七年级数学上册 第四章 几何图形初步 41 几何图形 411 立体图形与平面图形 第1课时 几

合集下载

人教版七年级数学上册第四章几何图形初步4.1立体图形与平面图形优秀教学案例

人教版七年级数学上册第四章几何图形初步4.1立体图形与平面图形优秀教学案例
(三)小组合作
1.教师将学生Байду номын сангаас成若干小组,每组选择一个立体图形进行研究,共同探讨图形的特征。
2.每个小组通过讨论、操作等方法,分析所选图形的性质,并制作PPT进行展示。
3.各小组分享研究成果,其他小组对其进行评价和提问,形成互动的学习氛围。
在小组合作环节中,我们注重培养学生的团队合作能力和沟通能力。教师将学生分成若干小组,每组选择一个立体图形进行研究。通过讨论、操作等方法,每个小组分析所选图形的性质,并制作PPT进行展示。在分享研究成果的过程中,其他小组对其进行评价和提问,形成互动的学习氛围。这样的教学策略能够激发学生的学习兴趣,提高他们的团队合作能力和沟通能力。
人教版七年级数学上册第四章几何图形初步4.1立体图形与平面图形优秀教学案例
一、案例背景
本案例背景基于人教版七年级数学上册第四章几何图形初步4.1立体图形与平面图形。在教学过程中,我作为特级教师,深入研究教材,充分了解学生的认知水平和学习需求。本节课的主要内容是让学生初步认识立体图形和平面图形,培养学生对图形的空间想象能力和直观表达能力。
(三)学生小组讨论
1.教师将学生分成若干小组,每组选择一个立体图形进行研究,共同探讨图形的特征。
2.每个小组通过讨论、操作等方法,分析所选图形的性质,并制作PPT进行展示。
3.各小组分享研究成果,其他小组对其进行评价和提问,形成互动的学习氛围。
在学生小组讨论环节中,我们注重培养学生的团队合作能力和沟通能力。教师将学生分成若干小组,每组选择一个立体图形进行研究。通过讨论、操作等方法,每个小组分析所选图形的性质,并制作PPT进行展示。在分享研究成果的过程中,其他小组对其进行评价和提问,形成互动的学习氛围。这样的教学策略能够激发学生的学习兴趣,提高他们的团队合作能力和沟通能力。

七年级数学上册第四章几何图形初步4.1几何图形同步练习(新版)新人教版

七年级数学上册第四章几何图形初步4.1几何图形同步练习(新版)新人教版

4.1几何图形同步练习一、单选题1.下列图形中不是正方体的平面展开图的是()A. B. C. D.【答案】C【解析】:A、是正方体的展开图,不合题意;B、是正方体的展开图,不合题意;C、不能围成正方体,故此选项正确;D、是正方体的展开图,不合题意.故选:C.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.2.一个几何体的边面全部展开后铺在平面上,不可能是()A. 一个三角形B. 一个圆C. 三个正方形D. 一个小圆和半个大圆【答案】B【解析】:正四面体展开是个3角形;顶角为90度,底角为45度的两个正三棱锥对起来的那个6面体展开可以是3个正方形;一个圆锥展开可以是一个小圆+半个大圆.故选B.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.3.将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的是()A. B. C. D.【答案】B【解析】:观察图形可知,将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的选项B.故选:B.【分析】立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图形问题解决.4.下列几何体:①球;②长方体;③圆柱;④圆锥;⑤正方体,用一个平面去截上面的几何体,其中能截出圆的几何体有()A. 4个B. 3个C. 2个D. 1个【答案】B【解析】:长方体、正方体不可能截出圆,球、圆柱、圆锥都可截出圆,故选:B.【分析】根据几何体的形状,可得答案.5.下列图形是四棱柱的侧面展开图的是()A. B. C. D.【答案】A【解析】:由分析知:四棱柱的侧面展开图是四个矩形组成的图形.故选:A.【分析】根据四棱柱的侧面展开图是矩形图进行解答即可.6.下面现象能说明“面动成体”的是()A. 旋转一扇门,门运动的痕迹B. 扔一块小石子,小石子在空中飞行的路线C. 天空划过一道流星D. 时钟秒针旋转时扫过的痕迹【答案】A【解析】:A、旋转一扇门,门运动的痕迹说明“面动成体”,故本选项正确;B、扔一块小石子,小石子在空中飞行的路线说明“点动成线”,故本选项错误;C、天空划过一道流星说明“点动成线”,故本选项错误;D、时钟秒针旋转时扫过的痕迹说明“线动成面”,故本选项错误.故选A.【分析】根据点、线、面、体之间的关系对各选项分析判断后利用排除法求解.7.如图,将正方体沿面AB′C剪下,则截下的几何体为()A. 三棱锥B. 三棱柱C. 四棱锥D. 四棱柱【答案】A【解析】:∵截下的几何体的底面为三角形,且AB、CB、B′B交于一点B,∴该几何体为三棱锥.故选A.【分析】找出截下几何体的底面形状,由此即可得出结论.8.下列说法:①一点在平面内运动的过程中,能形成一条线段;②一条线段在平面内运动的过程中,能形成一个平行四边形;③一个三角形在空间内运动的过程中,能形成一个三棱柱;④一个圆形在空间内平移的过程中,能形成一个球体.其中正确的是()A. ①②③④B. ①②③C. ②③④D. ①③④【答案】B【解析】:①一点在平面内运动的过程中,能形成一条线段是正确的;②一条线段在平面内运动的过程中,能形成一个平行四边形是正确的;③一个三角形在空间内运动的过程中,能形成一个三棱柱是正确的;④一个圆形在空间内平移的过程中,能形成一个圆柱,原来的说法错误.故选:B.【分析】根据点动成线,可以判断①;根据线动成面,可以判断②;根据面动成体,可以判断③;根据平移的性质,可以判断④.二、填空题9.薄薄的硬币在桌面上转动时,看上去象球,这说明了________.【答案】面动成体【解析】:从运动的观点可知,薄薄的硬币在桌面上转动时,看上去象球,这种现象说明面动成体.故答案为:面动成体.【分析】薄薄的硬币在桌面上转动时,看上去象球,这是面动成体的原理在现实中的具体表现.10.将如图所示的平面展开图折叠成正方体,则a相对面的数字是________.【答案】-1【解析】:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上a相对面的数字是﹣1.故答案为:﹣1.【分析】在正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,得到在此正方体上a相对面的数字是﹣1.11.六棱柱有________个顶点,________个面,________条棱.【答案】12;8;18【解析】:六棱柱上下两个底面是6边形,侧面是6个长方形.所以共有12个顶点;8个面;18条棱.故答案为.【分析】根据六棱柱的概念和定义即解.12.一个棱柱的棱数是18,则这个棱柱的面数是________.【答案】8【解析】:一个棱柱的棱数是18,这是一个六棱柱,它有6+2=8个面.故答案为:8.【分析】根据棱柱的概念和定义,可知有18条棱的棱柱是六棱柱,据此解答.13.将如图几何体分类,柱体有________,锥体有________,球体有________(填序号).【答案】(1)、(2)、(3);(5)、(6);(4)【解析】:柱体分为圆柱和棱柱,所以柱体有:(1)、(2)、(3);锥体包括棱锥与圆锥,所以锥体有(5)、(6);球属于单独的一类:球体(4).故答案为:(1)、(2)、(3);(5)、(6);(4)【分析】首先要明确柱体,椎体、球体的概念和定义,然后根据图示进行解答.14.如图是棱长为2cm的正方体,过相邻三条棱的中点截取一个小正方体,则剩下部分的表面积为________cm2.【答案】24【解析】:过相邻三条棱的中点截取一个小正方体,则剩下部分的表面积为2×2×6=24cm2.故答案为:24.【分析】由于是在正方体的顶点上截取一个小正方体,去掉小正方形的三个面的面积,同时又多出小正方形的三个面的面积,表面积没变,由此求得答案即可.三、解答题15.如图所示,A、B、C、D、E五个城市,它们之间原有道路相通,现在打算在C、E两城市之间沿直线再修建一条公路,这条公路与原公路的交叉处必须设立交桥,问怎样确定立交桥的位置?应架设几座立交桥?【答案】解:连接CE,与BD的交点处架立交桥;1座.【解析】【分析】连接CE时只与BD有一个交点,所以只有一座立交桥.16.如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注式子的值相等,求x的值.【答案】解:根据题意得,x﹣3=3x﹣2,解得:x=﹣【解析】【分析】利用正方体及其表面展开图的特点,列出方程x﹣3=3x﹣2解答即可.17.如图所示的正方体被竖直截取了一部分,求被截取的那一部分的体积.(棱柱的体积等于底面积乘高)【答案】解:如图所示:根据题意可知被截取的一部分为一个直三棱柱,三棱柱的体积= =5.【解析】【分析】根据题意可知正方体被截取的一部分为一个直三棱柱,由正方体的棱长相等求出三棱柱各个边的长,求出三棱柱的体积.18.将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现有一个长是5cm、宽是6cm 的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱几何体,它们的体积分别是多大?【答案】解:①绕长所在的直线旋转一周得到圆柱体积为:π×52×6=150π(cm3);②绕宽所在的直线旋转一周得到圆柱体积为:π×62×5=180π(cm3).答:它们的体积分别是150π(cm3)和180π(cm3)【解析】【分析】根据圆柱体的体积=底面积×高求解,注意底面半径和高互换得圆柱体的两种情况.。

苏科版数学七年级上册第四章4.1几何图形

苏科版数学七年级上册第四章4.1几何图形

第四章几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第1课时认识立体图形与平面图形学习目标:1. 能从简单实物的外形中抽象出几何图形,并了解立体图形与平面图形的区别.2. 会判断一个图形是立体图形还是平面图形,能准确识别简单几何体.重点:识别简单的几何图形,培养几何直觉.难点:从实物中得出几何图形,理解立体图形与平面图形的区别与联系.一、知识链接1.说一说你知道的平面图形和立体图形,它们能让你联想到日常生活中的哪些实物?2. 你认为立体图形和平面图形有什么区别和联系?一、要点探究探究点1:几何图形合作探究:观察这个纸盒,从中可以看出哪些你熟悉的图形?探究点2:立体图形观察与思考:说一说下面这些几何图形有什么共同特点?从整体上看,它的形状是;看不同的侧面,得到的是或;看棱得到的是;看顶点得到的是.认识棱柱与棱锥:思考:(1) 棱锥与棱柱的区别是什么?(2) 圆锥与圆柱的区别是什么?议一议根据已有的数学经验,我们能否把它们进行分类?你的标准是什么?要点归纳针对训练1. 图中实物的形状对应哪些立体图形?把相应的实物与图形用线连接起来.2. 观察小茗的房间,说说你能看到哪些立体图形.探究点3:平面图形观察与思考:说一说下面这些几何图形又有什么共同特点?画一画用两个圆、两个三角形和两条直线为条件,画出一个独特且具有意义的图形,并命名.针对训练下面各图中包含哪些简单的平面图形?请再举出一些平面图形的例子.二、课堂小结简单几何图形的分类:1.下列图形不是立体图形的是( )A. 球B. 圆柱C. 圆锥D. 圆2.长方体属于( )A. 棱锥B. 棱柱C. 圆柱D. 以上都不对3. 下列几何体中属于棱锥的是( )A. ①⑤①B. ①C. ①⑤⑥D. ⑤⑥4. 月球、西瓜、易拉罐、篮球、热水瓶胆、书本等物体中,形状类似圆柱的有( )A. 1个B. 2个几何图形立体图形平面图形C. 3个D. 4个5. 观察下列图形,在括号内填上相应名称.6. 图中的各立体图形的表面包含哪些平面图形?试指出这些平面图形在立体图形中的位置.参考答案自主学习一、知识链接1.平面图形:圆、三角形、正方形、长方形、梯形等;立体图形:球、圆锥、正方体、长方体、圆柱等.联想到的实物:罐头、足球或篮球的外形、魔方、谷堆、茶杯等.2.区别:平面图形各点都在一个平面内,立体图形各点不都在一个平面;联系:都是图形.立体图形可由平面图形旋转而得到.课堂探究一、要点探究长方体正方形长方形线段点观察与思考这些几何图形的各部分不都在同一平面内,它们是立体图形.议一议①由柱体、锥体和球体划分;②由围成几何体的面是曲的还是平的划分.【针对训练】1.观察与思考这些几何图形的各部分都在同一平面内,它们是平面图形.画一画【针对训练】长方形、圆形、三角形…当堂检测1.D2.B3.B4.B5.圆柱圆锥四棱锥六棱柱三棱柱四棱柱球圆台6.答案略.第四章几何图形初步4.1 几何图形4.1.1 立体图形与平面图形1.第2课时从不同的方向看立体图形和立体图形的展开图学习目标:1. 了解立体图形与平面图形之间的联系.2. 能画出简单立体图形从不同方向看得到的平面图形.3. 了解研究立体图形的方法,体会一个立体图形按照不同方式展开可得到不同的平面展开图.4. 通过展开与折叠了解棱柱、棱锥、圆柱、圆锥、长方体、正方体的表面展开图或根据展开图判断立体图形.重点:了解立体图形从不同方向看能够得到平面图形,了解基本几何体与其展开图的关系,体会一个立体图形可以有多种展开图.难点:会画简单立体图形从不同方向看得到的平面图形,能够画出简单立体图形的展开图,或根据展开图判断立体图形.二、要点探究探究点1:从不同的方向看立体图形合作探究:画出正方体、长方体、圆柱体、圆锥、四棱锥、三棱柱从正面、左面、上面看得到的平面图形.例1下图是一个由9个正方体组成的立体图形,分别从正面、左面、上面观察这个图形,各能得到什么平面图形?针对训练图中的几何体从正面看得到的平面图形是____,从左面看得到的平面图形是____,从上面看得到的平面图形是____.探究点2:立体图形的展开图合作探究:将一个正方体的表面沿某些棱剪开,能展成哪些平面图形?思考:正方体展开图可以分为几种?这些展开图有没有什么规律?哪些展开图可以分为一类,为什么?要点归纳:1.巧记正方体的展开图口诀:正方体盒巧展开,六个面儿七刀裁,十一类图记分明;一四一呈6种,二三一有3种,二二二与三三各1种;对面相隔不相连,识图巧排“凹”和“田”.2.一个正方体的展开图中,在同一直线上的相邻的三个小正方形中,首尾两个小正方形是立体图形中相对的两个面.针对训练1. 下列图形中,不是正方体表面展开图的是( )2. “坚”在下,“就”在后,“胜”和“利”在哪里?3. 下面图形是一些多面体的表面展开图,?4. 下列立体图形的平面展开图是什么?二、课堂小结常见几何体的展开图:1.下图所示的从正面、上面看到的图形对应的是( )2.下图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是( )3. 下图是从由一些相同的小正方体构成的几何体的正面、左面、上面看得到的三个平面图形,这个几何体中小正方体的个数是( ) A.4个B.5个C.6个D.7个4. 下列三幅平面图中,不是三棱柱的表面展开图的是( )5. 如图是一个立方体纸盒的展开图,使展开图沿虚线折叠成正方体后相对面上的两个数互为相反数,则a= ,b= ,c= .参考答案课堂探究一、要点探究合作探究 画图略.解:【针对训练】合作探究思考 可分为4种.一四一有6种,二三一有3种,二二二与三三各1种.图1~6属于“一四一”型;图7、8、9属于“二三一”型;图10属于“二二二”型;图11属于“三三”型.【针对训练】1.C2. 解:“胜”在上,“利”在前.3.解:长方体 三棱柱 三棱柱 四棱锥4.解:展开图分别为:当堂检测 1.B 2.B 3.B 4.B 5.-2 -7 1从正面看从左面看从上面看。

七年级数学上册第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时几何图形课件新版新人教版

七年级数学上册第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时几何图形课件新版新人教版

仅供学习交流!
答案:
学前温故
新课早知
2. 立体图形 和 平面图形 是两类不同的几何图形,且立体 图形的各部分不都在 同一平面 内,平面图形的各部分都在 同一平面 内. 3.下图中的平面图形有长方形、直角梯形、圆 .
常见几何图形的识别 【例题】 下图中哪些图形是立体图形,哪些图形是平面图形?分 别说出它们的名称.
第四章
几何图形初步
4.1
几何图形
4.1.1
立体图形与平面图形
第1课时
几何图形
学前温故
新课早知
小学里认识的平面图 形: 三角形 、 正方形 、 长方形 、 平行四边形 、 梯形 等;立体图 圆 、 形: 正方体 、 长方体 、 圆柱 、 圆锥 、 球 .
学前温故
新课早知
1.把下列物体与其相似的图形连接起来.
分析①是由6个面组成的,所以它是一个立体图形,是一个正方体. ②是由1个面组成的,是一个平面图形,是长方形. ③是由1个面组成的,是一个平面图形,是三角形. ④是由3个面组成的,2个平面1个曲面,是一个立体图形,是圆柱. ⑤是由1个曲面组成的,是一个立体图形,是球. ⑥是由1个曲面和1个平面组成的,是一个立体图形,是圆锥. ⑦是由4个平面组成的,是一个立体图形,是棱锥. 解:①④⑤⑥⑦是立体图形,名称分别为正方体、圆柱、球、圆 锥、三棱锥;②③是平面图形,名称分别为长方形、三角形.
1
2
3
4
5
1.下列图形都是平面图形的一组是( C ) A.三角形、圆、球、圆锥 B.点、线、面、体 C.角、三角形、四边形、圆 D.点、相交线、线段、圆柱
1
2
3
4
5
2.在下面四个物体中,最接近圆柱的是(

2022年人教版七年级上册数学第四章几何图形初步单元教案

2022年人教版七年级上册数学第四章几何图形初步单元教案

第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时认识几何图形◇教学目标◇【知识与技能】1.通过实物和具体模型,认识从实物中抽象出来的几何图形;2.了解立体图形和平面图形的概念,并能归纳常见的立体图形和平面图形.【过程与方法】经历探索立体图形与平面图形之间的关系,发展空间观念.【情感、态度与价值观】体会把实物抽象出几何图形的过程.◇教学重难点◇【教学重点】识别一些基本几何图形.【教学难点】认识从物体外形抽象出来的几何图形.◇教学过程◇一、情境导入观察下图中的“鸟巢”,你能抽象出熟悉的几何图形吗?二、合作探究探究点立体图形与平面图形典例1下列图形中不是立体图形的是()A.四棱锥B.长方形C.长方体D.正方体[解析]几何图形的各部分不都在同一平面内的图形叫立体图形,几何图形的各部分都在同一平面内的图形叫平面图形.由定义可知A,C,D均为立体图形.[答案] B下列各组图形中都是平面图形的一组是()A.三角形、圆、球、圆锥B.点、线段、数学书的封面、长方体C.点、三角形、四边形、圆D.点、直线、线段、正方体[答案] C典例2将下列的几何体进行分类,并说出每个几何体的名称.[解析]分别根据柱体、锥体、球体的定义进行分类.[答案]柱体有(1)(2)(4)(7);锥体有(5)(6);球体有(3).(1)长方体(四棱柱);(2)三棱柱;(3)球;(4)圆柱;(5)圆锥;(6)四棱锥;(7)六棱柱.将下列几何体分类,柱体有;锥体有.(只填序号)[答案]①②③⑤⑥三、板书设计认识几何图形立体图形{柱体{棱柱圆柱锥体{棱锥圆锥台体{棱台圆台球体:球◇教学反思◇本节课的内容较简单,课堂上通过动手操作培养学生动手操作能力,同时也加深了学生对立体图形和平面图形的认识;通过自主探究活动,让学生感受图形的形状特点,提升学生的空间想象能力.第2课时折叠、展开与从不同方向观察立体图形◇教学目标◇【知识与技能】1.会识别从正面、左面、上面看物体所得的平面图形;2.会画一些常见几何体及简单组合体从正面、左面、上面看物体所得的平面图形;3.直观认识简单立体图形的平面展开图.【过程与方法】在平面图形和立体图形的相互转化中,初步发展空间观念,发展几何直觉.【情感、态度价值观】通过探讨现实生活中的实物制作,激发学生学习的热情.【情感、态度与价值观】培养敢于面对困难的精神,感受几何图形的美感.◇教学重难点◇【教学重点】识别、画出简单几何体从正面、左面、上面看物体所得的平面图形,了解直棱柱、棱锥、圆柱、圆锥的平面展开图.【教学难点】由从正面、左面、上面看物体所得的平面图形,还原为实物图,根据平面展开图想象相应的几何体.◇教学过程◇一、情境导入对于一些立体图形的问题,常把它们转化为平面图形来研究处理,从不同的方向看立体图形,往往会得到不同形状的平面图形.例如放在桌面上的茶杯,从不同侧面得到不同的图形,你能用学过的诗句描述这种现象吗?二、合作探究探究点1会从正面、左面、上面看物体所得的平面图形典例1如图的几何体是由一个正方体切去一个小正方体形成的,从正面看得到的图形是()[答案] D下列水平放置的四个几何体中,从正面看得到的图形与其他三个不相同的是()[答案] D典例2一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小方块的个数,则从正面看到几何体的形状图是()[答案] D探究点2会画从正面、左面、上面看物体所得的平面图形典例3如图是由4个大小相等的正方体搭成的几何体,你能画出从正面、左面、上面看得到的平面图形吗?[解析]从正面、左面、上面看得到的平面图形分别如图所示:探究点3探究立体图形的展开图典例4如图所示,下列四个选项中,不是正方体表面展开图的是()[答案] C三、板书设计折叠、展开与从不同方向观察立体图形1.从不同的方向观察立体图形2.立体图形的展开图◇教学反思◇本节课的内容有点难度,主要是培养学生的空间观念和空间想象力.应鼓励学生多动手画图,让学生自主探索立体图形与平面图形之间的对应关系.4.1.2点、线、面、体◇教学目标◇【知识与技能】1.认识点、线、面、体的几何特征,感受它们之间的关系;2.探索点、线、面运动后形成的几何图形.【过程与方法】培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想.【情感、态度与价值观】培养学生积极主动的学习态度和自主学习的方式.◇教学重难点◇【教学重点】了解点、线、面、体是组成几何图形的基本元素,认识点、线、面、体的几何特征,感受它们之间的关系.【教学难点】探索点、线、面运动后形成的几何图形.◇教学过程◇一、情境导入如图是一个长方体,它有几个面?面和面相交的地方形成了几条棱?棱和棱相交成几个顶点?二、合作探究探究点1从静态角度认识点、线、面、体典例1如图所示的几何体是由几个面围成的?面与面相交成几条线?它们是直的还是曲的?[解析] 从图中可以看出该几何体由4个面组成,4个面相交成6条线,有2条是曲的.圆柱由 面围成,它有 个底面,是平的,有 个侧面,是曲的,底面与侧面相交形成的线有 条,是 (填“直的”或“曲的”). [答案] 3 2 1 两 曲的探究点2 从动态角度认识点、线、面、体典例2 将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为 ()[解析] 圆柱是由一长方形绕其一边长旋转而成的;圆锥是由一直角三角形绕其直角边旋转而成的;C 中该几何体是由直角梯形绕其下底旋转而成的;D 中该几何体是由直角三角形绕其斜边旋转而成的. [答案] D如图所示的图形绕虚线旋转一周,所形成的几何体是 ( )[答案] B 三、板书设计点、线、面、体点、线、面、体{定义关系{静态关系动态关系◇教学反思◇本节课在学生已有的数学知识基础上,由学生自己观察、发现、探究从对点的认识到对线、面、体的进一步认识,使学生经历运用图形描述现实世界的过程,进一步发展学生的抽象思维能力.4.2直线、射线、线段第1课时直线、射线、线段的概念◇教学目标◇【知识与技能】理解直线、射线、线段的概念及它们的联系与区别,掌握它们的表示方法.【过程与方法】能在现实情境中,进行抽象的数学思考,提高抽象概括能力.【情感、态度与价值观】体验通过实验获得数学猜想,得到直线性质的过程.◇教学重难点◇【教学重点】理解直线、射线、线段的概念、表示方法及它们的联系与区别.【教学难点】直线、射线、线段的表示方法;实现文字、图形、符号三种语言的相互转化.◇教学过程◇一、情境导入我们在小学已经学过线段、射线和直线,你能说说它们的区别和联系吗?二、合作探究探究点1探究直线的性质典例1下列语句中正确的个数是 ()①延长直线AB;②延长射线OA;③在线段AB的延长线上取一点C;④延长线段BA至C,使AC=AB.A.1个B.2个C.3个D.4个[答案] B探究点2线段在生活中的应用典例2我们知道,若线段上取一个点(不与两个端点重合,以下同),则图中线段的条数为1+2=3条;若线段上取两个点,则图中线段的条数为1+2+3=6条;若线段上取三个点,则图中线段的条数为1+2+3+4=10条…请用你找到的规律解决下列实际问题:杭甬铁路(即杭州——宁波)上有萧山,绍兴,上虞,余姚4个中途站,则车站需要印制的不同种类的火车票为()A.6种B.15种C.20种D.30种[解析]车票需要考虑往返情况,故有2(1+2+3+4+5)=30.[答案] D乘火车从A站出发,沿途经过3个车站方可到达B站,那么A、B两站之间需要制定种不同的票价.[答案]10三、板书设计直线、射线、线段的概念直线、射线、线段{直线:无端点,无长度射线:一端点,无长度线段:两端点,有长度◇教学反思◇本节课是学生学习几何图形知识的基础,这堂课需要掌握的知识点多,而且比较抽象,教师在教学时要体现新课程的三维目标,并在有效地利用学生已有的旧知来引导学生学习新知.第2课时线段的比较◇教学目标◇【知识与技能】1.了解尺规作图的概念,会用尺规作图作一条线段等于已知线段;了解度量线段的两种方法,对线段进行大小比较.2.理解线段中点的概念,利用和、差、倍、分关系计算线段的长度.【过程与方法】经历画图的数学活动过程,提高学生的动手操作与实践能力.【情感、态度价值观】体会数学是解决实际问题的重要工具,通过对解决问题过程的反思,懂得知识源于生活并用于生活.◇教学重难点◇【教学重点】线段的大小比较,利用和、差、倍、分关系计算线段的长度.【教学难点】线段的等分点表示方法及运用.◇教学过程◇一、情境导入小明和小华在比身高,以下是他们的对话:小明:“我身高1.5 m.”小华:“我身高1.53 m,比你高3 cm.”怎样比较两条线段的长短呢?你能从比身高上受到一些启发吗?二、合作探究探究点1尺规作图典例1如图,已知线段a,b,c(a>b),用圆规和直尺画线段,使它等于a-b+2c.[解析]如图所示:线段AE=a-b+2c.探究点2探索比较线段长短的方法典例2A,B,C三点在同一直线上,线段AB=5 cm,BC=4 cm,那么线段AC的长度是()A.1 cmB.9 cmC.1 cm或9 cmD.以上答案都不对[解析]第一种情况:C点在AB之间上,故AC=AB-BC=1 cm;第二种情况:当C点在AB的延长线上时,AC=AB+BC=9 cm.[答案] C三、板书设计线段的比较线段的长短比较{度量法叠合法◇教学反思◇教师要尝试让学生自主学习,优化课堂数学的反馈与评价,通过评价激发学生的求知欲,坚定学生学习的自信心.第3课时线段的性质◇教学目标◇【知识与技能】1.掌握“两点之间,线段最短”的性质,并能熟练应用;2.理解两点的距离,并能计算线段中两点的距离.【过程与方法】经历画图的数学活动过程,提高学生的动手操作与实践能力.【情感、态度价值观】体验通过实验获得数学猜想,得到直线性质的过程.◇教学重难点◇【教学重点】掌握“两点之间,线段最短”的性质及应用.【教学难点】两点的距离定义及计算.◇教学过程◇一、情境导入如图,从A地到B地有四条道路,除它们外能否再修一条从A地到B地的最短道路?如果能,请你联系以前所学的知识,在图上画出最短路线.二、合作探究探究点1探究线段性质典例1如图所示,设A,B,C,D为4个村庄,现在需要在四个村庄中间建一个自来水中心,请你确定一个点,使这4个村庄的居民到该中心的距离之和最小.[解析]如图,连接AC,BD交于O点,此时距离之和AC+BD为最小.如图所示,A,B是两个村庄,若要在河边l上修建一个水泵站往两村输水,问水泵站应修在河边的什么位置,才能使铺设的管道最短,并说明理由.[解析]如图所示,根据两点之间,线段最短,连接AB,交l于O点,则O点为水泵站位置.“两点之间,线段最短”这一定理在生活中有许多应用,例如修高速路时,隧道将路变直;铺水管时,走最短的路线等.探究点2两点间的距离典例2已知线段AB=10 cm,点C在直线AB上,试探讨下列问题:(1)是否存在一点C,使它到A,B两点的距离之和等于8 cm?并说明理由;(2)是否存在一点C,使它到A,B两点的距离之和等于10 cm?若存在,它的位置是唯一的吗?(3)当点C到A,B两点距离之和等于20 cm,试说明点C的位置,并举例说明.[解析](1)根据两点之间,线段最短,AC+BC最短距离为10 cm,故不存在合条件的点.(2)存在,这样的点不唯一,线段AB上任意一点均满足条件.(3)存在,在A、B两点外5 cm处的点均满足条件.三、板书设计线段的性质1.线段性质:两点之间线段最短2.两点的距离:连接两点间的线段的长度,叫做这两点间的距离◇教学反思◇本节课通过引导学生主动参与学习过程,探究出线段的性质,从中培养学生动手和合作交流的能力,解决生活中的数学问题是为了进一步巩固两点之间的距离的意义,渗透数形结合思想解决线段长问题,渗透分类讨论思想,训练学生思维严谨性.4.3角4.3.1角◇教学目标◇【知识与技能】1.从实例中建立角的概念,从静态和动态两方面理解角的形成,掌握角的两种定义形式;2.掌握角的四种表示方法,角的度量单位及其换算.【过程与方法】提高学生的识图的能力,学会用运动变化的观点看问题.【情感、态度与价值观】保持学习兴趣,养成积极探索的精神和合作意识,感受数学的价值.◇教学重难点◇【教学重点】角的概念与角的表示方法.【教学难点】角的度量单位及其换算.◇教学过程◇一、情境导入时钟的时针、分针组成的形状是?二、合作探究探究点1探究角的定义及表示方法典例1看图解答下列问题:(1)以A为顶点共有几个角?如何表示?(2)以D为顶点共有几个角?如何表示?(3)图中能用一个大写字母表示的角有几个?分别是哪些角?∠BAC能用∠A表示吗?为什么?(4)图中共有几个角?[解析](1)以A为顶点共有3个角,分别是∠3,∠4,∠BAC.(2)以D为顶点共有8个角,分别是∠5,∠6,∠BDA,∠7,∠EDC,∠8,∠ADG,∠BDG.(3)能用一个大写字母表示的角有2个,分别是∠B,∠C;∠BAC不能用∠A表示,因为以A为顶点的角不止一个角.(4)图中共有17个角.探究点2角的度量典例2(1)填空:①57.18°=度分秒;②17°31'48″=度.(2)解答:38°15'与38.15°相等吗?如不等,谁大?[解析](1)①571048②17.53(2)因为38.15°=38°9',38°9'<38°15',所以38°15'大.(1)36.33°可化为()A.36°30'3″B.36°33'C.36°30'30″D.36°19'48″(2)15°24'36″=°.[答案](1)D(2)15.41°【技巧点拨】用度、分、秒表示的角度和用度表示的角度的相互转化的过程正好相反:大单位化小单位乘以进率;而小单位化大单位要除以进率.三、板书设计角角{角的概念角的表示方法度、分、秒的换算◇教学反思◇通过本节课的学习,学生做到了以下三个方面:首先,理解角的定义并掌握角的四种表示方法.其次,能够熟练进行度、分、秒的换算,为接下来角的和差运算打下良好的基础.最后,形成严谨的学习态度.4.3.2角的比较与运算◇教学目标◇【知识与技能】1.掌握角的大小比较方法和角的和差运算;2.理解角平分线的定义及表示方法并能在实际情景中应用.【过程与方法】经历比较角的大小、用量角器画角平分线、用折纸法确定角平分线的过程,积累活动经验,培养动手操作能力.【情感、态度与价值观】让学生认识到用新知识构建新意义的过程,增强学生学习数学的愿望和信心,培养学生爱思考,善于交流的良好的学习习惯.◇教学重难点◇【教学重点】理解角平分线的定义.【教学难点】角平分线的定义、表示及应用.◇教学过程◇一、情境导入前面我们已经学习了比较两条线段的方法,那么怎样比较两个角的大小呢?二、合作探究探究点1角的大小比较典例1如图,射线OC,OD分别在直角∠AOB的内部,外部,则下列各式正确的是()A.∠AOB<∠BOCB.∠AOB=∠CODC.∠AOB<∠AODD.∠BOC>∠DOC[解析]∠BOC在∠AOB的内部,所以∠AOB>∠BOC,A错误;∠AOB与∠COD无重叠的边,∠AOB在∠AOD的内部,所以∠AOB<∠AOD,C正确;同理可得D错误.[答案] C探究点2探究角的和差运算典例2计算:(1)65°53'26″+37°14'53″;(2)106°27'30″-98°25'42″;(3)23°25'24″×4;(4)102°48'21″÷3.[解析](1)65°53'26″+37°14'53″=102°8'19″.(2)106°27'30″-98°25'42″=8°1'48″.(3)23°25'24″×4=93°41'36″.(4)102°48'21″÷3=34°16'7″.计算:(1)45°4'+2°58'=;(2)180°-72°55'=;(3)108°×5=;(4)180°26'÷5=.[答案](1)48°2'(2)107°5'(3)540°(4)36°5'12″探究点3探究角平分线的定义及表示典例3如图,OB 是∠AOC 的平分线,OD 是∠EOC 的平分线,如果∠AOE =130°,求∠BOD 的度数.[解析] 因为OB 是∠AOC 的平分线,OD 是∠EOC 的平分线,所以∠COB =12∠AOC ,∠COD =12∠COE ,所以∠BOD =∠COB +∠COD =12(∠AOC +∠COE )=12∠AOE =65°.三、板书设计角的比较与运算角的比较与运算{角的大小比较角的和差运算角平分线的定义及相关计算◇教学反思◇在讲授知识的过程中必须对旧的知识进行适当的复习,使学生能对角的知识有一个更深的记忆.在角的形象比较中,要努力引导学生的思维方向.重叠法是一个难点,但此法比较适用于实际中的比较.对于角度的计算要设计各个类型的教学.4.3.3余角和补角◇教学目标◇【知识与技能】1.掌握余角、补角的定义、性质及应用;2.理解方位角的意义,会画方位角.【过程与方法】经历余角、补角性质的推导和应用过程,初步掌握图形语言与符号语言之间的相互转化,进一步提高识图能力,发展空间观念.【情感、态度与价值观】通过互余、互补性质的学习过程,培养善于观察、独立思考、合作交流的良好学习习惯.◇教学重难点◇【教学重点】方位角的辨析与应用.【教学难点】余角、补角的性质及应用.◇教学过程◇一、情境导入知识回顾(1)叙述直角、平角的概念.(2)画出直角、平角的图形.二、合作探究探究点1探究余角、补角的性质典例1点A,O,B在一直线上,射线OD,OE分别平分∠AOC和∠BOC.(1)图中互余的角有对;(2)∠3的补角是.[解析](1)由已知,∠1=∠2,∠3=∠4,且∠2+∠4=90°,所以互余的角有:∠1与∠3,∠1与∠4,∠2与∠3,∠2与∠4共4对;(2)∠3的补角是∠AOE.[答案](1)4(2)∠AOE探究点2角的计算还多1°,求这个角.典例2一个角的补角与这个角的余角的和是平角的34×180+1,解得[解析]设这个角为x°,则它的余角为(90-x)°,补角为(180-x)°,则(90-x+180-x)=34x=67.答:这个角为67°.,则这个角的度数是.一个角的补角与它的余角的2倍的差是平角的13[答案]60°探究点3方位角典例3如图,O点是学校所在位置,A村位于学校南偏东42°方向,B村位于学校北偏东25°方向,C村位于学校北偏西65°方向,在B村和C村间的公路OE(射线)平分∠BOC.(1)求∠AOE的度数;(2)公路OE上的车站D相对于学校O的方位是什么?(以正北、正南方向为基准)[解析](1)因为A村位于学校南偏东42°方向,所以∠1=42°,则∠2=48°.因为C村位于学校北偏西65°方向,所以∠COM=65°.因为B村位于学校北偏东25°方向,所以∠4=25°,所以∠BOC=90°.因为OE(射线)平分∠BOC,所以∠COE=45°,∠EOM==20°,所以∠AOE=20°+90°+48°=158°.(2)由(1)可得∠EOM=20°,则车站D相对于学校O的方位是北偏西20°.三、板书设计余角和补角余角和补角{余角、补角的性质余角、补角的计算方位角◇教学反思◇对于七年级学生来说,他们在生活中已有一定的确定位置的经验,方位角的概念、方位角的表示是学生在小学就有所了解的,但根据题意画出方位角以及运用方位角的知识确定点的方位是学生不熟悉的.。

七年级数学上册第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形课件(新版)新人教版

七年级数学上册第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形课件(新版)新人教版
答案 B 方法归纳 解决此类问题的方法一般有两种:一是根据相对面的分布规 律进展判断:相对面绝对不相邻(无公共边且无公共点);同一层有三个或 四个面时,相间的两个面一定是相对面;二是通过动手折叠或展开正方 体确定正确结果.
知识点一 认识立体图形 1.下列几何图形中,是棱柱的是 ( )
答案 B A是圆柱;B是棱柱;C是球;D是圆锥.
答案 B 从上面看得到的图形是B项中的图形.
6.如图所示的是一个无盖的正方体纸盒,下底面标有字母“M”,沿图中 粗线将其剪开展成平面图形,想一想,这个平面图形是 ( )
答案 A 由题图中的展开方式知A选项中的图形符合要求.
7.如图是一个水平放置的圆柱形物体,中间有一个细棒,则从上面看此几 何体所看到的图形是 ( )
图4-1-1-14 A.6 B.7 C.8 D.9
答案
B 在从上面看得到的图形上标出相应位置的粉笔盒数,如图. 则n=1+1+3+2=7.故选B.
3.(2016河南上蔡校级期末)小华在一个正方体的六个面上分别写上“x,
y,z,1,-1,2”字样,表面展开图如图4-1-1-15所示,若在该正方体中,相对面
11.从三个方向看一个几何体得到的平面图形如图4-1-1-8所示,则这个 几何体摆放的位置是 ( )
图4-1-1-8
答案 A 从上面看得到的图形是三角形,可排除B、D,根据从正面看 得到的图形中的虚线,可排除C,应选A.
12.(2016广东深圳十校联考)从一个物体的不同方向看到的是如图4-1-1 -9所示的三个图形,则该物体的形状为 ( )
答案 C 从上面看圆柱形物体是一个长方形,细棒露出的局部(看见) 用实线画出,看不见(没有露出)的局部用虚线画出,应选C.

人教版七年级数学上册第四章几何图形初步教案

人教版七年级数学上册第四章几何图形初步教案

第四章几何图形初步4.1 几何图形4.1.1立体图形与平面图形第1课时认识几何图形01 教学目标1.通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体.2.知道什么是立体图形和平面图形,能够认识立体图形和平面图形.02 预习反馈阅读教材P114~116,完成下列内容.1.几何图形包括平面图形和立体图形.2.有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,这样的几何图形叫做平面图形.3.有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,这样的几何图形叫做立体图形.03 名校讲坛知识点1认识平面图形例1(教材P115“思考”)图中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来.解:答案见图中连线.【跟踪训练1】(《名校课堂》4.1.1第1课时习题)请写出图中的立体图形的名称.(1) (2) (3) (4)(1)圆柱;(2)三棱柱;(3)三棱锥;(4)圆锥.知识点2认识平面图形例2(教材P116“思考”) 如图,下列各图中包含哪些简单平面图形?请再举出一些平面图形的例子.解:第①个图形包含长方形、五角星;第②个图形包含圆;第③个图形包含正方形、长方形、三角形、圆;第④个图形包含正方形、三角形;第⑤个图形包含长方形、正方形、三角形;第⑥个图形包含圆、长方形、正方形、梯形.举例:【跟踪训练2】(《名校课堂》4.1.1第1课时习题)下图中包含哪些简单的平面图形?解:图中包含圆、正方形、长方形、三角形、平行四边形.04 巩固训练1.下面几种几何图形中,属于平面图形的是(A)①三角形;②长方形;③正方体;④圆;⑤四棱锥;⑥圆柱.A.①②④B.①②③C.①②⑥D.④⑤⑥2.下面的几何体中,属于棱柱的有(C)A.1个B.2个C.3个D.4个3.如图是一座房子的平面图,组成这幅图的几何图形有(C)A.三角形、长方形B.三角形、正方形、长方形C.三角形、正方形、长方形、梯形D.正方形、长方形、梯形第3题图第4题图4.如图所示,电镀螺杆呈现出了两个几何体的组合,则这两个几何体分别是圆柱体,六棱柱.5.观察图中的立体图形,分别写出它们的名称.,球) ,圆锥) ,正方体) ,圆柱体) ,长方体)05 课堂小结1.知道常见的立体图形,平面图形.2.生活中很多图案都由简单的几何图形构成,我们也有能力设计美观、有意义的图案.第2课时展开、折叠与从不同方向观察立体图形01 教学目标1.能够识别常见立体图形从不同方向看到的图形并能够正确的画出它们.2.能够识别常见立体图形的平面展开图.02 预习反馈阅读教材P117~118,思完成列内容.1.从三个方向看立体图形包括哪三种?解:从三个方向看立体图形:从正面看,从左面看,从上面看.2.什么是立体图形的展开图?解:将立体图形的表面适当剪开,展开成平面图形,这样的平面图形为立体图形的展开图.03 名校讲坛知识点1从不同方向观察立体图形例1(教材P117“探究”)如图是一个由9个正方体组成的立体图形,分别从正面、左面、上面观察这个图形,各能得到什么平面图形?解:从正面看从左面看从上面看【跟踪训练1】(《名校课堂》 4.1.1第2课时习题)下列基本几何体中,从正面、上面、左面观察都是相同图形的是(C)A.圆柱B.三棱柱C.球D.长方体知识点2立体图形的展开与折叠例2(教材P118“探究”)你还记得长方体和圆柱的展开图吗?下图是一些立体图形的展开图,用它们能围成什么样的立体图形?把它们画在一张硬纸片上,剪下来,折叠、粘贴,看看得到的图形和你想象的是否相同.解:第一个图形能围成正方体;第二个图形能围成圆柱(含上、下底面);第三个图形能围成三棱柱(含上、下底面);第四个图形能围成圆锥(含底面);第五个图形能围成四棱柱(或长方体).【跟踪训练2】(《名校课堂》4.1.1第2课时习题)下列图形中,不可以作为一个正方体的展开图的是(C)A B C D04 巩固训练1.如图是书桌上放的一本书,则从上面看得到的平面图形是(A)A B C D2.在下面的四个几何体中,从左面和正面看得到的图形不相同的几何体是(B)A B C D3.下面形状的四张纸板,按图中线经过折叠可以围成一个三棱柱的是(C)A B C D4.一个正方体的每个面都有一个汉字,其展开图如图所示,那么在该正方体中,和“值”字相对的字是(A)A.记B.观C.心D.间5.请分别指出与图中表面展开图相应的立体图形的名称.(1) (2) (3) (4)解:(1)三棱柱.(2)圆柱.(3)四棱锥.(4)圆锥.05 课堂小结1.知道常见立体图形从三个方向看得到的图形.2.学会简单几何体(如棱柱、正方体等)的平面展开图,知道按不同的方式展开会得到不同的展开图.3.学会动手实践,与同学合作.4.不是所有立体图形都有平面展开图.4.1.2点、线、面、体01 教学目标1.了解几何体、平面和曲面的意义,能正确判定围成几何体的面是平面还是曲面.2.了解几何图形构成的基本元素是点、线、面、体及其关系,能正确判定由点、线、面、体经过运动变化形成的简单的几何图形.3.激发学生对数学的好奇心和求知欲,体验数学活动中小组合作的重要性.02 预习反馈阅读教材P119~120,完成下列问题.1.几何图形都是由点、线、面、体组成的,点是构成图形的基本元素.2.体是由面组成,面与面相交成线,线与线相交成点.3.点没有大小之分,线没有粗细之分.03 名校讲坛知识点1点、线、面、体例1(《名校课堂》4.1.2习题)如图所示的是一个棱柱,请问:(1)这个棱柱由几个面围成?各面的交线有几条?它们是直的还是曲的?(2)这个棱柱的底面和侧面各是什么形状?(3)该棱柱有几个顶点?解:(1)这个棱柱由5个面围成,各面的交线有9条,它们是直的.(2)棱柱的底面是三角形,侧面是长方形.(3)有6个顶点.【跟踪训练1】给出下列结论:①圆柱由3个面围成,这3个面都是平的;②圆锥由2个面围成,这2个面中,1个面是平的,1个面是曲的;③球仅由1个面围成,这个面是曲的;④长方体由6个面围成,这6个面都是平的.其中正确的是(B)A.①②③B.②③④C.①③④D.①②④知识点2由平面图形旋转而成的立体图形例2(教材P120练习T2)如图,上面的平面图形绕轴旋转一周,可以得出下面的立体图形,把有对应关系的平面图形与立体图形连接起来.解:答案见图中连线.【跟踪训练2】下列图形绕着它的一边所在的直线旋转一周,能得到圆柱的是(B)A.三角形B.长方形C.五边形D.半圆04 巩固训练1.笔尖在纸上写字说明点动成线;车轮旋转时看起来像个圆面,这说明线动成面;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明面动成体.2.如图的几何体有4个面,6条棱,4个顶点.3.围成下面这些立体图形的各个面中,哪些面是平的,哪些面是曲的?解:球的表面、圆柱和圆锥的侧面都是曲面.其余的面都是平面.4.用第一行的平面图形绕轴旋转一周,便得到第二行中的某个几何体,用线连一连.解:如图.05 课堂小结1.多姿多彩的图形是由点、线、面、体组成.点是构成图形的基本元素.2.点无大小,线有直线和曲线,面有平面和曲面.3.体由面围成,面与面相交成线,线与线相交成点.4.点动成线,线动成面,面动成体.4.2 直线、射线、线段第1课时直线、射线、线段01 教学目标1.能在现实情境中,经历画图的数学活动过程,理解并掌握直线的性质,能用几何语言描述直线性质.2.会用字母表示直线、射线、线段,会根据语言描述画出图形.掌握三者的联系和区别.3.培养学生的基本画图能力.02 预习反馈阅读教材P125~126,回忆直线、射线、线段的一些基本概念和基本知识,并认真总结下列问题,体会直线的公理.1.直线、射线、线段的联系与区别.图形表示方法端点个数延伸方向线段线段AB或线段a 两个不向任何一方延伸射线射线AB或射线a 一个向一方无限延伸直线直线AB或直线a 0 向两方无限延伸2.直线公理:两点确定一条直线.【点拨】(1)表示线段、射线、直线的时候,都要在字母前注明“线段”“射线”“直线”.(2)用两个大写字母表示直线或线段时,两个字母可以交换位置,表示射线的两个大写字母不能交换位置,必须把端点字母放在前面.03 名校讲坛例1(教材P126练习T2)按下列语句画出图形:(1)直线EF经过点C;(2)点A在直线l外;(3)经过点O的三条线段a,b,c;(4)线段AB,CD相交于点B.解:(1)如图所示:(2)如图所示:(3)如图所示:(4)如图所示:【跟踪训练】(《名校课堂》4.2第1课时习题)下列表示方法正确的是(B)A.①②B.②④C.③④D.①④04 巩固训练1.下列语句:①点a在直线l上;②直线的一半就是射线;③延长直线AB到C;④射线OA与射线AO是同一条射线. 其中正确的语句有(A)A.0句B.1句C.2句 D.3句2.如图给出的直线、射线、线段,根据各自的性质,能相交的是(D)A B C D3.下列事实可以用“经过两点有且只有一条直线”来说明的是(B)A.从王庄到李庄走直线最近B.在正常情况下,射击时要保证瞄准的一只眼睛在准星和缺口确定的直线上,才能射中目标C.向远方延伸的铁路给我们一条直线的印象D.数轴是一条特殊的直线4.线段有2个端点,射线有1个端点,直线没有端点.5.如图,图中共有6条线段,8条射线.6.平面上有三点A、B、C,①连接其中任意两点,共可得线段3条;②经过任意两点画直线,共可得到直线1条或3条.7.如图,已知平面上四点A、B、C、D.(1)画直线AB;(2)画射线AD;(3)直线AB、CD相交于点E;(4)连接AC、BD相交于点F.解:略05 课堂小结1.掌握直线、射线、线段的表示方法.2.理解直线、射线、线段的联系和区别.3.知道直线的性质.4.经过两点有一条直线,并且只有一条直线.第2课时比较线段的长短及线段的性质01 教学目标1.掌握线段比较的两种方法,会表示线段的和差.2.理解线段中点的意义及表示方法,理解两点的距离的意义.3.会运用“两点之间,线段最短”的性质解决生活中的实际问题.02 预习反馈阅读教材P126~129,完成下列内容.1.在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图.2.点M把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点.3.两点的所有连线中,线段最短,简单说成:两点之间,线段最短.4.连接两点间的线段的长度,叫做这两点的距离.03 名校讲坛知识点1 线段的中点及等分点例1(《名校课堂》4.2第2课时习题)如图,点C 是线段AB 上的点,点D 是线段BC 的中点.(1)若AB =10,AC =6,求CD 的长;(2)若AC =30,BD =10,求AB 的长.解:(1)因为点D 是线段BC 的中点,所以CD =12BC. 因为AB =10,AC =6,所以BC =AB -AC =10-6=4.所以CD =12BC =2. (2)因为点D 是线段BC 的中点,所以BC =2BD.因为BD =10,所以BC =2×10=20.因为AB =AC +BC ,所以AB =30+20=50.【跟踪训练1】 如图,在直线上顺次取A ,B ,C 三点,使AB =4 cm ,BC =3 cm ,如果O 是线段AC 的中点,求线段OB 的长度.解:因为AB =4 cm ,BC =3 cm ,所以AC =AB +BC =7 cm.因为点O 是线段AC 的中点,所以OC =12AC =3.5 cm. 所以OB =OC -BC =3.5-3=0.5(cm).知识点2 线段的性质例2 如图,这是A 、B 两地之间的公路,在公路工程改造计划时,为使A 、B 两地行程最短,应如何设计线路?在图中画出,并说明你的理由.解:如图所示,连接AB.理由:两点的所有连线中,线段最短.【跟踪训练2】如图,平面上有A、B、C、D四个村庄,为解决当地缺水问题,政府准备修建一个蓄水池,不考虑其他因素,请你画出蓄水池P的位置,使它与4个村庄的距离之和最小.解:连接AC、BD的交点即为P点的位置,如图.04 巩固训练1.下列说法正确的是(D)A.连接两点的线段就叫做两点间的距离B.在所有连接两点的线中直线一定最短C.线段AB就是表示点A到点B的距离D.线段AB的长度是点A到点B的距离2.如图,下列关系式中与图不符合的式子是(C)A.AD-CD=AB+BC B.AC-BC=AD-BDC.AC-BC=AC+BD D.AD-AC=BD-BC3.为比较两条线段AB与CD的大小,小明将点A与点C重合使两条线段在一条直线上,点B在CD的延长线上,则(B)A.AB<CD B.AB>CDC.AB=CD D.以上都有可能4.如图,从A到B有4条路径,最短的路径是③,理由是(D)A.因为③是直的B.两点确定一条直线C.两点间距离的定义D.两点之间线段最短5.已知线段AB=6,若C为AB的中点,则AC=3.6.若线段AB=5 cm,BC=2 cm,且A,B,C三点在同一条直线上,则点C可能在AB上,也可能在AB的延长线上,则AC的长等于3__cm或7__cm.7.如图,已知线段a和b,且a>b,用直尺和圆规作一条线段,使它等于2a+b.解:图略.8.已知,如图,AB =16 cm ,C 是AB 上一点,且AC =10 cm ,D 是AC 的中点,E 是BC 的中点,求线段DE 的长.解:因为D 是AC 的中点,AC =10 cm ,所以DC =12AC =5 cm. 又因为AB =16 cm ,所以BC =AB -AC =6 cm.因为E 是BC 的中点,所以CE =12BC =3 cm. 所以DE =DC +CE =8 cm.05 课堂小结线段⎩⎪⎨⎪⎧线段的大小比较⎩⎨⎧度量法叠合法线段的中点线段的性质:两点之间,线段最短4.3 角4.3.1 角01 教学目标1.理解角的两种定义,识别角的符号.2.知道角的几种表示方法,并能够正确表示.3.掌握角的度量单位及度、分、秒的进位制,能够熟练的进行转换.02 预习反馈阅读教材P132,知道角的定义、角的表示方法、周角、平角,完成下列内容.1.角是由两条具有公共端点的射线组成的图形,角也可以看作一条射线绕端点旋转而形成的图形.2.如果一个角的终边旋转到与始边成一条直线时,所成的角叫做平角.继续旋转,当终边旋转到与始边重合时,所成的角叫做周角.3.角的表示方法:角用“∠”表示,读做“角”.(1)用三个大写字母表示;(2)用表示角的顶点的字母表示;(3)用一个数字或一个希腊字母(α、β、γ、θ)表示.(4)度、分、秒是角的基本度量单位:1°的角等分成60份就是1′的角;1′的角等分成60份就是1″的角.角度制:1°=60′,1′=(160)°,1′=60″,1″=(160)′,1°=3__600″.【点拨】度、分、秒是60进制的.03 名校讲坛知识点1角的定义和表示方法例1(《名校课堂》 4.3.1习题)如图,∠1,∠2表示的角可分别用大写字母表示为∠ABC,∠BCN;∠A也可表示为∠BAC,还可以表示为∠MAN.【跟踪训练1】如图,能用∠1,∠ACB ,∠C三种方法表示同一个角的是(C)A B C D知识点2角的度量例2(教材P134练习T2)(1)35°等于多少分?等于多少秒?(2)38°15′和38.15°相等吗?如不相等,哪一个大?解:(1)35°=35×60=2 100分=2 100×60=126 000秒.(2)38.15°=38.15×60=2 289分.38°15′=38×60+15=2 295分.所以38°15′>38.15°.【跟踪训练2】已知∠1=27°18′,∠2=27.18°,∠3=27.3°,则下列说法正确的是(A)A.∠1=∠3 B.∠1=∠2C.∠1<∠2 D.∠2=∠304 巩固训练1.下列关于角的说法正确的个数是(A)①角是由两条射线组成的图形;②角的边越长,角越大;③在角一边的延长线上取一点D ;④角可以看作由一条射线绕着它的端点旋转而形成的图形.A .1B .2 C.3 D .42.若∠A =20°20′,∠B =20.20°,∠C =20.5°,则下面的结论正确的是(D)A .∠A =∠B B.∠A =∠CC .∠C =∠B D.∠A ,∠B ,∠C 两两不等3.如图,能用一个字母表示的角有∠B ,用三个大写字母表示∠1为∠MCB ,∠2为∠AMC.第3题图第4题图4.如图,A ,O ,D 三点在一条直线上,写出图中小于平角的角:∠AOC ,∠AOE ,∠COE ,∠C OD ,∠EOD .5.如图是一个时钟的钟面,下午1点30分,时钟的分针与时针所夹的角等于135°.6.如图:(1)以B 为顶点的角有几个?把它们表示出来;(2)指出以射线BA 为边的角;(3)以D 为顶点,DC 为一边的锐角有几个?分别表示出来.解:(1)以B 为顶点的角有3个,分别是∠ABD 、∠ABC 、∠DBC.(2)以射线BA 为边的角有2个,分别是∠ABD 和∠ABC.(3)以D 为顶点,DC 为一边的锐角有1个,是∠CDE.7.如图,在∠AOB 的内部,从顶点O 引出1条射线,此图中共有几个角?如果引出2条?引出3条呢?依此规律,引出n 条可得到多少个角?解:从顶点O 引出1条射线,图中共有3个角;引出2条射线,图中共有6个角;引出3条射线,图中共有10个角;引出n 条射线,可得到(n +1)(n +2)2个角. 05 课堂小结角⎩⎪⎨⎪⎧角的概念角的表示方法角的度量与换算4.3.2 角的比较与运算01 教学目标1.会用量角器度量角,并会比较两个角的大小.2.会根据图形判断角的和差倍分.3.记住角平分线的定义.02 预习反馈阅读教材P134~136,完成下列内容.1.比较两个角的大小,我们可以用量角器量出角的度数,然后比较它们的大小,也可以把它们叠合在一起比较它们的大小,这两种方法分别叫度量法和叠合法.2.角平分线的定义:从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.如:如图,若OB 是∠AOC 的平分线,则∠AOC =2∠AOB =2∠BOC ,∠AOB =∠BOC =12∠AOC . 03 名校讲坛知识点1 角的大小比较例1(教材补充例题)如图,点A ,O ,B 在一条直线上,OD 平分∠AOB ,回答下列问题:(1)试比较∠AOB 、∠AOD 、∠AOE 、∠AOC 的大小;(2)找出图中的三个等量关系.解:(1)因为点A ,O ,B 在一条直线上,所以∠AOB 是平角.因为OD 平分∠AOB ,所以∠AOD =12∠AOB =90°. 由图知∠AOC 是钝角、∠AOD 是直角、∠AOE 是锐角,所以∠AOB >∠AOC >∠AOD >∠AOE.(2)等量关系有:∠COE =∠EOD +∠COD ,∠AOB =2∠AOD =∠AOE +∠BOE ,∠DOB =∠COD +∠BOC.【点拨】 角的大小比较的方法:(1)如果已知角是锐角、直角、周角、平角、钝角,就可以直接由它们之间的关系比较大小;(2)可以通过量角器量角度来比较大小;(3)可以根据各角在同一图中的位置关系比较角的大小.【跟踪训练1】在∠AOB的内部任取一点C,作射线OC,则一定存在(A)A.∠AOB>∠AOC B.∠AOB<∠BOCC.∠BOC>∠AOC D.∠AOC>∠BOC知识点2角度的运算例2计算:(1)90°-36°12′15″(2)32°17′53″+42°42′7″(3)25°12′35″×5;(4)53°÷6.解:(1)90°-36°12′15″=53°47′45″.(2)32°17′53″+42°42′7″=74°59′60″=75°.(3)25°12′35″×5=125°60′175″=126°2′55″.(4)53°÷6=8°50′.【点拨】度、分、秒的运算方法:(1)在进行角度的加法运算时,先算秒,再算分,最后算度,满60″时,把60″化为1′,满60′时,把60′化为1°;(2)进行角度的减法时,不够减,借1°化为60′,借1′化为60″;(3)关于度、分、秒的乘法运算,把度、分、秒分别乘乘数,满60″时,把60″化为1′,满60′时,把60′化为1°;(4)关于度、分、秒的除法运算,把度的余数化成分或把分的余数化为秒后再进行除法运算.知识点3与角平分线有关的计算例3如图,OC是∠AOD的平分线,OE是∠DOB的平分线.(1)如果∠AOB=130°,那么∠COE是多少度?(2)在(1)的条件下,如果∠COD=20°,那么∠BOE是多少度?解:(1)因为OC 是∠AOD 的平分线,所以∠COD =12∠AOD. 因为OE 是∠BOD 的平分线,所以∠DOE =12∠BOD. 所以∠COD +∠DOE =12∠AOD +12∠BOD =12(∠AOD +∠BOD). 因为∠COD +∠DOE =∠COE ,∠AOD +∠BOD =∠AOB ,所以∠COE =12∠AOB. 因为∠AOB =130゚,所以∠COE =65°.(2)因为∠COE =65°,∠COD =20°,所以∠DOE =∠COE -∠COD =45°.又因为OE 平分∠DOB ,所以∠BOE =∠DOE =45°.【跟踪训练2】如图所示,∠AOB 是平角,∠AOC =30°,∠BOD =60°,OM ,ON 分别是∠AOC ,∠BOD 的平分线,则∠MON 等于135°.04 巩固训练1.射线OC 在∠AOB 内部,下列四个选项不能判定OC 是∠AOB 的平分线的是(C)A .∠AOB =2∠AOC B .∠AOC =12∠AOB C .∠AOC +∠BOC =∠AOB D .∠AOC =∠BOC2.如图,在横线上填上适当的角:(1)∠BOD =∠BOC +∠COD =∠AOD -∠AOB ;(2)∠AOB =∠AOC -∠COB =∠AOD -∠BOD ;(3)∠BOC =∠AOC -∠AOB =∠AOD -∠COD -∠AOB.第2题图第3题图3.如图,若OC 平分∠AOB ,∠AOB =60°,则∠1=30°.4.已知∠AOB =80°,∠AOC =40°,则∠BOC 的度数为120°或40°.5.计算:(1)15°37′+42°51′; (2)90°-68°17′50″;(3)5°26′×3; (4)178°53′÷5.解:(1)原式=58°28′.(2)原式=21°42′10″.(3)原式=16°18′.(4)原式=35°46′36″.6.如图,已知O 是直线CD 上的点,OA 平分∠BOC ,∠AOC =35°,求∠BOD 的度数.解:因为O 是直线CD 上的点,OA 平分∠BOC ,∠AOC =35°,所以∠BOC =2∠AOC =70°.所以∠BOD =180°-∠BOC =110°.05 课堂小结 角的大小比较和运算⎩⎪⎨⎪⎧角的大小比较⎩⎨⎧度量法叠合法角的运算角平分线4.3.3 余角和补角01 教学目标 1.了解两个角互余或互补的意义.2.掌握同角或等角的余角相等,同角或等角的补角相等.3.理解方位角的概念,会用角描述方向,解决实际问题.02 预习反馈阅读教材P137~138,完成下列内容.1.一般地,如果两个角的和等于90°(直角),就说这两个角互为余角,即其中一个角是另一个角的余角.几何语言表示为:如果∠1+∠2=90°,那么∠1与∠2互为余角.2.一般地,如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角.几何语言表示为:如果∠1+∠2=180°,那么∠1与∠2互为补角.3.性质:等角(同角)的余角相等,等角(同角)的补角相等.4.判断题:(1)90度的角叫余角,180度的角叫补角.(×)(2)若∠1+∠2+∠3=90°,则∠1,∠2,∠3互为余角.(×)(3)如果一个角有补角,那么这个角一定是钝角.(×)(4)互补的两个角不可能相等.(×)(5)钝角没有余角,但一定有补角.(√)(6)互余的两个角一定都是锐角,两个锐角一定互余.(×)(7)如果∠A=25°,∠B=75°,那么∠A与∠B互为余角.(×)(8)如果∠A=x°,∠B=(90-x)°,那么∠A与∠B互余.(√)03 名校讲坛知识点1余角、补角例1如图,点O在直线AB上,OD平分∠COA,OE平分∠COB.(1)∠COB+∠AOC=180°,∠EOD=90°;(2)图中互余的角有4对,互补的角有5对.【跟踪训练】1.若∠1+∠2=180°,∠2+∠3=180°,则∠1=∠3.理由是同角的补角相等.2.已知一个角的补角是这个角的余角的3倍,求这个角的度数.解:设这个角是x,则这个角的补角为180°-x,余角为90°-x,所以3(90°-x)=180°-x,整理,得2x=90°,解得x=45°,即这个角的度数为45°.知识点2方位角例2如图1,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上.同时,在它北偏东40°、南偏西10°、西北(即北偏西45°)方向上又分别发现了客轮B、货轮C和海岛D.仿照表示灯塔A方位的方法,画出表示客轮B、货轮C和海岛D方向的射线.图1 图2画法:以点O为顶点,表示正北方向的射线为角的一边,画40°的角,使它的另一边OB落在东与北之间.射线OB的方向就是北偏东40°(图2),即客轮B所在的方向.请你在图2上画出表示货轮C和海岛D方向的射线.解:略.【跟踪训练】3.(《名校课堂》习题)如图,根据点A,B,C,D,E在图中的位置填空.(1)射线OA表示东北方向;(2)射线OB表示北偏西30°;(3)射线OC表示南偏西60°;(4)射线OD表示正南方向;(5)射线OE表示南偏东50°.04 巩固训练1.若∠1=40°,则∠1的余角的度数是(C)A.20°B.40°C.50°D.60°2.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为(C)A.69°B.111°C.141°D.159°3.下列结论正确的个数为(C)①互余且相等的两个角是45°;②锐角的补角是钝角;③锐角没有余角,钝角没有补角;④两个钝角不可能互补.A.1 B.2 C.3 D.44.如图,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.(1)求出∠AOB及其补角的度数;(2)请求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由.解:(1)∠AOB=∠BOC+∠AOC=70°+50°=120°,其补角为180°-∠AOB=180°-120°=60°.(2)∠DOC=12∠BOC=35°,∠AOE=12∠AOC=25°.∠DOE与∠AOB互补.理由:∠DOE=∠DOC+∠COE=35°+25°=60°,∠DOE+∠AOB=60°+120°=180°,故∠DOE与∠AOB互补.05 课堂小结1.余角、补角的概念:(1)和为90°的两个角互为余角;(2)和为180°的两个角互为补角.2.余角、补角的性质:(1)等角(同角)的余角相等;(2)等角(同角)的补角相等.。

七年级数学上册第四章几何图形初步4.1几何图形4.1.2点、线、面、体课件(新版)新人教版

七年级数学上册第四章几何图形初步4.1几何图形4.1.2点、线、面、体课件(新版)新人教版

图4-1-2-2
图4-1-2-3 解析 A是由4旋转得到的,B是由2旋转得到的,C是由1旋转得到的,D是 由3旋转得到的. 点拨 利用面动成体这一性质解题.
题型二 探索几何体的顶点、棱、面之间的关系 例2 新年晚会会场上,悬挂着五彩缤纷的小装饰,其中有各种各样的立 体图形,多面体是其中的一部分,多面体中围成立体图形的每一个面都 是平的,没有曲的,如棱柱、棱锥等,如图4-1-2-4.
)
答案 B
5.如图,第二行的图形绕虚线旋转一周,便形成第一行的某个图形(几何 体),将对应的两个图末)圆柱是由长方形绕着它的一边所在直线旋 转一周得到的,那么图4-1-2-1是以下四个图形中的哪一个绕着直线旋转 一周得到的 ( )
图4-1-2-1
初中数学(人教版)
七年级 上册
第四章 几何图形初步
知识点 点、线、面、体
重要提示 (1)几何图形都是由点、线、面、体组成的,点是构成图形 的基本元素.点、线、面、体经过运动变化,就能组合成各种各样的几 何图形,形成多姿多彩的图形世界. (2)一般地,有曲面的几何体都可以由某个平面图形旋转得到.将一个平 面图形旋转成立体图形,既与平面图形的形状有关,也与平面图形旋转 时所绕的轴有关,因此在分析平面图形旋转后得到的立体图形时,要综 合分析平面图形的形状和旋转轴两个因素.
解析 分三种情况进行讨论. ①以8 cm长的边所在直线为轴,旋转得到的圆锥的体积V1= ×π×62×8=9 6π(cm3). ②以6 cm长的边所在直线为轴,旋转得到的圆锥的体积V2= ×π×82×6=1
1 3 1 3
28π(cm3).
③以10 cm长的边所在直线为轴,旋转得到的几何体是由两个同底面的 圆锥组成的,设圆锥底面的半径为r cm,则有 ×6×8= ×10×r,解得r=4.8.

人教版七年级上册第四章 几何图形初步 4.1.1 立体图形与平面图形 课件(共19张PPT)

人教版七年级上册第四章 几何图形初步 4.1.1 立体图形与平面图形 课件(共19张PPT)
从整体上看,它的形状是 长方体
从侧面看,它的形状是 长方形
从前面看,它的形状是 正方形
只看棱、顶点等到局部,得到的是 线段、点等
长方体、圆柱、球、长(正)方形、圆、 线段、点等,以及小学学过的三角形、四 边形等,都是从物体外形中得出的。
归纳:从实物中抽象出的各种图形统称为 几何图形.
生活中你会常见很多实物,你能从身边的实物中找到你所熟悉 的几何图形吗?
球体
形平



立体图形与平面图形的联系
以下立体图形的表面包含哪些平面图形?
立体图形中某些部分是平面图形。
1.练一练:下列各图形,都是柱体的是( C)
(A) (C)
(B) (D)
2.课本P116练习题1题; 3.习题4.1 第2,3题。
小结与质疑:
通过本节课的学习你有何收获? 你还有什么问题吗?还想知道什么呢?
择决定命运,环境造就人生!
正方体 长方体
圆柱 球体
圆锥
三棱柱 三角形 六棱柱

四棱锥
平面图形:几何图形的各部分都在同 一平面内
三角形

..
线段
梯形
平行四边形
······
立体图形:几何图形的各部分不
长方体
三棱柱 圆锥体 四棱锥 六棱柱 三棱锥
棱柱
柱体 圆柱

棱锥
体 图
锥体
几形
圆锥
何 图
明朝未及,我只有过好每一个今天,唯一的今天。
昨日的明天是今天。明天的昨日是今天。为什么要计较于过去呢(先别急着纠正我的错误,你确实可以在评判过去中学到许多)。但是我发现有的人过分地瞻前顾后了。为 何不想想“现在”呢?为何不及时行乐呢?如果你的回答是“不”,那么是时候该重新考虑一下了。成功的最大障碍是惧怕失败。这些句子都教育我们:不要惧怕失败。如 果你失败了他不会坐下来说:“靠,我真失败,我放弃。”并且不是一个婴儿会如此做,他们都会反反复复,一次一次地尝试。如果一条路走不通,那就走走其他途径,不 断尝试。惧怕失败仅仅是社会导致的一种品质,没有人生来害怕失败,记住这一点。宁愿做事而犯错,也不要为了不犯错而什么都不做。不一定要等到时机完全成熟才动手。 开头也许艰难,但是随着时间的流逝,你会渐渐熟悉你的事业。世上往往没有完美的时机,所以当你觉得做某事还不是时候,先做起来再说吧。喜欢追梦的人,切记不要被 梦想主宰;善于谋划的人,切记空想达不到目标;拥有实干精神的人,切记选对方向比努力做事重要。太阳不会因为你的失意,明天不再升起;月亮不会因为你的抱怨,今 晚不再降落。蒙住自己的眼睛,不等于世界就漆黑一团;蒙住别人的眼睛,不等于光明就属于自己!鱼搅不浑大海,雾压不倒高山,雷声叫不倒山岗,扇子驱不散大雾。鹿 的脖子再长,总高不过它的脑袋。人的脚指头再长,也长不过他的脚板。人的行动再快也快不过思想!以前认为水不可能倒流,那是还没有找到发明抽水机的方法;现在认 为太阳不可能从西边出来,这是还没住到太阳从西边出来的星球上。这个世界只有想不到的,没有做不到的!不是井里没有水,而是挖的不够深;不是成功来的慢,而是放 弃速度快。得到一件东西需要智慧,放弃一样东西则需要勇气!终而复始,日月是也。死而复生,四时是也。奇正相生,循环无端,涨跌相生,循环无端,涨跌相生,循环 无穷。机遇孕育着挑战,挑战中孕育着机遇,这是千古验证了的定律!种子放在水泥地板上会被晒死,种子放在水里会被淹死,种子放到肥沃的土壤里就生根发芽结果。选

人教版初中数学课标版七年级上册第四章4.1.1 立体图形与平面图形(共21张PPT)

人教版初中数学课标版七年级上册第四章4.1.1 立体图形与平面图形(共21张PPT)
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/8/122021/8/122021/8/122021/8/128/12/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年8月12日星期四2021/8/122021/8/122021/8/12 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年8月2021/8/122021/8/122021/8/128/12/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/8/122021/8/12August 12, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/8/122021/8/122021/8/122021/8/12
将这些几何图形分类成.两类.
有些几何图形的各部分不都在同一平面内,它们是立体图形. 如长方体、正方体、圆柱、圆锥、球等. 有些几何图形的各部分都在同一平面内,它们是平面图形. 如线段、角、三角形、长方形、圆等.
下面的立体图形可以怎样归类?
柱体

锥体
台体
下面的立体图形可以怎样归类? 平面
曲面
仔细阅读第113—115页文字, 勾画重点,完成第115页思考。
我们的家—地球
金字塔—埃及
“国家体育场”—中国
第四章 几何图形初步 几何
就是研究图形的形状、大小 和位置关系的一门学科。
第四章 几何图形初步
就是研究图形的形状、大小 和位置关系的一门学科。
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/8/122021/8/12Thursday, August 12, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/8/122021/8/122021/8/128/12/2021 12:36:28 PM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/8/122021/8/122021/8/12Aug-2112-Aug-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/8/122021/8/122021/8/12Thursday, August 12, 2021

4.1.1立体图形与平面图形

4.1.1立体图形与平面图形

4.1.1 立体图形与平面图形
栏目索引
例2 如图4-1-1-3所示,下列各标志图形主要由哪些简单的几何图形组 成?
图4-1-1-3
解析 图①由圆组成;图②由长方形和正方形组成;图③由四边形(或菱 形)组成;图④由圆和圆弧组成.
4.1.1 立体图形与平面图形
知识点三 从不同方向看物体
栏目索引
常见立体图形从不同方向看得到的平面图形列表如下:
栏目索引
答案 B A是球,B是圆柱,C是圆锥,D是三棱柱,故选B.
4.1.1 立体图形与平面图形
2.如图是一座房子的平面图,组成这幅图的图形有 ( )
栏目索引
A.三角形、长方形 B.三角形、正方形、长方形 C.三角形、正方形、长方形、梯形 D.正方形、长方形、梯形 答案 C 由题图可以看出,在这个平面图中,房子的屋顶是三角形,其 余的图形分别有长方形、正方形、梯形.这座房子的平面图是由上述四 种图形组成的.
答案 A 点拨 考查从不同角度观察物体的能力,体会立体图形与平面图形相互 转化的过程,培养空间想象能力.
4.1.1 立体图形与平面图形
栏目索引
题型二 正方体的平面展开图 例2 图4-1-1-8是每个面上都有一个汉字的正方体的一种平面展开图, 那么在原正方体中和“国”字所在面相对的面上的汉字是 ( )
4.1.1 立体图形与平面图形
知识点一 认识立体图形 1.下列几何图形中,是棱柱的是 ( )
答案 B A是圆柱;B是棱柱;C是球;D是圆锥.
栏目索引
4.1.1 立体图形与平面图形
栏目索引
2.与图中实物图相类似的立体图形按从左至右的顺序依次是 ( )
A.圆柱、圆锥、正方体、长方体 B.圆柱、球、正方体、长方体 C.棱柱、球、正方体、棱柱 D.棱柱、圆锥、棱柱、长方体

七年级数学上册第四章几何图形初步4_1_1立体图形与平面图形教案3新版新人教版

七年级数学上册第四章几何图形初步4_1_1立体图形与平面图形教案3新版新人教版

《立体图形和平面图形》教学内容4.1.1 立体图形和平面图形.教学目标1.初步了解立体图形和平面图形的概念.2.能从具体物体中抽象出长方体、正方体、球、圆锥、棱锥、棱柱等立体图形;能举出类似长方体、正方体、球、圆锥、棱锥、棱柱的物体实体.3.在探讨实物与立体图形关系的活动进程中,对具体图形进行归纳,进展几何直觉.4.能从具体事物中抽象出几何图形,并用几何图形描述一些现实中的物体.5.形成主动探讨的意识,丰硕学生数学活动的成功体验,激发学生对几何图形的好奇心,进展学生的审美乐趣.教学重点常见几何体的识别.教学难点从实物中抽象几何图形.教学进程一、创设情境导入新课同窗们,不知你们有无认真地观看过咱们生活的周围,若是你认真观看的话,你会发觉:从城市宏伟的建筑到乡村简朴的住宅,从四通八达的立交桥到街头巷尾的交通标志,从古老的剪纸艺术到现代的城市雕塑,从自然界形态各异的动物到北京的申奥标志……图形世界是多姿多彩的!二、直观感知识别图形1.引导学生观看教科书第114页图4.1-1,再用幻灯片展现一些实物图片并引导学生观看.你能从中找到一些你熟悉的图形吗?各类各样的物体除具有颜色、质量、材质等性质外.还具有形状(如方的、圆的等)、大小(如长度、面积、体积等)和位置关系(如相交、垂直、平行等),物体的形状、大小和位置关系是几何中研究的内容.说明:关于各类各样的物体,数学中关注的是它们的形状、大小和位置.2.展现一个长方体纸盒,让学生别离从整体和局部抽象出几何图形.观看长方体纸盒的外形,它有两个面是正方形,其余各面是长方形.从整体上看,它的形状是长方体;看不同侧面,取得的是正方形或长方形;只看棱、极点等局部,取得的是线段、点等(如以下图).类似地观看罐头、乒乓球的外形能够取得圆柱、球、圆等.3.观看其他的实物教具(或图片)让学生从中抽象出圆柱,球,圆等图形.然后引导学生得出几何图形的概念.长方体、圆柱、球、长(正)方形、圆、线段、点等,和小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的.它们都是几何图形.几何图形是数学研究的要紧对象之一.有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部份不都在同一平面内,它们是立体图形(solid figure).棱柱、棱锥一也是常见的立体图形.三、实践探讨熟悉提高1.引导学生观看帐篷,茶叶盒、金字塔的图片,从而抽象出棱柱和棱锥的抽象图.帐篷茶叶盒金字塔棱柱棱锥上图中的帐篷、茶叶盒等都给咱们以棱柱的形象,金字塔那么给咱们以棱锥的形象.你能再找出一些棱柱、棱锥的实例吗?2.你能说说圆柱与棱柱、圆锥与棱锥的区别吗?3.你能再举一些圆柱、棱柱、圆锥、棱锥的实例吗?4.试探:以下图中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来.正方体球六棱柱圈锥长方体四棱锥四、小结这节课咱们学习了几何图形,明白了什么是立体图形.下节课咱们学习平面图形,和几何体的三种视图.五、作业教科书第121页习题4.1第1题.。

人教版七年级数学上册《几何图形初步》全章教学案

人教版七年级数学上册《几何图形初步》全章教学案

第四章 几何图形初步(集体案)4.1 几何图形4.1.1 立体图形与平面图主备人: 复核:七年级数学备课组教学目标:1.初步了解立体图形和平面图形的概念.2.能从具体物体中抽象出长方体、正方体、球、圆锥、棱锥、棱柱等立体图形;能举出类似长方体、正方体、球、圆锥、棱锥、棱柱的物体实体.教学重点:常见几何体的识别教学难点:从实物中抽象几何图形.教法:小组合作探究教学过程一、创设情境,导入新课.1.让我们一起来看看北京奥运会奥运村模型图.(出示章前图)2.展示丰富多彩的图形世界(学观察课本114页图形)二、直观感知,识别图形1.对于各种各样的物体,数学中关注是它们的形状、大小和位置.2.展示一个长方体教具,让学生分别从整体和局部抽象出几何图形.观察长方体教具的外形,从整体上看,它的形状是长方体,看不同的侧面,得到的是正方形或长方形,只看棱、顶点等局部,得到的是线段、点.3.观察其他的实物教具(或图片)让学生从中抽象出圆柱,球,长方体等图形.4.我们把从实物中抽象出的各种图形统称为几何图形.比如长方体,长方形 ,圆柱,线段,点,三角形,四边形等.几何图形是数学研究的主要对象之一.有些几何体的各部分不都在同一平面内,它们是立体图形.如长方体,立方体等. 有些几何图形和各部分都在同一平面内,它们是平面图形.如线段,角,长方形,圆等.三、 实践探究.1. 引导学生观察帐篷,金字塔的图片,从面抽象出棱柱,棱锥.2.你能说说圆柱与棱柱,圆锥与棱锥的区别吗?3.你能再举一些圆柱、棱柱、圆锥、棱锥的实例吗?4.下图中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来(课本115页思考内容)四、课堂小结这节课你有什么收获?五、作业设计课本第121页习题4.1第1、2题;第125页习题4.1第7、8题。

六、教学反思:4.1.1 几何图形(二)(集体案)主备人:复核:七年级数学备课组教学目标1.能识别简单几何体的三种视图.2.会画简单立体图形及其它们的简单组合的三种视图.3.在从不同方向看立体图形的活动过程中,体验立体图形与平面图形之间的相互转化,从而建立空间观念,发展几何直觉.教学重点:1.在观察的过程中初步体会从不同方向观察同一物体可能看到不同的结果.2.能识别简单物体的三视图,会画简单立体图形及其它们组合的三种视图.教学难点:1.在面和体的转换中丰富几何直觉和数学活动经验,发展空间观念2.能识别简单物体的三视图,会画简单立体图形及其它们组合的三种视图.教学方法:实验探究教学过程一、创设情景,引入新课1.请欣赏漫画并思考:为什么会出现争执?2. “横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).你能说出“横看成岭侧成峰”中蕴含的数学道理吗?二、新课学习1.不同角度看直棱柱、圆柱、圆锥、球体.让学生分别从正面、左面、右面,上面等各个角度观察:正方体木块,长方体木块,三棱镜,六角扳手,易拉罐,排球,圆锥,由浅入深,体会从不同方向看直棱柱、圆柱、圆锥、球等立体图形得到的平面图形,难点是在体会曲面的透视图,让学生交流、体验,集体作出小结.(可以给出三个视图的名称)2.猜一猜,看一看Ⅰ.左看右看上看下看一个物体都是圆?(猜一物体)Ⅱ.什么物体左看右看上看下看都是正方形?若是长方形呢?(各猜一物体)Ⅲ.桌上放着一个圆锥和圆柱,请说出下面三幅图是分别从哪个方向看到的.3. 分别从不同方向观察以下实物(茶叶盒、魔方、书、乒乓球等),你看到了什么图形?你能一一画下来吗7(画出示意图即可)4.(从不同角度看简单的组合图形,由少数组合逐步加多)如下图,画出下列几何体分别从正面、左面,上面看,得到的平面图形.(学生独立思考、合作交流,最后从模型上得到验证)三、实践与探究1.课本第117页探究:上图是一个由9个正方体组成的立体图形,分别从正面、左面、上面观察这个图形,各能得到什么图形?2.再试一试,画出它的三视图.3.怎样画得又快又准?4.用6个相同的小方块搭成一个几何体,它的俯视图如图所示.则一共有几种不同形状的搭法(你可以用实物模型动手试一试)?四、课堂练习1.课本p118练习1,2题。

江西省七年级数学上册 第四章 图形的认识初步 4.1 几何图形 4.1.1 立体图形与平面图形课件

江西省七年级数学上册 第四章 图形的认识初步 4.1 几何图形 4.1.1 立体图形与平面图形课件

完整版ppt
9
将下面的几何图形分为两组
有些几何图形的各部分不都在同一平面内,它们是立体图形.
如长方体、正方体、圆柱、圆锥、球等.
有些几何图形的各部分都在同一平面内,它们是平面图形.
如线段、角、三角形、长方形、圆完整等版p.pt
10
图中实物的形状对应哪些立体图形?把相应的实物与图 形用线连接起来.
32
教学重难点:
重点:能识别简单几何体的三种视图,会画简单立体图形的
三种视图;会识别简单立体图形的表面展开图.
难点:会根据立体图形的三视图想象立体图形;会根据立体
图形的展开图想象立体图形. 完整版ppt
2
1.有些几何图形的各部分不都在同一平面内,它们是 立体图 形;
有些几何图形的各部分都在同一平面内,它们是 平面 图形.
2.从 正面 、 上面 、 左面 三个不同方向看立体图形,往 往会得到不同形状的平面图形.
3.有些立体图形是由一些平面图形围成的,将它们的表面适当 剪开,可以展开成平面图形.这样的平面图形称为相应立体图 形的 展开图.
完整版ppt
3
北京奥林匹克公园
完整版ppt
4
完整版ppt
5
完整版ppt
6
完整版ppt
4.1.1 立体图形与平面图形
完整版ppt
1
·
教学目标: 1.能从具体物体中抽象出长方体、正方体、球、圆锥、棱锥、
棱柱等立体图形;能举出类似长方体、正方体、球、圆锥、棱锥、 棱柱的物体实体.
2.能识别一些简单几何体,正确区分平面图形与立体图形. 3.会根据立体图形的三视图想象立体图形. 4.通过观察和动手操作,经历和体验平面图形和立体图形相 互转换的过程,培养动手操作能力,初步建立空间观念,发展几 何直觉.

七年级数学上册第四章几何图形初步认识4.1.1 立体图形与平面图形 第2课时(图文详解)

七年级数学上册第四章几何图形初步认识4.1.1  立体图形与平面图形 第2课时(图文详解)
4.下列图形中,都是柱体的一组是( C ).
人教版七年级数学上册第四章几何图形初步认识
5.长方形、正方形、圆等都是 平面 图形. 6.写出下列几何体的名称.
棱柱
棱锥
圆锥
人教版七年级数学上册第四章几何图形初步认识
7.下列图形中为圆柱的是( D ).
8.埃及金字塔类似于几何体( C ).
(A)圆锥 (B)圆柱 (C)棱锥 (D)棱柱
人教版七年级数学上册第四章几何图形初步认识
你做对了吗?
人教版七年级数学上册第四章几何图形初步认识
1.下面是由六个正方形连在一起的图形,经折叠后能围 成正方体的图形有哪几个?
A
B
C
D
E
F
G
人教版七年级数学上册第四章几何图形初步认识
2.(武汉中考)如图所示,李老师办公桌上放着一个圆柱 形茶叶盒和一个正方体的墨水盒,小芳从上面看,看到的 图形是( )
人教版七年级数学上册第四章几何图形初步认识
9.下列图形中不是立体图形的是( D ).
(A)球
(B)圆柱
(C)圆锥 (D)圆
人教版七年级数学上册第四章几何图形初步认识
10.小明为班级专栏设计了一个图案,如图所示,主 题是“我们喜爱合作学习”,请你也尝试用圆、扇形、 三角形、四边形、直线等为环保专栏设计一个图案, 并标明你的主题.
人教版七年级数学上册第四章几何图形初步认识
4.(宁波中考)骰子是一种特别的数字立方体(如图),它
符合以下规则:相对两面的点数之和总是7.下面四幅图中
可以折成符合规则的骰子的是( )












(A)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档