连杆工艺设计及有限元分析

合集下载

基于ANSYS的连杆的三维有限元分析

基于ANSYS的连杆的三维有限元分析

第37卷 第1期2008年2月小型内燃机与摩托车S MALL I N TERNAL COM B UST I O N ENG I N E AND MOTORCYCLEVo.l37No.1Feb.2008基于ANS YS的连杆的三维有限元分析代伟峰 樊文欣 程志军(中北大学振动与噪声研究所 山西太原 030051)摘 要:用有限元软件ANSYS对某军用发动机连杆进行了三维有限元分析,确定了连杆的最大应力部位和疲劳安全系数,为此发动机连杆的可靠性设计提供了依据。

关键词:有限元分析 疲劳 连杆 应力 疲劳安全系数中图分类号:TK413.3 文献标识码:A 文章编号:1671-0630(2008)01-0048-03The3D Finite E lem ent Analysis of D iesel Engi neConnecti ng Rod Based on ANS YSDa iW eife ng,FanW enxin,Cheng Zhij unI nstitute o fV ibration Shock&No ise,North Un iversity of Ch i n a(Taiyuan,030051)Abst ract:I n this paper,w ith the ANSYS,the stress of the eng i n e connection r od is analyzed by usi n g3D fi n ite e le m entm ethod,and the positi o n of the m ax i m u m stress and t h e safe coe ffi c ient o f fati g ue are calcu l a ted. Based upon the results,the reliable design o f the connection rod is i m pr oved.K eyw ords:F i n ite ele m ent ana l y sis,Fati g ue,Connecti n g rod,Stress,Fati g ue safety factor引言连杆是连接发动机活塞与曲轴的一个重要零件,工作中经受拉伸、压缩和弯曲等交变载荷的作用,在发动机设计时,要保证连杆具有足够的结构刚度和疲劳强度。

基于SolidWorks软件的连杆有限元分析与优化设计

基于SolidWorks软件的连杆有限元分析与优化设计
第2 3卷
第 4期
21 0 1年 1 2月
浙 江 水 利 水 电 专 科 学校 学报 JZ e agWa C n . hj n r os& H d. oee i . y rCl g l
Vo _ No. l23 4
De . 011 c2
基 于 S l W o k 软 件 的 连 杆 有 限 元 分 析 与 优 化 设 计 oi d rs
件应 用分 析 能 力 大 幅 提 高 的今 天 , A 计 算 机 辅 C E(
pes rs 工具进 行有 限元 分析 . 限元 模 型 和产 品 的几 有
何模 型 是相 关 的 , 过 建 模 和 分 析 后 , 户 将 得 到 经 用
系统 计算 出的结 构 反 应 ( 形 、 力 等 ) 如 果 计 算 变 应 . 的结 果 不 符 预 期 , 么 用 户 就 可 修 改 参 数 再 次 分 那 析, 直到 达 到可接 受 的设 计值 为止 _ . 4 J
降低 因修 正 错 误 所 耗 费 的 成 本 . 过 利 用 三 维 C D 软 件 S l Wo s 连 杆 建 模 , 利 用 Sl Wok 提 供 的 C S 通 A oi r 对 d k 并 od rs i O—
MO X rs S pes工具进 行有限元分析 , 根据设 计要 求对连杆的结构进行优化 , 经测试连杆 的优化设 计是可行 的. 关键词 :o d rs C S S pes连杆 ; 限元 分析 ; Sl Wok ; O MO X rs; i 有 结构优化
A src: A (o p t ・ ddaayi)ia tg l atf rd c dvl met y s go C E tepout uly bta tC E cm u r ie nls s ni er ro pout ee p n.B i A , h rd cq ai ea s n ap o un f t

汽车发动机连杆的有限元分析

汽车发动机连杆的有限元分析

汽车发动机连杆的有限元分析刘显玉(辽宁科技学院机械工程系,辽宁本溪 117022)摘要:采用基于ANSYS软件开发的有限元模拟系统,并利用网格重划技术,对汽车发动机连杆杆身截面进行了弹、塑性力的有限元模拟,得到了变形过程中的应力场、应变场的分布,为进行发动机连杆的结构分析建立了基础.关键词:汽车;发动机;连杆;有限元中图分类号:TK4 文献标识码:A 文章编号:1005-8354 (2005) 03-0009-03Finite Element Analysis of Automobile Engine Connecting RodsLIU Xian-yu(Mechanical Engineering Faculty, Liaoning Science and Technology Institute, Benxi 117022, China)Abstract:This article adopts the finite-element simulation system based on the ANSYS software. By means of technology of grid rewriting, the finite-element simulation of the stress of elasticity and plasticity for the body section of automobile engine’s connecting rod is made to gain distributing of the stress and strain’s field and build the base of structure analysis of automobile engine connecting rods. Key words:automobile;engine; connecting rod; finite-element1 引言连杆是发动机中传递动力的重要组件,它在工作中承受各种复杂的、周期性变化的拉、压及惯性力等外载荷,即使是同一类型的连杆,由于每根连杆的物理参数、几何形状也存在差异,在分析连杆的应力和应变时,要考虑这些不确定的因素,这样才能得到更符合实际的结果.目前,有限元法已成为工程技术领域中不可缺少的一个强有力的计算分析工具,是研究发动机连杆的应力、应变的应用中最常用的方法.该方法较用传统的材料力学公式计算的结果更为精确.鉴于此,本文应用有限元技术对6110柴油机连杆进行静力分析,研究其应力、应变状态及其危险部位.2 有限元的基本原理和特点有限元方法是近似求解一般连续域问题的数值方法.它最先应用于结构的应力分析,很快就广泛应用于求解热传导、电磁场、流体力学等连续问题.对于一个连续体的求解问题,有限单元法的实质就是将具有无限多个自由度的连续体,理想化为只有有限个自由度的单元集合体,单元之间仅在节点处相连接,从而使问题简化为适合于数值求解的结构型问题.工程设计人员使用这些系统,就可以高效而正确合理地确定最佳设计方案.概括而言,有限元法的几个主要特点有:(1)有限元法的基本思想是“离散化”.(2)有限元法的物理概念十分清晰,容易为工程技术人员所理解.(3)有限元法引入边界条件的办法简单.(4)有限元法不仅适用于复杂的几何边界条收稿日期:2005-03-11作者简介:刘显玉(1967-)男,硕士,研究方向:内燃机检测与故障诊断.机电设备 2005年第3期总第24卷— 9 —件,而且能够处理各种复杂的材料性质问题.(5)有限元法必须求解一个大型代数方程组,用人工求解几乎是不可能的.(6)有限元法的计算机软件是通用的.3 连杆的工作条件6110柴油机连杆为斜切口合金钢模锻件,然后经机械加工和热处理完成.连杆大端、连杆盖通过螺栓及其预紧力与连杆紧紧结合在一起;杆身的横截面呈“工”字形,且与连杆大、小端圆滑过渡,整个连杆呈上下对称及左右对称结构.在标定工况下,发动机连杆的运动是随活塞的平移和绕活塞销摆动两种运动的复合运动.连杆在运动的过程中,一般承受的载荷有气缸爆发压力、往复惯性力和螺栓预紧力等,连杆大端还承受旋转惯性力的作用.图1为6110柴油机曲柄连杆机构简图,其曲轴回转中心线和活塞销中心线均与气缸中心线相交.图1 连杆机构运动简图连杆在工作中主要受到以下四种力的作用:(1)作用于活塞的气体作用力;(2)活塞组件的惯性力—活塞组件中所有零件(包括活塞、活塞环、活塞销、活塞销卡环);(3)连杆惯性力;(4)预紧载荷—连杆螺栓装配预紧力和连杆衬套过盈装配产生的预紧力.在有限元分析时,根据力的作用效果,主要考虑以下三种载荷的作用:预紧载荷、最大惯性力、最大爆发压力.连杆工作时,承受的应力是周期性变化的.一般情况下,应选择连杆承受最大拉力和最大压力两情况进行分析,以便得到两情况下的应力和变形分布情况,同时利用此计算结果来近似地进行连杆疲劳强度的计算,为其改进和设计提供可靠的依据.最大拉伸情况发生在活塞运动到排气冲程终了的上止点位置,此时连杆主要承受其它零件及其本身的最大惯性力;最大压力情况发生在膨胀冲程开始的上止点位置附近,此时连杆主要承受缸内燃气的爆发压力以及零件运动的惯性力.在连杆的有限元计算中,处理作用于连杆上的载荷是一件极为重要的工作.由于作用于连杆上的载荷系统一般都比较复杂,特别是某些载荷沿边界的分布规律难以用理论或测量的方法来确定,而往往是采用一些假定的分布规律来模拟.因此如何正确地模拟这些载荷的分布规律,是有限元法计算中不容忽视的问题.4 发动机连杆的有限元计算由于连杆工作时的危险点常在连杆大、小端与杆身的过渡处,按二维平面问题进行建模,将其简化为平面应力问题来计算,则“工”字形梁的结构就会发生改变,其承受载荷的能力必然也要受到影响,最终导致分析的结果与实际结果有很大偏差,况且丢掉大端盖不利于对连杆整体进行应力应变的研究分析,也不利于后续研究工作的开展,从而进一步造成分析结果不周全的缺憾.相比较而言,若采用三维立体建模,可以显著改进二维平面有限元分析的不足,同时以均布面载荷模拟通过螺栓头和螺母分别作用于杆身和大端盖接触面上的力—螺栓预紧力,用多点约束处理杆身与大端盖的接触面来近似模拟其力学接触状态,以限制刚体某自由度上应力与位移,模拟更加真实,提高了分析结果的可信度.连杆结构的离散化可采用三角形单元.在连杆常发生破坏的小端过渡圆弧处,杆身与大、小端过渡处、大端盖两侧夹角处以及杆身的工艺凸台两则— 10 — V ol.24, No.3, 2005 Mechanical and Electrical Equipment应加密网格,把这些部位的单元划分得小一些,以提高应力集中区域的计算精度.由于连杆小端的铜质衬套和钢质连杆具有不同的弹性常数,小端和杆身的工字形截面又有不同的厚度,故把弹性常数和厚度的突变线划成了单元的边界线.在连杆大、小端轴孔处边界单元的大小,将影响到轴承负荷向边界节点移植结果的精度,采取沿轴孔按每10°或15°划分一个节点,可基本满足计算要求.图2、图3和图4分别是发动机连杆的有限元计算模型和拉应力、压应力分布图.图2 发动机连杆的有限元计算模型.图3 发动机连杆的拉应力分布图图4 发动机连杆的压应力分布图5 结论(1)有限元方法是工程设计、开发领域中一种实用、可靠的方法.(2)在有限元分析中,科学的力学模型、准确的边界条件约束决定着分析结果的准确度.(3)连杆应力计算中载荷施加的均匀性、对称性和准确性对杆身、大端和小端过渡区的应力计算结果有很大的影响.(4)连杆大、小端与杆身的过渡区是应力最严重的地方,为减少应力集中,在设计连杆时,小端孔不仅要有足够的壁厚外,还要使小端与杆身的过渡圆角在合理的范围内尽量大些.参考文献:[1] 刘涛,杨风鹏等.精通ANSYS[M].北京:清华大学出版社,2002.[2] 邓兆祥,胡玉梅等.N485柴油机连杆静强度有限元分析[J].内燃机,2001(2).[3] Hiroyuki Tsuzuku,Naoki Tsuchida. An experimentalstudy of connecting rod big ends [Z]. SAE Paper950202.日本科学家发明“机器人服”日本科学家最近发明了一种代号为HAL-5的“机器人服”。

发动机连杆有限元分析总结心得体会

发动机连杆有限元分析总结心得体会

发动机连杆有限元分析总结心得体会
发动机连杆的有限元分析是一种常用的工程分析方法,它可以帮助工程师们了解连杆的强度和刚度等性能指标,在设计和优化连杆结构时提供技术支持。

在有限元分析中,我们可以对连杆进行静态和动态载荷分析,确定应力和变形分布,找出潜在的弱点和失效模式,在此基础上进行结构优化,提高连杆的可靠性和寿命。

在进行连杆有限元分析时,需要注意以下几点:
1. 应该选择合适的有限元模型,采用三维和四节点六面体单元可提高分析精度;
2. 确定载荷和边界条件,包括离心力、摩擦力、惯性力等,同时考虑各种工况下的载荷变化;
3. 设置材料模型和材料参数,包括弹性模量、泊松比、损伤指数等;
4. 分析应力应变分布情况,找出潜在的失效点,并对连杆进行优化改进;
5. 结果应该进行验证和修正,通过实验验证准确性和可靠性;
6. 结果应该进行优化和控制,保证满足设计标准和工作要求。

在连杆有限元分析中,需要使用专业的有限元分析软件,例如ANSYS、ABAQUS等。

同时,需要掌握有限元分析理论和技术,具备材料力学、结构力学和计算机编程等方面的知识和技能。

总之,连杆有限元分析是一种重要的工程分析方法,可以帮助工程师们优化连杆结构、提高产品质量、降低生产成本,是工程设计和制造过程中不可或缺的分析工具。

车用发动机连杆有限元分析及结构设计

车用发动机连杆有限元分析及结构设计

惯性力、连杆自身的摆动惯性力、小头上承受的燃 气压力、连杆小头衬套和大头轴瓦的径向装配应力 和连杆大头所承受的螺栓预紧力。 2.2 网格的划分
该连杆材料为中碳钢,密度为 7 850 kg/m3,杨氏 模量为 210 GPa,泊松比为 0.3。由于连杆形状复杂 且不规则,因此采用高阶四面体单元 Solid 92,进行 自由网格划分,共有 159 669 个单元,247 821 个节 点,图 3 为 1/2 连杆网格划分图。
力云图,如图 4 和图 5 所示。
技术
第 29 卷
致惯性力增加,下面对连杆的设计提出几点建议。 (1)连杆材料的选择要保证在结构轻巧的条件
下有足够的刚度和强度,一般可选中碳钢、中碳合 金钢、球墨铸铁、铸铝合金等[5]。
(2)连杆杆身应具有足够的断面积,因为连杆 在高速摆动时的横向惯性力会使连杆弯曲变形。一 般高速内燃机的连杆杆身断面是工字形的,考虑惯 性力依不同连杆截面的变化,从小头到大头截面逐 渐加大。
0 引言
就会影响到发动机的正常工作,甚至发生严重的事 故,因此对其强度提出了很高的要求。以往的连杆
连杆作为车用发动机的主要零件,在工作过程 设计是靠经验及参考资料,没有合理的设计依据,而 中承受着急剧变化的动载荷,若其强度和刚度不够, 有限元法作为一种有效的分析方法,在连杆设计中
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2.3.2 连杆载荷处理
(1)螺栓预紧力:螺栓作为承载体系的一部分,
作用是拉紧大端和大端盖,其预紧力可采用以下公
式计算:M=0.2P0dM×10- 2 式中 M———螺栓拧紧力矩;
P0— ——螺栓预紧力; dM— ——螺栓直径。 计算得螺栓预紧力约为 3 758.6 N。

机械毕业设计(论文)基于ansys的连杆机构的有限元分析【全套设计】

机械毕业设计(论文)基于ansys的连杆机构的有限元分析【全套设计】

湘潭大学兴湘学院毕业设计论文题目:连杆机构的有限元分析全套设计,加153893706专业:机械设计制造及其自动化学号: 2010963028 姓名:指导教师:完成日期: 2014 年 5 月 25 日湘潭大学兴湘学院毕业论文(设计)任务书论文(设计)题目:连杆机构的有限元分析学号: 2010963028姓名:专业:机械设计制造及其自动化指导教师:系主任:一、主要内容及基本要求1、总结连杆机构设计方法研究和连杆机构研究的发展状况和发展趋势,在总结前人研究成果的基础上,结合当前的技术发展趋势,采用有限元方法来进行开展研究。

2、阐述学习理论基础,即瞬态动力学分析,简要论述瞬态参数,识别原理。

3、简要论述有限元方法和动力学分析的基本求解过程,建立连杆机构中的曲柄滑块机构的有限元模型,合理的确定曲柄长度及转速、连杆长度和转速,偏距,选定和创建单元类型,指点单元属性,创建铰链单元,采用瞬态动力学分析瞬态分析类型对其进行瞬态分析,与图解法进行比较,验证有限元瞬态求解功能。

4、联系工程实际,对受力连杆进行结构静力学学习。

二、重点研究的问题1、 ANSYS的线性静力分析2 、构建几何模型3、在三维铰链单元COMBIN7的创建4、单元类型选择和网络划分5、 ANSYS瞬态动力学分析和静力学分析三、进度安排四、应收集的资料及主要参考文献[1]高耀东,刘学杰.ANSYS机械工程应用精华50例(第三版).- 北京:电子工业出版社,2011.[2]孙波.毕业设计宝典.-西安:西安电子科技大学出版社,2008.[3]温正,张文电.ANSYS14.0有限元分析权威指南.-北京:机械工业出版社,2013.[4]欧阳周,汪振华,刘道德.毕业论文和毕业设计说明书写作指南.-长沙:中南工业大学出版社,1996.[5]华大年,华志宏.连杆机构设计与应用创新.-北京:机械工业出版社,2008.[6]胡仁喜,康士廷.机械与结构有限元分析从入门到精通.-北京:机械工业出版社,2012.[7]李红云,赵社戌,孙雁.ANSYS10.0基础及工程应用.北京:机械工业出版社,2008.[8]唐家玮,马喜川.平面连杆机构运动综合.-哈尔滨:哈尔滨工业大学出版社,1995.[9]潘存云,唐进元.机械原理.-长沙:中南大学出版社,2011.[10]李皓月,周田朋,刘相新.ANSYS工程计算应用教程.-北京:中国铁道出版社,2003湘潭大学兴湘学院毕业论文(设计)评阅表学号2010963028 姓名谭磁安专机械设计制造及其自动化毕业论文(设计)题目:连杆机构的有限元分析湘潭大学兴湘学院毕业论文(设计)鉴定意见学号2010963028 姓名谭磁安专业机械设计制造及其自动化毕业论文77 页图表30 张目录摘要............................................................................................ 错误!未定义书签。

连杆有限元分析

连杆有限元分析

连杆简化模型的有限元分析
蔡森20080430123 T843-1
1.分析任务:
a.对图一所示的连杆的二维简化模型进行有限元分析,确定该设计是否满足结构的强度要
求:若强度不够,修改设计直至最大应力减少至材料允许范围内。

在修改结构时,注意不可改变连杆小头衬套的内径和连杆大头的内径,也不可改变连杆各处厚度。

b.采用三维结构对图示连杆进行强度分析,与二维结构分析结果进行比较。

c.对结构进行参数化研究和目标驱动的优化设计
2.分析所需数据
a.连杆采用两种材料,连杆本体用的是40cr结构钢,左侧小头中的村套用的是铜。

b.连杆本身和大头的厚度为1.5mm,小头的厚度为3.0mm。

注意在杆身和小头的过渡处有
R2.0的过渡圆角
c.连杆结构的其他尺寸如图二所示;
d.施加在大、小头内壁上边界条件用于模拟连杆与曲轴连杆及活塞销的连接。

假定载荷为
轴承载荷,分布在小头夹角为90°的内壁上;约束施加在连杆大头夹角为90°的内壁上。

e.40cr材料的弹性模量:210Gpa;泊松比:0.3;屈服极限为:850Mpa,设计安全系数为
6;铜的弹性模量:120Gpa;泊松比:0.33;屈服极限:250MPa;设计安全系数为4 Part1
一.草图轮廓的建立
二.连杆的实体建模
二维模型
三维模型三.连杆的网格划分
二维模型网格划分
三维模型网格划分
网格的局部细分四.模型参数的设置
五.轴承载荷与约束的施加。

连杆的设计和有限元分析

连杆的设计和有限元分析

连杆的设计和有限元分析连杆是一种常见的机械传动元件,用于将机械运动传递给其他部件。

其设计和有限元分析是确保连杆能够安全有效地工作的重要步骤。

本文将主要介绍连杆的设计和有限元分析。

首先,根据传动的要求确定连杆的工作载荷,包括径向力、切向力和弯曲力等。

根据这些载荷,可以计算出连杆的最大载荷和加速度。

其次,在确定连杆的最大载荷后,需要根据材料的强度和韧性来选择合适的材料。

常用的连杆材料包括钢、铝合金和铜合金等。

根据材料的强度和韧性,可以计算出连杆的最大应力和应变。

然后,根据最大载荷和材料性能计算出连杆的尺寸。

连杆的尺寸包括长度、直径和孔径等。

通过对连杆进行强度计算,可以确保其不会发生破坏或变形。

最后,设计完成后,可以制作连杆的CAD模型,用于制造和装配。

有限元分析是一种常用的工程分析方法,可以用于模拟材料和结构的行为。

在连杆的设计中,有限元分析可用于评估连杆的强度和刚度等性能。

以下是使用有限元分析进行连杆分析的主要步骤:首先,根据设计完成的CAD模型,将连杆的几何形状转换成有限元模型。

连杆可以被分解成多个有限元单元,例如梁单元或壳单元。

每个有限元单元都与相邻的单元相连,形成整个连杆的有限元模型。

其次,应用适当的边界条件和载荷,在有限元模型中模拟工作载荷和运动条件。

这些载荷和边界条件可能包括沿连杆的节点施加的力或位移。

然后,使用适当的材料力学模型,在有限元模型中定义材料的性能。

这包括材料的弹性模量、屈服强度和断裂韧性等。

根据材料模型,有限元分析可以计算出连杆在应力和应变下的响应。

最后,根据有限元模型的分析结果,评估连杆的强度和刚度等性能。

如果连杆的应力或应变超过了材料的极限,表明设计存在缺陷,需要进行修改。

除了强度和刚度分析外,有限元分析还可以对连杆进行模态分析和动力学分析等,以评估其固有频率和响应。

总结起来,连杆的设计和有限元分析是确保连杆能够安全有效地工作的重要步骤。

通过正确的设计和分析,可以确保连杆的强度和刚度等性能,从而满足传动的要求。

连杆的有限元分析

连杆的有限元分析

目录第一章序言 (1)1.1课题研究的目的和意义 (1)1.2课题的分析 (1)1.3研究内容 (2)第二章有限元的基本原理及其应用 (4)2.1有限元分析概述 (4)2.2有限元分析的优缺点 (5)2.2.1有限元法的优点 (5)2.2.2有限元分析的缺点 (6)第三章连杆的工作条件及载荷的确定 (7)3.1.连杆的结构和布置 (7)3.2柴油机一般采用斜连杆的原因 (9)3.3连杆的工作条件及受力 (10)3.4连杆的材料及制造工艺 (11)第四章连杆的建模 (15)4.1SolidWorks软件介绍 (15)4.1.1概述 (15)4.1.2 SolidWorks软件的特点 (16)4.1.3 SolidWorks软件的应用 (17)4.2连杆模型的建立 (17)4.2.1创建连杆的几何模型 (18)4.2.2连杆的力学模型的建立 (32)第五章计算结果及其分析 (40)5.1最大拉伸情况的结果与分析 (40)5.1.1连杆受拉时应力结果 (40)5.1.2连杆受拉时应变结果 (41)5.1.3连杆受拉时位移结果 (43)5.2最大压缩情况的结果与分析 (44)5.2.1连杆受压时应力结果 (44)5.2.2连杆受压时应变结果 (45)5.2.3连杆受压时位移结果 (46)5.3分析总结 (46)引用文献 (49)附录(英文翻译) (51)第一章序言1.1课题研究的目的和意义连杆是发动机中传递动力的重要零件,它把活塞的直线运动转变为曲轴的旋转运动,并将作用在活塞上的力传给曲轴以输出功率。

连杆在工作过程中要承受装配载荷(包括轴瓦过盈及螺栓预紧力)和交变工作载荷(包括气体爆发压力及惯性力)的作用,工作条件比较苛刻。

现代汽车正向着环保节能方向发展,这就要求发动机连杆在满足强度和刚度的基础上,应具有尺寸小、重量轻的特点。

本文通过SolidWorks这个三维制图软件制作连杆的三维模型,然后通过COSMOSWorks软件,对连杆模型进行网格划分、加载和约束的处理,然后再进行计算分析,得出柴油机连杆在受拉和受压的两种工况下的应力、应变等分析结果。

发动机连杆有限元分析

发动机连杆有限元分析

发动机连杆有限元分析——用Ansys软件进行分析本分析选用参数:一、模型的创建根据选用连杆参数建立的三维模型如图1所示.图1.1 连杆三维模型发动机连杆模型采用CREO软件创建,创建过程如下。

1.绘制连杆大头及D2孔。

选择拉伸命令,以Top面为草绘平面,草绘截面如图1.2a所示;以Top面为中心面,向两方拉伸,拉伸高度为38mm,拉伸成型后的模型如图1.2b所示。

图1.2a 图1.2b2.绘制连杆小头及D4孔。

选择拉伸命令,以Top面为草绘平面,草绘截面如图1.3a所示;以Top面为中心面,向两方拉伸,拉伸高度为38mm,拉伸成型后的模型如图1.3b所示。

图1.3a图1.3b3.绘制两头之间的连接杆。

选择拉伸命令,以Top面为草绘平面,绘制如图1.4a的草绘截面。

仍以Top面为中心,向两方拉伸,拉伸高度为22mm,拉伸成型后的模型如图1.4b所示。

图1.4a图1.4b4.绘制连杆的凹槽。

选择拉伸切除命令,以连杆上视面为工作平面,绘制的草图如图1.5a所示。

拉伸深度为9,拉伸切除之后的模型如图1.5b所示。

图1.5a图1.5b选择镜像命令,绘制另一侧的凹槽。

模型如图1.6所示。

图1.65.绘制连杆大端盖。

绘制草图如图1.7a所示,拉伸后的模型如图1.7b所示。

图1.7a图1.7b绘制草图如图1.8a所示,拉伸后的模型如图1.8b所示。

图1.8a图1.8b绘制草图如图1.9a所示,拉伸切除后的模型如图1.9b所示。

图1.9a 图1.9b绘制草图如图1.10a所示,拉伸切除后的模型如图1.10b所示。

图1.10a图1.10b选择Front面为镜像平面,进行镜像,得到模型如图1.11所示。

图1.116.倒角。

对各孔的边缘进行倒角,得到的模型如图1.12所示。

图1.127.倒圆角。

最后对连杆凹槽进行倒圆角,得到模型如图1.13所示。

图1.13最后完成模型如图1.14所示。

图1.14二、导入模型本分析采用模型导入Ansys Workbench,几何模型如图所示图2.1图2.2三、单元选择与网格划分1、本分析采用Ansys Workbench软件mesh模块进行网格划分,采用10节点4面体solid187单元,此单元的优点如下:SOLID187是高阶3D 10-node实体单元,如图3-1。

连杆式钢包回转台的整机有限元分析

连杆式钢包回转台的整机有限元分析

Fi t e e tAn l ss o n e tn d S e lPa k g t tng St to nie El m n a y i fCo n c i g Ro t e c a e Ro a i a i n
W A NG -ga Li ng‘ LILi —ln , M A . ng i g2 Xue —dong 。
中将 其简 化 为刚体 。几何模 型 如 图 I 所示 。 模 型 的 位 移 约 束 条 件 为 机 架 底 座 的 下 表 面 阎定 约
束, 结构 所受 载 荷 为钢包 的实 际重 量 为 2 0 , 2 t分摊 到 左右
转 台升降装 置 为原型 ,进行 了整 机有 限元静 强度 计算 , 其 23 边界 条件 . 目的是为此机 构 的安全性 和可靠性 提供相 应 的理论依 据 。
( iy e v n ier gMahn r C .t, n u n d o0 6 0 , hn ;.nvti f cec n 1 neH ayE gnei c iey o d Qih ag a 6 0 4 C ia 2U ies yo in ea d Q n L ’t S
Te h oo yLio n , s a 4 4 ,Chn c n lg a nig An h n 11 0 4 ia)
2 有 限元 分析
为 了考 察 机构 的安 全性 ,采 用 C S s rs 行 托 臂 上部 测 重机 构 的 4个 支座 面 上,并在 机 架底 部施 加 O MO w0k 进
了升降机 构 的整机 静强 度分 析 。
2, 零件 设计 Байду номын сангаас模 和虚 拟 装配 .
固定 约束 ( 图 2 。 虑到 冲 击因 素 , 见 )考 应乘 以动载 系数 , 参 考 有关 文献 , 动载 系数 取 1 。 . 6

毕业设计(论文)-发动机曲轴连杆机构仿真及有限元分析设计-adams

毕业设计(论文)-发动机曲轴连杆机构仿真及有限元分析设计-adams

全套图纸加扣 3012250582曲轴连杆活塞组件虚拟样机的建立学院名称:机械工程学院专业班级:机械设计制造及其自动化0501 班学生姓名:号:学指导教师:2009 年6 月摘要柴油机的气缸、活塞、连杆、曲轴以及主轴承组成一个曲柄连杆机构。

柴油机通过曲柄连杆机构,将活塞的往复运动转换为曲轴的回转运动,使气缸内燃油燃烧所产生的热能转变为曲轴输出的机械功。

可见,曲柄连杆机构是柴油机重要的传力机构。

对其运动和受力情况进行分析和研究,是十分必要的。

这种分析研究既是解决柴油机的平衡、振动和总体设计等课题的基础,也是对其主要零部件在强度、刚度、磨损等方面进行计算和校验时的依据。

本文在曲柄连杆机构理论分析的基础上,利用多体动力学理论,三维造型软件Pro/E 及动力学分析软件ADAMS对内燃机曲柄连杆机构的动力学问题进行了虚拟样机仿真分析。

并以CT484Q柴油机为研究对象,在Pro/E中建立CT484柴油机曲柄连杆机构的虚拟样机模型,导入ADAMS中进行动力学分析,绘制出虚拟样机模型中各连接位置处受力仿真结果曲线。

通过本文的研究,展示了一种简捷、高效的机械设计分析手段,对今后同类型的研究乃至更大规模的仿真分析积累了一些经验。

本文的研究也可以为今后内燃机机构的造型、优化设计提供参考依据。

关键词:内燃机,曲柄连杆机构,ADAMS,虚拟样机,仿真AbstractThe Cylinder, piston, connecting rod, crankshaft and main bearings of diesel engine Compose of a crank-connecting rod mechanism. Through the crank-connecting rod mechanism, Diesel engine convert the piston reciprocating motion to the rotary movement of the crankshaft, and make the cylinder generated by fuel combustion energy into mechanical work output of the crankshaft. This shows that diesel engine crank linkage is an important body for transmission force. It is necessary to analysis and research its movement and force. This analysis is the foundation to solve the balance of diesel engine, vibration and overall design, It is the basis for validate and calculate the strength, stiffness, wear, etc.In this paper, based on the theoretical analysis of crank-connecting rod mechanism, use of multi-body dynamics theory, and use the three-dimensional modeling software, Pro/ E and the dynamic analysis software ADAMS to carry out crank and connecting rod for internal combustion engine body dynamics simulation of a virtual prototype simulation. And study CT484Q Diesel Engine, established linkage of the virtual prototype of diesel engine model In Pro/ E, then do dynamic analysis in ADAMS and draw the connection position of the power curve for the simulation result.Through this paper, the study demonstrated a simple and efficient means of mechanical design and analysis for future research as well as the same type of simulation analysis and accumulate some experience. The study of this paper can provide reference for the modeling and optimal design.Key words: Internal Combustion Engine, Crank-connecting rod mechanism, ADAMS, Virtual Prototyping目录第一章绪论··················································1.1 研究的意义···············································1.2 内燃机曲柄连杆机构的工作特点以及难点·····························1.3 国内外研究及手段···········································1.3.1计算机辅助设计(CAD)·····································1.3.2 多体动力学分析(MBS)···································1.3.3 有限元分析···········································1.3.4优化设计理论··········································1.4 主要研究内容和方法··········································第二章曲柄连杆机构的动力学理论分析·······························2.1 内燃机工作过程分析··········································2.1.1压缩始点气体状态·········································2.1.2压缩终点气体状态········································2.1.3燃烧过程及燃烧终点气体状态·································2.1.4膨胀终点气体状态········································2.2 曲柄连杆机构的运动分析·······································2.3曲柄连杆机构的动力学分析······································2.3.1曲柄连杆机构的质量换算····································2.3.2曲柄连杆机构的惯性力和惯性力矩······························2.3.3曲柄连杆机构的动力学分析··································2.4 内燃机工作过程计算··········································第三章曲轴连杆活塞组件的虚拟样机································3.1Pro/E 系统的建模原理及其特点····································3.1.1参数化设计············································3.1.2 特征建模的基本思想······································3.1.3全相关的单一数据库······································3.2 曲柄、连杆、活塞组件几何模型的建立以及装配··························3.2.1活塞组件的建模·········································3.2.2 连杆组建的建模········································3.2.3曲轴组件的建模·········································3.2.4曲轴连杆活塞组件的总装配···································第四章曲柄连杆机构的运动学和动力学分析·····························4.1ADAMS简介及其基本原理·······································4.1.1 运动学和动力学基本概念···································4.1.2 ADAMS中多刚体动力写方程的建立······························4.2ADAMS 中的运动学和动力学分析···································4.2.1 曲柄连杆机构刚体模型的转化和输入·····························4.2.2 曲轴轴系多刚体动力学仿真分析·······························第五章结论与展望·············································5.1 总结····················································5.2 展望····················································致谢························································参考文献·····················································附录·························································第一章绪论1.1研究的意义内燃机是目前世界上应用最广泛的热动力装置,自1860年法国人设计出第一台煤气发动机以来,内燃机无论是在结构上还是在性能上都较以前有了很大的进步。

汽车发动机连杆结构有限元分析方法探究

汽车发动机连杆结构有限元分析方法探究

Internal Combustion Engine &Parts0引言在发动机运行的过程当中,发动机内部的连杆结构受到压缩拉伸等交变的载荷作用。

如果连杆存在刚度不足的情况,那么经过一段时间的使用之后,整个杆体会出现变形弯曲的现象,甚至整个连杆的大头都会视源变形,一旦发生这一情况就会使得发动机的活塞气缸轴承等零部件出现偏磨的现象。

而且连杆的杆身本身就是属于一个长杆件在运行的过程当中需要承受较大的工作压力,为了防止连杆的杆身因受到多种力量的影响,出现弯曲变形的情况,那么杆身就需具备较强的刚度和强度。

总而言之,对于汽车的使用,汽车发动机的使用效果和使用寿命来说,发动机连杆结构的质量直接影响到了相关的指标。

1有限元法在社会快速发展的背景之下,人们对科学技术的要求也越来越高,随着工程技术的深入发展,各个行业在进行产品生产的过程当中,都已经融入了高科技的技术。

但是人们对工程技术的实际要求也不断的提高,使用传统的线性理论知识已经无法满足各行业在设计方面的各项要求,要想解决工程当中存在的实际问题,现场工作人员需要花费更多的时间和精力,对非线性的问题进行深入的探讨。

那么要想真正的解决非线性的问题,就需要使用数值模拟的方法进行解决,这种方法的实用性和应用广泛性都比较高,其中使用价值较高的是有限元法。

从第一的角度进行分析,有限元法实质上是以力学模型作为基础进行近似数值计算的一种方法,它所求得的解是一种数值解。

在对工程问题进行研究时,使用有限元法进行分析,如果能够获得较好的处理结果,那么就说明计算过程所得的数值精确度非常高。

有限元法的实际操作过程,就是将一个物体离散成有限个单元,按照一定的方法将这些不同的单元进行连接以及组合之后,使得单元的组合与原来的物体相似度越来越高和对不同单元的问题进行解决之后,就可以有效的分析物体原本存在的问题。

经过分析之后,不同单元的问题变得更加简单,解决这些简单的问题与解决一个大的难题相比,花费的时间和精力比较少。

基于某发动机连杆的有限元分析

基于某发动机连杆的有限元分析

解算器,建立材料和编辑材料属性 ,在物理属 性编辑 中选择 都是最大。
P S O L I D实体类型 , 并建立相应 的网格捕集器 。 由于连杆为不 最大拉伸工况下,连 杆所 受最 大应 力出现在小头靠近顶
规则形状, 首先采用 自由映射网格划分方式, 对连杆进行 网格 端位置, 其最大值为 2 2 9 M P a , 远 远小于材料 的屈服极限。 划分 受最大应 力出现在杆身凹槽边
2 . 2 连杆 的有限元模 型建立 2 . 2 . 1 连杆 的载荷分析
杆受预紧载荷和最大拉伸载荷 ,第三种工况是连杆同时受到预
3连杆有限元求解结果分析
紧载荷和最大燃烧压力与最大惯性力共同作用的最大压缩载荷。 通过对三种 工况使用 NX Na s t r a n进行有 限元分析计算, 2 . 2 . 2基 于 NXNa s t r a n的连 杆 有 限元 分 析 表明在装配预紧工 况下连杆 的位移变 形和等效应 力都最 小, 建立连杆模型后直接进入NX仿真模块, 选择NXN a s t r a n 之后是最大拉伸 工况 ,最大压缩工 况时位移变形和等效应力
时需要圆角过渡 。最 终用 UG完成连杆 实体模型 的建立。 在最大压缩工况下, 连杆除受到最大燃烧压力与最大惯性
力的共 同作用外, 也还继续承受过盈装配预紧压力 。有 限元分 析前边界条件施加位移约束为: 连杆大头只保 留沿 曲轴旋转的
自由度 , 其他 自由度固定, 对小头保 留沿活塞上下移动的 自由度 连杆在工作时,所承受 的周期性变化的外力主要 由两部 和 绕活 塞 销 旋转 的 自由度 , 其 他 自由度 固定 ; 载 荷施 加 时 , 仍然 分组成: 一是经活塞顶部传来 的燃气爆发压力 , 对连杆起压缩 在连杆大头和小头继续施加过盈压力, 在连杆小头施加轴承载 作用 : 二是活塞连杆组高速运动产生 的惯性力, 对连杆起拉伸 荷 , 分布角度仍然在 1 2 0 。 范围内, 按余弦方式分布, 最大惯性力 作用 。故在分析时, 主要考虑连杆的最大燃气压 力、 活塞组件 的分布在整个连杆模型上 , 即按几何分布, 施加在每个节点上。 的惯性力和连杆组件 的惯 性力。 在最大压缩工况下 , 由有限元分析和后处理得到连杆位移图, 位 因此, 将分三种工况进行连杆的有限元分析, 第一种是只在 移最大的位置出现在小头孔靠近杆身压力施加处 , 位移最大值 预紧载荷作用下进行分析, 第二种工况是最大拉伸工况, 此时连 比最大拉伸工况时要大, 为0 . 1 0 8 2 m m, 在弹性变形范围之内。

连杆的有限元分析及优化

连杆的有限元分析及优化

连杆的有限元分析及优化*****学号: *******目录目录 (2)1.优化设计基础 (3)1.1优化设计概述 (3)1.2优化设计作用 (3)1.3优化设计流程 (3)2.问题描述 (4)3.问题分析 (4)4.结构静力学分析 (5)4.1创建有限元模型 (5)4.2创建仿真模型并修改理想化模型 (6)4.3定义约束及载荷 (6)4.4求解 (7)5.结构优化分析 (8)5.1建立优化解算方案 (8)5.2优化求解及其结果查看 (9)6.结果分析 (11)7.案例小结 (11)1. 优化设计基础1.1 优化设计概述优化设计是将产品/零部件设计问题的物理模型转化为数学模型,运用最优化数学规划理论,采用适当的优化算法,并借助计算机和运用软件求解该数学模型,从而得出最佳设计方案的一种先进设计方法,有限元被广泛应用于结构设计中,采用这种方法任意复杂工程问题,都可以通过它们的响应进行分析。

如何将实际的工程问题转化为数学模型,这是优化设计首先要解决的关键问题,解决这个问题必须要考虑哪些是设计变量,这些设计变量是否受到约束,这个问题所追求的结果是在优化设计过程要确定目标函数或者设计目标,因此,设计变量、约束条件和目标函数是优化设计的3个基本要素。

因此概括来说,优化设计就是:在满足设计要求的前提下,自动修正被分析模型的有关参数,以到达期望的目标。

1.2 优化设计作用以有限元法为基础的结构优化设计方法在产品设计和开发中的主要作用如下:1)对结构设计进行改进,包括尺寸优化、形状优化和几何拓扑优化。

2)从不合理的设计方案中产生出优化、合理的设计方案,包括静力响应优化、正则模态优化、屈曲响应优化和其他动力响应优化等。

3)进行模型匹配,产生相似的结构响应。

4)对系统参数进行设别,还可以保证分析模型与试验结果相关联。

5)灵敏度分析,求解设计目标对每个设计变量的灵敏度大小。

1.3 优化设计流程不同的优化软件其操作要求及操作步骤大同小异。

连杆的设计及有限元分析

连杆的设计及有限元分析

连杆的设计及有限元分析郑久林;赵礼飞;昂金凤;林欣欣【摘要】文章通过有限元分析连杆在低转速、最大扭矩转速和额定转速下的疲劳强度和安全系数,有限元分析连杆满足设计要求.【期刊名称】《汽车实用技术》【年(卷),期】2017(000)016【总页数】3页(P91-92,98)【关键词】有限元分析;连杆;疲劳强度;安全系数【作者】郑久林;赵礼飞;昂金凤;林欣欣【作者单位】安徽江淮汽车集团股份有限公司技术中心,安徽合肥 230601;安徽江淮汽车集团股份有限公司技术中心,安徽合肥 230601;安徽江淮汽车集团股份有限公司技术中心,安徽合肥 230601;安徽江淮汽车集团股份有限公司技术中心,安徽合肥 230601【正文语种】中文【中图分类】U462.1CLC NO.: U462.1 Document Code: A Article ID: 1671-7988 (2017)16-91-03 连杆是发动机重要零部件,承受发动机的高温高压,并把爆发压力传递给曲轴,带动曲轴的旋转输出扭矩。

连杆的潜在失效模式通常为断裂或变形,为了在设计阶段发现这类失效模式,通常引入有限元分析。

本文介绍了某连杆的有限元过程,通过有限元分析可以对连杆的应力分布、疲劳安全系数有一个简单的评估,对应力较大、疲劳安全系数较小的区域进行设计优化,直至满足设计要求。

发动机扩排量,把原83mm缸径扩大到86mm,由于缸径的扩大,活塞承受的总燃烧气体压力变大;同时连杆长度由145.8mm减小到145mm,连杆受到的惯性力减小,因此需要通过有限元分析连杆总的的应力及疲劳强度。

连杆采用涨断工艺,杆体为“工”字形杆体。

连杆的主要设计参数如下:连杆动力学分析模型包括连杆、轴瓦、衬套、曲柄销、活塞销、止推轴承等,采用PROE建立三维模型,模型如下图所示:模型前处理设置:网格均采用C3D10M单元;连杆上下瓦之间、螺栓与连杆之间的接触面设置为绑定约束,其余接触面均设置为接触约束;曲柄销用刚性解析面代替,大头瓦与刚性面之间建立接触关系。

连杆有限元分析ansys workbench

连杆有限元分析ansys workbench

数据一(二维)
三、两种结构对比分析
数据二(三维)
最大应力:143.45MPa 最小安全系数:4.5286
最大应力:128.66MPa 最小安全系数:4.5819
3.1总结
• 结论:通过表四可以看出,当各尺寸相同时,二 维和三维的数据会有一些变化,其中,最小安全 系数相差不大,没有多少变化,都能达到设计要 求;而二维的最大应力超过了材料的许用应力, 三维的最大应力达到了设计要求,因此,在相同 的条件下,二维连杆较三维连杆的效果差,三维 模型更能符合设计要求,满足强度和设计安全系 数。
数据一
3.3、不同尺寸三维模型云图
数据二
数据三
3.4、不同尺寸三维模型数据
数据一
数据二
数据三
1.小头外径:R9.5 2.大头外径:R20 3.过渡圆角:R2 4.大头圆心与小头圆心的 距离:77mm 5.夹角:40度(小头与杆 身)
Nodes:2312 Elements:272
最大应力:191.01MPa 最小安全系数:2.551
• b.采用三维结构对图示连杆进行强度分析,与二 维结构分析结果进行比较。
• c.对结构进行参数化研究与目标驱动的优化设计
连杆简化模型的几何形状
完成该分析应掌握的CAE任务
• 1.DM模块草绘,建立新平面,冻结体 • 2.DS模块,模型参数的建立,分析不同的接触类
型, 3.网格的划分(整体+局部),载荷和约束的施加 • 4.查看应力,应变,接触结果及安全系数 • 5.DS模块中优化模型,并适时更新 • 6.DX模块参数化研究及目标驱动的优化 • 7.FE Model的查看 • 8.结果出图,多窗口对比分析
连杆几何参数在目标驱动前的特性 连杆杆长的特性

基于ABAQUS的连杆的有限元计算分析

基于ABAQUS的连杆的有限元计算分析
因此对其第三主应力进行分析,连杆第三主应力比较大 的位置出现在小头与杆身过渡圆角处,瓦盖与螺栓接触 的圆孔处,如图 8~9。在最大爆发压力工况下,连杆小头内
图 4 连杆在装配工况下的第一主应力分布图
图 8 连杆在最大爆发压力工况下的第三主应力分布图
70
现代制造技术与装备
2008 第 6 期 总第 187 期
关键词:连杆 有限元 安全系数 变形
连杆是内燃机的主要运动受力部件之一,它在工作中 所受的各种外载荷复杂且作周期性变化, 机械负荷严重, 工作条件恶劣。因此,连杆的可靠性一直也是人们在内燃 机研究和改进过程中关注的热点。对连杆设计的主要要求 是在保证足够的强度、刚 度 和 稳 定 性 的 下 ,尽 可 能 地 达 到 质 量 轻 、体 积 小 、形 状 合 理 ,并 最 大 限 度 的 减 缓 应 力 集 中 。
[4] 杨连生 内燃机设计 吉林 中国农业机械出版社,1980 226~256.
图 11 连杆的安全系数分布云图
近杆身处,由于高周疲劳需要的理论安全系数应该大于 1.0,考虑到载荷离散产生的 5%的误差和网格质量产生 的 5% 的 误 差 ,实 际 要 求 的 安 全 系 数 应 该 大 于 1.1,因 此 , 此连杆设计符合要求。
图 6 连杆小头和大头在最大惯性力工况下的第一主应力分布图
图 3 最大爆发压力工况连杆加载及约束位置 3 计算结果的分析
(1)由于连 杆 螺 栓 的 预 紧 力 非 常 大 ,螺 栓 的 受 力 情 况 比较复杂,螺栓在实际 工 作 中 处 于 塑 性 状 态 ,因 此 对 螺 栓 及 连 杆 上 与 螺 栓 接 触 区 域 应 该 用 详 细 模 型 进 行 分 析 ,同 样,杆身与 瓦盖接触齿 的 根 部 也 需 要 详 细 模 型 进 行 分 析 , 所以暂不考虑此部分的应力分布。

连杆工艺设计及有限元分析(有cad原图)

连杆工艺设计及有限元分析(有cad原图)

本科毕业设计论文题目连杆工艺设计及有限元分析目录摘要 (3)ABSTRACT (4)第一章绪论 (5)1.1课题研究的意义 (5)1.2国内外现状 (5)1.3论文的章节安排 (6)第二章连杆零件的分析 (7)2.1连杆的作用 (7)2.2连杆的结构特点 (7)2.3连杆的工艺分析 (7)2.4连杆的材料和毛坯 (9)第三章连杆零件的工艺编制 (10)3.1连杆机械加工工艺过程 (10)3.2连杆工艺过程的安排 (22)3.3连杆工艺设计存在的问题 (15)3.3.1工序安排 (15)3.3.2定位基准 (15)3.3.3夹具使用 (15)3.3.4切削用量的选择原则 (15)3.4连杆机械加工工序卡片 (11)第四章连杆受载荷情况下的有限元分析 (27)4.1 连杆的有限元分析过程和结果................................... 错误!未定义书签。

第五章总结与展望 . (27)5.1 论文总结 (39)致谢 (40)参考文献 (41)毕业设计小结 (42)摘要连杆是主要传动件之一,本文主要论述了连杆的加工工艺及有限元分析。

连杆的尺寸精度、形状精度以及位置精度的要求都很高,而连杆的刚性比较差,容易产生变形,因此在安排工艺过程时,就需要把各主要表面的粗精加工工序分开。

逐步减少加工余量、切削力及内应力的作用,并修正加工后的变形,就能最后达到零件的技术要求。

本次设计通过AUTOCAD画出零件图,并且进行工艺编制。

连杆的尺寸精度、形状精度以及位置精度的要求都很高,且连杆的刚性比较差,容易产生变形。

并且用PRO/E 对连杆做有限元分析,查看连杆的受力情况。

关键字:CAD,工艺编制,有限元分析ABSTRACTLinkage is one of the main transmission parts, this article discusses the link processing technology and finite element analysis. Link dimensional accuracy, position accuracy and shape accuracy requirements are high, and the relatively poor rigidity of the connecting rod, easily deformed, and therefore arranged in the process, the rough finishing process requires the separation of the major surfaces. Gradually reduce the allowance, cutting forces and internal stress and distortion correction after processing, we can finally meet the technical requirements of the part.The design of the parts diagram drawn by AUTOCAD, and perform process planning. Link dimensional accuracy, position accuracy and shape accuracy requirements are high, and the relatively poor rigidity of the link easily deformed. And using PRO / E for the link to do finite element analysis, see link stress situation.KEY WORDS: CAD,Process planning ,Finite Element Analysis第一章绪论1.1课题研究的意义随着科学技术的发展,我们的生活越来越便捷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科毕业设计论文题目连杆工艺设计及有限元分析专业名称机械设计及其自动化学生姓名梁乐指导教师李郁毕业时间二零一四年六月目录摘要........................................................................................................................... - 3 - ABSTRACT .............................................................................................................. - 4 - 第一章绪论 ............................................................................................................ - 5 -1.1课题研究的意义......................................................................................... - 5 -1.2国内外现状................................................................................................. - 5 -1.3论文的章节安排......................................................................................... - 6 - 第二章连杆零件的分析 ........................................................................................ - 7 -2.1连杆的作用................................................................................................. - 7 -2.2连杆的结构特点......................................................................................... - 7 -2.3连杆的工艺分析......................................................................................... - 7 -2.4连杆的材料和毛坯..................................................................................... - 9 - 第三章连杆零件的工艺编制 .............................................................................. - 10 -3.1连杆机械加工工艺过程........................................................................... - 10 -3.2连杆工艺过程的安排.................................................... 错误!未定义书签。

3.3连杆工艺设计存在的问题....................................................................... - 15 -3.3.1工序安排.......................................................................................... - 15 -3.3.2定位基准.......................................................................................... - 15 -3.3.3夹具使用.......................................................................................... - 15 -3.3.4切削用量的选择原则...................................................................... - 15 -3.4连杆机械加工工序卡片........................................................................... - 11 -第四章连杆受载荷情况下的有限元分析 ..................... 错误!未定义书签。

4.1 连杆的有限元分析过程和结果................................... 错误!未定义书签。

第五章总结与展望 ............................................................................................ - 16 -5.1 论文总结.................................................................................................. - 26 - 致谢..................................................................................................................... - 27 - 参考文献................................................................................................................. - 28 - 毕业设计小结......................................................................................................... - 29 -摘要连杆是主要传动件之一,本文主要论述了连杆的加工工艺及有限元分析。

连杆的尺寸精度、形状精度以及位置精度的要求都很高,而连杆的刚性比较差,容易产生变形,因此在安排工艺过程时,就需要把各主要表面的粗精加工工序分开。

逐步减少加工余量、切削力及内应力的作用,并修正加工后的变形,就能最后达到零件的技术要求。

本次设计通过AUTOCAD画出零件图,并且进行工艺编制。

连杆的尺寸精度、形状精度以及位置精度的要求都很高,且连杆的刚性比较差,容易产生变形。

并且用PRO/E 对连杆做有限元分析,查看连杆的受力情况。

关键字:CAD,工艺编制,有限元分析ABSTRACTLinkage is one of the main transmission parts, this article discusses the link processing technology and finite element analysis. Link dimensional accuracy, position accuracy and shape accuracy requirements are high, and the relatively poor rigidity of the connecting rod, easily deformed, and therefore arranged in the process, the rough finishing process requires the separation of the major surfaces. Gradually reduce the allowance, cutting forces and internal stress and distortion correction after processing, we can finally meet the technical requirements of the part.The design of the parts diagram drawn by AUTOCAD, and perform process planning. Link dimensional accuracy, position accuracy and shape accuracy requirements are high, and the relatively poor rigidity of the link easily deformed. And using PRO / E for the link to do finite element analysis, see link stress situation.KEY WORDS: CAD,Process planning ,Finite Element Analysis第一章绪论1.1课题研究的意义随着科学技术的发展,我们的生活越来越便捷。

例如普遍的汽车,汽车发动机有五大件:缸体、曲轴、连杆、凸轮轴、缸盖。

在今天,随着汽车工业的高速发展,“小体积、大功率、低油耗”的高性能发动机对连杆提出更新、更高的要求。

作为高速运动件,重量要轻,减小惯性力,降低能耗和噪声,强度、刚度要高,并具有较高的韧性,连杆比要大,连杆要短。

连杆是发动机内部的重要零件,连杆的作用是将活塞的往复运动转变为曲轴的旋转运动,并把作用在活塞组上的燃气压力传给曲轴。

所以,连杆除上下运动外,还左右摆动作复杂的平面运动。

连杆工作时,主要承受气体压力和往复惯性力所产生的交变载荷,要求它应有足够的疲劳强度和结构刚度。

同时,由于连杆既是传力零件,又是运动件,不能单靠加大连杆尺寸来提高其承载能力,须综合材料选用、结构设计、热处理及表面强化等因素来确保连杆的可靠性。

相关文档
最新文档