重合后零序过流加速段保护测试

重合后零序过流加速段保护测试
重合后零序过流加速段保护测试

重合后零序过流加速段保护可以用“整组试验”或“零序保护定值校验”菜单进行测试。

下面以RCS-901B 线路保护装置为例,介绍在“整组试验”菜单进行重合后零序过流加速段保护的校验方法。其他具有相同保护原理的保护测试可参考此测试方法。

1、保护相关设置:

(1)保护定值设置:

保护压板设置:

在“保护定值”里,把“投零序过流Ⅰ段”、“投重合闸”、“投重合闸不检”均置“1”,其他控制字均置为“0”。在“压板定值”里,仅把“投零序保护压板”置为“1”。

在保护屏上,仅投“零序保护”硬压板。

2、试验接线:

本次试验接线如图1.8.1 所示。

3、重合后零序过流加速段保护测试:

在“整组试验”或“状态序列”菜单里都可以实现后加速功能,试验过程可由时间按控制也可由保护的接点动作情况控制,本次试验包括以下几个过程:故障前→故障(跳闸)→重合闸→再跳闸(永跳)。在此以整组试验为例。

(1)“整组试验”页面设置:

试验参数界面,其中:

1)设置方式:设为U-I方式。

2)故障态参数:故障类可自由选择,设为A相接地故障,故障电压10V,故障电流可设为定值5A,故障电流倍数设为1.05倍可靠动作点,U超前I角度可自由设置。

3)零序补偿系数:可设为0.67,相位为0°。

4)转换型故障:此处不需要转换型故障。

系统参数界面,其中:

1)试验控制方式:有时间控制,接点控制和GPS触发故障三种,一般选择时间控制和接点控制。此处以时间控制为例,故障持续时间为零序过流一段故障的时间,断开状态时间为故障结束后正常状态(重合闸状态)时间,重合故障时间为后加速状态时间,每个状态的实际时间一般都比整定时间大0.2s,保证这个状态能够正常维持。

2)故障触发方式:有按键触发,时间触发和开入量触发,也就是触发第一个正常状态的方式,此处可选择时间触发,在故障前延时中设置为25s,保证信号复位,PT断线返回,重合闸充电指示灯亮等条件。

3)故障方向:选择正方向,反方向是不会动作的。

4)故障性质:永久性和瞬时性两种,此处为了模拟后加速状态必须选择为永久性故障。5)开出量:如果需要给初始状态位置,可以用开出量发合位信号,若带开关和接入了模拟断路器就不需要设置开出量。

6)其他参数均为默认值。

(2)试验操作方法:

开始试验点击或者按键盘上的“运行”“确认”键,测试仪先将按照正常状态输出25s然后分别进入故障,重合,永跳三个状态保护动作,开入量采集动作信息,会记录下动作时间信息。测试完后仪器会自动停止输出,整个试验过程测试仪自动完成结束后提示保存试验报告。

试验结果:

保护动作后开入量会分别在跳闸结果和重合结果里记录下动作,重合和永跳的三个时间。在做后加速试验时一定要注意将故障内型设置为永久性故障,如果设置的是瞬时性故障也可以在转换型故障参数里在重合后状态里加入转换型故障。

变压器零序方向过流保护

零序方向过流保护小结 变压器高压侧(110kV及以上)及中压侧一般为中性点直接接地系统(又称大接地电流系统),当发生接地短路时,将出现很大的零序电流,对变压器的电气性能产生极大的危害,因此必须配备接地短路保护。变压器单相接地短路的主保护为比率制动式差动或零序差动,同时应装设后备保护,作为变压器高压绕组和相邻元件接地故障的后备。 一、变压器接地后备保护概述 变压器因其绝缘水平和接地方式的不同,所配置的接地短路后备保护也不同。 对于全绝缘变压器,中性点装设接地隔离刀闸和避雷器,隔离刀闸闭合为中性点直接接地方式,隔离刀闸断开为中性点不接地运行方式。中性点直接接地运行时用零序过流保护,中性点不接地运行时用零序过压保护。 对于分级绝缘变压器,若其中性点绝缘水平低,中性点必须直接接地,若其中性点绝缘水平较高,则中性点可以直接接地,也可在系统不失去接地点的情况下不接地运行,其大多装设放电间隙。在220kV 系统中的变压器,他们的中性点仅部分接地,另一部分不接地。当发生接地故障时应先跳开不接地变压器,然后跳开接地变压器。因此,这类变压器接地后备保护的配置需要考虑该变压器中性点在系统中的接地情况。对于中性点未装设放电间隙的分级绝缘变压器,若其中性点直接接地,则用零序过流保护,若其中性点不接地,则用零序联跳保护。对于中性点装设放电间隙的分级绝缘变压器,中性点直接接地运行时用零序过流保护,中性点不接地时用间隙零序保护。 综上所述,中性点直接接地变压器的接地故障后备保护无一例外地采用零序过流保护,对高中压侧中性点均直接接地的自耦变和三绕组变压器,当有选择性要求时,应增设零序方向元件。 二、零序方向过流保护逻辑 零序方向过流保护一般由“零序过流元件”和“零序方向元件”相与构成,如果带零序电压闭锁, 所示。 图1 零序方向过流保护逻辑框图 零序电压闭锁元件的零序电压取自TV开口三角。 零序过流元件的零序电流可以自产,也可取自中性点零序TA。 零序方向元件的方向电压,可以取开口三角电压,也可以取自产,但方向电流必须取自产,而不能取中性点专用零序TA的电流。其原因在于,中性点零序电流对方向没有选择性。

新版过流保护测试文档.pdf

2.0单元系统级测试 过流保护测试规范 版本(A0) 版本更改记录 版本号更改人更改日期更改原因A0 王嘉艺2016.09.13 新建

一、过流保护说明: 过流保护做为系统大电流输出的阈值,超过此电流值会对系统功率电路造成损害,为了保护硬件设备需要进行过流保护。为了使系统过流保护不至于过于灵敏将过流保护设置延 迟10mS。过流保护一旦触发则会由硬件电路主动关闭输出开关,并同时以高电平信号脉冲 告知MCU。系统即可处于断电关机状态,不可唤醒。 过流保护预设阈值为200A(+/-3%),响应需要10mS的延长。 二、过流保护实现方式: 过流保护由霍尔采样电路、比较器电路、报警驱动电路等组成,工作原理是,由功率 主线上的霍尔电流传感器进行电流值采样并转换成电压信号输入给双路比较器,由比较器设置过流保护基准,比较器在过电流时输出高电平驱动保护电路,硬件拉低功率MOSFET的G 极电压,从而关闭输出。同时以高电平信号通知MCU,记录报警事件信息。 三、过流保护测试: ①、模拟测试,将霍尔电流传感器跨接在大功率直流母线上,可用铅酸电池组成一个 功率输出源,串联大功率负载,形成放电回路,以10A为一个标度逐渐增加负载。用示波 器测试过流保护的采样点电压波形和保护驱动信号波形。当负载加大到200A时过流保护驱动信号应该制高,达到过流保护的效果。 通过示波器波形分析,过流保护动作过程,是否有10mS的延迟?过流保护点是否 准确?是否可以保护锁死? 过流保护动作完成后,要进行系统的掉电检查,重新上电时要做一次上电检查。 目测各电路板表面是否有烧毁的痕迹,是否可以闻到味道。 用数字万用表测量,输出主回路是否短路,输出主功率MOS是否击穿。 上电后,依次测量各板卡间的通电情况。确定板卡都可以正常工作。 ②、实际测试,电池系统由充电转为放电状态,在输出测不断加载直到200A停止,用示波器记录保护动作的切换点电压波形,判断是否有10mS的延迟,过流保护点是否准确, 是否可以保护锁死。 过流保护恢复检查,当在电池系统经历过流保护关机后,断电检查硬件电路,用万用表测试主功率开关是否损坏,输出极是否为短路状态,从新上电检查各电路工作是否正常,是否可以正常进行充放电切换。 ③、过流保护反复测试,在完模拟测试和成实际测试后,要在样机上至少做3次过流保护测试实验,分别记录每次测试的波形,分析过流保护的相应时间和过流点的实际数值。确定过流保护功能的及时可靠。

零序电流及方向

零序电流及方向保护 一、零序电流方向保护的基本原理; 1、基本原理; 零序电流保护: 在正常运行时没有零序电流,只有在接地短路时才有零序电流。 并且流过保护的零序电流大小反应了短路点的远近; 当短路点越近时,保护动作越快,短路点越远保护动作得越慢。 输电线路零序电流保护是反应输电线路一端零序电流的保护。反应输电线路一端电气量变化的保护由于无法区分本线路末端短路和相邻线路始端的短路,为了在相邻线路始端短路不越级跳闸。 所以反应输电线路一端电气量弯化的保护都要做成多段式保护。零序电流一段的任务: 保护本线路的一部分。它的定值按躲过本线路末端(实质是躲过相邻线路始端)接地短路时流过保护的最大零序电流整定(其他整定条件姑且不论)。 零序电流二段的任务: 能以较短的延时尽可能地切除本线路范围内的故障。 零序电流三段的任务: 应可靠保护本线路的全长,在本线路末端金属性接地短路时有一定的灵敏系数。 零序电流四段的任务:

起可靠的后备作用。第四段的定值应不大于300A,用它保护本线路的高阻接地短路。在110KV的线路上,零序电流保护中的第四段还应作为相邻线路保护的后备。 零序电流保护只能用来保护接地故障,所以对于两相不接地的短路和三相短路不能起到保护作用。另外零序一段保护范围受运行方式的影响也较大,有时可能保护范围缩得很小,这一点比同样保护接地故障的接地距离一段要逊色得多。但是零序电流保护的最后一段——零序过电流保护,由于很灵敏,保护过渡电阻的能力很强,这一点又比接地距离第三段强; 所以,现在有一些高压电网中有线路纵联保护,又配有保护接地短路的三段式的接地距离保护,并有双重化的保护配置,所以,生产一种保护装置的型号,把零序电流保护的第一段省略而只配零序电流保护二、三段; 零序电流保护中: 零序电流的大小与中性点接地的变压器的多少有很大关系。 零序方向继电器的原理、实现方法、性能评述: 零序方向继电器的最基本思想是比较零序电压的零序电流的相位来区分正、反方向的接地短路。 零序电流以母线流向被保护线路的方向为其正方向。 如果系统中各元件零序阻抗的阻抗角为80°,正方向短路时,零序电压超前零序电流的角度为:-100°,反方向短路时,零序电压超前零序电流的角度为80°;ARG表示的幅角,是分子相量超前分母相量

差动保护试验方法总结

数字式发电机、变压器差动保护试 验方法 关键词: 电机变压器差动保护 摘要:变压器、发电机等大型主设备价值昂贵,当他们发生故障时,变压器、发电机的主保护纵向电流差动保护应准确及时地将他们从电力系统中切除,确保设备不受损坏。模拟发电机、变压器实际故障时的电流情况来进行差动试验,验证保护动作的正确性至关重要。 关键词:数字式差动保护试验方法 我们知道,变压器、发电机的电气主保护为纵向电流差动保护,该保护原理成熟,动作成功率高,从常规的继电器保护到晶体管保护再到现在的微机保护,保护原理都没有多大改变,只是实现此保护的硬件平台随着电子技术的发展在不断升级,使我们的日常操作维护更方便、更容易。传统继电器差动保护是通过差动CT的接线方式与变比大小不同来进行角度校正及电流补偿的,而微机保护一般接入保护装置的CT全为星型接法,

然后通过软件移相进行角差校正,通过平衡系数来进行电流大小补偿,从而实现在正常运行时差流为零,而变压器内部故障时,差流很大,保护动作。由于变压器正常运行和故障时至少有6个电流(高、低压侧),而我们所用的微机保护测试仪一般只能产生3个电流,因此要模拟主变实际故障时的电流情况来进行差动试验,就要求我们对微机差动保护原理理解清楚,然后正确接线,方可做出试验结果,从而验证保护动作的正确性。 下面我们以国电南京自动化设备总厂电网公司的ND300系列的发变组差动保护为例来具体说明试验方法,其他厂家的应该大同小异。这里我们选择ND300系列数字式变压器保护装置中的NDT302型号作为试验对象。该型号的差动保护定值(已设定)见表1: 表1NDT302变压器保护装置保护定值单

过流保护时间定值测试 (2)

1、保护相关设置: 本次试验的保护相关设置同“5-1 过流保护电流定值测试”。 2、试验接线: 本次试验的接线图同图3.5.2 所示。 3、过流保护时间定值测试:本次试验的具体测试方法参见第一章线路保护及测试实例中的“1-2 过流保护时间定值测试”。 5-3 过流保护方向元件测试 1、保护相关设置: (1)保护定值设置: (2)保护压板设置: 在“整定定值”里,把系统参数定值中的“I侧后备保护投入”置为“1”,把I 侧后备保护定值中的“过流I段经方向闭锁”、“过流方向指向”置为“1”;把“过流I 段经复压闭锁”、“PT断线保护投退原则”和“本侧电压退出”都置为“0”(即过流I 段保护经方向闭锁,灵敏角为45°,但不经复合电压闭锁。) 在保护屏上,仅投“投高压侧相间后备硬压板”。 2、试验接线: 本次试验的接线图同图3.5.2 所示。 3、过流保护方向元件测试:

本次试验的具体测试方法参见第一章线路保护及测试实例中的“1-3 过流保护方向元件测试”。 注意事项: 在进行测试仪参数设置时,应注意根据该方向元件采用的是正序电压,接线方式为零度接线方式,进行合理的参数设置。为避免PT 异常(PT 断线)对方向元件测试的影响,应保证在进行方向元件测试之前,PT 断线已复归。故在“交流试验”或者“状态序列”菜单里,应先给装置一个正常状态时间,一般为12.0s(大于PT 断线复归时间),复归电压设为额定电压57.735V,保证PT 断线闭锁等信号复归。 5-4 过流保护复合电压元件测试 1、保护相关设置: (1)保护定值设置: (2)保护压板设置:

在“整定定值”里,把系统参数定值中的“I侧后备保护投入”置为“1”,把I 侧后备保护定值中的“过流I段经复压闭锁”置为“1”;把“过流I段经方向闭锁”、“TV 断线保护投退原则”和“本侧电压退出”都置为“0”(即过流I段保护经复合电压闭锁,但不经方向闭锁。) 在保护屏上,仅投“投高压侧相间后备硬压板”。 2、试验接线: 本次试验的接线图同图3.5.2 所示。 3、过流保护复合电压元件测试: 本次试验的具体测试方法参见第一章线路保护及测试实例中的“1-4 过流保护复合电压闭锁值测试”。 注意事项: 该保护的复合电压指相间电压低或负序电压高,在测试“复压闭锁相间低电压”定值时,为避免负序电压高开放过流保护,建议把“复压闭锁负序相电压”定值设为最大值;同理,在测试“复压闭锁负序相电压”定值时,为避免相间电压低开放过流保护,建议把“复压闭锁相间低电压”定值设为最小值。为避免PT 异常(PT 断线)对复合电压测试的影响,应保证在进行复合电压测试之前,PT 断线已复归。故在“交流试验”或者“状态序列”菜单里,应先给装置一个正常状态时间,一般为12.0s(大于PT 断线复归时间),复归电压设为额定电压57.735V,保证PT 断线闭锁等信号复归。

继电保护装置试验一般方法

继电保护装置试验一般方法 1、外观检查 外观检查包括继电保护“三要素”中的刷灰、紧螺丝,以及辅助设备的检查,比如说打印机、切换开关、端子箱等等。 2、逆变电源检查 运行实践说明,因电源损坏造成的保护误动拒动为数不少, 电源插件发生的缺陷也比较多,因此对逆变电源的检查需要非常重视,重点做四个方面的试验,包括:稳定性测试(直流电源分别调至80%、100%、110%额定电压值,CPU开出传动保护动作。保护装置应能正确动作出口)、逆变电源自起动电压测试(缓升电压,要求不大于80%的额定电压)、拉合直流测试缓升缓降检查(拉合三次直流工作电源及将直流电源缓慢变化(降或升),保护装置应不误动和误发保护动作信号)、逆变电源投运时间(超过运行年限的要进行更换)。在进行逆变电源自启动试验时我们要求测试前测量是否有直流,搞清楚直流快分开关是上进下出还是下进上出,我们遇见较多的是前一种,但西门子的快分开关就是下进上出,只有搞清这一点才能防止损坏测试仪。 3、定值核对: 核对定值我们一般要求在验收以后与运行人员一起进行,对于现在微机保护来说,都是比较成熟产品,只要采样没有问题,内部逻辑以及纯数字大小定值一般都没问题,这里所说的定值核对是指各项定值单各项参数是否与现场一致并符合要求,包括核对TV及TA变比、版本号、效验码、控制字、软压板、主变跳闸出口矩阵等;甚至还要联系其他保护来核对定值,比如说两套母线保护南瑞915型一般基准变比为相同数较多TA变比,而南自41以及SGB750要求为最大变比为基准变比,所以我们就发现许多站两套母线保护不同基准变比但定值启动电流却一样。还有一部分控制字、装置参数之类的,在装置参数一览里,可调度部门下定值时有时并没有考虑装置参数,所以我们要认真核对。 4、开入开出检查 开入检查我们对应装置开入量菜单进行逐个核对,但这要求不能采用短接点的办法进行试验,而是要求模拟实际情况。开出试验一般可以根据整组以及信号核对进行也可通过定值试验或开出菜单进行。 5、模拟量采样检查: 对于现在的微机保护,模拟量采样是一项非常重要的工作。利用微机测试仪加量,检查保护装置采样的幅值、相位是否均正确,精度是否满足要求。 6、定值及逻辑试验 定值及逻辑试验特别逻辑试验是继电保护装置试验的重中之重,我们既要按正逻辑进行试验其正确动作,也要逐个反逻辑即部分不满足要求试验其正确不动作,这样才能保护其正确性。比如说三相不一致保护,我们定义以下条件: 条件1:三相合位 条件2:两相合位,一相分位 条件3:一相合位,两相分位 条件4:三相分位 条件5:满足电流启动条件 条件6:不满足电流启动条件

保护板检测标准

锂电保护板技术检验标准 项次 项目 技术标准 检验方法 检验设备 1 外观 PCB 板丝印与样板一致,且丝印清楚无误。元件型号规格、标示、贴位、方向同工程图纸、样板一致,且元件丝印标示清晰无误。元件焊点光洁亮丽,无元件空焊、虚焊、假焊、脱焊、连锡不良。PCB 表层绿油层,厚薄均匀,无堆积,无漏涂,且绿油涂抹位置与样品一致。铜箔布线与工程图纸一致、样品一致;无铜箔断裂、短路现象;无过孔不通现象。PCB 板划伤深度不超过绿油层,长度不超过3mm 。PCB 板边沿批锋深度不超过0.1mm ,且不影响生产装配。PCB 板及PCB 板上的贴片元件不可以有开裂和缺损现象。PCB 板及元件表层不可以有明显油渍污渍及其他杂质。PCB 板上所有金属均不允许有氧化、生锈现象;外露五金触片需通过盐雾试验。无件抗拆试验:PCB 板上规格为0603或0805之贴片电阻与电容用3公斤的水平推,元件无松动、脱 落、断裂现象。 目测 2 尺寸 以BOM 表规定之要求为准 用卡尺测量 3 材质 双面玻璃纤维板 见产品承认书 4 可焊性 焊接性良好,不可有虚焊,假焊及电镀 层脱落现象 将恒温烙铁设定为330+-20℃焊接保护板各 焊盘 5 内阻 以规格书或者申请单要求为准 电子负载,直流稳压电源,电池组,万用表 6 静态电流 以规格书或者申请单要求为准 7 过充保护电压 以规格书或者申请单要求为准 8 过放保护电压 以规格书或者申请单要求为准 9 过流保护 以规格书或者申请单要求为准 10 短路保护 短路,过充保护后能自动恢复,过放保护后容许不恢复,但以30-40MA 电流要能充电,且保护板其它性能须正常 11 组装性能 须符合相配套电芯,输出线等组装要求 与实际产品相关的配件实际 组装 外观:无明显污物,锡球,锡尖,原件无漏焊,短路现象,线路间绝缘良好,无明显划伤断路,元件标识清晰无缺角,断裂等现象,导电片无氧化,电镀层无掉落现象,所有贯穿孔须完整,不可有残缺或被V-CUT 切损。

锂电池保护板比较完整的性能测试

锂电池保护板比较完整的性能测试 一、管理IC(如TI、O2,MCU等)数据写入部份的: 1、I2C资料写入及核对,如O 2、DS、TI、及各家MCU方案等 2. 写入生产日期(当天日期)和系列号--- Write Serial Number and Manu date 备注:SMBUS,I2C,HDQ通信口等; A.Current/Voltage Offset 校正 B.Voltage Gain 校正及读值比较Voltage Calibration C.Temperature 校正及读值比较Temperature Calibration D. Current Gain 校正及读值比较--- Current Calibration ※二、基体特性部份: 3.开路电压测试:测量加载电压后,MOS管是否能正常打开; 4. 带载电压测试:测量保护板的带载能力,从而反应保护直流阻抗 5. VCC电压测量(芯片的工作电压是否正常) 6. 芯片的工作频率测量(芯片的工作晶振频率) 7. 导通电阻测量(MOS管及FUSE阻值测量); 8. 识别电阻—IDR测量; 9. 热敏电阻---THR; 10. 正常状态的静态功耗电流&休眠静态功耗(sleep) 11、关断状态的(Shout Down)静态功耗电流; 三:保护特性部分测试: 12. 单节电池过充保护测试(COV), A、保护下限:测试保护板是否提前保护,影响电池容量值; B、保护上限:测试保护板是否有保护,影响电池的安全性; C、保护延时间上、下限:保护延时间是否在设计范围; D、恢复测试:保护后,是否能恢复,关系电池能否再次使用问题。 13. 单节电池过放保护测试(CUV); A、保护值上下限:一个是,电池能否放到最底值,容量能否完全放出来,一个是一定要保护,否则影响电池的寿命; B、保护延时间:保护延时间是否在设计范围, C、恢复值、恢复时间:保护后,是否能恢复,关系电池能否再次使用问题。 14. PACK电池过压保护测试(POV)保护值、保护延时间、恢复值、恢复时间(如果有测COV,POV不用测,一般比较不建议只测POV,因为总组的POV即使有保护,并不代表每一节的都能够保护,万一有某一节不保护了,那就很危险。) 15. PACK电池低压保护测试(PUV);保护值、保护延时间、恢复值、恢复时间;原理同CUV,CUV有测CUV,可不测PUV,理由同POV; 16. 充电过流保护(OCCHG); A、保护值上下限:电流太小,关系充电时间,电流过大,关系电池寿命; B、保护延时间:关系电池发热堪至烧保护板问题; C、恢复值、恢复时间:电池的再次使用; 17. 放电过流保护(OCDSG); A、保护值上下限:显得优为重要,下限,不能提前保护,否则影响功率,车跑不快、电动工具转不动等,上限一定保护,不保护导至烧电机、电池发热等问题; B、保护延时间上下限:这个也比较重要,下限不保护,如果提前保护了,电动工具,会导致旋不紧;上限不保护,可能导致烧电机、电池发热等问题;

过流保护方向元件测试

在双侧电源线路上,电流保护应增设方向元件以构成方向电流保护,增设方向元件后, 只反映正向短路故障。对电流保护Ⅱ段,装设方向元件后可不与反方向上的保护配合,有时可以提高灵敏。同时,将低电压元件引入方向电流保护,可提高方向电流保护的工作可靠性,有时也可提高过电流保护的灵敏度,低电压闭锁元件的动作电压一般取 60%~70% 的额定电压。 在微机保护中,为了减小和消除死区,反映相间短路故障的方向元件广泛采用 90°接线。即在三相对称的情况下,当功率因数 cos φ=1 时,接入继电器的电流 Ik 与接入继电器的电压U k 相位相差 90°。各相功率方向元件所接电流、电压量如图 1.1.2 所示。 图 1.1.2 90°接线功率方向元件 图 1.1.3 90°接线功率方向元件动作 原理示意图 在图1.1.3中,以 k U 为参考相量,向超前方向(逆时针方向)做ja k e U 相量,再做垂 直于ja k e U 相量的直线ab ,其阴影侧即为k I 的动作区。因此功率方向元件的判据为

满足(式1-1)时,Ik处于动作区内,正方向功率方向元件动作,表示故障点在保护安装处正方向;满足(式1-2)时,Ik处于非动作区内,反方向功率方向元件动作,表示故障点在保护安装处背后。 下面以RCS-9612A 线路保护装置为例,介绍过流保护方向元件的测试方法。其他具有相同保护原理的保护测试可参考此测试方法。 图1.1.4 低压闭锁方向过流Ⅱ段的逻辑框图 1、保护相关设置 (1)保护定值设置:

(2)保护压板设置: 在“保护定值”里,把“过流Ⅱ段投入”、“过流Ⅱ段经方向闭锁”均置为“1”,其他控制字均置为“0”。(即过流Ⅱ段保护经方向闭锁,但不经电压闭锁)注:对于有过流保护硬压板投退的保护装置,还应把“过流保护”硬压板投入。 2、试验接线: 本次试验接线同图1.1.1 所示。 3、过流保护方向元件测试(灵敏角测试)在“交流试验”菜单里,可以用手动和自动两种方式分别对过流保护Ⅰ、Ⅱ、Ⅲ段的方向元件进行测试。在测试的过程中,为了保证结果的正确性,建议把非测试段退出。 下面以“过流Ⅱ段”为例,来介绍用“交流试验”中的自动方式来测试A 相功率方向元件(Ik = I A ,U k =U BC ,动作区域为-135°~45°)的方法。最大灵敏角定义:电压超前电流的角度为正,反之为负。假设右图所示的IC为灵敏角指向,UAB为参考方向0°,则该保护的灵敏角即为:-45°,两动作边界分别为45°、-135°(阴影部分为动作区)。 图1.1.5 功率方向角(电压电流相位关系)

IGBT过流和短路保护

IGBT过流与短路保护 IGBT过流与短路保护 IGBT是高频开关器件,芯片内部的电流密度大。当发生过流或短路故障时,器件中流过的大于额定值的电流时,极易使器件管芯结温升高,导致器件烧坏。因此,对IGBT的过流或短路保护响应时间必须快,必须在10us以内完成。应用实践表明:过电流是IGBT电力电子线路中经常发生的故障和损坏IGBT的主要原因之一,过流保护应当首先考虑。须指出的是:过流与短路保护是两个概念,它们既有联系也有区别。过流大多数是指某种原因引起的负载过载;短路是指桥臂直通,或主电压经过开关IGBT的无负载回路,它们的保护方法也有一定区别。如过流保护常用电流检也传感器,短路保护常通过检测IGBT饱和压降,配合驱动电路来实现。不同的功率有不同的方法来实现过流或短路保护。 1、小功率IGBT模块过流保护 对于小功率IGBT模块,通常采用直接串电阻的方法来检测器件输出电流,从而判断过电流故障,通过电阻检测时,无延迟;输出电路简单;成本低;但检测电路与主电路不隔离,检测电阻上有功耗,因此,只适合小功率IGBT模块。比如:5.5KW以下的变频器。 2、中功率IGBT模块的电流检测与过流、短路保护 中功率IGBT模块的电流检测与过流、短路保护,一种方法是仍然采用电阻检测法,为了降低电阻产生功耗及发热生产的影响,可把带散热器件的取样电阻固定在散热器上,以测量更大的电流。 3、中、大功率IGBT模块的电流检测与过流、短路保护 对于大、中功率IGBT模块的电流检测与过流保护常采用电流传感器。但需注意要选择满足响应速度要求的电流传感器。由于需要配置检测电源,成本较高,但检测电路与主电路隔离,适用于大功率的IGBT模块。保护电路动作的时间须在10us之内完成。 4、通过检测IGBT饱和压降实现短路保护 IGBT通常工作在逆变桥上,并处于开关工作状态,若设计不当,易于发生短路现象。对于短路保护,常用的方法是通过检测IGBT的饱和压降Vce(sat)来实现短路保护,它往往配合驱动电路来实现,其基本原理如图所示:

差动保护试验方法

差动保护试验方法 国测GCT-100/102差动保护装置采用的是减极性判据,即规定各侧均已流出母线侧为正方向,从而构成180度接线形式。 1. 用继保测试仪差动动作门槛实验: 投入“比率差动”软压板,其他压板退出,依次在装置的高压侧,低压侧的A ,B ,C 相加入单相电流0.90A ,步长+0.01A ,观察差流,缓慢加至差动保护动作,记录动作值。 说明: 注意CT 接线形式对试验的影响。 若CT 接为“Y-△,△-Y 型”,则在系统信息——变压器参数项目下选择“Y/D-11”,此时高侧动作值为:定值×√3,即1.73动作,低测动作值为定值,即1.00动作 若CT 接为“Y-Y 型”,则在系统信息——变压器参数项目下选择“无校正”,此时高低侧动作值均为定值,即1.00动作 2. 用继保测试仪做比率差动试验: 分别作A ,B ,C 相比率差动,其他相查动方法与此类似。 以A 相为例,做比率差动试验的方法:在高,低两侧A 相同时加电流(测试仪的A 相电流接装置的高压侧A 相,B 相电流接装置的低压侧A 相),高压侧假如固定电流,角度为0度,低压侧幅值初值设为x ,角度为180度,以0.02A 为步长增减,找到保护动作的临界点,然后将x 代入下列公式进行验证。 0Ir Ir Id Id k --= 其中: Id :差动电流,等于高侧电流减低侧电流 Id0:差动电流定值 Ir :制动电流,等于各侧电流中最大值 Ir0:制动电流定值 K :制动系数 例如: 定值:Id0=1(A ); Ir0=1(A ); K =0.15 接线:测试仪的Ia 接装置的高压侧A 相,Ib 接装置的低压侧A 相 输入:Ia =∠0 o5A Ib =∠180 o5A 步长Ib =0.02A 试验:逐步减小Ib 电流,当Ib=3.4A 时装置动作。 验证:Id =5-3.4=1.6A Id0=1A Ir =5A Ir0=1A 15.04 6.0151)4.35(==---=k 3. 用继保测试仪做差动速断试验 投入“差动速断”压板,其他压板退出。依次在装置的高压侧,低压侧的A ,B ,C 相加入单相电流9.8A ,每次以0.01A 为步长缓慢增加电流值至动作,记录动作值。 例如:

锂电池保护板的简单检测方法

锂电池保护板的简单检测方法 锂电池保护板对锂电池进行过充、过放、过流(充电过流、放电过流和短路)保护,有些保护板上设计有热敏电阻,用于对电池进行过热保护,但过热保护通常是由外电路完成的,并不由保护板实现。保护板上的热敏电阻仅仅是给外电路提供一个温度传感器。如果保护板不良,电池就很容易损坏。本文介绍一种锂电池保护板的简单检测方法。 检测电路如下图: 电路很简单,主要元件就是一个电容和两个电阻,两个开关可以用鳄鱼夹或手动搭线都没问题的。色框内的部分是锂电池保护板的内电路。 原理: 电解电容C连接到保护板上的电池接点(B+,B-)上,充当电池,可进行充电和放电,连接时别弄错极性就行。电压表(数字万用表20V电压档)并联在电容两端,用于监视电池电压。 初始时,电容C没电,保护板上的控制芯片无工作电源,保护板处于全关断状态,即使接通开关K2,电容也不会充电。断开开关K2,电容也无电可放。即使电容有电,但电压达不到保护芯片的工作电压,也不会通过R1、R2放电。 如果带保护板的锂电池(比如手机电池)放置太久,电池因自身放电和保护板电路耗电使电池电压低于保护板上控制芯片的工作电压,保护板则全关断。测量电池引出电极P+、P-无电压,充电也充不进,就相当于上述这种初始情况。对这样的电池,一般人只能将它报废处理。其实很多时候电池并没有坏,只是必须拆开电池的封装外壳跳过保护板直接给电池芯充电,当电池芯的电压达到保护板上控制芯片的工作电压之后,电池才起死回生,能正常充电和使用。 本电路中,电容C充当电池的作用,下文关于电路原理的叙述中一律称之为电池。 接通开关K2,如前所述,电池并不会充电。按下按钮开关K1,5V电源通过R1、保护板的P+、B+(保护板上的这两个接点是直通的)、K1给电池充电,电压表上可实时读取电池两端的电压,当电池电压上升到控制芯片的工作电压(约2V)时,放开K1,这时保护板已正常工作,电池会继续充电,电池电压持续上升。如果想知道保护板在多大的电池电压下开始工作,不要长按K1,按一下,放一下,让电池电压每次上升一点点,注意观察电池电压,当电压到某个值时,不按K1电池电压也继续上升,则这个值就是保护板开始工作的最低电池电压值。 当电池电压上升到过充启动电压时(约),保护板关断充电通路,进入过充保护状态,充电停止。这时电压表上显示的就是过充保护电压。由于电压表有内阻,以及保护板上控制芯片工作也需要耗电(电流很小),所以电池通过这两条通路缓慢放电,电压表上可看到电池电压缓慢下降。当下降到控制芯片的过充解除电压(约)时,过充

防护等级测试方法

防护等级IP54, IP 为标记字母,数字5为第一标记数字,4为第二标记数字 第一标记数字表示接触保护和外来物保护等级,第二标记 数字表示防水保护等级; 接触保护和外来物保护等级(第一 个数字) 防水保护等级( 第二个数字) 防护范围 第二个数字 第一个数字 防护范围 名称 说明 名称 说明 0 无防护 - 0 无防护 - 1 防护50mm 直径和更大的固体外来体 探测器,球体直径为50mm,不应完全进入 1 水滴防护 垂直落下的水滴不应引起损害 2 防护12.5mm 直 径和更大的固体外来体 探测器,球体直径为12.5mm,不应完全进入 2 柜体倾斜15度时,防护水滴 柜体向任何一侧倾 斜15度角时,垂直落下的水 滴不应引起损害 3 防护2.5mm 直 径和更大的固体外来体 探测器,球体直径 为2.5mm,不应完全进入 3 防护溅出的水 以60度角从垂直线两侧溅出的水不应引起损害 4 防护 探测器, 4 防护喷水 从每个方

1.0mm直径和更大的固体外来体球体直径 为1.0mm, 不应完全 进入 向对准柜 体的喷水 都不应引 起损害 5 防护灰尘不可能完 全阻止灰 尘进入, 但灰尘进 入的数量 不会对设 备造成伤 害 5 防护射水 从每个方 向对准柜 体的射水 都不应引 起损害 6 灰尘封闭柜体内在 20毫巴的 低压时不 应进入灰 尘 6 防护强射 水 从每个方 向对准柜 体的强射 水都不应 引起损害 7 防护短时 浸水 柜体在标 准压力下 短时浸入 水中时, 不应有能 引起损害 的水量浸 入 注:探测器的直径不应穿过柜体的 孔8 防护长期 浸水 可以在特 定的条件 下浸入水 中,不应 有能引起 损害的水 量浸

零序方向保护

1采用零序方向保护的意义 我国电力系统中性点接地方式有3种:中性点直接接地、中性点经消弧线圈接地和中性点不接地方式。110 kV及以上电网的中性点均采用第1种接线方式,在这种系统中发生单相接地故障时接地短路电流很大,故称其为大接地电流系统。在大接地电流系统中发生单相接地故障的概率很高,可占总短路故障的70%左右,因此要求其接地保护能灵敏、可靠、快速地切除接地短路故障,以免危及电气设备的安全。 大接地电流系统接地短路时,零序电流、零序电压和零序功率的分布与正序分量、负序分量的分布有明显区别: a.当系统任一点单相及两相接地短路时,网络中任何处的三倍零序电流和电压都等于该处三相电流或电压的矢量和,即: 3U0=UA+UB +UC 3I0=IA+I B+IC b.系统零序电流分布只与中性点接地的多少及位置有关,图1为系统接地短路时的零序等效网络。 式中EΣ——电源的合成电动势; Z0T1、Z0T2——变压器T1、T2的零序阻抗; Z01、Z02——短路点两侧线路的零序阻抗。 当发电厂M侧的变压器中性点接地点增多时,Z0T1将减小,从而使I0和I01增大,I02减小。反之,I0和I01减小,I02增大。如果发电厂N侧的中性点不接地,则Z0T2=∞,I01也将增大且等于I0。 两相接地短路时也可得到相应的结论。 c. 故障点的零序电压最高,变压器中性点接地处电压为0,保护安装处的电压U0A=-I0Z0T1,如图2所示。

d. 零序功率S0=I0U0。由于故障点的电压U0最高,对应故障点的S0也最大。越靠近变压器中性点接地处S0越小。在故障线路上,S0是由线路流向母线。 综上所述,中性点直接接地系统发生接地短路时,将产生很大的零序电流分量,利用零序电流分量构成零序电流保护,可作为一种主要的接地短路保护。因为它不反映三相和两相短路,在正常运行和系统发生振荡时也没有零序分量产生,所以有较好的灵敏度。如线路两端的变压器中性点都接地,当线路发生接地短路时,在故障点与各变压器中性点之间都有零序电流流过。为保证各零序电流保护有选择性地动作和降低定值,必须加装方向继电器,使其动作带有方向性。 零序功率方向是零序电流保护中的关键环节。在运行实践中,因方向继电器接线错误而造成的保护误动时有发生。因此做好零序功率方向的校验和接线正确性的判定至关重要。 2 零序功率方向继电器的接线 零序功率方向继电器的正确接线,应使其动作特性为:当被保护线路或元件发生正方向接地故障时,零序电压和零序电流的相位关系应可靠进入继电器的灵敏动作区,而反方向接地故障时,继电器可靠不动作。 传统习惯规定电流正方向为母线流向线路,同时取母线电压为电压升。当发生正方向接地故障时,零序电流超前零序电压为(180°-θ),θ为系统零序电源阻抗角。一般θ角约在85°左右,则零序电流超前零序电压约为95°。 传统的零序功率方向继电器,其动作最灵敏角有电流超前电压110°和电流滞后电压70°两种,即灵敏角为-110°和+70°,一般采用后者。对于灵敏角为-70°的继电器,由于其动作特性与故障情况相反,现场接线方式上考虑将零序电压的极性反向接入,零序电流正极性接入,这样就能够使继电器正确反应故障状态了。 对于微机零序保护装置,其零序电流电压的接入分自产和外接两种情况。微机线路保护装置的零序电压电流均为自产,三相电压电流正极性接入即可。微机变压器保护中不同厂家的产品对零序电压电流的接入有不同要求,其中需要外接零序电压的,必须是正极性接入,这是和传统继电器的区别。 3 用负荷电流及工作电压测量零序功率方向继电器 利用负荷电流及工作电压检验零序功率方向继电器接线正确性之前,必须对电压互感器开口三角引出的L、N线的极性进行核查。 在正常情况下电压互感器开口三角两端电压UNL=0,故ULS=UNS,但L、N无法用试验的方法区分,因此,利用负荷电流及及工作电压检验零序功率方向

保护板测试报告

XXX保护板测试报告 一.保护板厂家:XXX 二.保护板规格:10串硬件板,充放异端(共用正极) 三.测试项目:验证过充保护功能、验证过放保护功能、验证循环功能、验证充放电均衡功 能、验证短路保护功能 四.测试方案: 1.验证过充保护功能: 测试方法:使用检测柜对电池组充电,充电电流为5A,不设置充电截止电压,测试保护板是否在设置的过充保护电压时出现保护; 数据记录:记录保护板保护时的电压,过充测试曲线; 测试次数:1次 2.验证过放保护功能: 测试方法:使用检测柜对电池组放电,放电电流为8A,不设置放电截止电压,测试保护板是否在设置的过放保护电压时出现保护; 数据记录:记录保护板保护时的电压,过放测试曲线; 测试次数:1次 3.验证循环功能 测试方法:使用检测柜对电池组充放电循环, 恒流恒流充电电流5A,截止电压42V; 恒压充电截止电流0.1A,电压42V; 恒流放电截止电压32V,放电电流为8A; 循环5周; 数据记录:记录循环曲线,每次充放容量 测试测试:5周以上 4.验证充放电均衡功能: 测试方法:使用检测柜对电池组充电,充电电流为5A,测试保护板是否将单体电池电压均衡在设置的均衡电压; 测试标准:保护板无明显发热现象,不出现电子器件烧毁,电池组容量无明显差异; 数据记录:记录均衡曲线,每只电池单体电压 测试测试:2次,记录1次数据 5. 验证短路保护功能: 测试方法:将保护板两端正负极导线端接,使用万用表测量保护板两端电压; 数据记录:保护板两端电压 测试测试:2次,记录1次数据 四.测试数据: 1.验证过充保护功能测试数据: 过充保护电压:42.3847V(整体电压保护参数值42.25V—42.75V,单体电压保护参数值4.225V—4.275V) 小结:保护板过充保护功能有效;

6零序保护习题讲解

零序保护 一、选择题 2、由三只电流互感器组成的零序电流滤过器,在负荷电流对称的情况下有一组互感器二次侧断线,流过零序电流继电器的电流是(C )倍负荷电流。 A :3; B :2; C :1; D 3、在大接地电流系统中,故障电流中含有零序分量的故障类型是(C ) A :两相短路 B :三相短路 C :两相接地短路 D :与故障类型无关 4、接地故障时,零序电压与零序电压的相位关系取决于(C ) A :故障点过渡电阻的大小 B :系统容量的大小 C :相关元件的零序阻抗 D :相关元件的各序阻抗 5、在大接地电流系统中,线路发生接地故障时,保护安装处的零序电压(B ) A :距故障点越远越高 B :距故障点越近越高 C :与距离无关 D :距故障点越近越低 6、不灵敏零序I 段的主要功能是(C ) A :在全相运行情况下作为接地短路保护; B :作为相间短路保护; C :在非全相运行情况下作为接地短路保护; D :作为匝间短路保护。 7、在大接地电流系统中,线路始端发生两相金属性接地短路时,零序方向过流保护的方向元件将(B ) A :因短路相电压为零而拒动; B :因感受零序电压最大而灵敏动作; C :因短路零序电压为零而拒动; D :因感受零序电压最大而拒动。 8.在中性点非直接接地系统中,当发生B 相接地短路时,在电压互感器二次开口三角绕组两端的电压为(C )。 A.B E B.B E C.B E 3 9.在小电流接地系统中,某处发生单相接地时,母线电压互感器开口三角形的电压为(C )。 A.故障点距母线越近,电压越高 B.故障点距母线越近,电压越低 C.不管距离远近,基本上电压一样高 D :不定。 11.电力系统发生A 相金属性接地短路时,故障点的零序电压(B )。 A :与A 相电压同相位 B :与A 相电压相位相差180°

光差保护联调试验方法

光差保护联调实验的方法说明 两侧装置纵联差动保护功能联调方法: 1、模拟线路空冲时故障或空载时发生故障 a、本侧断路器在合闸位置,对侧断路器在断开位置,本侧模拟单相故障,本侧差动保护瞬时动作跳开断路器,然后单相重合。 b、本侧断路器在合闸位置,对侧断路器在断开位置,本侧模拟相间故障,本侧差动保护动作跳开断路器。 注意:注意保护装置里开入量显示应确实有三相跳闸位置开入,且将“投纵联差动保护”控制字置“1”、压板定值里“投主保护压板”置“1”,屏上“主保护压板”投入。 c、两侧断路器均在合闸位置,对侧加且只加三相正常的平衡电压,本侧模拟单相故障,差动保护不动作。 d、两侧断路器均在合闸位置,对侧加且只加三相正常的平衡电压,本侧模拟相间故障,差动保护不动作。 2、模拟弱馈功能: 注意在模拟弱馈功能的时候,弱馈侧的三相电压加的量应该小于65% U n (37.5V)但是大于TV断线的告警电压33.3V,使装置没有“TV断线”告警信号。 模拟弱馈功能的方法之一:对侧只加三相平衡的34V(大于33.3V小于 37.5V)的电压量: a、两侧断路器在合闸位置,对侧加相电压34V的三相电压,本侧模拟单相故障,两侧差动保护相继动作跳开断路器,然后单相重合。

b、两侧断路器在合闸位置,对侧加相电压34V的三相电压,本侧模拟相间故障,两侧差动保护相继动作跳开断路器。 模拟弱馈功能的另外一种方法:对侧不加任何电压电流模拟量: a、两侧断路器在合闸位置,对侧不加任何电压电流模拟量,本侧模拟单相故障,两侧差动保护相继动作跳开断路器,然后单相重合。 b、两侧断路器在合闸位置,对侧不加任何电压电流模拟量,本侧模拟相间故障,两侧差动保护相继动作跳开断路器。 (注意:由于常规的220KV变电站的220KV线路的电压大部分接的都是母线PT,所以此时在不加任何电压的情况下,由于开关是处于合位,此时三相电压向量和小于8伏,但正序电压小于33.3V,则肯定是延时1.25秒发TV断线异常信号的,虽然此时装置报TV断线,由于此时装置主保护投入,通道正常,没有其他什么闭锁重合闸开入,也还是可以充起电的,所以这样模拟出来的仍然是弱馈功能。) 光差保护联调实验的的一些补充说明: 1、空充线路试验: a、将N侧开关分位,M侧加入单相或多相电流大于IH(差动高定值),M 侧保护可选相动作,时间30毫秒左右。M侧加入单相或多相电流大于IM (差动低定值),M侧保护可选相动作,时间60毫秒左右。N侧的保护不动作(也不起动)。在M侧加入故障电流后,M侧装置起动并向N侧发差动允许信号;当N侧开关处于分位时,N侧931装置判断有差动电流,且符合差动动作方程,则给对侧发允许信号,使M侧能动作。(两侧主保护压板都得投入)

变压器零序方向过流保护

零序方向过流保护小结 变压器高压侧IQOkV及以上)及中压侧一般为中性点直接接地系称大接地电流系统当发生接地短路时,将出现很大的零序电,流对变压器的电气性能产生极大的,危因害此必须配备接地短路保护。 变压器单相接地短路的主保护为比率制动式差动或零序差动,同时应装设后备保护,作为变压器高压绕组和相邻元件接地故障的后备。 、变压器接地后备保护概述 变压器因其绝缘水平和接地方式的不同,所配置的接地短路后备保护也不同。 对于全绝缘变压器,中性点装设接地隔离刀闸和避雷器,隔离刀闸闭合为中性点直接接地方式,隔离刀闸断器, 开为中性点不接地运行方式。中性点直接接地运行时用零序过流保护,中性点不接地运行时用零序过压保护。 对于分级绝缘变压器,若其中性点绝缘水平低,中性点必须直接接地,若其中性点绝缘水平较高,则中性点可以直接接地,也可在系统不失去接地点的情况下不接地运行,其大多装设放电间隙。在系统中的变压器,他们的中性点仅部分接地,另一部分不接地。当发生接地故障时应先跳开不接地变压器,然后跳开接地变压器。因此,这类变压器接地后备保护的配置需要考虑该变压器中性点在系统中的接地情况。对于中性点未装设放电间隙的分级绝缘变压器,若其中性点直接接地,则用零序过流保护,若其中性点不接地,则用零序联跳保护。对于中性点装设放电间隙的分级绝缘变压器,中性点直接接地运行时用零序过流保护,中性点不接地时用间隙零序保护。 综上所述,中性点直接接地变压器的接地故障后备保护无一例外地采用零序过流保护,对高中压侧 中性点均直接接地的自耦变和三绕组变压器,当有选择性要求时,应增设零序方向元件。 、零序方向过流保护逻辑 零序方向过流保护一般由“零序过流元件”和“零序方向元件”相与构成,如果带零序电压闭锁, 则由“零序过流元件“零序方向元件”和“零序电压闭锁元件”相与构成。其逻辑所示图 零序方向过流保护逻辑框图

锂电池保护板基础知识

锂电池保护板的基础知识普及 第一章保护板的构成和主要作用一、保护板的构成 锂电池(可充型)之所以需要保护,是由它本身特性决定的。由于锂电池本身的材料决定了它不能被过充、过放、过流、短 路及超高温充放电,因此锂电池锂电组件总会跟着一块精致的保护 板和一片电流保险器出现。锂电池的保护功能通常由保护电路板和 PT协同完成,保护板是由电子电路组成,在-40℃至+85℃的环境下 时刻准确的监视电芯的电压和充放回路的电流,即时控制电流回路 的通断;PTC在高温环境下防止电池发生恶劣的损坏。 保护板通常包括控制IC、MOS开关、电阻、电容及辅助器 件NTC、ID存储器等。其中控制IC,在一切正常的情况下控制MOS 开关导通,使电芯与外电路沟通,而当电芯电压或回路电流超过规 定值时,它立刻(数十毫秒)控制MOS开关关断,保护电芯的安全。NTC是Negative temperature coefficient的缩写,意即负温度 系数,在环境温度升高时,其阻值降低,使用电设备或充电设备及 时反应、控制内部中断而停止充放电。ID 存储器常为单线接口存 储器,ID是Identification 的缩写即身份识别的意思,存储电池 种类、生产日期等信息。可起到产品的可追溯和应用的限制。

二、保护板的主要作用 一般要求在-25℃~85℃时Control(IC)检测控制电芯电压与充放电回路的工作电流、电压,在一切正常情况下C-MOS开关管导通,使电芯与保护电路板处于正常工作状态,而当电芯电压或回路中的工作电流超过控制IC中比较电路预设值时,在15~30ms 内(不同控制IC与C-MOS有不同的响应时间),将CMOS关断,即关闭电芯放电或充电回路,以保证使用者与电芯的安全。 第二章保护板的工作原理 保护板的工作原理图:

相关文档
最新文档