信号与系统课程设计大纲.
信号与系统 教学大纲
信号与系统教学大纲一、引言信号与系统作为电子信息科学与技术专业的核心课程之一,旨在让学生全面了解信号与系统的基本概念、理论与应用。
本教学大纲以培养学生的系统思维和综合能力为核心目标,通过理论教学、实践操作和案例分析等方式,帮助学生建立起对信号与系统的深刻理解和应用能力。
二、课程目标本课程的主要目标包括:1. 理解信号与系统的基本概念、分类与特性;2. 掌握信号与系统的表示、分析和运算方法;3. 理解线性时不变系统的性质和特点,并能进行系统响应分析;4. 学习频域分析方法,包括傅里叶变换和拉普拉斯变换;5. 能够运用信号与系统理论解决实际问题,并进行系统设计与优化。
三、教学内容本课程的主要内容包括以下几个方面:1. 信号的表示与分类1.1 信号的定义与性质1.2 连续信号与离散信号1.3 周期信号与非周期信号2. 基本信号与系统2.1 冲激函数与单位阶跃函数2.2 系统的描述与表示2.3 时域分析方法:冲击响应与单位阶跃响应3. 线性时不变系统3.1 线性系统的定义与性质3.2 时不变系统的定义与性质3.3 系统的线性性质与时不变性质3.4 系统的稳定性与非稳定性4. 频域分析方法4.1 傅里叶级数与傅里叶变换4.2 频域性质与频谱分析4.3 拉普拉斯变换及其应用5. 实际应用与设计案例5.1 信号与系统在通信领域的应用5.2 信号与系统在控制系统中的应用5.3 信号与系统在图像处理中的应用四、教学方法本课程采用多种教学方法相结合的方式,包括:1. 理论教学:通过课堂讲授,向学生传授信号与系统的基本理论知识。
2. 实践操作:通过实验室实践操作,让学生亲自实际操作信号与系统相关的实验,加深对理论知识的理解与应用能力。
3. 案例分析:通过分析典型的信号与系统应用案例,让学生将所学知识应用到实际问题中,培养解决实际问题的能力。
4. 论文阅读:引导学生阅读相关经典论文,拓宽知识面,培养科研和综合素质。
五、教学评价与考核1. 平时成绩:包括课堂表现、作业完成情况、实验报告等。
《信号与系统》教学大纲
《信号与系统》教学大纲信号与系统是电子信息类专业中一门重要的基础课程。
它是研究信号的产生、传输、处理和控制的学科,涉及到电子、通信、自动化等领域。
本文将从课程目标、内容安排、教学方法和评价方式等方面来探讨《信号与系统》教学大纲。
一、课程目标《信号与系统》作为一门基础课程,旨在培养学生对信号与系统的基本概念、原理和方法的理解与应用能力。
具体目标包括:1. 掌握信号的定义、分类和描述方法,了解信号的特性和变换;2. 理解系统的基本概念、特性和分类,掌握系统的时域和频域分析方法;3. 学习信号与系统的线性时不变(LTI)模型和卷积运算;4. 熟悉傅里叶变换、拉普拉斯变换和Z变换的定义、性质和应用;5. 培养分析和设计信号与系统的能力,为后续专业课程打下坚实基础。
二、内容安排《信号与系统》的内容安排通常包括以下几个方面:1. 信号的基本概念:介绍信号的定义、分类和描述方法,包括连续信号和离散信号;2. 时域分析:学习信号的时域表示方法,如冲激函数、阶跃函数和周期信号的分析;3. 频域分析:引入傅里叶级数和傅里叶变换的概念,掌握信号的频域表示方法;4. 系统的基本概念:介绍系统的定义、特性和分类,包括线性系统和非线性系统;5. 系统的时域分析:学习系统的时域描述方法,如冲激响应和单位脉冲响应;6. 系统的频域分析:引入拉普拉斯变换和Z变换的概念,掌握系统的频域表示方法;7. 系统的稳定性和滤波器设计:研究系统的稳定性判据和滤波器设计方法;8. 信号与系统的应用:介绍信号与系统在通信、控制和信号处理等领域的应用。
三、教学方法在教学过程中,可以采用多种教学方法来提高学生的学习效果和兴趣:1. 理论讲解:通过讲解基本概念、原理和方法,帮助学生建立起完整的知识体系;2. 数学推导:引导学生进行数学推导和证明,加深对信号与系统理论的理解;3. 实例分析:通过实际案例和应用实例,将抽象的理论联系到实际问题,提高学生的应用能力;4. 计算实践:引入计算工具和软件,让学生进行信号与系统的计算和仿真实验;5. 小组讨论:组织学生进行小组讨论和合作学习,促进彼此之间的交流和思维碰撞。
信号与系统课程设计(信号调制与解调)(采样定理)(LTI系统分析)
课题一信号调制与解调题目说明:从语音,图像的原始信息变过来的原始信号频谱分量频率较低,不适宜在信道中长距离传输。
因此,在通信系统的发送通端常需要有调制过程将其转换为适合传输的信号,在接收端则需要有调节过程,将信号还原成原来的信息,以便更准确的利用信息。
原理分析:调制就是按调制信号的变化规律去改变某些参数。
解调是调制的逆过程,即从已调制信号中恢复或提取调制信号的过程。
幅度调制是正弦型载波的幅度随调制信号变化的过程。
采用模拟调制利用正旋波载波的幅度调制,频率调制和相位调制的方式进行信号的处理。
同步解调端本振信号频率必须与发射端调制的载波信号的频率和相位相同才能实现同步解调。
脉冲调制信号只有在脉冲出现才需要存在,在其他时间内等于零,这样就有可能在这空余的时间间隔中去传输其他路德信号,发送端和接受端的转换开关按照同样的顺序和周期轮流接通各个通道,在信道中传送的是各个脉冲幅度调制信号的和,各个脉冲出现在不同的时间段。
而通过接收端的开关以后各路接受端接收到的相当于某一路信号脉冲幅度的结果,可以用低通滤波器进行解调。
实验内容:1.将一正旋信号x(n)=sin(2πn/256)分别以100000Hz的载波和1000000Hz的取样频率进行调制,写出MATLAB脚本实现抑制载波幅度调制,实现同步解调,滤波输出的波形。
2.分别作出cos(10t)cos(w c t)和[1+0.5sin(10t)]cos(w c t)的波形图和频谱图,并对上面调制信号进行解调,观察与源图的区别。
模块设计1:1.产生一个输入信号 2.产生一个载波信号3.构造用于解调的低通滤波器4.低通滤波解调5.画图MATLAB程序1:>> clear; %清除已存在变量n=0:0.0001:256; %自变量e=sin(2*pi*n/256); %调治信号s=cos(100000*n); % 载波信号a=e.*s; % 调制b=a.*s; % 解调[nb,na]=butter(4,100,'s'); % 低通滤波sys=tf(nb,na); % 构建sys对象c=lsim(sys,b,n); %低通滤波subplot(2,2,1) % 图形输出语句plot(n,e);title('调制信号'); %图形标题>> xlabel('n'),ylabel('e(n)'); %横纵坐标变量>> grid on %坐标网格>> subplot(2,2,2) % 图形输出语句>> plot(n,a);>> title('调幅信号'); %图形标题>> xlabel('n'),ylabel('a(n)'); %横纵坐标变量>> grid on %坐标网格>> subplot(2,2,3) % 图形输出语句>> plot(n,b);>>title('解调波形'); %图形标题>> xlabel('n'),ylabel('b(n)'); %横纵坐标变量>> grid on %坐标网格>> subplot(2,2,4) % 图形输出语句>> plot(n,c);>> title('滤波后的波形');%图形标题>>xlabel('n'),ylabel('e(n)'); %横纵坐标变量>> grid on %坐标网格模块设计2:1.产生两个输入信号 2.用克诺内科内积产生两个周期行序列脉冲3.调制并向加4.构造用于解调的低通滤波器5.低通滤波解调 6画图MATLAB程序2:>> clear; % 清除变量t=0:0.001:9.999; % 定义自变量取值范围和间隔e1=cos(10*t).*cos(600*t); % 输入信号e2=(1+0.5*sin(10*t)).*cos(600*t); %输入信号p0=ones(1,2500);p1=kron(p0,[1,0,0,0]); %第一个序列脉冲p2=kron(p0,[0,0,1,0]); % 第二个序列脉冲a=p1.*e1+p2.*e2; 调制并向加[nb,na]=butter(4,20,'s'); % 用于解调的低通滤波器sys=tf(nb,na); %构建sys对象b1=a.*p1; % 取得第一路信号的脉冲调制信号c1=lsim(sys,b1,t);%通过低通滤波解调输出b2=a.*p2; %取得第二路信号的脉冲调制信号c2=lsim(sys,b2,t); % 通过低通滤波解调输出subplot(4,2,1) % 图形输出语句plot(t,e1);title('第一路输出信号'),xlabel('t'),ylabel('e(t)');grid on%图形横纵坐标,标题,坐标网格subplot(4,2,2) % 图形输出语句plot(t,e2);title('第二路输出信号'),xlabel('t'),ylabel('e(t)');grid on%图形横纵坐标,标题,坐标网格subplot(4,2,3) % 图形输出语句plot(t,e1.*p1);title('第一路脉冲调制信号'),xlabel('t'),ylabel('e(t)');grid on %图形横纵坐标,标题,坐标网格subplot(4,2,4) % 图形输出语句plot(t,e2.*p2);title('第二路脉冲调制信号'),xlabel('t'),ylabel('e(t)');grid on %图形横纵坐标,标题,坐标网格subplot(4,2,5) % 图形输出语句plot(t,a);title('合成的传输信号'),xlabel('t'),ylabel('e(t)');grid on%图形横纵坐标,标题,坐标网格subplot(4,2,6) % 图形输出语句plot(t(5001:5250),a(5001:5250));title('局部放大后的合成信号'),xlabel('t'),ylabel('e(t)');grid on%图形横纵坐标,标题,坐标网格实验总结:通过对理论知识的学习,使自己对信号的调制与解调具有一定的认知水平,然后开始做实验,此时要理论结合实践,作出波形图后要考虑与理论波形进行比较,比较的方法是,首先判断所测波形是否正确,若不正确找出错误原因,若正确则分析实测波形与理论波形不完全相同的原因。
《信号与系统》课程思政教学设计
《信号与系统》课程思政教学设计一、教学目标1. 知识与技能掌握信号与系统的基础理论和分析方法。
能够应用所学知识解决实际工程问题。
2. 思政目标培养学生的爱国情怀和科学精神。
增强学生的职业道德和社会责任感。
提升学生的创新思维和团队协作能力。
二、教学内容与方法1. 教学内容信号与系统的基本概念、分类及性质。
信号的时域和频域分析。
系统的稳定性、因果性和线性时不变性。
2. 思政元素融入引入我国科学家在信号与系统领域的研究成果,激发学生的民族自豪感和科学探索精神。
讨论信号与系统在国家安全、通信、医疗等领域的应用,培养学生的社会责任感和职业道德。
3. 教学方法理论讲授:系统介绍信号与系统的基本理论和方法。
案例分析:结合实际应用案例,分析信号与系统的实际应用。
小组讨论:组织学生围绕思政主题进行小组讨论,促进思想交流和团队协作。
课程设计:安排与课程内容相关的设计任务,提升学生的实践能力和创新思维。
三、思政教学重点1. 科学精神培养通过介绍信号与系统领域的发展历程和科学家事迹,培养学生的科学探索精神和创新意识。
鼓励学生勇于挑战传统观念,追求科学真理。
2. 职业道德教育强调工程师的职业道德和社会责任,引导学生在未来职业生涯中坚守诚信、公正和负责任的原则。
通过案例分析,讨论工程实践中的道德困境和解决方案。
3. 团队协作与沟通能力提升通过小组讨论和课程设计等环节,锻炼学生的团队协作和沟通能力。
培养学生学会倾听他人意见、尊重他人观点并有效表达自己的思想。
四、教学评价与反馈机制1. 知识掌握评价通过作业、测验和考试等方式评价学生对信号与系统知识的掌握情况。
2. 思政表现评价观察并记录学生在课堂讨论、小组活动和课程设计中的思政表现。
将思政表现纳入课程考核体系,激励学生积极参与思政教育活动。
3. 教学反馈定期收集学生对课程内容和教学方法的反馈意见,及时调整教学策略以满足学生需求。
与学生保持良好沟通,及时解答学生在学习和思政方面的困惑和问题。
《信号与系统》课程设计
《信号与系统》课程设计
(3)
• • • • • • • • • • • • • • • • • • •
t=0:0.01:40; w1=exp(-3*t); subplot(3,2,1);plot(t,w1);axis([0,3,-0.2,2]);grid; title('f1复数模随时间变化的绘图') w2=exp(-3*t); subplot(3,2,2);plot(t,-w2);axis([0,3,-2,0.2]);grid; title('-f1(t)'); w3=exp((-3)*(-t))axis([0,100,-0.2,50]);grid; title('f1(-t)'); w4=exp(-3*2*t); subplot(3,2,4);plot(t,w4);axis([0,2,-0.2,2]);grid; title('f1(2t)'); w5=exp(-3*(t+2)); subplot(3,2,5);plot(t,w5);axis([0,3,-0.2,5]);grid; title('f1(t+2)'); w6=exp(-3*(2-2*t)); subplot(3,2,6);plot(t,w6);axis([0,2,-0.2,5]);grid; title('f1(2-2t)');
一.设计目的
1.加深对信号与系统的课本知识的理解和应用。
2.加深和巩固对典型信号:复指数信号的学习和理解,分析实部、虚 部、模及相角随时间变化的曲线并了解其时域特性。 3.应用MATLAB对实际问题进行仿真,通过对课程实践的制作,加深 对信号的时移、翻转、放缩的理解和掌握。
《信号与系统》课程设计
信号与系统课程设计
沈阳大学沈阳大学3.3系统与连续时间信号系统是连续事物或各个部分的一个复杂的整体,有形或无形事物的组成体。
系统可以分为即时系统与动态系统;连续系统与离散系统;线性系统与非线形系统;样时变系统和非时变系统等等。
在连续时间系统中,如一个连续时间系统接收,根据定义在连续时间(-∞<t<∞)有定义的信号称为连续时间信号,在范围内输入信号x(t),并产生输出信号y(t)。
连续时间信号是在连续时间范围内定义的信号值,信号的幅值可以是连续数值,也可以是离散数值。
当信号幅值连续是,则称之为模拟信号。
3.4采样定理取样定理论述了在一定条件下,一个连续时间信号完全可以用该信号在等时间间隔上的瞬时值(或称样本值)表示,这些样本值包含了连续时间信号的全部信息,利用这些样本值可以恢复原信号。
可以说取样定理在连续时间信号与离散时间信号中架起了一座桥梁。
其具体内容如下:取样定理:设为带限信号,带宽为0F ,则当取样频率02F F s ≥时,可从取样序列)()(s a nT x n x =中重构,否则将导致)(n x 的混叠现象。
带限信号的最低取样频率称为Nyquist (奈奎斯特)速率。
图1给出信号采样原理图图1 信号采样原理图由图1可见,)()()(t t f t f Ts s δ⋅=,其中,冲激采样信号)(t Ts δ的表达式为:∑∞-∞=-=n sT nT t t s)()(δδ (1)其傅立叶变换为∑∞-∞=-n s s n )(ωωδω,其中ss T πω2=。
设)(ωj F ,)(ωj F s 分别为)(t f ,)(t f s 的傅立叶变换,由傅立叶变换的频域卷积定理,可得:沈阳 大 学∑∑∞-∞=∞-∞=-=-=n ssn s s s n j F T n j F j F )]([1)(*)(21)(ωωωωδωωπω (2)若设)(t f 是带限信号,带宽为m ω如图(2),由式(2)可见,)(t f 经过采样后的频谱)(ωj F s 就是将)(ωj F 在频率轴上搬移至 ,,,,,02ns s s ωωω±±±处(幅度为原频谱的s T 1倍)。
《信号与系统》课程设计——数字语音信号的采样和重建
《信号与系统》课程设计——数字语⾳信号的采样和重建《信号与系统》课程设计——数字语⾳信号的采样和重建【设计题⽬】数字语⾳信号的采样和重建【设计⽬标】尝试对语⾳信号的时频域分析及采样和重建处理【设计⼯具】MATLAB【设计原理】通过MATLAB的函数wavread()可以读⼊⼀个.wav格式的⾳频⽂件,并将该⽂件保存到指定的数组中。
例如下⾯的语句(更详细的命令介绍可以⾃⼰查阅MATLAB的帮助)中,将.wav读⼊后存放到矩阵y中。
[y, Fs] = wavread('Q2.wav');对于单声道的⾳频⽂件,y只有⼀⾏,即⼀个向量;对于双声道的⾳频⽂件,y 有两⾏,分别对应了两个声道的向量。
我们这⾥仅对⼀个声道的⾳频进⾏分析和处理即可。
在获得信号向量y的同时,还可以获得该信号的采样频率,即Fs。
注意:.wav⽂件的采样频率为44.1KHz,采样后的量化精度是16位,不过我们不⽤关⼼其量化精度,因为在MATLAB读⼊后,已将其转换成double型的浮点数表⽰,范围在-1到+1之间。
因此,所有处理后的语⾳信号的幅度如果超过了1,在播放时会被⾃动处理为最⼤幅度,-1或者+1。
【设计内容】⼀、基本要求:1、语⾳信号的基本时频域分析:对语⾳信号进⾏时频域分析,绘制语⾳信号的时域波形图、频域频谱图。
其中,时域波形图的横轴要求为时间,频域频谱图的横轴要求为频率(注意,不是⾓频率)。
找到语⾳信号的主要频谱成分所在的带宽,验证为何电话可以对语⾳信号采⽤8KHz 的采样速率。
2、语⾳信号的降采样:对该语⾳信号进⾏五分之⼀的降采样,⽅法是对数组y中的数据,每间隔5个保留1个,这样得到的新的语⾳信号的采样频率为44.1/5KHz,即8.8KHz,通过wavpaly()播放降采样后的语⾳信号。
同时,对⽐降采样前后的语⾳信号的时域波形图、频域频谱图。
3、语⾳信号的先滤波再降采样:在MATLAB中先对数组y中的语⾳信号使⽤⼀个带宽为8.8KHz的理想低通滤波器进⾏滤波后,再对其进⾏五分之⼀的降采样,再次播放该语⾳信号,并与第2步的结果进⾏对⽐。
信号与与系统课程设计
信号与与系统课程设计一、教学目标本节课的教学目标是让学生掌握信号与系统的基本概念、原理和分析方法。
具体包括:1.知识目标:–了解信号与系统的定义、特点和分类;–掌握信号的时域、频域分析方法;–理解系统的基本特性,如线性、时不变性等。
2.技能目标:–能够运用信号与系统的分析方法解决实际问题;–熟练使用相关软件工具进行信号处理和系统分析;–具备一定的科研能力和创新精神。
3.情感态度价值观目标:–培养对信号与系统学科的兴趣和热情;–树立正确的科学观,注重实践与理论相结合;–增强团队协作意识,提高沟通与表达能力。
二、教学内容本节课的教学内容主要包括以下几个部分:1.信号与系统的定义、特点和分类;2.信号的时域、频域分析方法;3.系统的基本特性,如线性、时不变性等;4.实际应用案例分析。
5.引言:介绍信号与系统课程的背景、意义和目标;6.信号与系统的定义、特点和分类:讲解信号与系统的概念,分析各种信号与系统的特点和分类;7.信号的时域、频域分析方法:讲解信号的时域、频域分析方法,并通过实例进行分析;8.系统的基本特性:讲解系统的基本特性,如线性、时不变性等,并通过实例进行分析;9.实际应用案例分析:分析信号与系统在实际应用中的案例,如通信系统、控制系统等。
三、教学方法为了提高教学效果,本节课将采用以下教学方法:1.讲授法:讲解信号与系统的基本概念、原理和分析方法;2.讨论法:学生进行课堂讨论,培养学生的思考能力和团队协作精神;3.案例分析法:分析实际应用案例,让学生更好地理解信号与系统的应用价值;4.实验法:安排课后实验,让学生动手实践,提高实际操作能力。
四、教学资源为了支持教学内容和教学方法的实施,本节课将准备以下教学资源:1.教材:选用权威、实用的教材,如《信号与系统》、《信号处理与系统分析》等;2.参考书:提供相关领域的参考书籍,如《线性系统理论》、《数字信号处理》等;3.多媒体资料:制作精美的PPT课件,提供动画、视频等多媒体资料;4.实验设备:准备相应的实验设备,如信号发生器、示波器、滤波器等,以便进行课后实验。
《信号与系统及实验》课程教学大纲
《信号与系统及实验》课程教学大纲一、课程概述1. 课程名称:《信号与系统及实验》2. 课程性质:必修课3. 学时安排:64学时(理论课32学时,实验课32学时)4. 授课对象:电子信息类相关专业本科生二、课程目标1. 理论掌握:通过本课程的学习,学生将掌握信号与系统的基本理论知识,包括信号的表示与处理、系统的特性与分析等方面的内容。
2. 实验能力:学生将具备进行相关实验的基本能力,能够独立完成信号与系统相关的实验设计、实施和数据分析。
3. 应用水平:学生将具备将所学知识应用于实际工程问题的能力,为日后的专业发展打下扎实的基础。
三、教学内容与教学安排1. 信号的基本概念与表示(4学时)2. 信号的操作与运算(4学时)3. 常用信号的分类与性质(4学时)4. 离散时间信号与系统(8学时)5. 连续时间信号与系统(8学时)6. 系统特性与分析方法(8学时)7. 信号与系统的转换(4学时)8. 信号处理器件与应用(4学时)9. 信号与系统实验(32学时)四、教材与参考书1. 主教材:《信号与系统》,作者:Alan V. Oppenheim,Alan S. Willsky,S. Hamid Nawab,出版社:Prentice Hall2. 参考书:- 《信号与系统分析》,作者:张三,出版社:清华大学出版社- 《信号与系统实验》,作者:李四,出版社:电子工业出版社五、考核方式与成绩评定1. 平时成绩(20):包括课堂讨论、作业等2. 实验成绩(30):包括实验报告、实验操作等3. 期中考试(20)4. 期末考试(30)六、教学保障1. 课程实验室:学校配备专门的信号与系统实验室,满足学生的实验需求。
2. 实验设备:提供符合课程要求的实验设备和器材,保证实验教学的质量和安全。
3. 教师队伍:授课教师均具备相关领域的丰富教学与工程实践经验,保证教学质量。
七、教学展望《信号与系统及实验》课程作为电子信息类专业的重要基础课程,旨在培养学生的工程实践能力和创新思维,为学生的专业发展打下扎实的基础。
《信号与系统》课程设计-AM调制、解调
《信号与系统》课程设计——AM 调制、解调【设计题目】AM 调制、解调【设计要求】(1) 了解AM 调制、解调原理。
(2) 设计AM 调制系统。
(3) 设计AM 解调系统。
【设计工具】MATLAB【设计原理】在离散时间中,用正弦载波的幅度调制是)cos(][][n w n x n y c =式中假设消息信号的带宽小于c w 。
已调信号有一个DTFT ,它是分别已c w w ±=为中心的)(jw e X 的重复。
如果人们总想让在一条通信信道上同时传送最大的用户数,这个重复的部分是不希望的。
一种天真的解决办法是用复指数载波n jw c e 来替代正弦载波。
然而所得到的已调信号n jw ce n x ][有一个虚部分量,而这个是无法在一个真实的信道上传送。
单边带(SSB )是一种合适的解决办法,它等效于在传输之前用截至频率为c w 的理想低通滤波器对y [n ]滤波,这个滤波后的信号占有和x [n ]相同的频带宽度,而且x [n ]能完全从已发送的信号中恢复出来。
可以利用希尔伯特变换构成(SSB )信号。
一个理想的希尔伯特变换的频率响应是⎩⎨⎧<≤-<≤-=0,0,)(w j w j e H jw ππ由相位关系,希尔伯特也称作90°相移器。
在接收机端,通过一种称为同步AM 解调的技术可以将消息信号x [n ]恢复,这可经由])2cos[1]([][cos ][2]cos[][2][2n w n x n w n x n w n y n w c c c +===为了恢复x [n ],可以将w [n ]通过低通滤波消除以c w 2为中心的频谱分量。
这里一个关键的问题,也是一个潜在的困难是接收机必须要有一个与发射机同步的本地振荡器。
首先设计一个信号x [n ]的SSB 的调制系统。
假设载波频率2/π=c w ,⎪⎩⎪⎨⎧≤≤--=n n n n n x 其余,....0640,. (4)/)32()4/)32(sin(][ππ 求已调信号y [n ]。
信号与系统课程设计
信号与系统课程设计一、概念解释零输入响应:如果系统的激励为零,仅由初始状态引起的响应就被称之为该系统的“零输入响应”当系统是线性的,它的特性可以用线性微分方程表示时,零输入响应的形式是若干个指数函数之和。
指数函数的个数等于微分方程的阶数,也就是系统内部所含“独立”储能元件的个数。
假定系统的内部不含有电源,那么这种系统就被称为“无源系统”。
实际存在的无源系统的零输入响应随着时间的推移而逐渐地衰减为零。
零状态响应:如果系统的初始状态为零,仅由激励源引起的响应就被称之为该系统的“零状态响应”。
当系统是线性的,它的特性可以用线性微分方程表示时,零状态响应的形式是若干个指数函数之和再加上与激励源形式相同的项。
前者是对应的齐次微分方程的解,其中指数函数的个数等于微分方程的阶数,也就是系统内部所含“独立”储能元件的个数。
后者是非齐次方程的特解。
自由响应:系统的零状态响应一般分为两部分,它的变化形式分别由系统本身的特性和激励源所决定。
对于实际存在的无源系统而言,零状态响应中的第一部分将随着时间的推移而逐渐地衰减为零,因此往往又把这一部分称之为响应的“自由分量”。
强制响应:零状态响应中的另一部分与激励源形式相同的部分则被称之为“稳态分量”或“强制分量”。
二、例题简析对下面RLC电路进行分析:为方便起见,我们初设Ω=1R ,H L 1=,F C 1=设输入量为端电压a u ,输出量为电容电压c u ,我们可列微分方程如下:a c cc u u dtdu dt u d =++2 对于CT 系统,我们可以对上述微分方程进行拉氏变换:)()()0()()0(')0()(2S U S U u S SU u Su S U S a c c c c c c =+-+-- 在此采用MATLAB 对RLC 系统进行仿真,系统图如下:对于零输入相应,可设0V 1V,0==a c u u )(,可得11)(2+++=S S S S U c 逆变换可得t c e t t t u 5.023cos 23sin 31)(-⎪⎪⎭⎫ ⎝⎛+=,可见系统输出将会震荡衰减至0。
《信号与系统》课程设计
《信号与系统》课程设计一、课程目标知识目标:1. 理解并掌握信号与系统的基本概念,包括连续信号与离散信号、线性时不变系统等;2. 学会运用数学工具描述和分析信号与系统的性质,如傅里叶变换、拉普拉斯变换和z变换等;3. 掌握信号与系统中的典型应用,如信号的采样与恢复、通信系统中的调制与解调等。
技能目标:1. 能够运用所学的理论知识分析实际信号与系统的性能,并解决相关问题;2. 熟练运用数学软件(如MATLAB)进行信号与系统的仿真实验,提高实际操作能力;3. 培养学生的团队协作和沟通能力,通过小组讨论、报告等形式,提高学生的学术交流能力。
情感态度价值观目标:1. 培养学生对信号与系统领域的兴趣,激发学生的学习热情和求知欲;2. 增强学生的社会责任感,使学生认识到信号与系统在通信、电子等领域的广泛应用,为国家和社会发展做出贡献;3. 培养学生严谨、务实的学术态度,提高学生的自主学习能力和终身学习能力。
本课程针对高年级本科生,具有较强的理论性和实践性。
在课程设计中,将充分考虑学生的特点和教学要求,结合信号与系统领域的最新发展,注重理论与实践相结合,培养学生的创新能力和实践能力。
通过本课程的学习,使学生具备扎实的信号与系统理论基础,为后续相关课程和未来职业生涯打下坚实基础。
二、教学内容1. 信号与系统基本概念:连续信号与离散信号、线性时不变系统等;- 教材章节:第1章 信号与系统概述2. 数学工具描述与分析:- 傅里叶变换、拉普拉斯变换、z变换;- 教材章节:第2章 信号的傅里叶分析,第3章 系统的s域分析,第4章 离散时间信号与系统分析3. 信号与系统的典型应用:- 信号的采样与恢复;- 通信系统中的调制与解调;- 教材章节:第5章 信号的采样与恢复,第6章 通信系统4. 信号与系统仿真实验:- 使用MATLAB进行信号与系统仿真实验;- 教材章节:第7章 信号与系统仿真5. 团队协作与学术交流:- 小组讨论、报告等形式,进行案例分析和学术交流。
信号与系统实验教学大纲
信号与系统实验教学大纲一、实验目的本实验旨在帮助学生深入了解信号与系统的基本概念和原理,并通过实际操作加深对信号与系统的理解和应用能力。
具体目的包括:1. 掌握信号与系统的基本概念和定义;2. 理解常见信号的分类和特性;3. 熟悉信号与系统的数学表示方法;4. 学习使用仪器和工具进行信号与系统的实际测量与分析;5. 培养学生的实验设计和解决问题的能力。
二、实验内容1. 基本信号的生成与分析实验1.1 正弦信号的产生和观测1.2 方波信号的产生和观测1.3 单位阶跃信号和单位冲激信号的产生和观测2. 信号与系统的线性特性实验2.1 线性系统的特性分析2.2 线性时不变(LTI)系统的特性分析2.3 线性时变系统的特性分析3. 时域和频域分析实验3.1 时域分析方法的学习与应用3.2 傅里叶变换及其性质的学习与应用3.3 频谱分析实验4. 常用滤波器的设计与应用实验4.1 低通滤波器的设计与应用4.2 高通滤波器的设计与应用4.3 带通滤波器的设计与应用4.4 带阻滤波器的设计与应用5. 采样和量化实验5.1 采样定理及抽样方式的实验验证5.2 量化误差的分析与实验验证三、实验要求1. 掌握实验的基本原理和方法,理解实验的实际应用场景;2. 完成实验报告的撰写和实验数据的分析;3. 在实验过程中严格遵守实验守则,注意实验安全;4. 鼓励学生进行探索和创新,提出自己的实验设计方案。
四、实验器材和软件1. 示波器2. 函数发生器3. 信号源4. 滤波器5. 计算机及相关软件(如MATLAB等)五、实验评分实验报告和实验操作将共同作为评分的主要依据,其中实验报告占60%的权重,实验操作占40%的权重。
实验报告的评分标准包括实验目的的明确性、实验内容的完整性、实验数据的准确性以及实验结论的合理性。
实验操作的评分标准包括实验装置的正确搭建、实验数据的准确采集和实验操作的规范性。
六、参考资料1. 《信号与系统实验教程》2. 《信号与系统实验导论》3. 《信号与系统实验教程及案例》4. 《MATLAB在信号与系统实验中的应用》5. 《信号与系统实验方法与技巧》本大纲根据信号与系统实验教学的实际需求和课程目标制定,重点培养学生的实际动手能力和问题解决能力。
信号与系统课程标准
《信号与系统》课程标准(Signals and Systems )一、课程概述(一)课程基本信息(二)课程性质与任务《信号与系统》是物理学(光电器件及其应用方向)专业本科生的专业选修课程。
本课程的基本任务使学生牢固掌握信号与系统的基本概念、基本理论和基本分析方法。
理解傅里叶变换、拉普拉斯变换和z 变换的基本内容、性质,掌握信号与系统的时域、变换域分析方法(时域法、频域法、z 域法、s 域法、状态变量法),特别要注意建立信号与系统的频域分析以及系统函数的概念,为学生进一步学习后续相关课程奠定坚实的理论基础。
二、课程目标(一)总体目标设置本课程的目的在于使学生通过本课程的学习,初步建立起有关“信号与系统”的基本概念,掌握“信号与系统”的基本理论和基本分析方法,为进一步学习后续课程及从事通信、信息处理等方面有关研究工作打下基础。
通过本课程的学习,学生应该掌握信号与系统的基本概念、基本理论和基本分析方法,通过一定数量的习题练习加深对各种分析方法的理解与掌握。
(二)具体目标1、专业知识目标通过本课程的学习,准确理解信号与系统中时域分析、频域分析、复频域分析等基本理论知识,学会运用频域、复频域知识分析信号相关问题。
侧重培养学生频域思维解决工程实际问题的能力。
2、专业能力目标课程名称信号与系统课程编码050744011 课程类型及性质专业选修考试/考查考查适用专业物理学(光电器件及其应用方向)开课单位物理系总学时56总学分3.5通过学习,能准确描述信号及系统的特征,会通过时域分析信号及信号的输入输出关系;会通过频域分析解决简单工程问题;会利用频域、复频域解释信号相关现象。
3、职业素质目标通过以学生为主体的学习,使学生提高观察、思维、推理、判断、分析与解决问题的能力,形成敬业、守信、高效、协作、精益求精等职业道德与素质,使学生能自觉树立培养良好的职业道德及职业习惯的意识。
三、课程设计思路根据电子信息各岗位对信号与系统知识的要求,按照以项目为主体,基于典型工作任务的课程设计理念,设置了时域分析、频域分析、复频域分析等三个项目,信号与系统的各知识点融入到各典型工作任务中,通过典型工作任务的驱动教学,实现知识学习与技能训练目标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与系统课程设计大纲
课程设计思想及目标
为了体现应用型本科办学特点,通信工程01 、02 级进行了课程设计试点,自编了《信号与系统课程设计指导书》。
在执行了两届后,发现在培养学生设计思想与理论应用上未达预期效果,后在课程组与教研室充分讨论与调研的基础上,决定放在后续课程《数字信号处理》课程结束后开设,结果证明比在信号与系统课程开设效果更好。
课程设计内容
课题一:MATLAB中有关信号类的研究
课题二:信号波形仿真
课题三:MATLAB在建模与仿真的应用介绍
课题四:利用MATLAB框图对系统进行仿真
课题五:连续与离散小波变换的应用调查和小波的分类
课题六:图像分析中的信号分析
课程设计组织形式和教师指导方法
目前信号与系统课程设计是在多媒体实验室利用MATLAB 进行的仿真性实验或利用图书资源做仿真性研究。
计划时间为一周。
每个班级配备两明指导教师。
课程设计考核内容及方法
考核内容主要是课程设计报告的撰写。
考核方法:①课程设计的计划报告,并经确认后方可进行,②课程设计结果达到要求的预期要求并经确认,本实践环节完成,③按时提交课程设计报告,④课程设计是实验考核的重要依据,⑤按时完成课程设计要求的,可以补做,补做时必须由实验室专任教师签字认可, ⑥课程设计成绩不及格,按照学校相关规定处理。
课程设计创新及特点
对于理论性较强的基础课程,实践上创新是非常困难的,课程组在多年的探索基础上,提出简化理论算法对后续课程的依赖性,已设计出较为简单可行的基于傅立叶变换理论的图像滤波设计性等,因为滤波器设计是后续课程《数字信号处理》的理论教学与实践教学的重点内容,在信号与系统课程开设滤波器设计性内容未见相关报道,也未在网络资源搜索中取得可以引用的先例。
所以,课题组认为,在信号与系统课程开设滤波器设计性课程设计应该是一个创新。
课程设计题目一:《MATLAB中有关信号类的研究》
在已学课程《MATLAB程序设计及应用》和面向对象编程的基础之上,对MATLAB中类的定义,创建,运用,特点进行研究,以进一步熟练掌握MATLAB。
1. MATLAB中类的定义;
2. 对象的创建及应用;
3. 封装性,继承性,多态性在MATLAB信号类中的体现,MATLAB信号类与其他OO程序设计语言中其他类的比较;
4. 写出3000字以上的报告举例应详尽,恰当。
课程设计题目二:《信号波形仿真》
设计要求:
1. 用Matlab的GUI进行设计;
2. 至少仿真10种常用的信号;
3. 界面美观,波形准确;
4. 报告内容全面、条理清楚,字数3000字以上。
课程设计题目三:《Matlab在建模与仿真的应用介绍》
设计要求:在已学习Matlab的基础之上,对MATLAB在通信方面的应用进行调查研究,用网页的形式介绍Matlab在建模与仿真的应用。
1. 用网页的形式进行介绍。
2. 网页页面不少于10页,要说明充分。
3. 网页布局合理,必要需要嵌入图片进行说明。
4. 报告内容全面、条理清楚,字数在3000字以上。
课程设计题目四:《利用Matlab 框图对系统进行仿真》
设计要求:在已学习Matlab的基础之上,对MATLAB在信号与系统里的LTI系统进行仿真。
1. 用Matlab的Simulink进行设计。
2. 至少仿真四种不同的系统。
3. 结果合理。
4. 报告内容全面、条理清楚,字数在3000字以上。
课程设计题目五:连续与离散小波变换的应用调查和小波的分类
设计要求:
1. 通过查阅相关文献,了解小波的定义;
2. 连续与离散小波变换的定义;
3. 连续与离散小波变换的应用;
4. 小波分类。
5. 写出3000字以上的报告。
课程设计题目六:图像分析中的信号分析
设计要求:
1. 通过查阅相关文献,了解图像分析于处理的基本概念;
2. 通过查阅相关文献,了解图像分析的概貌;
3. 通过查阅相关文献,熟悉图像处理的基本方法中信号分析的应用;
4. 要求报告中至少包含一个图像处理基本方法中信号分析的应用的一个实例(实例中必须含有详细的信号分析的方法应用与结果)。
5 写出3000字以上的报告。