计量经济学简答题 (2)

合集下载

计量经济学简答题

计量经济学简答题

1.为什么在计量经济模型中要引入随机扰动项?影响因素过多模型中的X不能完全解释Y。

2.什么是内生变量和外生变量,有什么联系?内生变量,是指模型要解释的变量。

外生变量指由模型以外的因素所决定的已知变量,它是模型据以建立的外部条件。

外生变量决定内生变量,外生变量的变化会引起内生变量的变化。

3.什么是线性模型和非线性模型?线性:所有的变量都是一次的,非线性:模型中的方程中的变量至少有1个是以高于1次方的形式出现的4.计量经济学方法研究经济问题的完整步骤是什么?1)建立模型2)估计参数 3)验证理论4)使用模型。

5.对随机扰动项作了哪些基本(古典)假定?这些假定有何作用?1、条件均值假设;2、严格外生性假设;3、同方差假设;其余两个假设(随机抽样和非完全线性相关)与随机误差项无关。

假设1、2是对参数估计一致性的要求,即中心极限定理的规定;假设3是对假设检验做的基本要求,不满足则假设检验失效6.在多元线性回归模型估计中,判定系数2R可用于衡量拟合优度,为什么还要计算修正判定系数2R?因为随着模型中解释变量的增多,人们认为要使模型拟合的好,就必须增加解释变量。

但是,在样本容量一定的情况下,增加解释变量必定使得待估参数的个数增加,从而损失自由度,而实际中如果引入的解释变量并非必要的话可能会产生很多问。

为此用修正的决定系数来估计模型对样本观测的拟合优度。

7.修正判定系数2R?回归参数的显著性检验(t检验)和回归方程的显著性检验(F检验)的区别是什么?是为了克服多重决定系数会随着解释变量的增加而增大的缺陷提出来的,(1)方程的显著性检验,旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显著成立作出推断。

(2)方程的总体线性关系显著每个解释变量对被解释变量的影响都是显著的。

(3)因此,必须对每个解释变量进行显著性检验,以决定是否作为解释变量被保留在模型中,这一检验是由对变量的 t 检验完成的。

8.回归模型的总体显著性检验与参数显著性检验相同吗?是否可以互相替代?答:t检验与F 检验都是检验解释变量对被解释变量的显著性,不同的是t检验是检验单个解释变量的显著性,而F检验则检验的是所有解释变量对被解释变量的显著性,是对整体拟合的一种检验。

计量经济学名词解释和简答题

计量经济学名词解释和简答题

计量经济学 第一部分:名词解释第一章1、模型:对现实的描述和模拟。

2、广义计量经济学:利用经济理论、统计学和数学定量研究经济现象的经济计量方法的统称,包括回归分析方法、投入产出分析方法、时间序列分析方法等。

3、狭义计量经济学:以揭示经济现象中的因果关系为目的,在数学上主要应用回归分析方法。

第二章1、总体回归函数:指在给定Xi 下Y 分布的总体均值与Xi 所形成的函数关系(或者说总体被解释变量的条件期望表示为解释变量的某种函数)。

2、样本回归函数:指从总体中抽出的关于Y ,X 的若干组值形成的样本所建立的回归函数。

3、随机的总体回归函数:含有随机干扰项的总体回归函数(是相对于条件期望形式而言的)。

4、线性回归模型:既指对变量是线性的,也指对参数β为线性的,即解释变量与参数β只以他们的1次方出现。

5、随机干扰项:即随机误差项,是一个随机变量,是针对总体回归函数而言的。

6、残差项:是一随机变量,是针对样本回归函数而言的。

7、条件期望:即条件均值,指X 取特定值Xi 时Y 的期望值。

8、回归系数:回归模型中βo ,β1等未知但却是固定的参数。

9、回归系数的估计量:指用01,ββ等表示的用已知样本提供的信息所估计出来总体未知参数的结果。

10、最小二乘法:又称最小平方法,指根据使估计的剩余平方和最小的原则确定样本回归函数的方法。

11、最大似然法:又称最大或然法,指用生产该样本概率最大的原则去确定样本回归函数的方法。

12、估计量的标准差:度量一个变量变化大小的测量值。

13、总离差平方和:用TSS 表示,用以度量被解释变量的总变动。

14、回归平方和:用ESS 表示:度量由解释变量变化引起的被解释变量的变化部分。

15、残差平方和:用RSS 表示:度量实际值与拟合值之间的差异,是由除解释变量以外的其他因素引起的被解释变量变化的部分。

16、协方差:用Cov (X ,Y )表示,度量X,Y 两个变量关联程度的统计量。

计量经济学简答题整理

计量经济学简答题整理

简答题一、计量经济学的步骤答:选择变量和数学关系式 —— 模型设定 确定变量间的数量关系 —— 估计参数 检验所得结论的可靠性 —— 模型检验 作经济分析和经济预测 —— 模型应用 二、模型检验答:所谓模型检验,就是要对模型和所估计的参数加以评判,判定在理论上是否有意义,在统计上是否有足够的可靠性。

对计量经济模型的检验主要应从以下四方面进行:1、经济意义的检验。

2、统计推断检验。

3、计量经济学检验。

4、模型预测检验。

三、模型应用 答:(1)经济结构分析,是指用已经估计出参数的模型,对所研究的经济关系进行定量的考查,以说明经济变量之间的数量比例关系。

(2)经济预测,是指利用估计了参数的计量经济模型,由已知的或预先测定的解释变量,去预测被解释变量在所观测的样本数据以外的数值。

(3)政策评价,是利用计量经济模型对各种可供选择的政策方案的实施后果进行模拟测算,从而对各种政策方案作出评价。

(4)检验与发展经济理论,是利用计量经济模型去验证既有经济理论或者提出新的理论。

四、普通方法的思想和它的计算方法答:计量经济学研究的直接目的是确定总体回归函数12,然而能够得到的知识来自总体的若干样本的观测值,要用样本信息建立的样本回归函数尽可能“接近”地去估计总体回归函数。

为此,可以以从不同的角度去确定建立样本回归函数的准则,也就有了估计回归模型参数的多种方法。

例如,用生产该样本概率最大的原则去确定样本回归函数,成为极大似然发展;用估计的剩余平方和的最小的原则确定样本回归函数。

称为最小二乘法则。

为了使样本回归函数尽可能接近总体回归函数,要使样本回归函数估计的与实际的的误差尽量小,即要使剩余项越小越好。

可是作为误差有正有负,其简单代数和∑最小的准则,这就是最小乘准则,即∑∑∑五、简单线性回归模型基本假定 答:(1)对模型和变量的假定,如12i i iY X u ββ=++①假定解释变量x 是确定性变量,是非随机的,这是因为在重复抽样中是取一组固定的值.或者虽然是随机的,但与随机扰动项也是不相关;②假定模型中的变量没有测量误差。

计量经济学简答题

计量经济学简答题

1.计量经济学与经济理论、统计学、数学的联系是什么?计量经济学与经济理论、统计学、数学的联系主要体现在计量经济学对经济理论、统计学、数学的应用方面,分别如下:1)计量经济学对经济理论的利用主要体现在以下几个方面(1)计量经济模型的选择和确定(2)对经济模型的修改和调整(3)对计量经济分析结果的解读和应用2)计量经济学对统计学的应用(1)数据的收集、处理、(2)参数估计(3)参数估计值、模型和预测结果的可靠性的判断3)计量经济学对数学的应用(1)关于函数性质、特征等方面的知识(2)对函数进行对数变换、求导以及级数展开(3)参数估计(4)计量经济理论和方法的研究2.模型的检验包括哪几个方面?具体含义是什么?模型的检验主要包括:经济意义检验、统计检验、计量经济学检验、模型的预测检验。

①在经济意义检验中,需要检验模型是否符合经济意义,检验求得的参数估计值的符号、大小、参数之间的关系是否与根据人们的经验和经济理论所拟订的期望值相符合;②在统计检验中,需要检验模型参数估计值的可靠性,即检验模型的统计学性质,有拟合优度检验、变量显著检验、方程显著性检验等;③在计量经济学检验中,需要检验模型的计量经济学性质,包括随机扰动项的序列相关检验、异方差性检验、解释变量的多重共线性检验等;④模型的预测检验,主要检验模型参数估计量的稳定性以及对样本容量变化时的灵敏度,以确定所建立的模型是否可以用于样本观测值以外的范围。

1.为什么计量经济学模型的理论方程中必须包含随机干扰项?计量经济学模型考察的是具有因果关系的随机变量间的具体联系方式。

由于是随机变量,意味着影响被解释变量的因素是复杂的,除了解释变量的影响外,还有其他无法在模型中独立列出的各种因素的影响。

这样,理论模型中就必须使用一个称为随机干扰项的变量来代表所有这些无法在模型中独立表示出来的影响因素,以保证模型在理论上的科学性。

3.为什么用可决系数R2评价拟合优度,而不是用残差平方和作为评价标准?可决系数R2=ESS/TSS=1-RSS/TSS,含义为由解释变量引起的被解释变量的变化占被解释变量总变化的比重,用来判定回归直线拟合的优劣,该值越大说明拟合的越好;而残差平方和与样本容量关系密切,当样本容量比较小时,残差平方和的值也比较小,尤其是不同样本得到的残差平方和是不能做比较的。

计量经济学名词解释及简答

计量经济学名词解释及简答

一、名词解释第一章1、计量经济学:计量经济学是以经济理论和经济数据的事实为依据,运用数学、统计学的方法,借助计算机为辅助工具,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

2、虚拟变量数据:虚拟变量数据是人为构造的,通常取值为1或0的,用来表征政策等定性事实的数据。

3、计量经济学检验:计量经济学检验主要是检验模型是否符合计量经济方法的基本假定。

4、政策评价:政策评价是利用计量经济模型对各种可供选择的政策方案的实施后果进行模拟测算,从而对各种政策方案做出评价第二章1、回归平方和:回归平方和用ESS 表示,是被解释变量的样本估计值与其平均值的离差平方和。

2、拟和优度检验:拟和优度检验指检验模型对样本观测值的拟合程度,用表示,该值越接近1,模型对样本观测值拟合得越好。

3、相关关系:当一个或若干个变量X 取一定数值时,与之相对应的另一个变量Y 的值虽然不确定,但却按某种规律在一定范围内变化,变量之间的这种关系,称为不确定性的统计关系或相关关系,可表示为Y=f(X ,u),其中u 为随机变量。

4、高斯-马尔科夫定理:在古典假定条件下,O LS 估计式是其总体参数的最佳线性无偏估计式。

第三章1、偏回归系数:在多元线性回归模型中,回归系数j (j=1,2,……,k )表示的是当控制其他解释变量不变的条件下,第j 个解释变量的单位变动对被解释变量平均值的影响,这样的回归系数称为偏回归系数。

2、多重可决系数:“回归平方和”与“总离差平方和”的比值,用表示。

3、修正的可决系数:用自由度修正多重可决系数 中的残差平方和与回归平方和。

4、回归方程的显著性检验(F 检验):对模型中被解释变量与所有解释变量之间的线性关系在总体上是否显著做出推断。

5、回归参数的显著性检验(t 检验):当其他解释变量不变时,某个回归系数对应的解释变量是否对被解释变量有显著影响做出推断。

6、无多重共线性假定:假定各解释变量之间不存在线性关系,或者说各解释变量的观测值之间线性无关,在此条件下,解释变量观测值矩阵X 列满秩Rank(X)=k ,此时,方阵X`X 满秩, Rank(X`X)=k从而X`X 可逆,(X`X) 存在。

计量经济学简答题

计量经济学简答题
(1)各个解释变量对被解释变量的影响很难精准鉴别。
(2)模型回归系数估计量的方差会很大,从而使模型参数的显著性检验失效。
(3)模型参数的估计量对删除或增添少量的观测值及删除一个不显著的解释变量都可能非常敏感。
5.计量模型的检验包括几个方面?
模型的检验主要包括经济意义检验,统计检验,计量经济学检验和模型的预测检验四个方面。
过程是:(1)利用OLS法估计结构方程中所有内生变量的简化式方程。
(2)利用估计出的简化式方程计算内生变量的估计值。
(3)用内生变量的估计值替代解释变量中的内生变量,再利用OLS法估计变量替代后的结构方程。
4.模型存在多重共线性可能产生的后果主要有哪些?
2.在计量经济模型中为什么要引入随机误差项?
(1)对模型中省略的变量用随机误差项来统统反映。
(2)用随机误差项来反映一些随机因素的影响。
(3)用随机误差项来反映统计误差。
(4)模型形式的误差。
3.试述联立方程模型的参数估计的二段最小二乘估计法的原理与估计过程。
原理是:寻找一个变量Y^来替代模型方程中解释变量中的内生变量Y,然后对替代后的结构方程用OLS法进行估计。
(2)t检验的可靠性降低
(3)增大模型的预测误差
8.什么是序列相关性,其表现形式是什么?
(1)序列相关性是对模型的随机误差项来说的,当模型的随机误差项在不同的样本点之间不相互独立的,也即模型违背了基本假定3的时候,则此就称模型存在序列相关性。
(2)序列相关性表现于一阶序列相关性和高阶序列相关性,此二种情况下的表现形式可以表示如下
6.一元线性回归模型的基础假设主要有哪些?
答:线性回归模型的基本假设有两大类:一类是关于随机干扰项的,包括零均值,同方差,不序列相关,满足正态分布等假设;另一类是关于解释变量的,主要有,解释变量是非随机的,如果是随机变量,则与随即干扰项不相关。

计量经济学简答题

计量经济学简答题

简答:1.简述最小二乘估计量的性质:(1)线性性,即它是否是另一随机变量的线性函数;(2)无偏性,即它的均值或期望值是否等于总体的真实值;(3)有效性,即它是否在所有线性无偏估计量中具有最小方差。

(4)一致性,即样本容量趋于无穷大时,它是否依概率收敛于总体的真值;(5)渐近无偏性,即样本容量趋于无穷大时,是否它的均值序列趋于总体真值;(6)渐近有效性,即样本容量趋于无穷大时,是否它在所有的一致估计量中具有最小的渐近方差。

(1)-(3)准则也称作估计量的小样本性质,拥有这类性质的估计量称为最佳线性无偏估计量(BLUE)。

(4)-(6)准则考察估计量的大样本或渐进性质。

2.单方程OLS基本假设与条件:P64 或 P303.违背假设条件的情况:(1)随机误差项序列存在异方差性;(2)随机误差项序列存在序列相关性;(3)解释变量之间存在多重共线性;(4)解释变量是随机变量;(5)模型设定有偏误;(6)解释变量的方差不随样本容量递增而收敛。

4.异方差性的后果即克服:1.参数估计量仍然是线性无偏的,但不是有效的;异方差模型中的方差不再具有最小方差性;t检验失去作用;模型的预测作用遭到破坏。

2 .加权最小二乘法、异方差稳健标准误法。

5.序列相关性的后果及补救:(1)参数估计量无偏非有效;(2)模型的显著性检验失效;(3)区间估计和预测区间的精度降低。

广义最小二乘法、广义差分法、序列相关稳健标准误法。

6.多重共线性的后果及补救:完全共线性:(1)无法估计模型的参数,即不能独立分辨各个解释变量对因变量的影响。

(2)参数估计量的方差无穷大。

近似共线性:(1)可以估计参数,但参数估计不稳定。

OLS参数估计量的方差变大。

(2)参数估计量经济意义不合理。

(3)变量的显著性检验和模型的预测功能失去意义排除引起共线性的变量、差分法、减小参数估计量的方差。

7.随机解释变量的后果及补救:1 如果X与μ相互独立,得到的参数估计量仍然是无偏一致估计量。

(完整版)计量经济学名词解释和简答

(完整版)计量经济学名词解释和简答

(完整版)计量经济学名词解释和简答三、名词解释经济计量学:是经济学、统计学和数学合流⽽构成的⼀门交叉学科。

理论经济计量学:是寻找适当的⽅法,去测度由经济计量模型设定的经济关系式。

应⽤经济化量学:以经济理论和事实为出发点,应⽤计量⽅法,解决经济系统运⾏过程中的理论问题或实践问题。

内⽣变量:具有⼀定概率分布的随机变量,由模型⾃⾝决定,其数值是求解模型的结果。

外⽣变量:是⾮随机变量,在模型体系之外决定,即在模型求解之前已经得到了数值。

随机⽅程:根据经济⾏为构造的函数关系式。

⾮随机⽅程:根据经济学理论或政策、法规⽽构造的经济变量恒等式。

时序数据:指某⼀经济变量在各个时期的数值按时间先后顺序排列所形成的数列。

截⾯数据:指在同⼀时点或时期上,不同统计单位的相同统计指标组成的数据。

回归分析:就是研究被解释变量对解释变量的依赖关系,其⽬的就是通过解释变量的已知或设定值,去估计或预测被解释变量的总体均值。

相关分析:测度两个变量之间的线性关联度的分析⽅法。

总体回归函数:E (Y /X i )是X i 的⼀个线性函数,就是总体回归函数,简称总体回归。

它表明在给定X i 下Y 的分布的总体均值与X i 有函数关系,就是说它给出了Y 的均值是怎样随X 值的变化⽽变化的。

随机误差项:为随机或⾮系统性成份,代表所有可能影响Y ,但⼜未能包括到回归模型中来的被忽略变量的代理变量。

有效估计量:在所有线性⽆偏估计量中具有最⼩⽅差的⽆偏估计量叫做有效估计量。

判定系数:TSS ESS Y Y Y Y R i i=--=∑∑222)()?(,是对回归线拟合优度的度量。

R 2测度了在Y 的总变异中由回归模型解释的那个部分所占的⽐例或百分⽐。

异⽅差:在回归模型中,随机误差项1u ,2u ,…,n u 不具有相同的⽅差,即 ()()≠i j Var u Var u ,当j i ≠时,则称随机误差的⽅差为异⽅差。

异⽅差的补救⽅法:已知时,⽤加权最⼩⼆乘法;未知时,⽤普通最⼩⼆乘法。

计量经济学简答题及答案2

计量经济学简答题及答案2

计量经济学简答题及答案2计量经济学简答题及答案1、⽐较普通最⼩⼆乘法、加权最⼩⼆乘法和⼴义最⼩⼆乘法的异同。

答:普通最⼩⼆乘法的思想是使样本回归函数尽可能好的拟合样本数据,反映在图上就是是样本点偏离样本回归线的距离总体上最⼩,即残差平⽅和最⼩∑=ni i e 12min 。

只有在满⾜了线性回归模型的古典假设时候,采⽤OLS 才能保证参数估计结果的可靠性。

在不满⾜基本假设时,如出现异⽅差,就不能采⽤OLS 。

加权最⼩⼆乘法是对原模型加权,对较⼩残差平⽅和2i e 赋予较⼤的权重,对较⼤2i e 赋予较⼩的权重,消除异⽅差,然后在采⽤OLS 估计其参数。

在出现序列相关时,可以采⽤⼴义最⼩⼆乘法,这是最具有普遍意义的最⼩⼆乘法。

最⼩⼆乘法是加权最⼩⼆乘法的特例,普通最⼩⼆乘法和加权最⼩⼆乘法是⼴义最⼩⼆乘法的特列。

6、虚拟变量有哪⼏种基本的引⼊⽅式? 它们各适⽤于什么情况?答: 在模型中引⼊虚拟变量的主要⽅式有加法⽅式与乘法⽅式,前者主要适⽤于定性因素对截距项产⽣影响的情况,后者主要适⽤于定性因素对斜率项产⽣影响的情况。

除此外,还可以加法与乘法组合的⽅式引⼊虚拟变量,这时可测度定性因素对截距项与斜率项同时产⽣影响的情况。

7、联⽴⽅程计量经济学模型中结构式⽅程的结构参数为什么不能直接应⽤OLS 估计?答:主要的原因有三:第⼀,结构⽅程解释变量中的内⽣解释变量是随机解释变量,不能直接⽤OLS 来估计;第⼆,在估计联⽴⽅程系统中某⼀个随机⽅程参数时,需要考虑没有包含在该⽅程中的变量的数据信息,⽽单⽅程的OLS估计做不到这⼀点;第三,联⽴⽅程计量经济学模型系统中每个随机⽅程之间往往存在某种相关性,表现于不同⽅程随机⼲扰项之间,如果采⽤单⽅程⽅法估计某⼀个⽅程,是不可能考虑这种相关性的,造成信息的损失。

2、计量经济模型有哪些应⽤。

答:①结构分析,即是利⽤模型对经济变量之间的相互关系做出研究,分析当其他条件不变时,模型中的解释变量发⽣⼀定的变动对被解释变量的影响程度。

计量经济学简答题

计量经济学简答题

第二部分:简答题第一章1、什么是计量经济学?答:计量经济学包括广义计量经济学和狭义计量经济学,本课程中的计量经济学模型,就是狭义计量经济学意义上的经济数学模型:计量经济学是经济学的一个分支学科,以揭示经济活动中客观存在的数量尖系为主要内容,是由经济学、统计学和数学三者结合而成的交叉性学科。

2、计量经济学方法与一般经济数学方法有什么区别?答:计量经济学方法揭示经济活动中具有因果尖系的各因素间的定量尖系,它用随机性的数学方程加以描述;而一般经济数学方法揭示经济活动中各个因素间的理论尖系,更多地用确定性的数学方程加以描述。

3、如何理解计量经济学在当代经济学科中的重要地位?当代计量经济学的基本特点?答:计量经济学自20世纪20年代末30年代初形成以来,无论在技术方法还是在应用方面发展都十分迅速,尤其是经过20世纪50年代的发展阶段和60年代的扩张阶段,计量经济学在经济学科中占据了重要的地位,主要表现在:①。

在西方大多数大学和学院中,计量经济学的讲授已成为经济学课程表中最具权威性的一部分;②。

在1969至2003年诺贝尔经济学奖的53位获奖者中有10位与研究和应用计量经济学有尖,居经济学各分支学科之首。

此外,绝大多数获奖者的研究中都应用了计量经济学方法。

③。

计量经济学方法与其他经济数学方法的结合应用得到了长足发展。

从当代计量经济学的发展动向看,其基本特点包括:(1) 。

非经典计量经济学的理论与应用研究成为计量经济学越来越重要的内容;⑵。

计量经济学方法从主要用于经济预测转向经济理论假设和政策假设的检验;⑶。

计量经济学模型的应用从传统的领域转向新的领域,从宏观领域的研究开始转向微观领域的研究;⑷。

计量经济学模型的规模不再是水平高低的衡量标准,人们更喜欢建立一些简单的模型,从总量上和趋势上说明经济现象。

4、建立与应用计量经济学模型的主要步骤有哪些?答:建立与应用计量经济学模型的主要步骤包括:①设定理论模型,包括选择模型所包含的变量,确定变量之间的数学尖系和拟定模型中待估参数的数值范围;②收集样本数据,要考虑样本数据的完整性、准确性、可比性和一致性;③估计模型参数;④检验模型,包括经济意义检验、统计检验、计量经济学检验和模型预测检验。

《计量经济学》习题(简答题、分析与计算题)

《计量经济学》习题(简答题、分析与计算题)

度数据,得到如下估计模型(括号内为标准差):
Sˆt = 384.105 + 0.067Yt
(151.105) (0.011)
R 2 = 0.538
①b 的经济解释是什么? ②a 和 b 的符号是什么?为什么?实际的符号与你的直觉一致吗?如果不一致的话,你 可以给出可能的原因吗? ③你对于拟合优度有什么看法吗? ④检验每一个回归系数是否都显著不为零(在 1%显著性水平下),你的结论是什么? (12)表 1 数据是从某个行业的 5 个不同的工厂收集的,请回答以下问题:
36938.10 2010 83101.51 50217.40 2111 103874.43
402816.47 472619.17
①建立财政收入对国内生产总值的一元线性回归方程,并解释回归系数的经济意义;
②求置信度为 95%的回归系数的置信区间;
③对所建立的回归方程进行检验(包括经济意义检验、估计标准误差评价、拟合优度检
①利用 t 值检验假设: H 0 : b1 = 0 (取显著水平α = 0.05 );
②确定参数估计量的标准方差;
③构造 b1 的 95%的置信区间,这个区间包括零吗?
(9)证明:线性回归之残差估计量与相应的样本值 x 不相关,即 ∑ et xt = 0 (10)试证:①模型 yt = b0 + ut (t = 1,2,L, n) 中的最小二乘估计量为 bˆ0 = y 。
(y)的可能区间
(14)假设某国的货币供给量(y)与国民收入(x)的历史数据如表 3 所示:
表 3 货币供给量(y)与国民收入(x)数据
年 份 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

计量经济学简答题

计量经济学简答题

1.什么是计量经济学?答: 计量经济学是以经济理论和经济数据的事实为依据,运用数学和统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

2.什么是总体回归函数和样本回归函数?他们之间的区别是什么?答:假如已知所研究的经济现象的总体的被解释变量Y和解释变量X的每个观测值有规律的变化(通常这是不可能的!),那么,可以计算出总体被解释变量Y的条件期望E(Y|Xi) 并将其表现为解释变量X的某种函数E(Y|Xi) =f(Xi) ,这个函数称为总体回归函数。

如果把被解释变量Y的样本条件均值表示为解释变量X的某种函数,这个函数称为样本回归函数。

Y^i=β^1+β2Xi区别:(1)总体回归线是未知,但它是确定的;样本回归线随抽样波动而变化,可以有许多条。

(2)总体回归函数的参数虽未知,但是确定的常数;样本回归函数的回归系数可估计,但是随抽样而变化的随机变量;(3)总体回归函数中的随机误差项ut 是不可直接观测的;而样本回归函数中的残差et 是只要估计出样本回归估计值就可以计算的数值。

3.对随机误差扰动项的假设?答:(1)、随机误差项是一个期望值或平均值为0的随机变量;(2)、对于解释变量的所有观测值,随机误差项有相同的方差;(3)、随机误差项彼此不相关;(4)、解释变量是确定性变量,不是随机变量,与随机误差项彼此之间相互独立;(5)、随机误差项服从正态分布。

4.ols估计量的统计性质与对模型的基本假定的关系是什么?1.多元回归的基本假设是什么,与简单线性回归的基本假设有什么区别?答:1:零均值假定2.同方差和无自相关假定3随机扰动项与解释变量不相关4.无多重共线性假定5.正态性假定区别:多元的基本假设比简单的多了一个无多重共线性假定。

2.F检验,是检验什么的?t检验,检验什么?答:T检验是对回归参数的检验。

F检验是对多元线性回归模型中所有解释变量之间的线性关系在整体上是否显著的检验。

3.可决系数的显著性是通过什么来检验的?答:可决系数可以作为综合度量回归模型对样本观测值拟合优度的度量指标。

计量经济学-名词解释及简答

计量经济学-名词解释及简答

一、名词解释第一章1、计量经济学:计量经济学是以经济理论和经济数据的事实为依据,运用数学、统计学的方法,借助计算机为辅助工具,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

2、虚拟变量数据:虚拟变量数据是人为构造的,通常取值为1或0的,用来表征政策等定性事实的数据。

3、计量经济学检验:计量经济学检验主要是检验模型是否符合计量经济方法的基本假定。

4、政策评价:政策评价是利用计量经济模型对各种可供选择的政策方案的实施后果进行模拟测算,从而对各种政策方案做出评价第二章1、回归平方和:回归平方和用ESS 表示,是被解释变量的样本估计值与其平均值的离差平方和。

2、拟和优度检验:拟和优度检验指检验模型对样本观测值的拟合程度,用2R 表示,该值越接近1,模型对样本观测值拟合得越好。

3、相关关系:当一个或若干个变量X 取一定数值时,与之相对应的另一个变量Y 的值虽然不确定,但却按某种规律在一定范围内变化,变量之间的这种关系,称为不确定性的统计关系或相关关系,可表示为Y=f(X ,u),其中u 为随机变量。

4、高斯-马尔科夫定理:在古典假定条件下,O LS 估计式是其总体参数的最佳线性无偏估计式。

第三章1、偏回归系数:在多元线性回归模型中,回归系数j (j=1,2,……,k )表示的是当控制其他解释变量不变的条件下,第j 个解释变量的单位变动对被解释变量平均值的影响,这样的回归系数称为偏回归系数。

2、多重可决系数:“回归平方和”与“总离差平方和”的比值,用2R 表示。

3、修正的可决系数:用自由度修正多重可决系数2R 中的残差平方和与回归平方和。

4、回归方程的显著性检验(F 检验):对模型中被解释变量与所有解释变量之间的线性关系在总体上是否显著做出推断。

5、回归参数的显著性检验(t 检验):当其他解释变量不变时,某个回归系数对应的解释变量是否对被解释变量有显著影响做出推断。

6、无多重共线性假定:假定各解释变量之间不存在线性关系,或者说各解释变量的观测值之间线性无关,在此条件下,解释变量观测值矩阵X 列满秩Rank(X)=k ,此时,方阵X`X 满秩, Rank(X`X)=k从而X`X 可逆,(X`X) 存在。

计量经济学简答题及答案

计量经济学简答题及答案

计量经济学简答题及答案检验。

1、在计量经济模型中,为什么会存在随机误差项?答:①模型中被忽略掉的影响因素造成的误差;②模型关系认定不准确造成的误差;③变量的测量误差;④随机因素。

这些因素都被归并在随机误差项中考虑。

因此,随机误差项是计量经济模型中不可缺少的一部分。

2、古典线性回归模型的基本假定是什么?答:①零均值假定。

即在给定x t 的条件下,随机误差项的数学期望(均值)为0,即t E(u )=0。

②同方差假定。

误差项t u 的方差与t 无关,为一个常数。

③无自相关假定。

即不同的误差项相互独立。

④解释变量与随机误差项不相关假定。

⑤正态性假定,即假定误差项t u 服从均值为0,方差为2σ的正态分布。

3、总体回归模型与样本回归模型的区别与联系。

答:主要区别:①描述的对象不同。

总体回归模型描述总体中变量y 与x 的相互关系,而样本回归模型描述所观测的样本中变量y 与x 的相互关系。

②建立模型的不同。

总体回归模型是依据总体全部观测资料建立的,样本回归模型是依据样本观测资料建立的。

③模型性质不同。

总体回归模型不是随机模型,样本回归模型是随机模型,它随着样本的改变而改变。

主要联系:样本回归模型是总体回归模型的一个估计式,之所以建立样本回归模型,目的是用来估计总体回归模型。

4、试述回归分析与相关分析的联系和区别。

答:两者的联系:①相关分析是回归分析的前提和基础;②回归分析是相关分析的深入和继续;③相关分析与回归分析的有关指标之间存在计算上的内在联系。

两者的区别:①回归分析强调因果关系,相关分析不关心因果关系,所研究的两个变量是对等的。

②对两个变量x 与y 而言,相关分析中:xy yx r r =;但在回归分析中,01ˆˆˆt t y b b x =++和01ˆˆˆt tx a a y =++却是两个完全不同的回归方程。

③回归分析对资料的要求是:被解释变量y 是随机变量,解释变量x 是非随机变量。

相关分析对资料的要求是两个变量都随机变量。

计量经济学简答

计量经济学简答

简答题:1.选择工具变量的原则是什么:(1)工具变量必须与所替代的随机解释变量高度相关;(2)工具变量与随机误差项不相关(3)工具变量与其它解释变量不相关,避免出现多重共线性。

2.实际经济问题中的多重共线性(1)经济变量的趋同性(2)滞后变量的引入(3)样本资料的限制3.序列相关性产生的原因:(1)惯性;(2)模型设定误差;(3)蛛网现象;(4)数据加工。

4、随机解释变量问题及其解决方法。

如果存在一个或多个随机变量作为解释变量,则称原模型出现随机解释变量问题。

第一、随机解释变量与误差项相互独立;第二、随机解释变量与误差项同期无关,而异期相关;第三、随机解释变量与误差项同期相关;第四、解决方法为工具变量法。

5.随机解释变量产生的后果1.若相互独立,则参数估计量仍然无偏一致。

2 若同期相关,异期不相关,得到的参数估计有偏,但却是一致的3 若同期相关,则估计量有偏且非一致。

6.简述最小二乘估计量的性质:(1)线性性,即它是否是另一随机变量的线性函数;(2)无偏性,即它的均值或期望值是否等于总体的真实值;(3)有效性,即它是否在所有线性无偏估计量中具有最小方差。

(4)渐近无偏性,即样本容量趋于无穷大时,是否它的均值序列趋于总体真值;(5)一致性,即样本容量趋于无穷大时,它是否依概率收敛于总体的真值;(6)渐近有效性,即样本容量趋于无穷大时,是否它在所有的一致估计量中具有最小的渐近方差。

7、虚拟变量的作用:(1)表现定性因素对被解释变量的影响(2)提高模型的说明能力与水平(3)季节变动分析。

(4)方程差异性检验。

8、虚拟变量设置的原则:如果有定性因素共有个结果需要区别,那么至多引入m-1 个虚拟变量9、实际经济问题中的多重共线性:(1)经济变量的趋同性(2)滞后变量的引入(3)样本资料的限制10.引入随机误差形式为了:(1)代表未知的影响因素(2)代表残缺数据(3)代表众多细小的影响因素(4)代表数据观测误差(5)代表模型设定误差(6)变量的随机存在性11.12.回归分析的主要内容有:(1)根据样本观测值对经济计量模型参数进行估计,求得回归方程(2)对回归方程、参数估计值进行显著性检验(3)利用回归方程进行分析、评价及预测。

计量经济学重要简答题

计量经济学重要简答题

计量经济学重点简答题1.简述计量经济学与经济学、统计学、数理统计学学科间的关系;答:计量经济学是经济理论、统计学和数学的综合;经济学着重经济现象的定性研究,计量经济学着重于定量方面的研究;统计学是关于如何收集、整理和分析数据的科学,而计量经济学则利用经济统计所提供的数据来估计经济变量之间的数量关系并加以验证;数理统计学作为一门数学学科,可以应用于经济领域,也可以应用于其他领域;计量经济学则仅限于经济领域;计量经济模型建立的过程,是综合应用理论、统计和数学方法的过程,计量经济学是经济理论、统计学和数学三者的统一;2、计量经济模型有哪些应用答:①结构分析②经济预测③政策评价④检验和发展经济理论3、简述建立与应用计量经济模型的主要步骤;答:模型设定估计参数模型检验模型应用或1经济理论或假说的陈述2 收集数据3建立数理经济学模型 4建立经济计量模型5模型系数估计和假设检验6模型的选择7理论假说的选择8经济学应用4、对计量经济模型的检验应从几个方面入手答:①经济意义检验②统计推断检验③计量经济学检验④模型预测检验5、计量经济学应用的数据是怎样进行分类的答:时间序列数据截面数据面板数据虚拟变量数据6、解释变量和被解释变量,内生变量和外生变量被解释变量是模型要研究的对象,被称为“因变量”,是变动的结果;解释变量是说明被解释变量变动的原因,被称为“自变量”,是变动的原因;内生变量是其数值由模型所决定的变量,是模型求解的结果;外生变量是其数值由模型以外决定的变量;7、计量经济学的含义计量经济学是以经济理论和经济数据的事实为依据,运用数学、统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科;8.在计量经济模型中,为什么会存在随机误差项答:随机误差项是计量经济模型中不可缺少的一部分;产生随机误差项的原因有以下几个方面:①模型中被忽略掉的影响因素造成的误差;②模型关系认定不准确造成的误差;③变量的测量误差;④随机因素;9.对于多元线性回归模型,为什么在进行了总体显着性F检验之后,还要对每个回归系数进行是否为0的t检验答:多元线性回归模型的总体显着性F检验是检验模型中全部解释变量对被解释变量的共同影响是否显着;通过了此F检验,就可以说模型中的全部解释变量对被解释变量的共同影响是显着的,但却不能就此判定模型中的每一个解释变量对被解释变量的影响都是显着的;因此还需要就每个解释变量对被解释变量的影响是否显着进行检验,即进行t检验;10.古典线性回归模型具有哪些基本假定;答:1 随机误差项与解释变量不相关; 2 随机误差项的期望或均值为零;3 随机误差项具有同方差,即每个随机误差项的方差为一个相等的常数;4 两个随机误差项之间不相关,即随机误差项无自相关;11.在多元线性回归分析中,为什么用修正的决定系数衡量估计模型对样本观测值的拟合优度答:因为人们发现随着模型中解释变量的增多,多重决定系数2R的值往往会变大,从而增加了模型的解释功能;这样就使得人们认为要使模型拟合得好,就必须增加解释变量;但是,在样本容量一定的情况下,增加解释变量必定使得待估参数的个数增加,从而损失自由度,而实际中如果引入的解释变量并非必要的话可能会产生很多问题,比如,降低预测精确度、引起多重共线性等等;为此用修正的决定系数来估计模型对样本观测值的拟合优度;12.修正的决定系数2R及其作用;解答:222/11()/1tte n kRy y n--=---∑∑,其作用有:1用自由度调整后,可以消除拟合优度评价中解释变量多少对决定系数计算的影响;2对于包含解释变量个数不同的模型,可以用调整后的决定系数直接比较它们的拟合优度的高低,但不能用原来未调整的决定系数来比较;13.多重共线性含义:多重共线性是指解释变量之间存在完全或近似的线性关系;产生原因:1样本数据的采集是被动的,只能在一个有限的范围内得到观察值,无法进行重复试验;2经济变量的共同趋势3滞后变量的引入4模型的解释变量选择不当后果:(1)完全多重共线性产生的后果参数的估计值不确定、参数估计值的方差无限大(2)不完全多重共线性产生的后果参数估计值的方差无限大;对参数区间估计时,置信区间趋于变大;严重多重共线性时假设检验易作出错误判断;模型总体性检验F值和R2值都很高,但各回归系数估计量的方差很大,t 值很低,系数不能通过显着性检验检验:简单相关系数检验法、方差扩大因子法、直观判断法、逐步回归检验法 补救措施:剔出不重要变量;增加样本数量;改变模型形式;改变变量形式;利用先验信息,逐步回归法;14.异方差含义:异方差性是指模型中随机误差项的方差不是常量,而且它的变化与解释变量的变动有关;产生原因:1模型中遗漏了某些解释变量;2模型函数形式的设定误差;3样本数据的测量误差;4随机因素的影响;后果:如果线性回归模型的随机误差项存在异方差性,会对模型参数估计、模型检验及模型应用带来重大影响,主要有:1不影响模型参数最小二乘估计值的无偏性;2参数的最小二乘估计量不是一个有效的估计量;3对模型参数估计值的显着性检验失效;4模型估计式的代表性降低,预测精度精度降低;检验方法:1图示检验法;2GQ 检验;3怀特检验;4Glejser 检验5ARCH 检验 解决方法:1模型变换法;2加权最小二乘法;3模型的对数变换等15.加权最小二乘法的基本原理最小二乘法的基本原理是使残差平方和∑2t e 为最小,在异方差情况下,总体回归直线对于不同的t t e x ,的波动幅度相差很大;随机误差项方差2t σ越小,样本点t y 对总体回归直线的偏离程度越低,残差t e 的可信度越高或者说样本点的代表性越强;而2t σ较大的样本点可能会偏离总体回归直线很远,t e 的可信度较低或者说样本点的代表性较弱;因此,在考虑异方差模型的拟合总误差时,对于不同的2t e 应该区别对待;具体做法:对较小的2te给于充分的重视,即给于较大的权数;对较大的2te给于充分的重视,即给于较小的权数;更好的使 2t e反映)var(iu对残差平方和的影响程度,从而改善参数估计的统计性质;16.自相关含义:自相关是指总体回归模型的随机误差项u之间存在相关关系;产生原因:答:1经济变量惯性的作用引起随机误差项自相关;2经济行为的滞后性引起随机误差项自相关;3一些随机因素的干扰或影响引起随机误差项自相关;4模型设定误差引起随机误差项自相关;5观测数据处理引起随机误差项自相关;后果:1模型参数估计值不具有最优性;2随机误差项的方差一般会低估;3模型的统计检验失效;4区间估计和预测区间的精度降低;检验方法:1图示法;2DW检验;3LM检验法补救措施:广义差分法、CO迭代法17.简述DW检验的局限性;答:从判断准则中看到,DW检验存在两个主要的局限性:首先,存在一个不能确定的..DW值区域,这是这种检验方法的一大缺陷;其次:..DW检验只能检验一阶自相关;但在实际计量经济学问题中,一阶自相关是出现最多的一类序列相关,而且经验表明,如果不存在一阶自相关,一般也不存在高阶序列相关;所以在实际应用中,对于序列相关问题—般只进行..DW检验;18.试述D-W检验的适用条件及其检验步骤使用条件:1回归模型包含一个截距项;2变量X 是非随机变量;3扰动项的产生机制:1t t t u u v ρ-=+ 11ρ-≤≤;4因变量的滞后值不能作为解释变量出现在回归方程中;检验步骤1进行OLS 回归,并获得残差;2计算D 值;3已知样本容量和解释变量个数,得到临界值;4根据下列规则进行判断:19.广义最小二乘法GLS 的基本思想是什么答:基本思想就是对违反基本假定的模型做适当的线性变换,使其转化成满足基本假定的模型,从而可以使用OLS 方法估计模型;20.请简述什么是虚假序列相关,如何避免答:数据表现出序列相关,而事实上并不存在序列相关;要避免虚假序列相关,就应在做定量分析之间先进行定性分析,看从理论上或经验上是否有存在序列相关的可能,可能性是多大;21.在建立计量经济学模型时,为什么要引入虚拟变量答案:在现实生活中,影响经济问题的因素除具有数量特征的变量外,还有一类变量,这类变量所反映的并不是数量而是现象的某些属性或特征,即它们反映的是现象的质的特征;这些因素还很可能是重要的影响因素,这时就需要在模型中引入这类变量;引入的方式就是以虚拟变量的形式引入;22.模型中引入虚拟变量的作用是什么答:1可以描述和测量定性因素的影响;2能够正确反映经济变量之间的关系,提高模型的精度;3便于处理异常数据;23.虚拟变量引入的原则是什么答:1如果一个定性因素有m方面的特征,则在模型中引入m-1个虚拟变量;2如果模型中有m个定性因素,而每个定性因素只有两方面的属性或特征,则在模型中引入m个虚拟变量;如果定性因素有两个及以上个属性,则参照“一个因素多个属性”的设置虚拟变量;24.虚拟变量引入的方式及每种方式的作用是什么答:1加法模式:其作用是改变了模型的截距水平;2乘法模式:其作用在于两个模型间的比较、因素间的交互影响分析和提高模型的描述精度;25.举例说明如何引进加法模式和乘法模式建立虚拟变量模型;答案:设Y为个人消费支出;X表示可支配收入,定义如果设定模型为此时模型仅影响截距项,差异表现为截距项的和,因此也称为加法模型;如果设定模型为此时模型不仅影响截距项,而且还影响斜率项;差异表现为截距和斜率的双重变化,因此也称为乘法模型;26.判断计量经济模型优劣的基本原则是什么答:1模型应力求简单;2模型具有可识别性;3模型具有较高的拟合优度;4模型应与理论相一致;5模型具有较好的超样本功能;27.设定误差产生的主要原因是什么答案:原因有四:1模型的制定者不熟悉相应的理论知识;1分2对经济问题本身认识不够或不熟悉前人的相关工作;1分3模型制定者缺乏相关变量的数据;1分4解释变量无法测量或数据本身存在测量误差;2分28.以一元回归为例叙述普通最小二乘回归的基本原理;解:依据题意有如下的一元样本回归模型:t t t e X b b Y ++=21 1 普通最小二乘原理是使得残差平方和最小,即∑∑--==2212)(min min min t t t X b b Y e Q 2根据微积分求极值的原理,可得0)(202111=---=∂∂⇔=∂∂∑t t X b b Y b Q b Q 30)(202122=---=∂∂⇔=∂∂∑t t t X X b b Y b Q b Q 4将3和4式称为正规方程,求解这两个方程,我们可得到:∑∑∑∑∑+=+=22121i i i i i iX b X b X Y Xb nb Y 5解得:其中Y Y y X X x i i i i -=-=,,表示变量与其均值的离差; 29.T 检验课本42页 30.F 检验课本76页31.结果报告的书写和预测区间的计算课本43页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章三、简答题1、简述计量经济学与经济学、统计学、数理统计学学科间的关系。

答:计量经济学就是经济理论、统计学与数学的综合。

经济学着重经济现象的定性研究,而计量经济学着重于定量方面的研究。

统计学就是关于如何惧、整理与分析数据的科学,而计量经济学则利用经济统计所提供的数据来估计经济变量之间的数量关系并加以验证。

数量统计各种数据的惧、整理与分析提供切实可靠的数学方法,就是计量经济学建立计量经济模型的主要工具,但它与经济理论、经济统计学结合而形成的计量经济学则仅限于经济领域。

计量经济模型建立的过程,就是综合应用理论、统计与数学方法的过程。

因此计量经济学就是经济理论、统计学与数学三者的统一。

2、计量经济模型有哪些应用。

答:①结构分析,即就是利用模型对经济变量之间的相互关系做出研究,分析当其她条件不变时,模型中的解释变量发生一定的变动对被解释变量的影响程度。

②经济预测,即就是利用建立起来的计量经济模型对被解释变量的未来值做出预测估计或推算。

③政策评价,对不同的政策方案可能产生的后果进行评价对比,从中做出选择的过程。

④检验与发展经济理论,计量经济模型可用来检验经济理论的正确性,并揭示经济活动所遵循的经济规律。

3、简述建立与应用计量经济模型的主要步骤。

答:一般分为5个步骤:①根据经济理论建立计量经济模型;②样本数据的收集;③估计参数;④模型的检验;⑤计量经济模型的应用。

4、对计量经济模型的检验应从几个方面入手。

答:①经济意义检验;②统计准则检验;③计量经济学准则检验;④模型预测检验。

第二章三、简答题1、 简述用普通最小二乘法求解模型ii i X Y μββ++=10的参数估计量的过程。

答:一元线性回归模型i i i X Y μββ++=10,采用普通最小二乘法进行参数估计的基本准则:22010111ˆˆˆˆmin (,)()nni i i i i Q e Y X ββββ====--∑∑ (1) 利用微积分多元函数极值原理,要使01ˆˆ(,)Q ββ达到最小,(1)式对01ˆˆββ、的一阶偏导数都等于零,即: 01011ˆˆ(,)=0ˆˆˆ(,)=0ˆQ Q ββββββ⎧∂⎪∂⎪⎨∂⎪⎪∂⎩ 201010100201010111ˆˆ()ˆˆ(,)ˆˆ==2()ˆˆˆˆ()ˆˆ(,)ˆˆ==2()ˆˆi i i ii i i i iY X Q Y X Y X Q Y X X ββββββββββββββββ⎧⎡⎤∂--∂⎣⎦⎪---⎪∂∂⎪⎨⎡⎤∂--⎪∂⎣⎦---⎪∂∂⎪⎩∑∑∑∑0101ˆˆ()0ˆˆ()=0 i i i i i Y X Y X X ββββ⎧--=⎪⎨--⎪⎩∑∑(2)(3) 由(2)式可知,01011ˆˆ01ˆ ˆˆ()11== (4)ii i i i i Y n X Y X Y X n Y Y X X n nβββββ+-=⇒=-=-∑∑∑∑∑∑(令,)并将式(4)代入(3),可得:2011122111221ˆˆˆ ˆ0()()ˆˆ()0ˆ ()i i ii i i i i i i i i i i i i i i i i i Y X X X Y Y X X X n n X Y X Y X n X n X Y X Y n X X βββββββ=--=---⇒-+⇒-=-=-∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑ 或0111112ˆˆˆˆ0()()ˆ()()()()()ˆ=()()()(==)0?i i i i i i i i i i iiiii iiiiiii i i i Y X X Y Y X X X Y Y X X X X X Y Y X X Y Y x y X X X X X X X xx X X y Y Y ββββββ=--=-+-⇒------==-----=⇒∑∑∑∑∑∑∑∑∑∑令,因此,可得0101112221ˆˆˆˆ()()()ˆˆ()()()i i i i i i i i i i i i i i i Y X Y X nn X Y X Y X X Y Y x y n X X X X X X x ββββββ=-=----===---∑∑∑∑∑∑∑∑∑∑∑或或2、 计量经济学模型中随机误差项一般包括哪几个因素?答: ①内在随机性的因素,有人们的随机行为与客观存在的随机因素;②模型中被忽略掉的影响因素造成的误差;③模型的设定误差;④经济变量之间的合并误差;⑤变量的测量误差(数据观测误差);⑥未知的影响因素。

因此,随机误差项就是计量经济模型中不可缺少的一部分。

3、 古典线性回归模型的基本假定就是什么?答:①零均值假定。

即在给定x t 的条件下,随机误差项的数学期望(均值)为0,即t E(u )=0。

②同方差假定。

误差项t u 的方差与t 无关,为一个常数。

③无自相关假定。

即不同的误差项相互独立。

④解释变量与随机误差项不相关假定。

⑤正态性假定,即假定误差项t u 服从均值为0,方差为2σ的正态分布。

4、 总体回归模型与样本回归模型的区别与联系。

答:主要区别:①描述的对象不同。

总体回归模型描述总体中变量y 与x 的相互关系,而样本回归模型描述所观测的样本中变量y 与x 的相互关系。

②建立模型的不同。

总体回归模型就是依据总体全部观测资料建立的,样本回归模型就是依据样本观测资料建立的。

③模型性质不同。

总体回归模型不就是随机模型,样本回归模型就是随机模型,它随着样本的改变而改变。

主要联系:样本回归模型就是总体回归模型的一个估计式,之所以建立样本回归模型,目的就是用来估计总体回归模型。

5、 试述回归分析与相关分析的联系与区别。

答:两者的联系:①相关分析就是回归分析的前提与基础;②回归分析就是相关分析的深入与继续;③相关分析与回归分析的有关指标之间存在计算上的内在联系。

两者的区别:①回归分析强调因果关系,相关分析不关心因果关系,所研究的两个变量就是对等的。

②对两个变量x 与y 而言,相关分析中:xy yx r r =;但在回归分析中,01ˆˆˆt ty b b x =++与01ˆˆˆt t x a a y =++却就是两个完全不同的回归方程。

③回归分析对资料的要求就是:被解释变量y 就是随机变量,解释变量x 就是非随机变量。

相关分析对资料的要求就是两个变量都随机变量。

6、 在满足古典假定条件下,一元线性回归模型的普通最小二乘估计量有哪些统计性质?答:①线性,就是指参数估计量0ˆb 与1ˆb 分别为观测值t y 与随机误差项t u 的线性函数或线性组合。

②无偏性,指参数估计量0ˆb 与1ˆb 的均值(期望值)分别等于总体参数0b 与1b 。

③有效性(最小方差性或最优性),指在所有的线性无偏估计量中,最小二乘估计量0ˆb 与1ˆb 的方差最小。

第三章三、简答题1. 给定二元回归模型:01122t t t ty b b x b x u =+++,请叙述模型的古典假定。

解答:(1)随机误差项的期望为零,即()0t E u =。

(2)不同的随机误差项之间相互独立,即cov(,)[(())(()]()0t s t t s s t s u u E u E u u E u E u u =--==。

(3)随机误差项的方差与t 无关,为一个常数,即2var()t u σ=。

即同方差假设。

(4)随机误差项与解释变量不相关,即cov(,)0(1,2,...,)jt t x u j k = =。

通常假定jt x 为非随机变量,这个假设自动成立。

(5)随机误差项t u 为服从正态分布的随机变量,即2(0,)tu N σ。

(6)解释变量之间不存在多重共线性,即假定各解释变量之间不存在线性关系,即不存在多重共线性。

2、 在多元线性回归分析中,为什么用修正的决定系数衡量估计模型对样本观测值的拟合优度?解答:因为人们发现随着模型中解释变量的增多,多重决定系数2R 的值往往会变大,从而增加了模型的解释功能。

这样就使得人们认为要使模型拟合得好,就必须增加解释变量。

但就是,在样本容量一定的情况下,增加解释变量必定使得待估参数的个数增加,从而损失自由度,而实际中如果引入的解释变量并非必要的话可能会产生很多问题,比如,降低预测精确度、引起多重共线性等等。

为此用修正的决定系数来估计模型对样本观测值的拟合优度。

第四章三、简答题1、模型中引入虚拟变量的作用就是什么?答:(1)可以描述与测量定性因素的影响;(2)能够正确反映经济变量之间的关系,提高模型的精度;(3)便于处理异常数据。

2、虚拟变量引入的原则就是什么?答:(1)如果一个定性因素有m方面的特征,则在模型中引入m-1个虚拟变量;(2)如果模型中有m个定性因素,而每个定性因素只有两方面的属性或特征,则在模型中引入m个虚拟变量;如果定性因素有两个及以上个属性,则参照“一个因素多个属性”的设置虚拟变量;(3)虚拟变量取值应从分析问题的目的出发予以界定;(4)虚拟变量在单一方程中可以作为解释变量也可以作为被解释变量。

3、虚拟变量引入的方式及每种方式的作用就是什么?答:(1)加法方式:其作用就是改变了模型的截距水平;(2)乘法方式:其作用在于两个模型间的比较、因素间的交互影响分析与提高模型的描述精度;(3)混合方式:即影响模型的截距又影响模型的斜率。

第五章1、 简答题1、 产生异方差性的原因及异方差性对模型的OLS 估计有何影响。

答:异方差产生原因:(1)模型中遗漏了某些经济变量;(2)模型函数形式的设定误差;(3)样本数据的测量误差;(4)研究问题的本身;(5)分组数据的使用;(6)平均数的使用。

异方差产生的影响:如果线性回归模型的随机误差项存在异方差性,会对模型参数估计、模型检验及模型应用带来重大影响,主要有:(1)不影响模型参数最小二乘估计值的无偏性与线性性;(2)参数的最小二乘法估计量不就是一个有效的估计量;(3)对模型参数估计值的显著性检验失效;(4)模型估计式的代表性降低,预测精度降低,即模型的预测失效。

2. 检验异方差性的方法及解决异方差性的方法分别有哪些?答:异方差的检验方法:(1)图示检验法;(2)戈德菲尔德—夸特检验;(3)怀特检验;(4)戈里瑟检验法(残差回归检验法);(5)斯皮尔曼等级相关系数检验法异方差解决方法:(1)模型变换法;(2)加权最小二乘法;(3)广义最小二乘法等3、 以二元或三元线性回归模型为例简述怀特(White)检验的主要步骤。

答:设二元线性回归模型:01122t t t ty b b x b x u =+++检验步骤:1、用OSL 法估计模型,并计算出相应的残差平方,做辅助回归模型。

2、计算统计量。

3、在的原假设下,渐进服从自由度为5的分布,给定显著性水平,查分布表得临界值。

4、如果>,则拒绝,接受,表明回归模型中参数至少有一个显著不为零,即随机误差项存在异方差。

相关文档
最新文档