑥未知的影响因素。

因此,随机误差项就是计量经济模型中不可缺少的一部分。

3、 古典线性回归模型的基本假定就是什么?答:①零均值假定。

即在给定x t 的条件下,随机误差项的数学期望(均值)为0,即t E(u )=0。

②同方差假定。

误差项t u 的方差与t 无关,为一个常数。

③无自相关假定。

即不同的误差项相互独立。

④解释变量与随机误差项不相关假定。

⑤正态性假定,即假定误差项t u 服从均值为0,方差为2σ的正态分布。

4、 总体回归模型与样本回归模型的区别与联系。

答:主要区别:①描述的对象不同。

总体回归模型描述总体中变量y 与x 的相互关系,而样本回归模型描述所观测的样本中变量y 与x 的相互关系。

②建立模型的不同。

总体回归模型就是依据总体全部观测资料建立的,样本回归模型就是依据样本观测资料建立的。

③模型性质不同。

总体回归模型不就是随机模型,样本回归模型就是随机模型,它随着样本的改变而改变。

主要联系:样本回归模型就是总体回归模型的一个估计式,之所以建立样本回归模型,目的就是用来估计总体回归模型。

5、 试述回归分析与相关分析的联系与区别。

答:两者的联系:①相关分析就是回归分析的前提与基础;②回归分析就是相关分析的深入与继续;③相关分析与回归分析的有关指标之间存在计算上的内在联系。

两者的区别:①回归分析强调因果关系,相关分析不关心因果关系,所研究的两个变量就是对等的。

②对两个变量x 与y 而言,相关分析中:xy yx r r =;但在回归分析中,01ˆˆˆt ty b b x =++与01ˆˆˆt t x a a y =++却就是两个完全不同的回归方程。

③回归分析对资料的要求就是:被解释变量y 就是随机变量,解释变量x 就是非随机变量。

相关分析对资料的要求就是两个变量都随机变量。

6、 在满足古典假定条件下,一元线性回归模型的普通最小二乘估计量有哪些统计性质?答:①线性,就是指参数估计量0ˆb 与1ˆb 分别为观测值t y 与随机误差项t u 的线性函数或线性组合。

②无偏性,指参数估计量0ˆb 与1ˆb 的均值(期望值)分别等于总体参数0b 与1b 。

③有效性(最小方差性或最优性),指在所有的线性无偏估计量中,最小二乘估计量0ˆb 与1ˆb 的方差最小。

第三章三、简答题1. 给定二元回归模型:01122t t t ty b b x b x u =+++,请叙述模型的古典假定。

解答:(1)随机误差项的期望为零,即()0t E u =。

(2)不同的随机误差项之间相互独立,即cov(,)[(())(()]()0t s t t s s t s u u E u E u u E u E u u =--==。

(3)随机误差项的方差与t 无关,为一个常数,即2var()t u σ=。

即同方差假设。

(4)随机误差项与解释变量不相关,即cov(,)0(1,2,...,)jt t x u j k = =。

通常假定jt x 为非随机变量,这个假设自动成立。

(5)随机误差项t u 为服从正态分布的随机变量,即2(0,)tu N σ。

(6)解释变量之间不存在多重共线性,即假定各解释变量之间不存在线性关系,即不存在多重共线性。

2、 在多元线性回归分析中,为什么用修正的决定系数衡量估计模型对样本观测值的拟合优度?解答:因为人们发现随着模型中解释变量的增多,多重决定系数2R 的值往往会变大,从而增加了模型的解释功能。

这样就使得人们认为要使模型拟合得好,就必须增加解释变量。

但就是,在样本容量一定的情况下,增加解释变量必定使得待估参数的个数增加,从而损失自由度,而实际中如果引入的解释变量并非必要的话可能会产生很多问题,比如,降低预测精确度、引起多重共线性等等。

为此用修正的决定系数来估计模型对样本观测值的拟合优度。

第四章三、简答题1、模型中引入虚拟变量的作用就是什么?答:(1)可以描述与测量定性因素的影响;(2)能够正确反映经济变量之间的关系,提高模型的精度;(3)便于处理异常数据。

2、虚拟变量引入的原则就是什么?答:(1)如果一个定性因素有m方面的特征,则在模型中引入m-1个虚拟变量;(2)如果模型中有m个定性因素,而每个定性因素只有两方面的属性或特征,则在模型中引入m个虚拟变量;如果定性因素有两个及以上个属性,则参照“一个因素多个属性”的设置虚拟变量;(3)虚拟变量取值应从分析问题的目的出发予以界定;(4)虚拟变量在单一方程中可以作为解释变量也可以作为被解释变量。

3、虚拟变量引入的方式及每种方式的作用就是什么?答:(1)加法方式:其作用就是改变了模型的截距水平;(2)乘法方式:其作用在于两个模型间的比较、因素间的交互影响分析与提高模型的描述精度;(3)混合方式:即影响模型的截距又影响模型的斜率。

第五章1、 简答题1、 产生异方差性的原因及异方差性对模型的OLS 估计有何影响。

答:异方差产生原因:(1)模型中遗漏了某些经济变量;(2)模型函数形式的设定误差;(3)样本数据的测量误差;(4)研究问题的本身;(5)分组数据的使用;(6)平均数的使用。

异方差产生的影响:如果线性回归模型的随机误差项存在异方差性,会对模型参数估计、模型检验及模型应用带来重大影响,主要有:(1)不影响模型参数最小二乘估计值的无偏性与线性性;(2)参数的最小二乘法估计量不就是一个有效的估计量;(3)对模型参数估计值的显著性检验失效;(4)模型估计式的代表性降低,预测精度降低,即模型的预测失效。

2. 检验异方差性的方法及解决异方差性的方法分别有哪些?答:异方差的检验方法:(1)图示检验法;(2)戈德菲尔德—夸特检验;(3)怀特检验;(4)戈里瑟检验法(残差回归检验法);(5)斯皮尔曼等级相关系数检验法异方差解决方法:(1)模型变换法;(2)加权最小二乘法;(3)广义最小二乘法等3、 以二元或三元线性回归模型为例简述怀特(White)检验的主要步骤。

答:设二元线性回归模型:01122t t t ty b b x b x u =+++检验步骤:1、用OSL 法估计模型,并计算出相应的残差平方,做辅助回归模型。

2、计算统计量。

3、在的原假设下,渐进服从自由度为5的分布,给定显著性水平,查分布表得临界值。

4、如果>,则拒绝,接受,表明回归模型中参数至少有一个显著不为零,即随机误差项存在异方差。

相关文档
最新文档