角平分线的性质定理和判定(经典)

合集下载

角平分线的判定(用)

角平分线的判定(用)

为了证明角平分线的判定定理, 我们可以按照以下步骤进行推导
综上所述,我们证明了角平分线 的判定定理。
03 判定定理的应用
在几何证明中的应用
证明角平分线
利用角平分线的判定定理,可以 证明某个角是另一个角的平分线。
证明等腰三角形
在三角形中,如果一个角的平分线 与对边相交,则该交点与对边的两 个端点所形成的三角形是等腰三角 形。
进行证明。
THANKS FOR WATCHING
感谢您的观看
证明线段比例
利用角平分线定理,可以证明线段 之间的比例关系。
在三角形中的运用
01
02
03
确定角的平分线
在三角形中,可以利用角 平分线的判定定理来确定 角的平分线位置。
计算线段长度
利用角平分线定理,可以 计Байду номын сангаас三角形中某些线段的 长度。
判断三角形形状
在三角形中,可以利用角 平分线的性质来判断三角 形的形状。
在日常生活中的应用
建筑设计
在建筑设计中,角平分线 的判定定理可用于确定窗 户、门等部件的位置和角 度。
道路规划
在道路规划中,可以利用 角平分线的判定定理来确 定交叉路口的角度和道路 的走向。
机械制造
在机械制造中,角平分线 的判定定理可用于确定零 件的精确位置和角度。
04 判定定理的推论与变种
推论一
角平分线的判定定理
目录
• 角平分线的定义与性质 • 角平分线的判定定理 • 判定定理的应用 • 判定定理的推论与变种
01 角平分线的定义与性质
角平分线的定义
角平分线是从一个角的顶点出发,将 该角分为两个相等的部分的一条射线。
角平分线上的任意一点到这个角的两 边的距离相等。

角平分线性质定理和判定定理

角平分线性质定理和判定定理

5月13日课堂
1.复习角平分线
(1)定义
练习:如图,点B、A、F在一条直线上,AD、AE分别平分∠BAC 和∠CAF,AD、AE有什么位置关系?给出证明
(2)角平分线性质定理
已知:OC是∠OAB的角平分线,P是OC上任意一点,PD⊥OA,PE⊥OB,垂足分别为点D、E
证明:PD=PE
几何语言:
∵OP平分∠AOB,PD⊥OA,PE⊥OB
∴PD=PE(角平分线上的点到这个角两边的距离相等)
练习:已知,如图,在△ABC中AD是∠BAC的平分线,
BD=CD,DE⊥AB,DF⊥AC,垂足分别为点E,F
求证:EB=FC
2.思考:
角平分线性质定理:角平分线上的点到这个角的两边的距离相等。

这个定理的逆命题是什么?(写出)它是真命题吗?
已知:如图,点P为∠AOB内一点,PD⊥OA,PE⊥OB,垂足分别为D,E,且PD=PE。

求证:OP平分∠AOB
几何语言:
∵ PD⊥OA,PE⊥OB,PD=PE
∴OP平分∠AOB(在一个角的内部,并且到角的两边距离相等的点,在这个角的平分线上)
3.练习:如图,在△ABC中,∠BAC=60°,点D在BC上,AD=10,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF,求DE的长。

4.已知,如图:AC=DB,DC⊥OA,AB⊥OD,垂足分别是点C,B
求证(1)PA=PD;
(2)∠POC=∠POB。

角平分线的性质定理和判定经典习题

角平分线的性质定理和判定经典习题

角平分线的性质定理和判1.已知:在等腰Rt △ABC 中,AC=BC ,∠C=90°, AD 平分∠BAC ,DE ⊥AB 于点E ,AB=15cm , (1)求证:BD+DE=AC . (2)求△DBE 的周长.2. 如图,∠B=∠C=90°,M 是BC 中点, DM 平分∠ADC ,求证:AM 平分∠DAB .3. 如图,已知△ABC 的周长是22,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D , 且OD=3,△ABC 的面积是多少?4.已知:如图所示,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE 、CD 交于点O ,且AO 平分∠BAC ,求证:OB=OC .5. 如图,已知∠1=∠2,P 为BN 上的一点, PF ⊥BC 于F ,PA=PC , 求证:∠PCB+∠BAP=180º21NPF CBA7.已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)若连接AM,则AM是否平分∠BAD?请你证明你的结论;(2)线段DM与AM有怎样的位置关系?请说明理由.(3)CD、AB、AD间有什么关系?直接写出结果8.如图,△ABC中,P是角平分线AD,BE的交点.求证:点P在∠C的平分线上.9.如图,在△ABC中,BD为∠ABC的平分线,DE⊥AB于点E,且DE=2cm,AB=9cm,BC=6cm,求△ABC的面积.9.如图,D、E、F分别是△ABC的三条边上的点,CE=BF,△DCE和△DBF的面积相等.求证:AD平分∠BAC.10.已知,如图,CE⊥AB,BD⊥AC,∠B=∠C,BF=CF。

求证:AF为∠BAC的平分线。

11.已知:AD 是△ABC 角平分线,DE ⊥AB , DF ⊥AC ,垂足分别是E 、F ,BD =CD , 证:∠B =∠C.12.如图,已知在△ABC 中,90C ∠=, 点D 是斜边AB 的中点,2AB BC =,DE AB ⊥ 交AC 于E .求证:BE 平分ABC ∠.13.如图,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC ,求证:AM 平分∠DAB .14.如图,在∠AOB 的两边OA ,OB 上分别取OM=ON , OD=OE ,DN 和EM 相交于点C . 求证:点C 在∠AOB 的平分线上.BDEAFCDEB。

_角平分线的性质和判定(包含答案)

_角平分线的性质和判定(包含答案)

角平分线的性质和判定(1)以的顶点为圆心,任意长为半径画弧,分别交、于点、;(2)分别以点、为圆心,大于长为半径画弧,相交于点;(3)连接点和并延长,则射线就是的角平分线若DP=EP,则点P在∠AOB的角平分线上一.考点:角平分线的尺规作图,角平分线的性质和判定二.重难点:角平分线的性质和判定三.易错点:1.角平分线的性质和判定混淆不清导致解题出错.题模一:尺规作图例1.1.1如图,已知M、N分别是AOB∠的边OA上任意两点.(1)尺规作图:作AOB∠的平分线OC;(2)在AOB∠的平分线OC上求作一点P,使PM PN+的值最小.(保留作图痕迹,不写画法)例1.1.2作图题:(简要写出作法,保留作图痕迹)如图,已知点M,N和∠AOB,求作一点P,使P到点M,N的距离相等,且到∠AOB的两边的距离相等.题模二:性质例1.2.1如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8B.6C.4D.2例1.2.2如图,在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR⊥AB于R,AB=7,BC=8,AC=9,则BP+CQ-AR=________.例 1.2.3 如图,已知ABC ∆的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ⊥于D ,且3OD =,求ABC ∆的面积.题模三:判定例1.3.1 如图,在四边形ABCD 中,AB ⊥CB 于点B ,DC ⊥BC 于点C ,DE 平分∠ADC ,且点E 为BC 的中点,连接AE .(1)求证:AE 平分∠BAD ; (2)求∠AED 的度数.例 1.3.2 以ABC ∆的AB 、AC 为边向三角形外作等边ABD ∆、ACE ∆,连结CD 、BE 相交于点O .求证:OA 平分DOE ∠.随练1.1 尺规作图(保留作图痕迹,写出结论,不写作法)如图,两条公路EA 和FB 相交于点O ,在AOB ∠的内部有工厂C 和D ,现要修建一个货站P ,使货站P 到两条公路EA 、FB 的距离相等,且到两工厂C 、D 的距离相等,用尺规作出货站P 的位置.FABCDEOOEDCBA随练1.2如图,△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于12EF长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为()A.65°B.60°C.55°D.45°随练1.3如图,已知ABC∆的周长是20,OB和OC分别平分ABC∠和ACB∠,OD BC⊥于点D,且3OD=,则ABC∆的面积是()A.20B.25C.30D.35随练 1.4如图,AB CD∥,BP和CP分别平分ABC∠和DCB∠,AD过点P,且与AB垂直.若8AD=,则点P到BC的距离是()A.8B.6C.4D.2随练1.5三角形中到三边的距离相等的点是()A.三条边的垂直平分线的交点B.三条高的交点C.三条中线的交点D.三条角平分线的交点随练1.6如图所示,在△ABC中,BP、CP分别是∠ABC的外角的平分线,求证:点P在∠A的平分线上.拓展1如图,已知△ABC中,点D在边AC上,且BC=CD(1)用尺规作出∠ACB的平分线CP(保留作图痕迹,不要求写作法);(2)在(1)中,设CP与AB相交于点E,连接DE,求证:BE=DE.拓展2如图,直线l1,l2,l3表示三条相交叉的公路.现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地点有()A.四处B.三处C.两处D.一处拓展3在ABC∆中,AB AC=,70ABC∠=︒(1)用直尺和圆规作ABC∠的平分线BD交AC于点D(保留作图痕迹,不要求写作法)(2)在(1)的条件下,BDC∠=________.PCBA拓展4 到三角形三条边的距离都相等的点是这个三角形的( ) A.三条中线的交点 B.三条高的交点 C.三条边的垂直平分线的交点 D.三条角平分线的交点拓展5 如图,已知在ABC ∆中,CD 是AB 边上的高线,BE 平分ABC ∠,交CD 于点E ,6BC =,2DE =,则BCE ∆的面积等于________.拓展6 如图,ABC ∆的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将ABC ∆分为三个三角形,则::ABO BCO CAO S S S ∆∆∆等于( )A.1:1:1B.1:2:3C.2:3:4D.3:4:5拓展7 如图,已知:BD 是ABC ∠的平分线,DE BC ⊥于E ,236ABC S cm ∆=;,12AB cm =,18BC cm =,则DE 的长为________cm .拓展8 如图,ABC △中,AD 平分BAC ∠,DG BC ⊥且平分BC ,DE AB ⊥于E ,DF AC ⊥交AF 的延长线于F .(1)说明BE CF =的理由;(2)如果AB a =,AC b =,求AE BE 、的长.拓展9 如图,△ABC 和△AED 为等腰三角形,AB =AC ,AD =AE ,且∠BAC =∠DAE ,连接BE 、CD 交于点O ,连接AO . 求证:(1)△BAE ≌△CAD ; (2)OA 平分∠BOD .GFE DC BA答案解析角平分线题模一:尺规作图例1.1.1【答案】(1)(2)【解析】(1)如图1所示,OC即为所求作的AOB∠的平分线.(2)如图2,作点M关于OC的对称点M',连接M N'交OC于点P,则点P即为所求.例1.1.2【答案】【解析】(1)以点O为圆心,以任意长为半径作弧,交OA、OB于点C、点D,(2)再分别以点C、点D为圆心,大于12CD长为半径作弧,两弧交于一点E,(3)连接OE,则OE为∠AOB的角平分线,(4)连接MN,分别以M、N为圆心,大于12MN长为半径作弧,两弧交于点F、点H,(5)连接FH,则FH为线段MN的垂直平分线,(6)直线FH与OE交于点P,点P即为所求.题模二:性质例1.2.1【答案】C【解析】过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.例1.2.2【答案】4【解析】连接AO,OB,OC,∵OP⊥BC,OQ⊥AC,OR⊥AB,∠A、∠B的角平分线交于点O,∴OR =OQ ,OR =OP ,∴由勾股定理得:AR 2=OA 2-OR 2,AQ 2=AO 2-OQ 2, ∴AR =AQ ,同理BR =BP ,CQ =CP , 即O 在∠ACB 角平分线上,设BP =BR =x ,CP =CQ =y ,AQ =AR =z , 则987y z x y x z +=⎧⎪+=⎨⎪+=⎩ x =3,y =5,z =4,∴BP =3,CQ =5,AR =4, BP +CQ -AR =3+5-4=4.例1.2.3【答案】31.5【解析】∵O 点为ABC △中角平分线的交点, ∴O 点到三边距离相等.∴ABC OAB OBC OAC S S S S =++△△△△1()331.52AB BC AC =⨯++⨯=题模三:判定 例1.3.1【答案】(1)见解析 (2)90°【解析】(1)过点E 作EF ⊥AD 于点F ,图略.∵DE 平分∠ADC ,EC ⊥CD ,EF ⊥AD ,∴EC =EF ,又EC =EB ,∴EF =EB ,又EF ⊥AD ,EB ⊥AB ,∴点E 在∠BAD 的平分线上,∴AE 平分∠BAD . (2)∠AED =90°. 例1.3.2【答案】见解析.【解析】因为ABD ∆、ACE ∆是等边三角形,所以AB AD =,AE AC =,CAE ∠=60BAD ∠=︒, 则BAE DAC ∠=∠,所以BAE DAC ∆∆≌,则有ABE ADC ∠=∠,AEB ACD ∠=∠,BE DC =.在DC 上截取DF BO =,连结AF ,容易证得ADF ABO ∆∆≌,ACF AEO ∆∆≌.进而由AF AO=得AFO AOF∠=∠;由AOE AFO∠=∠可得AOF∠=AOE∠,即OA平分DOE∠.随练1.1【答案】【解析】如图所示:作CD的垂直平分线,AOB∠的角平分线的交点P即为所求,此时货站P到两条公路OA、OB的距离相等.P和1P都是所求的点.随练1.2【答案】A【解析】解法一:连接EF.∵点E、F是以点A为圆心,小于AC的长为半径画弧,分别与AB、AC的交点,∴AF=AE;∴△AEF是等腰三角形;又∵分别以点E、F为圆心,大于12EF的长为半径画弧,两弧相交于点G;∴AG是线段EF的垂直平分线,∴AG平分∠CAB,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);解法二:根据已知条件中的作图步骤知,AG 是∠CAB 的平分线,∵∠CAB =50°,∴∠CAD =25°;在△ADC 中,∠C =90°,∠CAD =25°,∴∠ADC =65°(直角三角形中的两个锐角互余).随练1.3【答案】C【解析】如图,连接OA ,过O 作OE AB ⊥于E ,OF AC ⊥于F ,OB 、OC 分别平分ABC ∠和ACB ∠,3OE OF OD ∴===,ABC ∆的周长是20,OD BC ⊥于D ,且3OD =,1111()32222ABC S AB OE BC OD AC OF AB BC AC ∆∴=⨯⨯+⨯⨯+⨯⨯=⨯++⨯ 1203302=⨯⨯=.随练1.4【答案】C【解析】过点P 作PE BC ⊥于E ,AB CD ∥,PA AB ⊥,PD CD ∴⊥, BP 和CP 分别平分ABC ∠和DCB ∠,PA PE ∴=,PD PE =,PE PA PD ∴==,8PA PD AD +==,4PA PD ∴==,4PE ∴=.随练1.5【答案】D【解析】利用角的平分线上的点到角的两边的距离相等可知: 三角形中到三边的距离相等的点是三条角平分线的交点.随练1.6【答案】见解析【解析】过点P 作PE ⊥AB 于点E ,PG ⊥AC 于点G ,PF ⊥BC 于点F .因为P 在∠EBC 的平分线上,PE ⊥AB ,PH ⊥BC ,所以PE PF =.同理可证PF PG =.所以PG PE =,又PE ⊥AB ,PG ⊥AC ,所以P 在∠A 的平分线上.拓展1【答案】(1)见解析(2)见解析【解析】(1)如图1,射线CP 为所求作的图形.(2)∵CP 是∠ACB 的平分线∴∠DCE=∠BCE .在△CDE 和△CBE 中,CD=CB DCE=BCE CE=CE ⎧⎪∠∠⎨⎪⎩,∴△DCE ≌△BCE (SAS ),P∴BE=DE.拓展2【答案】A【解析】满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三角形外角平分线的交点,共三处.拓展3【答案】(1)(2)75︒【解析】(1)如图所示,BD 即为所求;(2)在ABC ∆中,AB AC =,70ABC ∠=︒,180218014040A ABC ∴∠=︒-∠=︒-︒=︒, BD 是ABC ∠的平分线,11703522ABD ABC ∴∠=∠=⨯︒=︒, BDC ∠是ABD ∆的外角,403575BDC A ABD ∴∠=∠+∠=︒+︒=︒.拓展4【答案】D【解析】∵角的平分线上的点到角的两边的距离相等,∴角形三边距离相等的点应是这个三角形三个内角平分线的交点.拓展5【答案】6【解析】作EF BC ⊥于F , BE 平分ABC ∠,EF BC ⊥,ED AB ⊥,2EF DE ∴==,BCE ∴∆的面积162BC EF =⨯⨯=.拓展6【答案】C【解析】过点O 作OD AC ⊥于D ,OE AB ⊥于E ,OF BC ⊥于F ,点O 是内心,OE OF OD ∴==, 111::::::2:3:4222ABO BCO CAO S S S AB OE BC OF AC OD AB BC AC ∆∆∆∴===.拓展7【答案】2.4【解析】如图,过点D 作DF AB ⊥于F ,BD 是ABC ∠的平分线,DE BC ⊥, DE DF ∴=,ABC ABD BCD S S S ∆∆∆=+,1122AB DF BC DE =+, 11121822DE DE =⨯+⨯, 15DE =,236ABC cm ∆=,1536DE ∴=,解得 2.4DE cm =.拓展8【答案】(1)见解析;(2)2a b BE -=,2a b AE += 【解析】(1)连接DB 、DC ,∵DG ⊥BC 且平分BC ,∴DB DC =.∵AD 为∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DE DF =.90AED BED ACD DCF ∠=∠=∠=∠=︒在Rt △DBE 和Rt △DCF 中DB DC DE DF =⎧⎨=⎩Rt △DBE ≌Rt △DCF (HL ),∴BE CF =.(2)在Rt △ADE 和Rt △ADF 中∴Rt △ADE ≌Rt △ADF (HL ).AD AD DE DF =⎧⎨=⎩∴AE AF =.∵AC CF AF +=,∴AE AC CF =+.∵AE AB BE =-,∴AC CF AB BE +=-∵AB a =,AC b =,∴b BE a BE +=-, ∴2a b BE -=, ∴22a b a b AE AB BE a -+=-=-=.拓展9【答案】(1)见解析(2)见解析【解析】(1)过点A 分别作AF ⊥BE 于F ,AG ⊥CD 于G .如图所示:G F EDCB A∵∠BAC=∠DAE,∴∠BAE=∠CAD,在△BAE和△CAD中,AB ACBAE CAD AE AD=⎧⎪∠=∠⎨⎪=⎩,∴△BAE≌△CAD(SAS),(2)连接AO并延长交CE为点H,∵△BAE≌△CAD,∴BE=CD,∴AF=AG,∵AF⊥BE于F,AG⊥CD于G,∴OA平分∠BOD,∴∠AOD=∠AOB,∵∠COH=∠AOD,∠EOH=∠AOB,∴∠COH=∠EOH.∴OA平分∠BOD.。

人教版数学八上第9讲角的平分线的性质(基础)知识讲解

人教版数学八上第9讲角的平分线的性质(基础)知识讲解

角的平分线的性质(基础)【学习目标】1.掌握角平分线的性质,理解三角形的三条角平分线的性质.2.掌握角平分线的判定及角平分线的画法.3. 熟练运用角的平分线的性质解决问题.【要点梳理】要点一、角的平分线的性质角的平分线的性质:角的平分线上的点到角两边的距离相等.要点诠释:用符号语言表示角的平分线的性质定理:若CD平分∠ADB,点P是CD上一点,且PE⊥AD于点E,PF⊥BD于点F,则PE=PF.要点二、角的平分线的判定角平分线的判定:角的内部到角两边距离相等的点在角的平分线上.要点诠释:用符号语言表示角的平分线的判定:若PE⊥AD于点E,PF⊥BD于点F,PE=PF,则PD平分∠ADB要点三、角的平分线的尺规作图角平分线的尺规作图(1)以O为圆心,适当长为半径画弧,交OA于D,交OB于E.(2)分别以D、E为圆心,大于12DE的长为半径画弧,两弧在∠AOB内部交于点C.(3)画射线OC.射线OC即为所求.要点四、三角形角平分线的性质三角形三条角平分线交于三角形内部一点,此点叫做三角形的内心且这一点到三角形三边的距离相等.三角形的一内角平分线和另外两顶点处的外角平分线交于一点.这点叫做三角形的旁心.三角形有三个旁心.所以到三角形三边所在直线距离相等的点共有4个.如图所示:△ABC 的内心为1P ,旁心为234,,P P P ,这四个点到△ABC 三边所在直线距离相等.【典型例题】类型一、角的平分线的性质1.如图,∠ACB =90°,BD 平分∠ABC 交AC 于D ,DE ⊥AB 于E ,ED 的延长线交BC 的延长线于F. 求证:AE =CF.【思路点拨】利用角平分线的性质可得DE =DC ,为证明三角形全等提供了条件.【答案与解析】证明:∵BD 平分∠ABC ,DE ⊥AB,DC ⊥BF∴DE =DC (角的平分线上的点到角两边的距离相等)在△ADE 和△FDC 中DEA DCF DE DC ADE FDC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△FDC(ASA)∴AE =CF【总结升华】有角平分线的条件,又有到角两边的垂线段,要考虑角平分线的性质定理.2、如图, △ABC中, ∠C = 90︒, AC = BC, AD平分∠CAB, 交BC于D, DE⊥AB于E, 且AB=6cm, 则△DEB的周长为( )A. 4cmB. 6cmC.10cmD. 以上都不对【答案】B;【解析】由角平分线的性质,DC=DE,△DEB的周长=BD +DE+BE =BD+DC+BE=AC+BE =AE+BE=AB=6.【总结升华】将△DEB的周长用相等的线段代换是关键.举一反三:AB AC=,则△ABD与△ACD 【变式】已知:如图,AD是△ABC的角平分线,且:3:2的面积之比为()A.3:2 B.3:2 C.2:3 D.2:3【答案】B;提示:∵AD是△ABC的角平分线,∴点D到AB的距离等于点D到AC的距离,又∵AB AC=,则△ABD与△ACD的面积之比为3:2.:3:23、如图,OC是∠AOB的角平分线,P是OC上一点,PD⊥OA交于点D,PE⊥OB交于点E,F是OC上除点P、O外一点,连接DF、EF,则DF与EF的关系如何?证明你的结论.【思路点拨】利用角平分线的性质证明PD=PE,再根据“HL”定理证明△OPD≌△OPE,从而得到∠OPD =∠OPE ,∠DPF =∠EPF .再证明△DPF ≌△EPF ,得到结论.【答案与解析】解:DF =EF .理由如下:∵OC 是∠AOB 的角平分线,P 是OC 上一点,PD ⊥OA 交于点D ,PE ⊥OB 交于点E , ∴PD =PE ,由HL 定理易证△OPD ≌△OPE ,∴∠OPD =∠OPE ,∴∠DPF =∠EPF .在△DPF 与△EPF 中,PD PE DPF EPF PF PF =⎧⎪∠=∠⎨⎪=⎩,∴△DPF ≌△EPF ,∴DF =EF.【总结升华】此题综合运用了角平分线的性质、全等三角形的判定及性质.由角平分线的性质得到线段相等,是证明三角形全等的关键.类型二、角的平分线的判定4、已知,如图,CE ⊥AB,BD ⊥AC,∠B =∠C ,BF =CF.求证:AF 为∠BAC 的平分线.【答案与解析】证明: ∵CE ⊥AB,BD ⊥AC (已知)∴∠CDF =∠BEF =90°∵∠DFC =∠BFE(对顶角相等)∵ BF =CF(已知)∴△DFC ≌△EFB(AAS)∴DF =EF(全等三角形对应边相等)∵FE ⊥AB ,FD ⊥AC (已知)∴点F 在∠BAC 的平分线上(到一个角的两边距离相等的点在这个角的平分线上) 即AF 为∠BAC 的平分线【总结升华】应用角平分线性质及判定时不要遗漏了“垂直”的条件.如果遗漏了说明没有认识到“垂直”条件在证明结论的必要性.举一反三:【变式】如图,在△ABC 中,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F ,BE =CF .求证:AD 是△ABC 的角平分线.【答案】证明:∵DE ⊥AB ,DF ⊥AC ,∴Rt △BDE 和Rt △CDF 是直角三角形.BD DC BE CF =⎧⎨=⎩, ∴Rt △BDE ≌Rt △CDF (HL ),∴DE =DF ,∵DE ⊥AB ,DF ⊥AC ,∴AD 是角平分线.【巩固练习】一.选择题1. AD 是△ABC 的角平分线, 自D 点向AB 、AC 两边作垂线, 垂足为E 、F, 那么下列结论中错误的是( )A.DE = DFB. AE = AFC.BD = CDD. ∠ADE = ∠ADF2.如图,在Rt ΔABC 中,∠C =90°,BD 是∠ABC 的平分线,交AC 于D ,若CD =n ,AB =m ,则ΔABD 的面积是( )A .mn 31B .mn 21C .mnD .2mn3. 如图,OP 平分,MON PA ON ∠⊥于点A ,点Q 是射线OM 上的一个动点,若2PA =,则PQ 的最小值为( )A.1B.2C.3D. 44. 到三角形三边距离相等的点是()A.三角形三条高线的交点B.三角形三条中线的交点C.三角形三边垂直平分线的交点 D.三角形三条内角平分线的交点5. 如图,下列条件中不能确定点O在∠APB的平分线上的是()A.△PBA≌△PDC B. △AOD≌△COBC. AB⊥PD,DC⊥PBD.点O到∠APB两边的距离相等.6. 已知,如图,AB∥CD,∠BAC、∠ACD的平分线交于点O,OE⊥AC于E,且OE=5cm,则直线AB与CD的距离为()A. 5cmB. 10cmC. 15cmD. 20cm二.填空题7.如图,已知∠C=90°,AD平分∠BAC,BD=2CD,若点D到AB的距离等于5cm,则BC 的长为_____cm.8. 如图,在△ABC中,∠C=90°,DE⊥AB,∠1=∠2,且AC=6cm,那么线段BE是△ABC的,AE+DE=。

角平分线的性质定理及判定定理

角平分线的性质定理及判定定理

流河路公北M 区CB A 角平分线(线段垂直平分线,等腰三角形) 角平分线的性质定理:角平分线上的点到角的两边的距离相等 用数学符号可表示:∵点P 在∠AOB 的平分线上(或OP 平分∠AOB ) ∴ 角平分线的判定定理:角的内部到角的两边距离相等的点在这个角的平分线上 用数学符号可表示:∵∴点P 在∠AOB 的平分线上(或OP 平分∠AOB )基础闯关1.在△ABC 中,∠C =90°,AD 是∠BAC 的角平分线,若BC =5㎝,BD =3㎝,则点D 到AB 的距离为2.∠AOB 的平分线上一点M ,M 到OA 的距离为1.5㎝,则M 到OB 的距离为 ㎝。

3.如图,∠A =90°,BD 是△ABC 的角平分线,AC =8㎝,DC =3DA ,则点D 到BC 的距离为 。

4.如图,∠1=∠2,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,下列结论错误的是( ) A 、PD =PE B 、OD =OE C 、∠DPO =∠EPO D 、PD =OD5.三角形中到三边距离相等的点是( )A 、三条边的垂直平分线的交点B 、三条高的交点C 、三条中线的交点D 、三条角平分线的交点6.到一个角的两边距离相等的点在 .7.如图,要在河流的南边,公路的左侧M 处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A 点处的距离为1cm (指图上距离),则图中工厂的位置应在 ,理由是 .8.三角形中,到三边距离相等的点是(A )三条高线交点.(B )三条中线交点.(C )三条角平分线交点.(D )三边垂直平分线交点.9.如果一个三角形的一条角平分线恰好是对边上的高,那么这个三角形是 ODPEBA 第3题图D ABC21D APOE B第4题图FEDCBAF E DCBA(A )直角三角形.(B )等腰三角形.(C )等边三角形.(D )等腰直角三角形 10.如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC于F ,M 为AD 上任意一点,则下列结论错误的是 (A )DE =DF . (B )ME =MF . (C )AE =AF . (D )BD =DC .二.解答题:1.如图,AD 是∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,且DB =DC , 求证:BE =CF 。

角的平分线的性质(基础)知识讲解

角的平分线的性质(基础)知识讲解

角的平分线的性质(基础)责编:杜少波【学习目标】1.掌握角平分线的性质,理解三角形的三条角平分线的性质.2.掌握角平分线的判定及角平分线的画法.3. 熟练运用角的平分线的性质解决问题.【要点梳理】【高清课堂:388612 角平分线的性质,知识要点】要点一、角的平分线的性质角的平分线的性质:角的平分线上的点到角两边的距离相等.要点诠释:用符号语言表示角的平分线的性质定理:若CD平分∠ADB,点P是CD上一点,且PE⊥AD于点E,PF⊥BD于点F,则PE=PF.要点二、角的平分线的判定角平分线的判定:角的内部到角两边距离相等的点在角的平分线上.要点诠释:用符号语言表示角的平分线的判定:若PE⊥AD于点E,PF⊥BD于点F,PE=PF,则PD平分∠ADB要点三、角的平分线的尺规作图角平分线的尺规作图(1)以O为圆心,适当长为半径画弧,交OA于D,交OB于E.(2)分别以D、E为圆心,大于12DE的长为半径画弧,两弧在∠AOB内部交于点C.(3)画射线OC.射线OC即为所求.要点四、三角形角平分线的性质三角形三条角平分线交于三角形内部一点,此点叫做三角形的内心且这一点到三角形三边的距离相等.三角形的一内角平分线和另外两顶点处的外角平分线交于一点.这点叫做三角形的旁心.三角形有三个旁心.所以到三角形三边所在直线距离相等的点共有4个.如图所示:△ABC 的内心为1P ,旁心为234,,P P P ,这四个点到△ABC 三边所在直线距离相等.【典型例题】类型一、角的平分线的性质1.(2015春•启东市校级月考)如图,已知BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM⊥AD 于M ,PN⊥CD 于N ,求证:PM=PN .【思路点拨】根据角平分线的定义可得∠ABD=∠CBD,然后利用“边角边”证明△ABD 和△CBD 全等,根据全等三角形对应角相等可得∠ADB=∠CDB,然后根据角平分线上的点到角的两边的距离相等证明即可.【答案与解析】证明:∵BD 为∠ABC 的平分线,∴∠ABD=∠CBD,在△ABD 和△CBD 中,,∴△ABD≌△CBD(SAS ),∴∠ADB=∠CDB,∵点P 在BD 上,PM⊥AD,PN⊥CD,∴PM=PN.【总结升华】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB 是解题的关键.2、(2016春•潜江校级期中)如图在△ABC中∠C=90°,AC=BC,AD平分∠CAB,DE⊥AB于E,若AB=6cm,求△DEB的周长.【思路点拨】利用角平分线的性质求得CD=DE,然后利用线段中的等长来计算△DEB的周长.【答案与解析】解:∵∠C=90°,AD平分∠CAB,DE⊥AB,∴CD=DE,∴△CAD≌△EAD(HL)∴AC=AE,∵AC=BC,∴∠B=45°,∴BE=DE,∴△DEB的周长=BE+DE+BD= BE+CD+BD = BE+BC =BE+AC=BE+AE =AB=6cm.【总结升华】将△DEB的周长用相等的线段代换是关键.举一反三:AB AC=ABD与△ACD 【变式】已知:如图,AD是△ABC的角平分线,且:的面积之比为()A.3:2 B C.2:【答案】B;提示:∵AD是△ABC的角平分线,∴点D到AB的距离等于点D到AC的距离,又∵AB AC=ABD与△ACD:3、如图,OC是∠AOB的角平分线,P是OC上一点,PD⊥OA交于点D,PE⊥OB交于点E,F是OC上除点P、O外一点,连接DF、EF,则DF与EF的关系如何?证明你的结论.【思路点拨】利用角平分线的性质证明PD =PE ,再根据“HL ”定理证明△OPD ≌△OPE ,从而得到∠OPD =∠OPE ,∠DPF =∠EPF .再证明△DPF ≌△EPF ,得到结论.【答案与解析】解:DF =EF .理由如下:∵OC 是∠AOB 的角平分线,P 是OC 上一点,PD ⊥OA 交于点D ,PE ⊥OB 交于点E , ∴PD =PE ,由HL 定理易证△OPD ≌△OPE ,∴∠OPD =∠OPE ,∴∠DPF =∠EPF .在△DPF 与△EPF 中,PD PE DPF EPF PF PF =⎧⎪∠=∠⎨⎪=⎩,∴△DPF ≌△EPF ,∴DF =EF.【总结升华】此题综合运用了角平分线的性质、全等三角形的判定及性质.由角平分线的性质得到线段相等,是证明三角形全等的关键.类型二、角的平分线的判定【高清课堂:388612 角平分线的性质,例3】4、已知,如图,CE ⊥AB,BD ⊥AC,∠B =∠C ,BF =CF.求证:AF 为∠BAC 的平分线.【答案与解析】证明: ∵CE ⊥AB,BD ⊥AC (已知)∴∠CDF =∠BEF =90°∵∠DFC =∠BFE(对顶角相等)∵ BF =CF(已知)∴△DFC≌△EFB(AAS)∴DF=EF(全等三角形对应边相等)∵FE⊥AB,FD⊥AC(已知)∴点F在∠BAC的平分线上(到一个角的两边距离相等的点在这个角的平分线上)即AF为∠BAC的平分线【总结升华】应用角平分线性质及判定时不要遗漏了“垂直”的条件.如果遗漏了说明没有认识到“垂直”条件在证明结论的必要性.举一反三:【变式】(2014秋•肥东县期末)已知:如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E,F、G分别是OA、OB上的点,且PF=PG,DF=EG.求证:OC是∠AOB的平分线.【答案】证明:在Rt△PFD和Rt△PGE中,,∴Rt△PFD≌Rt△PGE(HL),∴PD=PE,∵P是OC上一点,PD⊥OA,PE⊥OB,∴OC是∠AOB的平分线.。

角的平分线(基础)知识讲解

角的平分线(基础)知识讲解

角的平分线〔基础〕【学习目标】1.掌握角平分线的性质,理解三角形的三条角平分线的性质.2.掌握角平分线的判定及角平分线的画法.3. 熟练运用角的平分线的性质解决问题.【要点梳理】要点一、角的平分线的性质角的平分线的性质:角的平分线上的点到角两边的距离相等.要点诠释:用符号语言表示角的平分线的性质定理:假设CD平分∠ADB,点P是CD上一点,且PE⊥AD于点E,PF⊥BD于点F,则PE=PF.要点二、角的平分线的逆定理角平分线的判定:角的内部到角两边距离相等的点在角的平分线上.要点诠释:用符号语言表示角的平分线的判定:假设PE⊥AD于点E,PF⊥BD于点F,PE=PF,则PD平分∠ADB要点三、角的平分线的尺规作图角平分线的尺规作图〔1〕以O为圆心,适当长为半径画弧,交OA于D,交OB于E.〔2〕分别以D、E为圆心,大于12DE的长为半径画弧,两弧在∠AOB内部交于点C.〔3〕画射线OC.射线OC即为所求.要点四、轨迹把符合某些条件的所有点的集合叫做点的轨迹.和线段两个端点距离相等的点的轨迹是这条线段的垂直平分线.在一个角的内部〔包括顶点〕且到角两边距离相等的点的轨迹是这个角的平分线. 到定点的距离等于定长的点的轨迹是以这个定点为圆心,定长为半径的圆.【典型例题】类型一、角的平分线的性质【高清课堂:角平分线的性质,例2】1.如图,∠ACB =90°,BD 平分∠ABC 交AC 于D ,DE ⊥AB 于E ,ED 的延长线交BC 的延长线于F. 求证:AE =CF【答案与解析】证明:∵BD 平分∠ABC ,DE ⊥AB,DC ⊥BF∴DE =DC 〔角的平分线上的点到角两边的距离相等〕在△ADE 和△FDC 中DEA DCF DE DC ADE FDC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△FDC(ASA)∴AE =CF【总结升华】利用角平分线的性质可得DE =DC ,为证明三角形全等提供了条件.2、如图, △ABC 中, ∠C = 90︒, AC = BC, AD 平分∠CAB, 交BC 于D, DE ⊥AB 于E, 且AB =6cm , 则△DEB 的周长为( )A. 4cmB. 6cm cm D. 以上都不对【答案】B ;【解析】由角平分线的性质,DC =DE ,△DEB 的周长=BD +DE +BE =BD +DC +BE =AC +BE=AE +BE =AB =6.【总结升华】将△DEB 的周长用相等的线段代换是关键.举一反三:【变式】已知:如图,AD 是△ABC 的角平分线,且:3:2AB AC =,则△ABD 与△ACD 的面积之比为〔 〕A .3:2B .3:2C .2:3 D.2:3【答案】B ;提示:∵AD 是△ABC 的角平分线,∴点D 到AB 的距离等于点D 到AC 的距离,又∵:3:2AB AC =,则△ABD 与△ACD 的面积之比为3:2.3、如图,OC 是∠AOB 的角平分线,P 是OC 上一点,PD ⊥OA 交于点D ,PE ⊥OB 交于点E ,F 是OC 上除点P 、O 外一点,连接DF 、EF ,则DF 与EF 的关系如何?证明你的结论.【答案与解析】:解:DF=EF .理由如下:∵OC 是∠AOB 的角平分线,P 是OC 上一点,PD ⊥OA 交于点D ,PE ⊥OB 交于点E , ∴PD=PE ,由HL 定理易证△OPD ≌△OPE ,∴∠OPD=∠OPE ,∴∠DPF=∠EPF .在△DPF 与△EPF 中,PD PE DPF EPF PF PF =⎧⎪∠=∠⎨⎪=⎩,∴△DPF ≌△EPF ,∴DF=EF.【总结升华】此题综合运用了角平分线的性质、全等三角形的判定及性质.由角平分线的性质得到线段相等,是证明三角形全等的关键.类型二、角的平分线的判定【高清课堂:角平分线的性质,例3】4、已知,如图,CE ⊥AB,BD ⊥AC,∠B =∠C ,BF =CF.求证:AF 为∠BAC 的平分线.【答案与解析】证明: ∵CE ⊥AB,BD ⊥AC 〔已知〕∴∠CDF =∠BEF =90°∵∠DFC =∠BFE(对顶角相等)∵ BF =CF(已知)∴△DFC ≌△EFB(AAS)∴DF =EF(全等三角形对应边相等)∵FE ⊥AB ,FD ⊥AC 〔已知〕∴点F 在∠BAC 的平分线上(到一个角的两边距离相等的点在这个角的平分线上) 即AF 为∠BAC 的平分线【总结升华】应用角平分线性质及判定时不要遗漏了“垂直”“垂直”条件在证明结论的必要性.举一反三:【变式】如图,在△ABC 中,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F ,BE=CF .求证:AD 是△ABC 的角平分线.【答案】证明:∵DE ⊥AB ,DF ⊥AC ,∴Rt △BDE 和Rt △CDF 是直角三角形.BD DC BE CF =⎧⎨=⎩, ∴Rt △BDE ≌Rt △CDF 〔HL 〕,∴DE=DF ,∵DE ⊥AB ,DF ⊥AC ,∴AD是角平分线.类型三、点的轨迹5、过已知点A且半径为3厘米的圆的圆心的轨迹是________.【答案】以A为圆心,半径为3cm的圆.【解析】求圆心的轨迹实际上是求距A点三厘米能画一个什么图形.【总结升华】此题所求圆心的轨迹,就是到顶点的距离等于定长的点的集合,因此应该是一个圆.。

角平分线的性质定理和判定

角平分线的性质定理和判定

2、如图,∠B=∠C=90°,M是BC中点,DM平分 ∠ADC,求证:AM平分∠DAB. 证明:作ME⊥AD,∵MC⊥DC,ME⊥DA, 分析:首先要作辅助线, DM平分∠ADC, ME⊥AD则利用角的平分线 ∴ME=MC, 上的点到角的两边的距离相 ∵M为BC中点, 等可知ME=MC,再利用中点 ∴MB=MC, 的条件可知ME=MB,再利用 又∵ME=MC, 到角两边距离相等的点在角 ∴ME=MB, 的平分线上的逆定理证明 又∵ME⊥AD,MB⊥AB, AM平分∠DAB. ∴AM平分∠DAB.
3、如图,已知△ABC的周长是22,BO、CO分别平分∠ABC 和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是 多少?
解:连接OA,
分析:根据角平分线上的点 ∵ OB、OC分别平分∠ABC和∠ACB, 到角的两边的距离相等可得 点O 到 AB 、 AC 、、 BCBC 的距离都 ∴点 O 到 AB 、 AC 的距离都相等, 相等,从而可得到△ ABC 的 ∵△ABC的周长是22, 面积等于周长的一半乘以 OD ⊥ BC 于 D ,且 OD=3 , OD,然后列式进行计算即 ∴ S△ABC=1/2×22×3=33. ,M是BC的中点,DM平分∠ADC. (1)若连接AM,则AM是否平分∠BAD?请你证明你的结论; (2)线段DM与AM有怎样的位置关系?请说明理由. (3)CD、AB、AD之间呢?直接写出结果 首先要作辅助线,ME⊥AD则利用角的平分线 上的点到角的两边的距离相等可知ME=MC, 再利用中点的条件可知ME=MB,再利用到角 两边距离相等的点在角的平分线上的逆定理 证明AM平分∠DAB.(2)根据平行线性质得 出∠CDA+∠BAD=180°,求出∠1+∠3=90°, 根据三角形内角和定理求出即可.(3)证 Rt△DCM≌Rt△DEM,推出CD=DE,同理得出 AE=AB,即可得出答案.

初二讲义角平分线的判定与性质

初二讲义角平分线的判定与性质

第7讲角平分线的判定与性质【知识点与方式梳理】角平分线的性质定理:角平分线上的点到角两边的距离相等。

角平分线的判定定理:到一个角的两边的距离相等的点,在那个角的平分线上。

角平分线的作法(尺规作图)①以点0为圆心,任意长为半径画弧,交OA、0B于C、D两点;②别离以C、D为圆心,大于CD长为半径画弧,两弧交于点P:③过点P作射线0P,射线0P即为所求.角平分线的性质及判定1.角平分线的性质:角的平分线上的点到角的两边的距离相等.推导已知:0C平分ZMON, P是0C上任意一点,PA丄OH, PB10N,垂足别离为点A、点B. 求证:PA=PB.证明:TPA丄OM, PB丄ON ・・・ZPA0=ZPB0=90° TOC 平分ZMON・・・Z1 = Z2在APAO 和Z\PBO 中,AAPAO^APBO・・・PA=PB几何表达:(角的平分线上的点到角的两边的距离相等)TOP 平分ZMON (Z1 = Z2) , PA丄OM, PB丄ON, •••PA=PB・ 2角平分线的判定:到角的两边的距离相等的点在角的平分线上・推导:已知:点P是ZM0N内一点,PA丄0M于A, PB丄ON于B,且PA=PB. 求证:点P在ZH0N的平分线上.证明:连结0P>A=PB<在R tAPAO 和R tAPBO 中, °卩=°»ARtAPAO^RtAPBO (HL)・・・Z1 = Z2・・・0P平分ZMON即点P在ZHON的平分线上.几何表达:(到角的两边的距离相等的点在角的平分线上.)TFA丄OH, PB丄ON, PA=PB AZ1 = Z2 (OP 平分ZMON)【经典例题】例1・已知:如图,ZXABC中,ZC=90° , AD是AABC的角平分线,DE丄AB于E, F在AC上BD二DF,求证:CF二EBC D B例2•已知:如图,AD、BE是AABC的两条角平分线,AD、BE相交于0点求证:0在ZC的平分线上例3•如图AB/7CD, ZB=90° , E是BC的中点。

角平分线的性质(4种题型)-2023年新八年级数学核心知识点与常见题型(人教版)(解析版)

角平分线的性质(4种题型)-2023年新八年级数学核心知识点与常见题型(人教版)(解析版)

角平分线的性质(4种题型)【知识梳理】一、角的平分线的性质角的平分线的性质:角的平分线上的点到角两边的距离相等.要点诠释:用符号语言表示角的平分线的性质定理:若CD平分∠ADB,点P是CD上一点,且PE⊥AD于点E,PF⊥BD于点F,则PE=PF.二、角的平分线的逆定理角平分线的判定:角的内部到角两边距离相等的点在角的平分线上.要点诠释:用符号语言表示角的平分线的判定:三、角的平分线的尺规作图角平分线的尺规作图(1)以O为圆心,适当长为半径画弧,交OA于D,交OB于E.(2)分别以D 、E 为圆心,大于DE 的长为半径画弧,两弧在∠AOB 内部交于点C. (3)画射线OC.射线OC 即为所求. 【考点剖析】题型一:角平分线性质定理 例1.(2023春·陕西榆林·八年级校考期末)如图,在四边形ABCD 中,90B C ∠=∠=︒,点E 为BC 的中点,且AE 平分BAD ∠.求证:DE 是ADC ∠的平分线.【详解】证明:如图,过点E 作EF AD ⊥于点F ,∴90B Ð=°,AE 平分BAD ∠,∴BE EF =.∴点E 是BC 的中点,∴BE CE =,∴CE EF =.又∵90C ∠=︒,EF AD ⊥,∴DE 是ADC ∠的平分线.【变式1】(2023春·山西太原·七年级校考阶段练习)如图,ABC 中,90C ∠=︒,AD 平分BAC ∠,5AB =,2CD =,求ABD △的面积.12【答案】5【详解】解:作DE AB ⊥如图,∵AD 平分BAC ∠,90C ∠=︒,2CD =,∴=2CD DE =,1152522ABD S AB DE ∴=⨯⨯=⨯⨯=△.【变式2】(2023春·湖南常德·八年级统考期末)如图,点P 是ABC 的三个内角平分线的交点,若ABC 的周长为24cm ,面积为236cm ,则点P 到边BC 的距离是( )A .8cmB .3cmC .4cmD .6cm【答案】B 【详解】解:过点P 作PD AB ⊥于,PE BC ⊥于E ,PF AC ⊥于F ,如图,∵点P 是ABC 的内角平分线的交点,∴PE PF PD ==,又ABC 的周长为24cm ,面积为236cm ,∴()11112222ABC S AB PD BC PE AC PF PE AB BC AC =⋅+⋅+⋅=++,∴124363PE ⨯⨯=∴3cm PE =【变式3】(湖南省郴州市2022-2023学年八年级下学期期末数学试题)如图,在ABC 中,90ACB ∠=︒,BD 平分ABC ∠,DE AB ⊥于点E .如果8AC =,那么AD DE +=______.【答案】8【详解】解:∵在ABC 中,90ACB ∠=︒,BD 平分ABC ∠,DE AB ⊥,∴CD DE =,∵8AC =,∴8AD DE AD CD AC +=+==, 【变式4】(2023春·广东深圳·七年级统考期末)把两个同样大小的含30︒角的三角尺像如图所示那样放置,其中M 是AD 与BC 的交点,若4CM =,则点M 到AB 的距离为______.【答案】4【详解】解:由题意,得:90,30D C ABC DAB ∠=∠=︒∠=∠=︒,∴,60MC AC CAB ⊥∠=︒,∴30MAC BAC MAB MAB ∠=∠−∠=︒=∠,∴AM 平分DAB ∠,过点M 作MN AB ⊥,交AB 于点N ,∴4MN MC ==.故答案为:4.【变式5】如图,P 为ABC 三条角平分线的交点,PH 、PN 、PM 分别垂直于BC 、AC 、AB ,垂足分别为H 、N 、M .已知ABC 的周长为15cm ,3cm PH =,则ABC 的面积为______2cm .【答案】22.5【详解】解:连接PM 、PN 、PH ,P 为ABC 三条角平分线的交点,PH 、PN 、PM 分别垂直于BC 、AC 、AB ,3cm PM PN PH ∴===,ABC ∴∆的面积ΔAPB =的面积ΔBPC +的面积ΔAPC +的面积111222AB PM BC PH AC PN =⨯⨯+⨯⨯+⨯⨯ 1()32AB BC AC =++⨯222.5(cm )=.七年级校考期末)如图,在ABC 中,【答案】(1)32︒ (2)6【详解】(1)解:∵40B ∠=︒,76C ∠=︒,∴180407664BAC ∠=︒−︒−︒=︒,∵AD 平分BAC ∠, ∴1322BAD BAC ∠=∠=︒;(2)如图,过点D 作DF AB ⊥于点F ,∵AD 平分BAC ∠,DE AC ⊥,∴DF DE =,∵2DE =,6AB =,∴2DF =, ∴ABD △的面积12662=⨯⨯=.题型二:角平分线性质定理及证明 ,且PMN 与OMN 的面积分别是【答案】(1)证明过程见详解(2)20OM ON +=【详解】(1)证明:如图所示,过P 作PC MN PD OA PE OB ⊥⊥⊥,,,∵MP 平分AMN ∠,NP 平分MNB ∠,∴PD PE =,PC PE =,∴PD PE =,∵PD AO PE BO ⊥⊥,,∴OP 平分AOB ∠.(2)解:如图所示,过P 作PC MN PD OA PE OB ⊥⊥⊥,,,连接OP ,∵18162PMN MN S MN PC ===△,,∴4PC =,由(1)可知4PD PE PC ===,∵1624PMN OMN S S ==△△,,∴40MONP S =四边形,即1122OPM ONP MONP S S S OM PD ON PE =+=+△△四边形,∴1140442222OM ON OM ON =⨯+⨯=+,∴20OM ON +=. 【变式1】(2022秋·河南安阳·八年级校考阶段练习)如图,点E 是BC 的中点,AB BC DC BC ⊥⊥,,AE 平分BAD ∠.求证:(1)DE 平分ADC ∠;(2)AD AB CD +=.【详解】(1)证明:如下图,过E 作EF AD ⊥于F ,∵AB BC ⊥,AE 平分BAD ∠,∴EB EF =,∵点E 是BC 的中点,∴EB EC =,∴EF EC =,∵DC BC EF AD ⊥⊥,,∴90EFD ECD ∠∠︒==,在Rt EFD 和Rt ECD △中,EF EC ED ED =⎧⎨=⎩,∴Rt Rt HL EFD ECD ≌(),∴FDE CDE ∠∠=,∴DE 平分ADC ∠;(2)解:由(1)知,Rt Rt EFD ECD ≌,∴FD CD =,在Rt AEF 和Rt AEB 中,EF EB AE AE =⎧⎨=⎩,∴Rt Rt HL AEF AEB ≌(),∴AF AB =,∵AD AF FD +=,∴AD AB CD +=.【变式2】(2022秋·北京朝阳·八年级校考期中)如图,在ABC ∆中,90C ∠=︒,DE AB ⊥,于点E ,AD 平分CAB ∠,点F 在AC 上,BD DF =.求证:BE FC =.【详解】证明:∵AD 平分CAB ∠,90C ∠=︒,DE AB ⊥,∴DE DC =,90C DEB ∠=∠=︒,∴在Rt DEB ∆和Rt DCF ∆中,∵DE DC BD DF =⎧⎨=⎩,∴()HL DEB DCF ∆≅∆,∴BE FC =.(1)求证:BE =CD ;(2)判断点O 是否在∠BAC 的平分线上,并说明理由.(1)证明:BE 、CD 是ABC ∆的高,且相交于点O ,90∴∠=∠=︒BEC CDB ,在BDO ∆和CEO ∆中,90CDB BEC BOD COEBD CE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,BOD COE ∴∆≅∆(AAS),OD OE ∴=,OB OC =,OD OC OE OB ∴+=+,即CD BE =;(2)解:点O 在BAC ∠的平分线上,理由如下: 连接AO ,如图所示:BE 、CD 是ABC ∆的高,且相交于点O , 90ADC AEB ∴∠=∠=︒,由(1)得BE CD =,∴在ABE ∆和ACD ∆中,90ADC AEB CAD BAE CD BE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,ACD ABE ∴∆≅∆(AAS), AD AE ∴=,由(1)得OD OE =,∴在AOD ∆和AOE ∆中,90AD AE ADC AEB OD OE =⎧⎪∠=∠=︒⎨⎪=⎩,AOD AOE ∴∆≅∆(SAS),DAO EAO ∴∠=∠, ∴点O 在BAC ∠的平分线上.题型三:角平分线的判定定理 例3.如图,90B C ∠=∠=︒,M 是BC 的中点,AM 平分DAB ∠,求证:DM 平分ADC ∠.【详解】证明:如图:过点M 作ME AD ⊥,垂足为E ,AM 平分DAB ∠,MB AB ⊥,ME AD ⊥,ME MB =∴(角平分线上的点到角两边的距离相等),又MC MB =,ME MC ∴=,MC CD ⊥,ME AD ⊥,DM ∴平分ADC ∠(到角的两边距离相等的点在这个角的平分线上).【详解】(1)证明:如图,过点E 作EF DA ⊥于点F ,∵90C ∠=︒,DE 平分ADC ∠,∴CE EF =,∵E 是BC 的中点,∴BE CE =,∴BE EF =,又∵90B Ð=°,EF DA ⊥,∴AE 平分DAB ∠.(2)解:∵EF DA ⊥,90C ∠=︒,∴EFD △和ECD 都为Rt △,又∵DE 平分ADC ∠,∴EC EF =,在Rt EFD 和Rt ECD △中,ED ED EC EF =⎧⎨=⎩,∴()Rt Rt HL EFD ECD △≌△, ∴EFD ECD S S =△△,CED FED ∠=∠,∵EF DA ⊥,90B Ð=°,∴EFA △和EBA △都为Rt △,又∵AE 平分DAB ∠,∴EF EB =,在Rt EFA △和Rt EBA △中,EA EA EF EB =⎧⎨=⎩,∴()Rt Rt HL EFA EBA △≌△, ∴EFA EBA S S =△△,FEA BEA ∠=∠, ∴()111809022DEA DEF AEF CEF BEF ∠=∠+∠=∠+∠=⨯︒=︒, ∵4AE =,3DE =, ∴1143622AED S AE DE =⋅=⨯⨯=△, ∴EFD ECD EFA EBA ABCD S S S S S =+++△△△△四边形EFD EFD EFA EFA S S S S =+++△△△△()2EFD EFA S S =+△△2AED S =△ 26=⨯12=.∴四边形ABCD 的面积为12. 【变式2】如图,在AOB 和COD △中,OA OB =,OC OD =(OA OC <),AOB COD α∠=∠=,直线AC ,BD 交于点M ,连接OM .(1)求证:AC BD =;(2)用α表示AMB ∠的大小;(3)求证:OM 平分AMD ∠.【详解】(1)证明:AOB COD α∠=∠=,AOB BOC COD BOC ∴∠+∠=∠+∠,即AOC BOD ∠=∠,在AOC 和BOD 中,OA OB AOC BODOC OD =⎧⎪∠=∠⎨⎪=⎩,()SAS AOC BOD ∴≌, ∴AC BD =,(2)解:由三角形的外角性质得:AMB OBD OAC AOB ∠+∠=∠+∠,由(1)得()SAS AOC BOD ≌△△,∴OAC OBD ∠=∠,AMB AOB α∴∠=∠=,(3)证明:作OG AM ⊥于G ,OH DM ⊥于H ,如图所示,则90OGA OHB ∠=∠=︒,在OAG △和OBH △中,OGA OHB OAC OBDOA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS OAG OBH ∴≌, OG OH ∴=,OG AM ⊥于G ,OH DM ⊥于H ,MO ∴平分AMD ∠,是ABC 的角平分线,且交于点(1)APB ∠=______.(2)求证:点P 在C ∠的平分线上.【详解】(1)解:证明:60C ∠=︒,AE ,BD 是ABC 的角平分线,12ABP ABC ∴∠=∠,12BAP BAC ∠=∠,11()(180)6022BAP ABP ABC BAC C ∴∠+∠=∠+∠=︒−∠=︒, 120APB ∴∠=︒;(2)如图,过P 作PF AB ⊥,PG AC ⊥,PH BC ⊥,AE ,BD 分别平分CAB ∠,CBA ∠,PF PG ∴=,PF PH =,PH PG ∴=,∴点P 在C ∠的平分线上;(3)如图,在AB 上取点M 使AM AD =,连接PM ,AE 是BAC ∠的平分线,PAM PAD ∴∠=∠, 在AMP 与ADP △中,AP AP PAM PADAM AD =⎧⎪∠=∠⎨⎪=⎩,()SAS AMP ADP ∴≌, 18060APM APD APB ∴∠=∠=︒−∠=︒,180()60BPM APM APD ∴∠=︒−∠+∠=︒,60BPE APD ∠=∠=︒,BPM BPE ∴∠=∠,BD Q 是ABC ∠的角平分线,MBP EBP ∴∠=∠,在BPM △与BPE 中,MBP EBP BP BPBPE BPM ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA BPM BPD ∴≌,BM BE ∴=, AB AM BM AD BE ∴=+=+. (1)如图1,连接AC BD ,,交点为G ,连接OG ,求证:①AC BD =;②OG 平分DGC ∠;(2)如图2,若90AOD BOC ∠=∠=︒,E 是CD 的中点,过点在同一条直线上.∴AOD AOB BOC AOB ∠+∠=∠+∠,∴AOB AOC ∠=∠,又∵OA OD =,OB OC =,∴()SAS DOB AOC V V ≌,∴AC BD =;②如图所示,过点O 作OH DB ⊥于点H ,OF AC ⊥于点F ,∵DOB AOC ≌,OH DB ⊥,OF AC ⊥∴OH OF =,∴点O 在DGC ∠的角平分线上,∴OG 是DGC ∠的角平分线,∴OG 平分DGC ∠;(2)证明:连接OE ,并延长到N ,使NE OE =,连接CN ,∵E 是CD 的中点,∴CE DE =,又∵CEN DEO ∠=∠,NE OE =,∴()SAS CEN DEO ∠V V ≌,∴NCE ODE ∠=∠,CN OD =,∴CN OD ∥,∴180OCN COD CN OA ∠+∠=︒=,,90AOD BOC ∠=∠=︒,180AOB COD ∴∠+∠=︒,OCN AOB ∴∠=∠,在ONC 和BAO 中,OC OB OCN AOBCN OA =⎧⎪∠=∠⎨⎪=⎩,()SAS ONC BAO ∴≌, NOC ABO ∴∠=∠,OF AB ⊥,90ABO BOF ∴∠+∠=︒,90NOC BOF ∴∠+∠=︒,180NOC BOF BOC ∴∠+∠+∠=︒,∴点E O F ,,在同一条直线上.题型四:尺规作图—作角平分线 例4.(2023春·陕西榆林·七年级校考期末)如图,已知ABC ,利用尺规,在AC 边上求作一点D ,使得ABD DBC ∠=∠.(保留作图痕迹,不写作法)【详解】解:如图点D 即为所求..【变式1】(2023春·福建福州·七年级福建省福州第十九中学校考期末)如图,Rt ABC △中,90BAC ∠=︒,AD 为BC 边上的高.(1)尺规作图,在AB 边上求作点P ,使得点P 到边BC 的距离等于AP (保留作图痕迹,不写做法):(2)连接CP (P 为所求作的点)交AD 于点Q ,若30B ∠=︒,求AQC ∠的度数.【详解】(1)解:如图:点P 即为所求;作法:作ACB ∠的角平分线,与AB 的交点P 即为所求;理由:∵CP 是ACB ∠的角平分线,∴点P 到AC 的距离等于点P 到BC 的距离,∵90BAC ∠=︒,∴点P 到AC 的距离即为PA 的值,故点P 到边BC 的距离等于AP .(2)解:如图:∵90BAC ∠=︒,30B ∠=︒,∴180903060ACB ∠=︒−−︒=︒,又∵AD 为BC 边上的高,∴90ADC ∠=︒,∴180906030DAC ∠=︒−−︒=︒,由(1)可知CP 是ACB ∠的角平分线, ∴1302ACQ QCD ACB ∠=∠=∠=︒,∴1803030128001ACQ DAC AQC ∠−∠=︒−︒−︒=︒∠=︒−. 【变式2】(2023·甘肃兰州·统考中考真题)综合与实践问题探究:(1)如图1是古希腊数学家欧几里得所著的《几何原本》第1卷命题9:“平分一个已知角.”即:作一个已知角的平分线,如图2是欧几里得在《几何原本》中给出的角平分线作图法:在OA 和OB 上分别取点C 和D ,使得OC OD =,连接CD ,以CD 为边作等边三角形CDE ,则OE 就是AOB ∠的平分线.请写出OE 平分AOB ∠的依据:____________;类比迁移:(2)小明根据以上信息研究发现:CDE 不一定必须是等边三角形,只需CE DE =即可.他查阅资料:我国古代已经用角尺平分任意角.做法如下:如图3,在AOB ∠的边OA ,OB 上分别取OM ON =,移动角尺,使角尺两边相同刻度分别与点M ,N 重合,则过角尺顶点C 的射线OC 是AOB ∠的平分线,请说明此做法的理由;拓展实践:(3)小明将研究应用于实践.如图4,校园的两条小路AB 和AC ,汇聚形成了一个岔路口A ,现在学校要在两条小路之间安装一盏路灯E ,使得路灯照亮两条小路(两条小路一样亮),并且路灯E 到岔路口A 的距离和休息椅D 到岔路口A 的距离相等.试问路灯应该安装在哪个位置?请用不带刻度的直尺和圆规..........在对应的示意图5中作出路灯E 的位置.(保留作图痕迹,不写作法)【详解】解:(1)∵OC OD =,CE DE =,DE DE =,∴()SSS OCE ODE ≌,∴AOE BOE ∠=∠,∴OE 是AOB ∠的角平分线;故答案为:SSS(2)∵OM ON =,CM CN =,OC OC =,∴()SSS OCM OCN ≌,∴AOC BOC ∠=∠,∴OC 是AOB ∠的角平分线;(3)如图,点E 即为所求作的点;. 【变式3】(2023春·重庆九龙坡·七年级校考期末)如图,已知在ABC 中,90BAC ∠=︒,AD BC ⊥于点D .(1)尺规作图:作ABC ∠的平分线交AC 于点E ,交AD 于点F ;(要求:保留作图痕迹,不写作法,不下结论)(2)在(1)的条件下,求证:AFE AEF ∠=∠.AD BC ⊥90ADB ∴∠=︒∴__________90BFD +∠=︒又BFD ∠=__________FBD ∴∠+__________90=︒90BAC ∠=︒ABF ∴∠+__________90=︒BF 平分ABC ∠ABF ∴∠=__________AFE AEF ∴∠=∠.【详解】(1)如图所示,(2)AD BC ⊥90ADB ∴∠=︒∴FBD ∠90BFD +∠=︒又BFD ∠=AEF ∠FBD ∴∠+AEF ∠90=︒90BAC ∠=︒ABF ∴∠+AFE ∠90=︒ BF 平分ABC ∠ABF ∴∠=FBD ∠AFE AEF ∴∠=∠.故答案为:FBD ∠;AEF ∠;AEF ∠;AFE ∠;FBD ∠.【过关检测】一、单选题 1.(2023春·四川泸州·八年级统考期末)如图,70AOB ∠=︒,点C 是AOB ∠内一点,CD OA ⊥于点D ,CE OB ⊥于点E .且CD CE =,则DOC ∠的度数是( )A .30︒B .35︒C .40︒D .45︒【答案】B【分析】根据角平分线的判定定理可得OC 平分AOB ∠,再计算角度.【详解】解:∵CD OA ⊥,CE OB ⊥,CD CE =,∴OC 平分AOB ∠, ∴1352DOC AOB ∠=∠=︒,故选C .【点睛】本题主要考查了角平分线的判定,注意:到角的两边距离相等的点在角平分线上. 2.(陕西省榆林市高新区2022-2023学年七年级下学期期末数学试题)如图,在Rt ABC △中,ABC ∠的平分线BD 交AC 于点D ,过点D 作DE AB ⊥交AB 于点E .若9cm CD =,则点D 到AB 的距离是( )A .9cmB .6cmC .4.5cmD .3cm【答案】A 【分析】根据角平分线的性质,角平分线上的点到角两边的距离相等,即可求解.【详解】∵BD 平分ABC ∠,DE AB ⊥,AC BC ⊥,∴9DC DE ==,∴点D 到AB 的距离是9cm .故选:A .【点睛】本题考查角平分线的性质,解题的关键是掌握角平分线的性质.3.(2023春·河南焦作·七年级校考期末)如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,ADB C ∠=∠.若P 是BC 边上一动点,则DP 的长不可能是( )【答案】A【分析】根据余角的性质可得ABD CBD ∠=∠,即BD 平分ABC ∠,作DE BC ⊥于E ,则3AD DE ==,再根据垂线段最短即可得到答案.【详解】解:∵90A ∠=︒,BD CD ⊥,∴90,90ABD ADB CBD C ∠+∠=︒∠+∠=︒,∵ADB C ∠=∠,∴ABD CBD ∠=∠,即BD 平分ABC ∠,作DE BC ⊥于E ,则3AD DE ==,∵P 是BC 边上一动点,则DP DE ≥,即3DP ≥,∴DP 的长不可能是52;故选:A .【点睛】本题考查了直角三角形的性质和角平分线的性质,得出BD 平分ABC ∠是解题的关键.A .12∠=∠且CM DM =B .13∠=∠且CM DM =C .12∠=∠且OD DM =D .23∠∠=且OD DM =【答案】A 【分析】由作图过程可得:,OD OC CM DM ==,再结合DM DM =可得()SSS COM DOM ≌,由全等三角形的性质可得12∠=∠即可解答.【详解】解:由作图过程可得:,OD OC CM DM ==,∵DM DM =,∴()SSS COM DOM ≌.∴12∠=∠.∴A 选项符合题意;不能确定OC CM =,则13∠=∠不一定成立,故B 选项不符合题意;不能确定OD DM =,故C 选项不符合题意,OD CM ∥不一定成立,则23∠∠=不一定成立,故D 选项不符合题意.故选A .【点睛】本题主要考查了角平分线的尺规作图、全等三角形的判定与性质等知识点,理解尺规作图过程是解答本题的关键. ,ABC 的面积为,则ABC 的周长为( A .4B .6C .24D .12【答案】C 【分析】过点E 作EF AB ⊥,垂足为F ,过点E 作EG AC ⊥,垂足为G ,根据角平分线的性质可得1EG EF ED ===,然后根据三角形的面积公式进行计算即可解答.【详解】解:过点E 作EF AB ⊥,垂足为F ,过点E 作EG AC ⊥,垂足为G ,∵BE 平分ABC ∠,ED BC ⊥,EF AB ⊥,∴1EF ED ==,∵CE 平分ACB ∠,ED BC ⊥,EG AC ⊥,∴1ED EG ==,∴ABC 的面积ABE =的面积BEC +△的面积AEC +△的面积()11111122222AB EF BC ED AC EG AB BC AC =⋅+⋅+⋅=⨯⨯++=,∴24AB BC AC ++=,即ABC 的周长为24.故选:C .【点睛】本题考查了角平分线的性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.A .3PD =B .3PD <C .3PD ≤ D .3PD ≥【答案】D 【分析】根据角平分线的性质得到3PF =,再根据垂线段最短即可解答.【详解】解:过点P 作PE AB ⊥于点E ,过点P 作PF BC ⊥于点F ,∵点P 在ABC ∠的平分线上,∴PE PF =, ∵3PE =,∴3PF =,∴根据垂线段最短可知:3PD ≥,故选D .【点睛】本题考查了角平分线的性质,垂线段最短,掌握角平分线的性质是解题的关键. 八年级统考期末)如图,在ABC 中, A .83 B .43 【答案】D【分析】由题意可求DC 的长,由角平分线的性质可求解.【详解】解:如图,过点D 作DH AB ⊥,垂足为H ,∵143AC DC AC ==,,∴1DC =,∵BD 平分ABC ∠,90C DH AB =︒∠,⊥,∴1CD DH ==,∴点D 到AB 的距离等于1,故选:D .【点睛】本题考查了角平分线的性质,熟练运用角平分线的性质是本题的关键.8.(2023春·湖南娄底·八年级统考期末)如图,三条公路把A ,B ,C 三个村庄连成一个三角形区域,现决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在( )A .三角形三个内角的角平分线的交点B .三角形三条边的垂直平分线的交点C .三角形三条高的交点D .三角形三条中线的交点【答案】A 【分析】根据角平分线上的点到角的两边的距离相等解答即可.【详解】解:根据角平分线的性质,集贸市场应建在三个角的角平分线的交点处.故选:A .【点睛】本题主要考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.9.(2023春·陕西榆林·八年级统考期末)如图,OD 平分AOB ∠,DE AO ⊥于点E ,5DE =,F 是射线OB 上的任意一点,则DF 的长度不可能是( )【答案】A 【分析】过D点作DH OB ⊥于H ,根据角平分线的性质得5DH DE ==,再利用垂线段最短得到5DF ≥,然后对各个选项进行判断即可,【详解】过D点作DH OB ⊥于H ,OD 平分AOB ∠,DE OA ⊥,DH OB ⊥,5DH DE ∴==,DF DH ≥,5DF ∴≥,故选A【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等,也考查了垂线段最短,掌握角平分线的性质是解题的关键. 10.(2023春·河南开封·七年级统考期末)如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠,DE AB ⊥于E ,则下列结论:①DE CD =;②AD 平分CDE ∠;③BAC BDE ∠=∠;④BE AC AB +=,其中正确的是( )A .1个B .2个C .3个D .4个【答案】D 【分析】①根据角平分线的性质得出结论:DE CD =;②证明ACD AED △≌△,得AD 平分CDE ∠;③由四边形的内角和为360︒得180CDE BAC ∠+∠=︒,再由平角的定义可得结论是正确的;④由ACD AED ∆≅∆得AC AE =,再由AB AE BE =+,得出结论是正确的.【详解】解:①90C ∠=︒,AD 平分BAC ∠,DE AB ⊥,DE CD ∴=;所以此选项结论正确;②DE CD =,AD AD =,90ACD AED ∠=∠=︒,ACD AED ∴≌,ADC ADE ∴∠=∠,AD ∴平分CDE ∠,所以此选项结论正确;③90ACD AED ∠=∠=︒,3609090180CDE BAC ∴∠+∠=︒−︒−︒=︒,180BDE CDE ∠+∠=︒,BAC BDE ∴∠=∠,所以此选项结论正确;④ACD AED ≌,AC AE ∴=,AB AE BE =+,BE AC AB ∴+=,所以此选项结论正确;本题正确的结论有4个,故选D .【点睛】本题考查了全等三角形性质和判定,同时运用角平分线的性质得出两条垂线段相等;本题难度不大,关键是根据HL 证明两直角三角形全等,根据等量代换得出线段的和,并结合四边形的内角和与平角的定义得出角的关系.二、填空题 七年级统考期末)如图,在ABC 中,ABC 的内部相交于点 【答案】5【分析】先根据尺规作图描述得出AD 为BAC ∠的角平分线,再根据角平分线的性质得到点D 到AB 的距离5DE =,进而求出三角形的面积.【详解】由作法得AD 平分BAC ∠,如图所示,过点D 作DE AB ⊥于E ,∵90ACB ∠=︒,根据角平分线的性质,得43DC DE ==,ABD ∴的面积114102233AB DE AB =⋅⋅=⨯⨯=. ∴5AB =,故答案为:5.【点睛】本题考查角平分线的性质,解决本题的关键是熟知角平分线的性质并灵活应用.【答案】2【分析】根据尺规作图可得BF 平分ABC ∠,再利用角平分线的性质定理可得出2DF CF ==,最后根据垂线段最短即可得出FH 的最小值是2.【详解】解:如图,过点F 作FD AB ⊥于D .由作图可知,BF 平分ABC ∠,∵FC BC ⊥,FD AB ⊥,∴2DF CF ==.根据垂线段最短可知,FH 的最小值为DF 的长,即为2.故答案为:2.【点睛】本题主要考查角平分线的性质,垂线段最短,解题的关键在于能够准确判断出BF 是ABC ∠的角平分线.13.(2023春·重庆沙坪坝·七年级重庆八中校考期末)如图,Rt ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,E 为线段AC 上一点,连接DE ,且B CED ∠=∠.若16AB =,6CE =,则AE 的长为________.【答案】4【分析】过点D 作DF AB ⊥于点F ,由角平分线的性质得出DC DF =,证明DCE DFB ≌,得出BF CE =,求出AF ,由HL 证明Rt Rt ADC ADF ≌,得出AC AF =,即可求出结果.【详解】解:过点D 作DF AB ⊥于点F ,如图所示:∵90C ∠=︒,AD 平分BAC ∠交BC 于点D ,,∴DC DF =,在DCE △和DFB △中,90=BFD DCE B CEDDC DF ∠=∠=︒⎧⎪∠=∠⎨⎪⎩,∴()AAS DCE DFB ≌,∴6BF CE ==,∴10AF AB BF =−=,在Rt ADC 与Rt ADF 中,==DC DF AD AD ⎧⎨⎩,∴Rt Rt ADC ADF ≌,∴10AC AF ==,∴1064AE AC CE =−=−=.故答案为:4.【点睛】此题考查全等三角形的判定和性质和角平分线的性质,解题的关键是作出辅助线,构造全等三角形,根据HL 证明直角三角形的全等解答.【答案】30【分析】由作图可知OC 是AOB ∠的角平分线,根据角平分线的定义即可得到答案.【详解】解:由题意可知,OC 是AOB ∠的角平分线,∴11603022AOC AOB ∠=∠=⨯︒=︒.故答案为:30【点睛】此题考查角平分线的作图、角平分线相关计算,熟练掌握角平分线的作图是解题的关键.,则POD 的面积是【答案】6【分析】过点P 作PF OB ⊥交OB 于点F ,由作图可知OP 是AOB ∠的平分线,根据角平分线的性质得3PF PC ==,即可求得POD 的面积.【详解】解:如图,过点P 作PF OB ⊥交OB 于点F ,由作图可知,OP 是AOB ∠的平分线,∵PC OA ⊥,PF OB ⊥,∴3PF PC ==,∴POD 的面积为:162OD PF ⋅=,故答案为:6.【点睛】本题考查了尺规作角平分线以及角平分线的性质定理:角平分线上的点到角两边的距离相等.16.(2023春·山东泰安·七年级统考期末)如图,在锐角ABC 中,60BAC ∠=︒,BE 、CD 为ABC 的角平分线.且BE 、CD 交于点F ,连接AF .有下列四个结论:①120BFC ∠=︒;②BD CE =;③BC BD CE =+;④FBD FEC FBC S S S +=△△△.其中结论正确的序号是__________ .【答案】①③④【分析】根据角平分线的定义和三角形内角和定理求出BFC ∠;在BC 上取BM BD =,证明()SAS DBF MBF ≌△△,再证明()ASA MCF ECF ≌△△;过点F 作FG AB ⊥于点G ,FH AC ⊥于点H ,FK BC ⊥于点K ,根据角平分线的性质和三角形面积公式分别对各个结论进行判断即可.【详解】解:∵ABC 的两条角平分线BE 和CD 交于点F ,60BAC ∠=︒,∴FBC FCB∠+∠()12ABC ACB =∠+∠()11802BAC ︒=−∠()1180602=⨯︒−︒60=︒, ∴()180********BFC FBC FCB ∠=︒−∠+∠=︒−︒=︒,故结论①正确; ∴18060BFD BFC CFE Ð=°-Ð=°=Ð,在BC 上取BM BD =,∵BE 平分ABC ∠,∴DBF MBF Ð=Ð,在DBF 和MBF V 中,BD BM DBF MBFBF BF =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS DBF MBF ≌△△, ∴60BFD BFM ∠=∠=︒,∴1206060CFM BFC BFM ∠=∠−∠=︒−︒=︒,∴60CFM CFE ∠=∠=︒,∵CD 平分ACB ∠,∴MCF ECF ∠=∠,在MCF △和ECF △中,CFM CFE CF CFMCF ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA MCF ECF ≌△△, ∴CM CE =,∴BC BM CM BD CE =+=+,故结论③正确;∵没有条件得出点M 是BC 的中点,∴不能得出BD 与CE 一定相等,故结论②错误;过点F 作FG AB ⊥于点G ,FH AC ⊥于点H ,FK BC ⊥于点K ,∵BE 、CD 为ABC 的角平分线,∴FG FK =,FK FH =,∴FG FK FE ==, ∵12FBD S BD FG =⋅△,12FEC S EC FH =⋅△,12FBC S BC FK =⋅△,∴FBD FEC S S +△△1122BD FG EC FH =⋅+⋅ 1122BM FK MC FK =⋅+⋅ ()12BM MC FK =+⋅ 12BC FK =⋅FBC S =△,∴FBD FEC FBC S S S +=△△△,故结论④正确,∴结论正确的序号是①③④.故答案为:①③④.【点睛】本题考查角平分线的性质,全等三角形的判定与性质,三角形内角和定理,三角形的面积,作出辅助线构造全等三角形是解题的关键.三、解答题 17.(2023春·重庆江北·七年级统考期末)完成下面的解答过程,并填上适当的理由.已知:如图,DE BC ∥,BD 平分ABC ∠,EF 平分AED ∠.解: ∵DE BC ∥(已知)∴ABC AED ∠=∠( ① ).∵BD 平分ABC ∠,EF 平分∠∴112ABC ∠=∠,122AED ∠=∠【答案】两直线平行,同位角相等 2∠ 等量代换 同位角相等,两直线平行【分析】先分析角的位置关系,根据平行线的性质及判定定理,即可写出答案.【详解】证明:∵DE BC ∥(已知),∴ABC AED ∠=∠.∵BD 平分ABC ∠,EF 平分AED ∠,∴112ABC ∠=∠,122AED ∠=∠.∴12∠=∠(等量代换).∴EF BD ∥(同位角相等,两直线平行).故答案为:两直线平行,同位角相等 ; 2∠ ;等量代换 同位角相等,两直线平行.【点睛】本题主要考查平行线的性质(两直线平行,同位角相等),及平行线的判定方法(同位角相等,两直线平行).牢记平行线的性质和判定方法是解题的关键.18.(2023春·山东泰安·七年级统考期末)如图,在AOB 和COD △中,OA OB =,OC OD =,OA OC <,36AOB COD ∠=∠=︒,连接AC 、BD 交于点M ,连接OM .求证:(1)36AMB ∠=︒;(2)MO 平分AMD ∠.【答案】(1)证明见解析 (2)证明见解析【分析】(1)证明()SAS AOC BOD ≌△△,由三角形全等的性质得出OAC OBD ∠=∠,由三角形的外角性质得:AMB OBD OAC AOB ∠+∠=∠+∠,可得出AMB ∠的度数;(2)作OG AC ⊥于G ,OH BD ⊥于H ,利用全等三角形对应边上的高相等,得出OG OH =,由角平分线的判定方法即可得证.【详解】(1)证明:∵36AOB COD ∠=∠=︒,∴AOB BOC COD BOC ∠+∠=∠+∠,即AOC BOD ∠=∠,在AOC 和BOD 中,OA OB AOC BODOC OD =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS AOC BOD ≌△△, ∴OAC OBD ∠=∠,∵AEB ∠是AOE △和BME 的外角∴AEB AMB OBD AOB OAC ∠=∠+∠=∠+∠,∴36AMB AOB ∠=∠=︒;(2)如图所示,作OG AC ⊥于G ,OH BD ⊥于H ,∴OG 是AOC 中AC 边上的高,OH 是BOD 中BD 边上的高,由(1)知:AOC BOD ≌,∴OG OH =,∴点O 在AMD ∠的平分线上,即MO 平分AMD ∠.【点睛】本题考查全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识.证明三角形全等是解题的关键. 七年级统考期末)如图,在ABC 中, (2)18【分析】(1)根据BD 平分ABC ∠,CD 平分ACB ∠得12DBC ABC ∠=∠,12DCB ACB ∠=∠,根据40ABC ∠=︒,70ACB ∠=︒得140202DBC ∠=⨯︒=︒,170352DCB ∠=⨯︒=︒,根据三角形内角和定理即可得;(2)过点D 作DF BC ⊥于点F ,根据BD 平分ABC ∠,DE AB ⊥,DF BC ⊥得DE DF =,根据4DE =得4DF =,即可得.【详解】(1)解:∵BD 平分ABC ∠,CD 平分ACB ∠,∴12DBC ABC ∠=∠,12DCB ACB ∠=∠,∵40ABC ∠=︒,70ACB ∠=︒,∴140202DBC ∠=⨯︒=︒,170352DCB ∠=⨯︒=︒,∴在BCD △中,1802035125BDC ∠=︒−︒−︒=︒;(2)解:过点D 作DF BC ⊥于点F ,∵BD 平分ABC ∠,DE AB ⊥,DF BC ⊥,∴DE DF =,∵4DE =,∴4DF =,∵9BC =, ∴11S 941822BCD BC DF =⨯⨯=⨯⨯=△.【点睛】本题考查了角平分线,三角形内角和定理,三角形的面积,解题的关键是理解题意,掌握这些知识点. 八年级假期作业)如图,在ABC 中, 【答案】6cm CD =,34B ∠=︒【分析】根据角平分线的性质可得CD DE =,28BAD CAD ∠=∠=︒,再根据直角三角形的两个锐角互余即可求出B ∠的度数.【详解】解:∵ABC 中,90C ∠=︒,AD 平分BAC ∠,DE AB ⊥,∴6cm CD DE ==,28BAD CAD ∠=∠=︒,∴256BAC CAD ∠=∠=︒,∴9034B CAD ∠=︒−∠=︒.【点睛】本题考查了角平分线的性质定理和直角三角形的两个锐角互余,属于基础题型,熟练掌握角平分线的点到一个角的两边距离相等是解题关键.21.(2023春·广西南宁·七年级南宁十四中校考期末)如图,已知ABC .(1)尺规作图:作BAC ∠的角平分线交BC 于点G (不写作法,保留作图痕迹);(2)如果6AB =,10AC =,ABG 的面积为18,求ACG 的面积.【答案】(1)见解析(2)30【分析】(1)根据角平分线的尺规作图方法作图即可;(2)如图所示,过点G 作GE AB GF AC ⊥⊥,垂足分别为E 、F ,证明AEF AFG △≌△,得到EG FG =,根据面积法求出6EG FG ==,再根据三角形面积公式求解即可.【详解】(1)解:如图所示:(2)解:如图所示,过点G 作GE AB GF AC ⊥⊥,垂足分别为E 、F ,∴90AEG AFG ∠=∠=︒,∵AG 是BAC ∠的角平分线,∴EAG FAG ∠=∠,又∵AG AG =,∴()AAS AEF AFG △≌△,∴EG FG =;∵6AB =,ABG 的面积为18,∴1182AB EG ⋅=,即16182EG ⨯=,∴6EG =,∴6EG FG ==,∴111063022ACG S AC FG =⋅=⨯⨯=△.【点睛】本题主要考查了全等三角形的性质与判定,三角形面积,角平分线的尺规作图,角平分线的定义等等,灵活运用所学知识是解题的关键. 22.(2023春·山西太原·七年级统考期末)如图,在ABC 中,AD 是它的角平分线,DE AB ⊥于点,E DF AC ⊥于点F ,且BE CF =.线段BD 与CD 相等吗?说明理由.【答案】BD CD =,见解析【分析】根据角平分线的性质得出DE DF =,根据垂直定义得出90DEB DFC ∠=∠=︒,根据SAS 证明DFC △D E B ≌△,得出BD CD =即可.【详解】解:BD CD =;理由如下:∵AD 是BAC ∠的角平分线,DE AB ⊥,DF AC ⊥,∴DE DF =,∵DE AB ⊥,DF AC ⊥,∴90DEB DFC ∠=∠=︒,又∵BE CF =,∴DFC △DE B ≌△, ∴BD CD =.【点睛】本题主要考查了角平分线的性质,垂线定义理解,三角形全等的判定和性质,解题的关键是熟练掌握三角形全等的判定方法,证明DFC △DE B ≌△. 23.(重庆市大渡口区2022-2023学年七年级下学期期末数学试题)如图,AD BC ∥,180B BCD ∠+∠=︒.(1)用直尺和圆规完成以下基本作图:过点A 作BAD ∠的角平分线,交CD 于点F ,与BC 的延长线交于点E ;(不写做法,保留作图痕迹)(2)求证:CFE FEC ∠=∠.证明:∵AD BC ∥(已知),∴DAF FEC ∠=∠(①__________). ∵AE 平分BAD ∠,∴②__________(角平分线的定义). ∴BAE FEC ∠=∠(③__________). ∵180B BCD ∠+∠=︒(已知), ∴④__________(⑤__________). ∴BAE CFE ∠=∠(两直线平行,同位角相等). ∴CFE FEC ∠=∠(等量代换). 【答案】(1)见解析(2)见解析【分析】(1)利用基本作图作BAD ∠的平分线即可;(2)先根据平行线的性质得到DAF FEC ∠=∠,再利用角平分线的定义得到BAE DAF ∠=∠,则BAE FEC ∠=∠,接着证明AB CD ∥得到BAE CFE ∠=∠,然后利用等量代换得到CFE FEC ∠=∠.【详解】(1)解:如图,BE 为所作;(2)证明:AD BC ∥(已知), DAF FEC ∴∠=∠(两直线平行,内错角相等).AE 平分BAD ∠,BAE DAF ∴∠=∠(角平分线的定义),BAE FEC ∴∠=∠(等量代换).180B BCD ∠+∠=︒(已知),AB CD ∴∥(同旁内角互补,两直线平行).BAE CFE ∴∠=∠(两直线平行,同位角相等).CFE FEC ∴∠=∠(等量代换).【点睛】本题考查了作图−基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了角平分线的性质和平行线的判定与性质. 七年级校考阶段练习)如图,ABC 中, 若BCG 的面积为,则ABC 的面积为【答案】(1)120︒(2)3(3)6【分析】(1)根据作图方法可得BG 是ABC ∠的角平分线,则1302ABG ABC ==︒∠∠,再由三角形外角的性质可得120BGC A ABG =+=︒∠∠;(2)如图所示,过点G 作GD BC ⊥于D ,先求出3AG AC CG =−=,再证明ABG DBG △≌△,得到3DG AG ==,根据垂线段最短可知线段H G 的最小值为3;(3)证明BDG CDG △≌△,得到122BDG CDG BCG S S S ===△△△,进而求出2BDG ABG S S ==△△,则6ABC ABG CBG S S S =+=△△△.【详解】(1)解:由作图方法可知BG 是ABC ∠的角平分线, ∴1302ABG ABC ==︒∠∠,∵90A ∠=︒,∴120BGC A ABG =+=︒∠∠,故答案为:120︒;(2)解:如图所示,过点G 作GD BC ⊥于D ,∴90BAG BDG ==︒∠∠,∵96AC CG ==,,∴3AG AC CG =−=,∵BG 是ABC ∠的角平分线,∴ABG DBG ∠=∠,又∵BG BG =,∴()AAS ABG DBG △≌△,∴3DG AG ==,∵H 是边BC 上一动点,∴当点H 与点D 重合时,HG 最小,∴线段HG 的最小值为3, 故答案为:3;(3)解:∵BG 是ABC ∠的角平分线,∴30ABG DBG ==︒∠∠,∵9030C ABC ∠=︒−∠=︒,∴GBD C ∠=∠,又∵90DG DG BDG CDG ===︒,∠∠,∴()AAS BDG CDG △≌△, ∴122BDG CDG BCG S S S ===△△△,∵ABG DBG △≌△,∴2BDG ABG S S ==△△,∴6ABC ABG CBG S S S =+=△△△,故答案为:6.【点睛】本题主要考查了全等三角形的性质与判定,三角形内角和定理,三角形外角的性质,角平分线的定义,角平分线的尺规作图等等,正确作出辅助线构造全等三角形是解题的关键. 七年级统考期末)ABC 中, (2)如图2,若ABC 是锐角三角形.过点FED ∠,EDB ∠与ABC ∠ (3)若ABC 是钝角三角形,其中FED ∠,EDB ∠与ABC ∠之间的数量关系.【答案】(1)45 (2)12BDE FED ABC ∠=∠+∠,证明见解析 (3)12ABC BDE DEF ∠=∠+∠【分析】(1)首先证明AED ABC ∠=∠得到DE BC ∥,得到EDB DBC ∠=∠,再根据角平分线的定义得到1452DBC ABC ∠=∠=︒,即可证明;(2)延长ED 、BC 交于G ,利用平行线的性质得FED G ∠=∠,再利用三角形外角的性质可得结论;(3)由(2)同理解决问题.【详解】(1)解:DE AB ∵⊥,90AED ∴∠=︒.90ABC ∠=︒,AED ABC ∴∠=∠.DE BC ∴∥.EDB DBC ∴∠=∠.BD Q 平分ABC ∠,1452DBC ABC ∴∠=∠=︒.45EDB ∴∠=︒.(2)如图,12BDE FED ABC ∠=∠+∠,理由如下:延长ED 、BC 交于G ,EF BC ∥,FED G ∴∠=∠,BD Q 平分ABC ∠,。

第2讲 角平分线的性质与判定

第2讲  角平分线的性质与判定

第2讲 角平分线地性质与判定考点·方式·破译1.角平分线地性质定理:角平分线上地点到角两边地距离相等.2.角平分线地判定定理:角地内角到角两边距离相等地点在这个角地平分线上.3.有角平分线时常常通过下面几种情况构造全等三角形.经典·考题·赏析【例1】如图,已知OD 平分∠AOB ,在OA ,OB 边上截取OA =OB ,PM ⊥BD ,PN ⊥AD .求证:PM =PN【解法指导】由于PM ⊥BD ,PN ⊥AD .欲证PM =PN 只需∠3=∠4,证∠3=∠4,只需∠3和∠4△OBD 与△OAD 全等即可.证明:∵OD 平分∠AOB ∴∠1=∠2在△OBD 与△OAD 中,12OB OA OD OD =⎧⎪∠=∠⎨⎪=⎩∴△OBD ≌△OAD∴∠3=∠4 ∵PM ⊥BD ,PN ⊥AD 所以PM =PN 【变式题组】01.如图,CP ,BP 分别平分△ABC 地外角∠BCM ,∠CBN .求证:点P 在∠BAC 地平分线上.02.如图,BD 平分∠ABC ,AB =BC ,点P 是BD 延长线上地一点,PM ⊥AD ,PN ⊥CD .求证:PM =PN【例2】(天津竞赛题)如图,已知四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于点E ,且AE =12(AB +AD ),假如∠D =120°,求∠B 地度数【解法指导】由已知∠1=∠2,CE ⊥AB ,联想到可作CF ⊥AD 于F ,得CE =CF ,AF =AE ,又由AE =12(AB +AD )得DF =EB ,于是可证△CFD ≌△CEB ,则∠B =∠CDF =60°.或者在AE 上截取AM =AD 从而构造全等三角形.解:过点C 作CF ⊥AD 于点F .∵AC 平分∠BAD ,CE ⊥AB ,点C 是AC 上一点,∴CE =CF在Rt △CFA 和Rt △CEA 中,CF CEAC AC =⎧⎨=⎩∴Rt △ACF ≌Rt △ACE ∴AF =AE又∵AE =12(AE +BE +AF -DF ),2AE =AE +AF +BE -DF ,∴BE =DF ∵CF ⊥AD ,CE ⊥AB ,∴∠F =∠CEB =90°在△CEB 和△CFD 中,CE CF F CEB DF BE =⎧⎪∠=∠⎨⎪=⎩,∴△CEB ≌△CFD∴∠B =∠CDF 又∵∠ADC =120°,∴∠CDF =60°,即∠B =60°.【变式题组】01.如图,在△ABC 中,CD 平分∠ACB ,AC =5,BC =3.求ACD CBDS S ∆∆ 02.(河北竞赛)在四边形ABCD 中,已知AB =a ,AD =b .且BC =DC ,对角线AC 平分∠BAD ,问a与b 地大小符合什么款件时,有∠B +∠D =180°,请画图并证明你地结论.【例3】如图,在△ABC 中,∠BAC =90°,AB =AC ,BE 平分∠ABC ,CE ⊥BE .求证:CE =12BD【解法指导】由于BE 平分∠ABC ,因而可以考虑过点D 作BC 地垂线或延长CE 从而构造全等三角形.证明:延长CE 交BA 地延长线于F ,∵∠1=∠2,BE =BE ,∠BEF =∠BEC∴△BEF ≌△BEC (ASA ) ∴CE =EF ,∴CE =12CF ∵∠1+∠F =∠3+∠F =90°,∴∠1=∠3在△ABD 和△ACF 中,13AB AC BAD CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABD ≌△ACF∴BD =CF ∴CE =12BD第3题图第4题图第5题图【变式题组】01.如图,已知AC∥BD,EA,EB分别平分∠CAB,∠DBA,CD过点E,求证:AB=AC+BD.02.如图,在△ABC中,∠B=60°,AD,CE分别是∠BAC,∠BCA地平分线,AD,CE相交于点F .⑴请你判断FE和FD之间地数量关系,并说明理由。

角平分线的定义是什么判定定理有哪些

角平分线的定义是什么判定定理有哪些

角平分线的定义是什么判定定理有哪些角平分线的定义是从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。

角平分线是在角的型内及形上,到角两边距离相等的点的轨迹。

角平分线在三角形中的定义是三角形的一个角的平分线与这个角的对边相交。

角平分线的定义角平分线的定义是从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。

角平分线是在角的型内及形上,到角两边距离相等的点的轨迹。

角平分线在三角形中的定义是三角形的一个角的平分线与这个角的对边相交,连结这个角的顶点和与对边交点的线段叫做三角形的角平分线,也叫三角形的内角平分线。

由定义可知,三角形的角平分线是一条线段。

由于三角形有三个内角,所以三角形有三条角平分线。

三角形的角平分线交点一定在三角形内部。

角平分线的判定角平分线的性质定理和判定1、角平分线:把一个角平均分为两个相同的角的射线叫该角的平分线;2、角平分线的性质定理:角平分线上的点到角的两边的距离相等:①平分线上的点;②点到边的距离;3、角平分线的判定定理:到角的两边的距离相等的点在角平分线上角平分线的交点叫什么心“角平分线的交点叫内心,垂线的交点叫垂心,中线的交点分别叫重心,垂直平分线的交点叫外心,三角形一内角平分线和另外两顶点处的外角平分线交于一点,叫做旁心。

三角形有许多性质,存在很多“心”的性质:1、重心:三角形重心是三角形三条中线的交点。

当几何体为匀质物体时,重心与形心重合。

2、外心:三角形外接圆的圆心叫做三角形的外心。

三角形外接圆的圆心也就是三角形三边垂直平分线的交点,三角形的三个顶点就在这个外接圆上。

角平分线的性质与判定

角平分线的性质与判定
证明
利用相似三角形的性质和角平分线的 性质进行证明。
角平分线在三角形中的性质
性质
在三角形中,角平分线与对边相交形成的线段之比等于相邻 两边之比。
应用
利用角平分线的性质定理和三角形中的其他性质,可以证明 三角形中的一些重要结论,如“直角三角形中,斜边上的中 线等于斜边的一半”。
02
CATALOGUE
判定方法
角平分线的判定方法一
利用角平分线的定义。在角的内部作一条射线,使得角的两边长度相等,则这 条射线是角的平分线。
角平分线的判定方法二
利用等腰三角形的性质。在角的内部作一条射线,使得与角的两边分别相交并 形成两个等腰三角形,则这条射线是角的平分线。
判定在三角形中的运用
在三角形中,角平分线将三角形分为两个面积相等的部分。这是因为角平分线将 三角形划分为两个等腰三角形,而等腰三角形的面积等于底乘高的一半,由于两 个等腰三角形的底相等且高相等,所以它们的面积相等。
04
CATALOGUE
角平分线的作法
作法步骤Biblioteka 010203第一步
在角的顶点上,以角的两 边为邻边,作一个等腰三 角形。
第二步
从等腰三角形的顶点向底 边作垂线,将底边分为两 等份。
第三步
连接角的顶点和垂足,这 条连线就是角平分线。
作法在三角形中的运用
在三角形中,可以利用角平分线作法 来找到角的平分线,从而进一步研究 三角形的性质和判定。
THANKS
感谢观看
角平分线的判定
判定定理
角平分线的判定定理
从角的顶点出发,将角平分线引到角的两边,使得角的两边长度相等,则这条射 线就是角的平分线。
证明角平分线判定定理
在角的内部作一条射线,并使角的两边长度相等。然后,通过角的顶点和射线的 端点作一条直线,这条直线将与角的两边相交于两点。由于角的两边长度相等, 所以这两点与射线端点的距离相等,从而证明了射线是角的平分线。

角平分线的性质和判定

角平分线的性质和判定

填空:
A
练一练 12
(1). ∵∠1= ∠2,DC⊥AC, DE⊥AB
E
∴__D_C__=_D_E____
(__在__角__平__分___线__上__的___点__到__角___的__两__边__的_C__距__离__相D___等__)
B
(1). ∵DC⊥AC ,DE⊥AB ,DC=DE
∴_∠__1_=_∠__2___
证明:过点P作PD 、PE、PF分别垂直 于AB、BC、CA,垂足为D、E、F
∵BM是△ABC的角平分线,点P在BM
上(已知)
A
∴PD=PE
(在角平分线上的点到角的两边的距离D
相等)
N
PM
F
同理 PE=PF. ∴ PD=PE=PF.
B
C
E
即点P到边AB、BC、CA的距离相等
求证:PD=PE.
D
POBE源自角平分线的性质定理:在角平分线上的点到角的两边的距离相等
用符号语言表示为:
A
∵∠1= ∠2
D
PD ⊥OA ,PE ⊥OB
P
∴PD=PE.
1
O
2
B
E
交换定理的题设和结论得到的命题为:
角平分线的判定
定理:到一个角的两边的距离相等的点,在 这个角平分线上。
已知:PD ⊥OA ,PE ⊥OB,垂足分别是D、E,
A
C C′
B
课堂小结
1.角平分线的性质定理: 在角平分线上的点到角的两边的距离相等
2.角平分线的判定定理: 到一个角的两边的距离相等的点,在这个角平分线上。
3.角平分线的性质定理和角平分线的判定定 理是证明角相等、线段相等的新途径.

湘教版:角平分线的性质与判定(经典题型)

湘教版:角平分线的性质与判定(经典题型)

角平分线的性质与判定1、角平分线:把一个角为两个相同的角的射线叫该角的平分线;2、角平分线的性质定理:角平分线上的点到的距离相等:①平分线上的点;②点到边的距离;3、角平分线的判定定理:到角的两边的距离相等的点一、角平分线的性质定理例1.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=11cm,BD=7cm,那么点D 到直线AB的距离是cm.变式1.如图,在△ABC中,∠C=90°,AD是△ABC的一条角平分线.若AC=6,AB=10,则点D到AB边的距离为()A.2B.2.5C.3D.4二:角平分线的性质定理的逆定理例1.如图,已知BE⊥AC,CF⊥AB,垂足分别为E,F,BE,CF相交于点D,若BD=CD.求证:AD平分∠BAC.三、常见题型(一)利用角平分线的性质求线段长度例1.如图所示,在Rt△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E.求证:△DBE的周长等于AB.变式1.如图,在△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足是点E,AC=DE+BD.(1)求∠BAD的度数;(2)若△DBE的周长为4cm,则AB=.变式2.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC 上,且BD=DF.(1)求证:CF=EB;(2)试判断AB与AF,EB之间存在的数量关系.并说明理由.(二)利用角平分线的性质求角度问题例1.如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,P A=PC.求证:∠PCB+∠BAP=180°.变式1.已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)若连接AM,则AM是否平分∠BAD?请你证明你的结论;(2)线段DM与AM有怎样的位置关系?请说明理由.(3)CD、AB、AD间?直接写出结果(三)利用角平分线解决与面积有关的问题例1.如图,BD是△ABC的角平分线,△ABC的面积为60,AB=15,BC=9,求△ABD的面积.变式1 如图,已知△ABC的周长是22,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是多少?(四)角平分线性质定理的逆定理应用例1.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF求证:AD平分∠BAC.变式1.如图,△ABC中,P是角平分线AD,BE的交点.求证:点P在∠C的平分线上.(五)角平分线性质定理的实际应用例1.已知:如图,直线l1,l2,l3表示三条相互交叉的公路,现要建一个塔台,若要求它到三条公路的距离都相等,试问:(1)可选择的地点有几处?(2)你能画出塔台的位置吗?变式1.如图:某地要在三条公路围成的一块平地上修建一个公园,要使公园到三条公路的距离相等,应在何处修建?(使用尺规作图,保留作图痕迹)并证明你的观点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

角平分线的性质定理和判定
第一部分:知识点回顾
1、角平分线:把一个角平均分为两个相同的角的射线叫该角的平分线;
2、角平分线的性质定理:角平分线上的点到角的两边的距离相等:①平分线上的点;②点到边的距离;
3、角平分线的判定定理:到角的两边的距离相等的点在角平分线上
第二部分:例题剖析
例1.已知:在等腰Rt△ABC中,AC=BC,∠C=90°,AD平分∠BAC,DE⊥AB于点E,
AB=15cm,
(1)求证:BD+DE=AC.
(2)求△DBE的周长.
例2.如图,∠B=∠C=90°,M是BC中点,DM平分∠ADC,求证:AM平分∠DAB.
例3. 如图,已知△ABC的周长是22,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC 的面积是多少?
第三部分:典型例题
例1、已知:如图所示,CD⊥AB于点D,BE⊥AC于点E,BE、CD交
于点O,且AO平分∠BAC,求证:OB=OC.
【变式练习】如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC,求证:∠PCB+∠BAP=180º
例2、已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.
(1)若连接AM,则AM是否平分∠BAD?请你证明你的结论;
(2)线段DM与AM有怎样的位置关系?请说明理由.
(3)CD、AB、AD间?直接写出结果
【变式练习】如图,△ABC中,P是角平分线AD,BE的交点.求证:点P在∠C的平分线上.
例3.如图,在△ABC中,BD为∠ABC的平分线,DE⊥AB于点E,且DE=2cm,AB=9cm,BC=6cm,
2
1
N
P
F C
B
A
求△ABC的面积.
【变式练习】如图,D、E、F分别是△ABC的三条边上的点,CE=BF,△DCE和△DBF的面积相等.求证:AD平分∠BAC.
第四部分:思维误区
一、忽视“垂直”条件
例1.已知,如图,CE⊥AB,BD⊥AC,∠B=∠C,BF=CF。

求证:AF为∠BAC的平分线。

第五部分:方法规律
(1)有角平分线,通常向角两边引垂线。

(2)证明点在角的平分线上,关键是要证明这个点到角两边的距离相等,即证明线段相等。

常用方法有:使用全等三角形,角平分线的性质和利用面积相等,但特别要注意点到角两边的距离。

(3)注意:许多同学对证明两个三角形全等的问题已经很熟悉了,所以证题时,不习惯直接应用角平分线性质定理和判定定理,仍然去找全等三角形,结果相当于重新证明了一次这两个结论.所以特别提醒大家,能用简单方法的,就不要绕远路.
第七部分:巩固练习
A组
一、耐心选一选,你会开心(每题6分,共30分)
1.三角形中到三边距离相等的点是()
A 、三条边的垂直平分线的交点
B 、三条高的交点
C 、三条中线的交点
D 、三条角平分线的交点
2.如图,△ABC 中,∠C =90°,AC =BC ,AD 是∠BAC 的平分线,DE ⊥AB ,垂足为E ,若AB =12cm ,则△DBE 的周长为()
A 、12cm
B 、10cm
C 、14cm
D 、11cm
D
C A
E
B
3.如图2所示,已知PA 、PC 分别是△ABC 的外角∠DAC 、∠ECA 的平分线,PM ⊥BD ,PN ⊥BE ,垂足分别为M 、N ,那么PM 与PN 的关系是()
A.PM >PN
B.PM =PN
C.PM <PN
D.无法确定
4.如图3所示,△ABC 中,AB=AC ,AD 是∠A 的平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,下面给出四个结论,其中正确的结论有( )
①AD 平分∠EDF ; ②AE=AF ; ③AD 上的点到B 、C 两点的距离相等 ④到AE 、AF 距离相等的点,到DE 、DF 的距离也相等
A 、1个
B 、2个
C 、3个
D 、4个 5. 如图,已知点D 是∠ABC 的平分线上一点,点P 在BD 上,
P A ⊥AB ,PC ⊥BC ,垂足分别为A ,C .下列结论错误的是( ). A .AD =CP B .△ABP ≌△CBP C .△ABD ≌△CBD D .∠ADB =∠CDB .
二、解答题
6.已知:AD 是△ABC 角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,BD =CD ,证:∠B =∠C.
D M A
B
N
P
E
图2
图3
A
B
C
D
P
7.如图,已知在△ABC中,90
C
∠=,点D是斜边AB的中点,2
AB BC
=,DE AB
⊥交AC于E.求证:BE平分ABC
∠.
8、如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,求证:AM平分∠DAB.
9.如图,在∠AOB的两边OA,OB上分别取OM=ON,OD=OE,DN和EM相交于点C.
求证:点C在∠AOB的平分线上.
第八部分:中考体验
一.选择题(共3小题)
1.(2011•)如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为()


AC
A.1B.2C.3D.4
2.(2011•恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED
的面积分别为50和39,则△EDF的面积为()
A.11 B.5.5 C.7D.3.5 3.(2010•)如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,DE=2,AB=4,则AC长是()
A.4B.3C.6D.5
4.(2011•)如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB 于点E.若PE=2,则两平行线AD与BC间的距离为_________.
5.(2011•)求证:角平分线上的点到这个角的两边距离相等.
已知:
求证:
证明:。

相关文档
最新文档