数学建模_时间序列分析模型共82页

合集下载

数学建模时间序列分析

数学建模时间序列分析
最小二乘估计
参数估计值
a ˆ84.699,8b ˆ8.1 92
拟合效果图
2.1.2 非线性拟合
使用场合 长期趋势呈现出非线形特征
参数估计指导思想 能转换成线性模型的都转换成线性模型, 用线性最小二乘法进行参数估计 实在不能转换成线性的,就用迭代法进行 参数估计
常用非线性模型
模型
变换
对趋势平滑的要求 移动平均的期数越多,拟合趋势越平滑
对趋势反映近期变化敏感程度的要求 移动平均的期数越少,拟合趋势越敏感
例2.3:病事假人数的移动平均
时 病事假人 5项移动 时间 病事假 5项移动 时间 病事假 5项移动


平均
人数
平均
人数
平均
1.1
4
1.2
7
1.3
8
1.4
11
1.5
18
2.1
质或预测序列将来的发展
1.4 时间序列分析软件
常用软件 S-plus,Matlab,Gauss,TSP,Eviews 和SAS
推荐软件——SAS 在SAS系统中有一个专门进行计量经济与时间序列分析 的模块:SAS/ETS。SAS/ETS编程语言简洁,输出功 能强大,分析结果精确,是进行时间序列分析与预测的 理想的软件 由于SAS系统具有全球一流的数据仓库功能,因此在进 行海量数据的时间序列分析时它具有其它统计软件无可 比拟的优势
特别的当 l 1
yT li
yˆTli yTli
,l i ,l i
y ˆT1yTyT1 n yTn1
例2.3
某一观察值序列最后4期的观察值为: 5,5.5,5.8,6.2
(1)使用4期移动平均法预测 xˆT 2。

时间序列分析模型概述

时间序列分析模型概述

时间序列分析模型概述时间序列分析是一种统计方法,用于研究时间序列数据中的模式、趋势和周期性。

它基于时间序列数据的特点,通过建立数学模型来预测未来的数值。

时间序列数据是按照时间顺序排列的一系列观测值,它们通常用于描述一种随时间变化的现象。

例如,股票价格、气温、销售数据等都是时间序列数据。

时间序列分析的目标是通过对已知的观测值进行分析,找出数据中的规律,并利用这些规律来预测未来的数值。

时间序列分析模型通常可以分为两类:基于统计方法的模型和基于机器学习的模型。

基于统计方法的时间序列模型包括AR(自回归模型)、MA (移动平均模型)、ARMA(自回归移动平均模型)和ARIMA(差分自回归移动平均模型)等。

这些模型基于不同的假设和理论,通过寻找数据中的自相关和移动平均性质,来建立模型并进行预测。

它们常常需要对数据进行平稳性检验和参数估计。

基于机器学习的时间序列模型包括神经网络模型、支持向量机模型和深度学习模型等。

这些模型不同于统计方法,它们通过学习时间序列数据中的特征和模式来建立预测模型。

这些模型通常需要大量的数据进行训练,并且需要对模型进行调参。

除了上述模型,时间序列分析还可以包括季节性调整模型、外生变量模型等。

季节性调整模型是用于处理具有明显季节性的时间序列数据,它通过分解数据中的趋势和季节成分,来消除季节性的影响,从而提高预测的准确性。

外生变量模型是将其他影响因素(例如经济指标、政策变化等)引入时间序列模型中,以更全面地考虑影响因素对数据的影响。

时间序列分析模型在经济学、金融学、气象学等领域有着广泛的应用。

例如,在金融领域,时间序列分析模型可以用于预测股票价格和汇率等,帮助投资者做出更准确的投资决策。

在气象学领域,时间序列分析模型可以用于预测天气变化,从而为农业生产和灾害预防提供支持。

总之,时间序列分析是一种重要的数据分析方法,用于处理时间序列数据并进行预测。

它采用统计方法和机器学习方法来建立模型,并通过对数据的分析来找出数据中的规律和趋势。

时间序列模型

时间序列模型

时间序列模型时间序列模型是一种用于预测时间序列数据的统计模型。

这种模型可以帮助我们了解数据中的趋势、季节性和周期性,并基于这些信息做出未来的预测。

时间序列模型的核心思想是将过去的观察结果作为未来预测的基础。

通过对已有数据的分析和建模,我们可以确定模型的参数和时间序列的性质,从而进行准确的预测。

有许多不同的时间序列模型可以使用,其中最常用的是自回归移动平均模型(ARMA)和自回归集成移动平均模型(ARIMA)。

这些模型假设未来的数值是过去的线性组合,并通过对数据进行差分来观察数据的趋势。

另一个流行的时间序列模型是季节性自回归集成移动平均模型(SARIMA),它在ARIMA模型的基础上增加了季节性组分。

这种模型特别适用于季节性数据,可以更好地捕捉季节性的规律。

除了上述模型之外,还有各种其他的时间序列模型,例如指数平滑模型、灰度预测模型和波动性模型等。

这些模型在数据的不同方面和性质上有不同的适用性。

时间序列模型的应用非常广泛,可以用于经济预测、股票价格预测、天气预测等领域。

它可以帮助我们研究和理解时间序列数据中的规律,并根据过去的观测结果做出未来的预测。

然而,时间序列模型也存在一些不足之处。

首先,它假设未来的数值是过去的线性组合,而无法捕捉非线性的规律。

其次,时间序列模型在数据中存在异常值或离群值时表现不佳。

此外,时间序列模型无法处理缺失值,而且对于长期预测的准确性可能会受到影响。

综上所述,时间序列模型是一种重要的统计模型,可以用于预测时间序列数据。

它能够帮助我们了解数据中的趋势、季节性和周期性,并根据这些信息做出未来的预测。

然而,我们在使用时间序列模型时需要注意其假设和限制,并结合实际情况进行分析和解释。

时间序列模型是一种用于分析和预测时间序列数据的统计模型。

它可以帮助我们识别和理解数据中隐含的模式和趋势,并以此为基础进行未来的预测。

时间序列模型广泛应用于各个领域,如经济学、金融学、交通规划、气象预测等。

数学模型讲座时间序列模型

数学模型讲座时间序列模型
立模型之前应先通过差分或者协整把它变换成平稳的时 间序列,再考虑建模问题。

二、时间序列模型的基本概念
时间序列分析理论框架图
二、时间序列模型的基本概念
随机过程的基本概念
随机过程stochastic process 设T 是某个集合,俗称足标集,对任意固定
tT,Yt 是随机变量, tT 的全体{ Yt ;tT }称 为T 上的随机函数。记为{ Yt }
114333 115823 117171 118517 119850 121121 122389 123626 124810
14.39 12.98 11.60 11.45 11.21 10.55 10.42 10.06 9.53
803 896 1070 1331 1781 2311 2726 2944 3094
JAN 1991
19S9E2P
19M9A2Y
JAN 1993
19S9E4P
1M99A4Y
1J9A9N5 19S9E6P
19M9A6Y
1J9A9N7 19S9E8P
19M9A8Y
1J9A9N9 20S0E0P
20M0A0Y
2J0A0N1 20S0E2P
2002
Date
SALES
一、时间序列的基本特征
一、时间序列的基本特征
时间序列的编制原则
时间长短要一致 总体范围要一致 指标内容要一致
计算方法和口径要一致 Remark:这仅限于经典的时间序列,在高频数据中,时间长短可以
不一致,例如交易时间间隔可以不一致.
一、时间序列的基本特征
100 90 80 70 60 50 40 30 20 10 0
EX t X t j j j 0

时间序列分析模型

时间序列分析模型

时间序列分析模型时间序列分析模型是一种通过对时间序列数据进行建模和分析的方法,旨在揭示数据中的趋势、季节性、周期和不规则波动等特征,并进行预测和决策。

时间序列分析模型在经济、金融、市场、气象、医学等领域都有广泛的应用。

本文将介绍几种常见的时间序列分析模型。

1. 移动平均模型(MA)移动平均模型是时间序列分析中最简单的模型之一。

它基于一个基本假设,即观察到的时间序列数据是对随机误差的线性组合。

该模型表示为:y_t = c + e_t + θ₁e_(t-1) + θ₂e_(t-2) + … + θ_qe_(t-q)其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,θ₁,θ₂,…,θ_q 是移动平均项的参数,q 是移动平均项的阶数。

2. 自回归模型(AR)自回归模型是基于一个基本假设,即观察到的时间序列数据是过去若干时间点的线性组合。

自回归模型表示为:y_t = c + ϕ₁y_(t-1) + ϕ₂y_(t-2) + … + ϕ_p y_(t-p) + e_t其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,ϕ₁,ϕ₂,…,ϕ_p 是自回归项的参数,p 是自回归项的阶数。

3. 自回归移动平均模型(ARMA)自回归移动平均模型将自回归模型和移动平均模型结合在一起,用于处理同时具有自相关和移动平均性质的时间序列数据。

自回归移动平均模型表示为:y_t = c + ϕ₁y_(t-1) + ϕ₂y_(t-2) + … + ϕ_p y_(t-p) + e_t +θ₁e_(t-1) + θ₂e_(t-2) + … + θ_qe_(t-q)其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,ϕ₁,ϕ₂,…,ϕ_p 是自回归项的参数,θ₁,θ₂,…,θ_q 是移动平均项的参数,p 是自回归项的阶数,q 是移动平均项的阶数。

4. 季节性自回归移动平均模型(SARIMA)季节性自回归移动平均模型是自回归移动平均模型的扩展,用于处理具有季节性和趋势变化的时间序列数据。

时间序列分析教材(PPT 82页)

时间序列分析教材(PPT 82页)

滞后算子的性质: 常数与滞后算子相乘等于常数。 滞后算子适用于分配律。
Lc c
(Li Lj )x t Lix t Ljx t x ti x t-j
•滞后算子适用于结合律。 LiLjxt Li jx t x t-i-j •滞后算子的零次方等于1。L0xt xt
•滞后算子的负整数次方意味着超前。Lixt xti
8
随机过程与时间序列的关系如下所示:
随机过程: {y1, y2, …, yT-1, yT,} 第1次观测:{y11, y21, …, yT-11, yT1} 第2次观测:{y12, y22, …, yT-12, yT2}
第n次观测:{y1n, y2n, …, yT-1n, yTn}
某河流一年的水位值,{y1, y2, …, yT-1, yT,},可以看作 一个随机过程。每一年的水位纪录则是一个时间序 列 =成2,了时{y)y2取11,的y值2水1,的…位样,纪y本T录-1空1,是y间T不1}。。相而同在的每。年{ y中21,同y2一2, 时…,刻y2(n,}如构t
, k 0 , 则称{xt}为白噪声过程。
3
4
DJ P Y
2
2 1
0
0
-1
-2 -2
white noise -3
20 40 60 80 100 120 140 160 180 200
-4 20 40 60 80 100 120 140 160 180 200
由白噪声过程产生的时间序列(nrnd)
日元对美元汇率的收益率序列
长期趋势分析、季节变动 分析、循环波动分析。
随机性时间序列分析方 法:ARIMA模型等。
一、时间序列分析的几个基本概念
1.随机过程 由随机变量组成的一个有序序列称为随机过程,记为Yt ,t T ,

数学建模之时间序列模型

数学建模之时间序列模型

一、时间序列时间序列分析是当前对动态数据处理的一种有效方法,它不要求考虑影响观测值的各种力学因素,而只是分析这些观测数据的统计规律性。

通过对时间序列统计规律性进行分析,构造拟合出这些规律的可能数值,最后给出预测结果的精度分析。

1.1AR 模型:1.1.1 模型的应用①年降雨水量的预测, ②城市税收收入的预测。

1.1.2步骤 ①模型识别令均值为零的时间序列(1,2,,)t x t n = ,延迟k 周期的自协方差函数是[],k k t t k E y y γγ-+==(1)用ˆk γ、ˆk ρ分别表示自协方差函数的估计值和自相关函数的估计值,则自相关系数为kk k γρργ-==(2) 11ˆˆ,0,1,2,,1n kk k t t k t y y k n n γγ-+==-==-∑ (3)ˆˆˆ,0,1,2,,1kk k k n γρργ-===- (4) (1)对p 阶AR(P)模型有01122t t t p t p t x x x x φφφφε---=+++++ (5){}00,()t x AR p φ=当为中心化序列,当00φ≠,可通过平移得到中心化()AR p 序列。

用B 表示移位算子,1;t t j t t j Bx x B x x --==,则AR(P)模型的算子形式:212(1)p p t t B B B x φφφε----=即()p t t B x φε=(5)两边同乘t k x +后再取均值得:1122[,][,()]t k t t k t t p t p t E x x E x x x x φφφε++---=++++由协方差函数函数得:211220k k k p k p k r εφγφγφγσδ---=++++ (6)取0,1,2,,k p = ,再将得到的差分方程两边同时除以0γ得:11211211221122p p p p p p p pρφφρφρρφρφφρρφρφρφ----=+++=+++ =+++(7)由上式(7)可得,k ρ应该满足:()0,0p k B k φρ=>(8)解得通解为1122k k kk p pc c c ρλλλ---=+++ (9) 其中,1,2,,i c i p = 可以由p 个初值021,,,p ρρρ- 代入计算得到,,1,2,,i i p λ= 是特征方程()0p B φ=的根。

数学建模——时间序列分析

数学建模——时间序列分析

P值
延迟6期
2.36
0.8838
延迟12期
5.35
0.9454
由于P值显著大于显著性水平 ,所以该序列
不能拒绝纯随机的原假设。换句话说可以认 为该序列的波动没有任何统计规律可循,因 此可以停止对该序列的统计分析。
时间序列数据的预处理
数据预处理部分的小结: ➢ 序列平稳性与纯随机性检验的基本步骤:
1. 绘制该序列时序图; 2. 自相关图检验; 3. 该序列若是平稳序列,进行纯随机性检验.
➢当检验统计量小于
2 1
(
m
)分位点,或该统计量
的P值大于 时,则认为在 1 的置信水平
下无法拒绝原假设,即不能显著拒绝序列为
纯随机序列的假定
时间序列数据的预处理
例4 随机生成的100个服从标准正态的白噪声序列纯 随机性检验
样本自相关图
时间序列数据的预处理
检验结果
延迟
QLB 统计量检验
QLB 统计量值
时间序列数据的预处理
3.3 纯随机性检验 ➢ 检验原理 ➢ 假设条件 ➢ 检验统计量 ➢ 判别原则
时间序列数据的预处理
Barlett定理 ➢ 如果一个时间序列是纯随机的,得到一个观察期
数为 n的观察序列,那么该序列的延迟非零期的样
本自相关系数将近似服从均值为零,方差为序列 观察期数倒数的正态分布
平稳时间序列数据分析
样本偏自相关系数的计算
平稳时间序列数据分析
2. AR模型的定义
➢ 具有如下结构的模型称为p阶自回归模型,简
记为 AR( p)
xt 01xt12xt2pxtpt p 0 E(t)0,Va(rt)2,E(ts)0,st Exst 0,st

时间序列分析建模资料

时间序列分析建模资料
季节性变化包括所有具有稳定周 期的循环波动。
随机波动其他因素的综合影响。
确定性时序分析的目的
克服其它因素的影响,单纯测度出某一 个确定性因素对序列的影响
推断出各种确定性因素彼此之间的相互 作用关系及它们对序列的综合影响
各因素之间关系的常用模型
若以 Tt , St , It 分别表示时间序列的长期趋势波
线性趋势模型 可线性化的曲线趋势拟模型 不可线性化的曲线趋势拟模型
(一)线性趋势模型
使用场合
长期趋势呈现出线形特征
模型结构
xt a bt It E(It ) 0,Var(It )
式中Tt a bt 就是消除随机波动的影响之
后该序列的长期趋势。
例2.1拟合澳大利亚政府1981—— 1990年每季度的消费支出序列
拒绝原假设

当检验统计量大于
2 1
(m)分位点,或该统计
量的P值小于 时,则可以以 1 的置信水
平拒绝原假设,认为该序列为非白噪声序列
接受原假设

当检验统计量小于
2 1
(m)分位点,或该统计
量的P值大于 时,则认为在 1 的置信水
平下无法拒绝原假设,即不能显著拒绝序列
(二)可线性化的曲线趋势拟模型
可线性化的曲线趋势模型是指时间序列随着时间 的推移呈现曲线变动趋势,但在估计这些趋势方 程时,可以把它们转化成线性关系.利用估计线 性趋势模型的方法估计其参数。最常用的可线性 化的曲线趋势模型有
二次曲线模型 Tt a bt t 2
指数曲线模型
Tt abt
时序图与自相关图 平稳性检验 随机性检验
作业1
表一为某公司在2000-2003年期间每月的 销售量 (1)绘制时序图和样本自相关系图 (2)判断序列的平稳性与纯随机性

时间序列分析模型

时间序列分析模型

时间序列分析模型时间序列分析是一种用来处理时间变化数据的统计分析方法。

它将观测数据按照时间顺序进行排列,并利用过去的数据来预测未来的发展趋势。

在时间序列分析中,通常会使用一些常见的模型,如自回归(AR)、移动平均(MA)和自回归移动平均(ARMA)模型。

自回归模型(AR)是时间序列分析中最基本的模型之一。

它假设未来的观测值可以通过当前和过去的观测值来预测。

AR 模型的数学表达式为:Y_t = c + ∑(φ_i * Y_t-i) + ε_t其中,Y_t表示第t个观测值,c表示常数,φ_i表示第i个滞后的自回归系数,ε_t表示误差项。

通过对AR模型进行参数估计,可以得到最优的系数估计值,从而进行未来观测值的预测。

移动平均模型(MA)是另一种常见的时间序列分析模型。

它假设未来的观测值可以通过当前和过去的误差项来预测。

MA 模型的数学表达式为:Y_t = μ + ∑(θ_i * ε_t-i) + ε_t其中,Y_t表示第t个观测值,μ表示均值,θ_i表示第i个滞后的移动平均系数,ε_t表示误差项。

通过对MA模型进行参数估计,可以得到最优的系数估计值,从而进行未来观测值的预测。

自回归移动平均模型(ARMA)是将AR模型和MA模型结合起来的一种复合模型。

它假设未来的观测值可以通过当前观测值、滞后观测值和误差项来预测。

ARMA模型的数学表达式为:Y_t = c + ∑(φ_i * Y_t-i) + ∑(θ_i * ε_t-i) + ε_t其中,Y_t表示第t个观测值,c表示常数,φ_i表示第i个滞后的自回归系数,θ_i表示第i个滞后的移动平均系数,ε_t表示误差项。

通过对ARMA模型进行参数估计,可以得到最优的系数估计值,从而进行未来观测值的预测。

总之,时间序列分析模型是一种通过利用过去数据来预测未来数据的统计分析方法。

其中,自回归模型、移动平均模型和自回归移动平均模型是一些常见的时间序列分析模型。

通过对这些模型进行参数估计,可以得到最优的预测结果。

数学建模 时间序列模型

数学建模 时间序列模型

数学建模时间序列模型1. 引言1.1 概述时间序列模型是一种数学建模方法,用于分析和预测随时间变化而变化的数据。

在各个领域,例如经济学、金融学、气象学等,时间序列模型都被广泛应用于数据分析和预测中。

时间序列模型的核心思想是利用过去的观测数据来预测未来的值。

通过对历史数据的分析,可以揭示出其中的规律和趋势,并基于这些规律和趋势来进行预测。

这使得时间序列模型成为了许多领域中非常有用的工具。

时间序列模型有许多不同的方法和技术,每种方法都有其适用的场景和特点。

常见的时间序列模型包括自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)以及季节性自回归积分移动平均模型(SARIMA)等。

这些模型都基于不同的假设和方程,用于解释和预测时间序列数据。

本文将介绍时间序列模型的基本原理和方法,并探讨在数学建模中的应用。

首先,我们将介绍时间序列模型的基本概念和定义,包括时间序列、平稳性和自相关性等。

然后,我们将深入研究数学建模的基础原理,包括数据预处理、模型选择和参数估计等。

通过学习这些基础原理,读者将能够更好地理解时间序列模型,并能够在实际问题中应用它们进行数据分析和预测。

本文将通过实例和案例分析来说明时间序列模型的应用。

我们将使用真实的数据集,并结合相关的数学模型和算法,在实际问题中进行分析和预测。

通过这种方式,读者将能够更好地理解时间序列模型的实际应用,并能够应用这些方法解决自己遇到的问题。

最后,在结论部分,我们将对本文的内容进行总结,并展望时间序列模型的未来发展方向。

时间序列模型作为一种强大的分析工具,在大数据时代将发挥越来越重要的作用。

随着数据量的增加和计算能力的提升,时间序列模型将更加精确和高效,为各行各业的决策和预测提供更准确的支持。

1.2 文章结构本文按照以下结构组织:1. 引言:在这一部分,我们将提供一个概述性的介绍,包括对时间序列模型和数学建模的定义和背景的讨论。

我们将介绍本文的目的,并列出本文的主要内容。

时间序列分析(建模)

时间序列分析(建模)

例2.1拟合澳大利亚政府1981—— 1990年每季度的消费支出序列
(二)可线性化的曲线趋势拟模型


可线性化的曲线趋势模型是指时间序列随着时间 的推移呈现曲线变动趋势,但在估计这些趋势方 程时,可以把它们转化成线性关系.利用估计线 性趋势模型的方法估计其参数。最常用的可线性 化的曲线趋势模型有 2 二次曲线模型 t

确定性时序分析的目的


克服其它因素的影响,单纯测度出某一 个确定性因素对序列的影响 推断出各种确定性因素彼此之间的相互 作用关系及它们对序列的综合影响
各因素之间关系的常用模型
若以 Tt , St , I t 分别表示时间序列的长期趋势波 动、季节性变动、不规则变动.则实际观测 值与它们之间的关系常用模型有 加法模型 xt Tt St I t
标准正态白噪声序列时序图
白噪声序列的性质

纯随机性

(k) 0,k 0
各序列值之间没有任何相关关系,即为 “没有记 忆”的序列

方差齐性

DX t (0) 2

根据马尔可夫定理,只有方差齐性假定成立时,用 最小二乘法得到的未知参数估计值才是准确的、有 效的
纯随机性检验
趋势分析

在实际应用中,常常是根据时间序列寻 找其长期趋势及季节变动.然后建立适 当的预测模型,再通过模型分析,对现 象的未来作出预测。这一节将介绍如何 依据时间序列确定其长期趋势、如何得 到长期趋势棋型、如何依据模型对现象 的未来作出中、长期预测以及如何评价 预测的给果。关于带有明显季节性变动 的时间序列的预例方法将在下一节介绍。
随机性影响
确定性影响
对两个分解定理的理解

数学建模算法大全时间序列模型

数学建模算法大全时间序列模型

第二十四章 时间序列模型时间序列是按时间顺序排列的、随时间变化且相互关联的数据序列。

分析时间序列的方法构成数据分析的一个重要领域,即时间序列分析。

时间序列根据所研究的依据不同,可有不同的分类。

1.按所研究的对象的多少分,有一元时间序列和多元时间序列。

2.按时间的连续性可将时间序列分为离散时间序列和连续时间序列两种。

3.按序列的统计特性分,有平稳时间序列和非平稳时间序列。

如果一个时间序列的概率分布与时间t 无关,则称该序列为严格的(狭义的)平稳时间序列。

如果序列的一、二阶矩存在,而且对任意时刻t 满足:(1)均值为常数(2)协方差为时间间隔τ的函数。

则称该序列为宽平稳时间序列,也叫广义平稳时间序列。

我们以后所研究的时间序列主要是宽平稳时间序列。

4.按时间序列的分布规律来分,有高斯型时间序列和非高斯型时间序列。

§1 确定性时间序列分析方法概述时间序列预测技术就是通过对预测目标自身时间序列的处理,来研究其变化趋势的。

一个时间序列往往是以下几类变化形式的叠加或耦合。

(1)长期趋势变动。

它是指时间序列朝着一定的方向持续上升或下降,或停留在某一水平上的倾向,它反映了客观事物的主要变化趋势。

(2)季节变动。

(3)循环变动。

通常是指周期为一年以上,由非季节因素引起的涨落起伏波形相似的波动。

(4)不规则变动。

通常它分为突然变动和随机变动。

通常用t T 表示长期趋势项,t S 表示季节变动趋势项,t C 表示循环变动趋势项,t R 表示随机干扰项。

常见的确定性时间序列模型有以下几种类型:(1)加法模型t t t t t R C S T y +++=(2)乘法模型t t t t t R C S T y ⋅⋅⋅=(3)混合模型t t t t R S T y +⋅= t t t t t R C T S y ⋅⋅+=其中t y 是观测目标的观测记录,0)(=t R E ,22)(σ=t R E 。

如果在预测时间范围以内,无突然变动且随机变动的方差2σ较小,并且有理由认为过去和现在的演变趋势将继续发展到未来时,可用一些经验方法进行预测,具体方法如下:1.1 移动平均法设观测序列为T y y ,,1Λ,取移动平均的项数T N <。

数学建模_时间序列分析模型

数学建模_时间序列分析模型
包含季节性的时间序列也不能直接建立ARMA模型,需进 行季节差分消除序列的季节性,差分步长应与季节周期一致.
1 时间序列分析模型【ARMA模型 】简介
三、模型的识别与建立
在需要对一个时间序列运用B-J方法建模时,应运用序列的 自相关与偏自相关对序列适合的模型类型进行识别,确定适
宜的阶数 d, D, p, q 以及 P,Q(消除季节趋势性后的平稳序列)
记 Bk 为 k 步滞后算子,即 Bk X t X tk ,则
模型【1】可表示为
Xt 1BXt 2B2 Xt pBp Xt ut
令 (B) 11B 2B2 pBp,模型可简写为
(B) X t ut
【2】
AR( p )过程平稳的条件是滞后多项式 (B)
结果与过去、现在的各种因素之间的关系时,效果 比较好。
数据处理时,并不十分复杂 缺点:
反映了对象线性的、单向的联系 预测稳定的、在时间方面稳定延续的过程 并不适合进行长期预测
1 时间序列分析模型【ARMA模型 】简介
一、概 述
ARMA模型是一类常用的随机时间序列模型, 是一种精度较高的时间序列短期预测方法,其基本
若较多自相关函数落在置信区间之外, 则认为该时间序列不具有随机性。
判断时间序列是否平稳,是一项很重要的工 作。运用自相关分析图判定时间序列平稳性 的准则是:
若时间序列的自相关函数在k>3时都落入置 信区间,且逐渐趋于零,则该时间序列具有 平稳性; 若时间序列的自相关函数更多地落在置信区 间外面,则该时间序列就不具有平稳性。
(3)季节性 时间序列的季节性是指在某一固定的时间间隔上,序列
重复出现某种特性.比如地区降雨量、旅游收入和空调销售额 等时间序列都具有明显的季节变化. 一般地,月度资料的时间序列,其季节周期为12个月;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
82
数学建模_时间序列分析模型
21、静念园林好,人间良可辞。 22、步步寻往迹,有处特依依。 23、望云惭高鸟,临木愧游鱼。 24、结庐在人境,而无车马喧;问君 何能尔 ?心远 地自偏 。 25、人生归有道,衣食固其端。

相关文档
最新文档