《平面向量》单元测试卷A含答案

合集下载

平面向量单元测试题(含答案)

平面向量单元测试题(含答案)

平面向量单元检测题学校学号成绩一、选择题(每小题5分,共60分)1.若ABCD是正方形,E是CD的中点,且AB a=,AD b=,则BE =()A.12b a+B.12b a-C.12a b+D.12a b-2.下列命题中,假命题为()A.若0a b-=,则a b=B.若0a b⋅=,则0a =或0b =C.若k∈R,k0a =,则0k=或0a =D.若a,b都是单位向量,则a b⋅≤1恒成立3.设i,j是互相垂直的单位向量,向量13()a m i j=+-,1()b i m j=+-,()()a b a b+⊥-,则实数m为()A.2-B.2 C.12-D.不存在4.已知非零向量a b⊥,则下列各式正确的是()A.a b a b+=-B.a b a b+=+... . .... . .C .a b a b -=-D .a b +=a b -5. 在边长为1的等边三角形ABC 中,设BC a =,CA b =,AB c =,则a b b c c a ⋅+⋅+⋅的值为 ()A .32B .32-C .0D .36. 在△OAB中,OA =(2cos α,2sin α),OB =(5cos β,5sin β),若5OAOB ⋅=-,则S △OAB()A B .2C .5D .527. 在四边形ABCD 中,2AB a b =+,4BC a b =--,53CD a b =--,则四边形ABCD 的形状是 ()A .长方形B .平行四边形C .菱形D .梯形8. 把函数23cos y x =+的图象沿向量a 平移后得到函数的图象,则向量 是 ( )A .(33,π-) B .(36,π) C .(312,π-) D .(312,π-)9. 若点1F 、2F 为椭圆 的两个焦点,P 为椭圆上的点,当△12F PF 的面积为1时, 的值为( ) A .0 B .1 C .3 D .62sin()y x π=-6a 2214x y +=12PF PF ⋅... . .10. 向量a =(-1,1),且a 与a +2b 方向相同,则a b ⋅的围是 ( )A .(1,+∞)B .(-1,1)C .(-1,+∞)D .(-∞,1)11. O 是平面上一点,A ,B ,C 是该平面上不共线的三个点,一动点P 满足OP OA =+()AB AC λ+,λ∈(0,+∞),则直线AP 一定通过△ABC 的( )A .心B .外心C .重心D .垂心12. 已知D 是△ABC 中AC 边上一点,且 22+,∠C =45°,∠ADB =60︒,则 = ( ) A .2 B .0 D.1二、 填空题(每小题4分,共16分)13. △ABC 中,已知4a =,6b =,sinB = ,则∠A = 。

《平面向量》单元检测题-高中数学单元检测题附答案(最新整理)

《平面向量》单元检测题-高中数学单元检测题附答案(最新整理)

即(2te1+7e2)·(e1+te2)<0.整理得:2te21+(2t2+7)e1·e2+7te2<0.(*)
∵|e1|=2,|e2|=1,〈e1,e2〉=60°.∴e1·e2=2×1×cos 60°=1 1
∴(*)式化简得:2t2+15t+7<0.解得:-7<t<- . 2
当向量 2te1+7e2 与 e1+te2 夹角为 180°时,设 2te1+7e2=λ(e1+te2) (λ<0).
5
3 由 5c=-3a-4b 两边平方得 a·b=0,∴a·(b+c)=a·b+a·c=- .故选 B.
5
【第 12 题解析】若 a=(m,n)与 b=(p,q)共线,则 mq-np=0,依运算“⊙”知 a⊙b=0,故 A 正确.由
于 a⊙b=mq-np,又 b⊙a=np-mq,因此 a⊙b=-b⊙a,故 B 不正确.对于 C,由于 λa=(λm,λn),
k+t2 y=-ka+tb,且 x⊥y,试求 的最小值.
t



20.(本小题满分 12 分)设OA=(2,5),OB=(3,1),OC=(6,3).在线段 OC 上是否存在点 M,使 MA⊥MB?
若存在,求出点 M 的坐标;若不存在,请说明理由.
21.(本小题满分 12 分)设两个向量 e1、e2 满足|e1|=2,|e2|=1,e1、e2 的夹角为 60°,若向量 2te1+7e2 与 e1+te2 的夹角为钝角,求实数 t 的取值范围.
14.a,b 的夹角为 120°,|a|=1,|b|=3,则|5a-b|=________.
1 15.已知向量 a=(6,2),b=(-4, ),直线 l 过点 A(3,-1),且与向量 a+2b 垂直,则直线 l 的方程为

平面向量单元测试题及答案

平面向量单元测试题及答案

平面向量单元测试题及答案平面向量单元测试题2一、选择题:1.下列说法中错误的是()A.零向量没有方向B.零向量与任何向量平行C.零向量的长度为零D.零向量的方向是任意的2.下列命题正确的是()A.若a、b都是单位向量,则a=bB.若AB=DC,则A、B、C、D四点构成平行四边形C.若两向量a、b相等,则它们是始点、终点都相同的向量D.AB与BA是两平行向量3.下列命题正确的是()A.若a∥b,且b∥c,则a∥c。

B.两个有共同起点且相等的向量,其终点可能不同。

C.向量AB 的长度与向量BA的长度相等,D.若非零向量AB与CD是共线向量,则A、B、C、D四点共线。

4.已知向量a=(m,1),若,|a|=2,则m=()A.1B.3C.±1D.±35.若a=(x1,y1),b=(x2,y2),且a∥b,则有()A,x1y2+x2y1=0,B,x1y2−x2y1=0,C,x1x2+y1y2=0,D,x1x2−y1y2=0。

6.若a=(x1,y1),b=(x2,y2),且a⊥b,则有()A,x1y2+x2y1=0,B,x1y2−x2y1=0,C,x1x2+y1y2=0,D,x1x2−y1y2=0。

7.在△ABC中,若BA+BC=AC,则△ABC一定是()A.钝角三角形B.锐角三角形C.直角三角形D.不能确定8.已知向量a,b,c满足|a|=1,|b|=2,c=a+b,c⊥a,则a与b的夹角等于()A.120B60C30D90o二、填空题:(5分×4=20分)9.已知向量a、b满足a=b=1,3a−2b=3,则3a+b=510.已知向量a=(4,2),向量b=(x,3),且a∥b,则x=211.三点A(1,0),B(0,1),C(2,5),求cos∠BAC =12,cos∠BAC=−3512.把函数y=x2+4x+7的图像按向量a经过一次平移以后得到y=x2的图像,则平移向量a是(-2,-4)三、解答题:(10分×6 = 60分)13.设P1(4,−3),P2(−2,6),且P在P1P2的延长线上,使P1P=3,则求点P的坐标。

2020届人教A版平面向量__单元测试

2020届人教A版平面向量__单元测试

平面向量一、单选题1.已知向量a ⃑=(12,−√32),|b⃑⃑|=1,且两向量夹120∘,则|a ⃑−b⃑⃑|=( ) A .1 B .√3 C .√5 D .√7 【答案】B 【解析】 【分析】要求|a ⃑−b ⃑⃑|,由题意先计算出|a ⃑|,然后由|a ⃑−b ⃑⃑|=√|a ⃑−b ⃑⃑|2计算出结果 【详解】 ∵a ⃑=(12,−√32), ∴|a ⃑|=√(12)+(√32)2=1,又|b⃑⃑|=1,且两向量夹角为120° ∴|a ⃑−b ⃑⃑|=√|a ⃑−b ⃑⃑|2=√a ⃑2−2|a⃑⃑⃑⃑||b ⃑⃑|×(−12)+b ⃑⃑2=√1−2×1×1×(−12)+1=√3, 故选B 【点睛】本题考查了由向量坐标计算向量的模,熟练运用公式进行求解,较为简单 2.已知向量m=(-3,t),若|m|=3√5,则实数t= A .±6 B .6 C .-√6 D .±√6 【答案】A【解析】由条件,得 √(−3)2+t 2=3√5,解得t=±6, 故选A3.已知向量()1,2a =-r, 1,2b y ⎛⎫=- ⎪⎝⎭r ,若,则y =( )A .1B .1-C .2D .2- 【答案】A【解析】由题意,得.考点:平面向量平行的判定.4.已知向量()()2,1,1,3==a b ,则向量2-a b 与a 的夹角为A .0135B .060C .045D .030 【答案】C【解析】∵向量()()2,1,1,3,==a b ∴()23,1-=-a b , ∴cos 2,-==a b a , ∴向量2-a b 与a 的夹角为045. 故选:C5.在四边形ABCD 中,A (1,1),B 3,02⎛⎫⎪⎝⎭,C (2,3),D 5-,22⎛⎫⎪⎝⎭,则该四边形的面积为( ) A. B . C .5 D .10 【答案】C【解析】因为AC u u u r =(1,2), BD u u u r=(-4,2), 所以·AC BD u u u r u u u r=1×(-4)+2×2=0, 故AC BD ⊥u u u r u uu r ,所以四边形ABCD 的面积为||||2AC BD =u u u r u u u r =5,故选C .6.已知ΔABC 为等腰三角形,满足AB =AC =√3,BC =2,若P 为底BC 上的动点,则AP⃑⃑⃑⃑⃑⃑⋅(AB ⃑⃑⃑⃑⃑⃑+AC ⃑⃑⃑⃑⃑⃑)= A .有最大值8 B .是定值2 C .有最小值1 D .是定值4 【答案】D 【解析】 【分析】设AD 是等腰三角形的高.将AP ⃑⃑⃑⃑⃑⃑转化为AD ⃑⃑⃑⃑⃑⃑+DP ⃑⃑⃑⃑⃑⃑,将AB ⃑⃑⃑⃑⃑⃑+AC ⃑⃑⃑⃑⃑⃑转化为2AD ⃑⃑⃑⃑⃑⃑,代入数量积公式后,化简后可得出正确选项. 【详解】设AD 是等腰三角形的高,长度为√3−1=√2.故AP ⃑⃑⃑⃑⃑⃑⋅(AB ⃑⃑⃑⃑⃑⃑+AC ⃑⃑⃑⃑⃑⃑)= (AD ⃑⃑⃑⃑⃑⃑+DP ⃑⃑⃑⃑⃑⃑)⋅2AD ⃑⃑⃑⃑⃑⃑=2AD ⃑⃑⃑⃑⃑⃑2+2DP ⃑⃑⃑⃑⃑⃑⋅AD ⃑⃑⃑⃑⃑⃑=2AD⃑⃑⃑⃑⃑⃑2=2×(√2)2=4.所以选D.【点睛】本小题主要考查向量的线性运算,考查向量的数量积运算,还考查了化归与转化的数学思想方法.属于基础题.7.在ABC ∆中,a ,b ,c 分别为角A ,B ,C 所对应的三角形的边长,若4230aBC bCA cAB ++=u u u r u u u r u u u r,则=B cos ( )A .2411-B .2411C .3629D .3629-【答案】A 【解析】试题分析:因为4230aBC bCA c AB ++=u u u r u u u r u u u r,所以423()0aBC bCA c CB CA ++-=u u u r u u u r u u u r u u u r r ,所以(43)(23)0a c BC b c CA -+-=u u u r u u u r r ,因为,BC CA u u u r u u u r 不共线,所以430230a cbc -=⎧⎨-=⎩,解得33,42c c a b ==,则2222229911164cos 322424c c c a c b B c ac c +-+-===-⨯⨯,故选A. 考点:向量的运算.【方法点晴】本题主要考查了平面向量的线性运算,其中解答中涉及到平面向量的加法、减法法则,平面向量的基本定理及余弦定理的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题比较基础,属于基础题,本题解答的关键在于把已知条件变形为(43)(23)0a c BC b c CA -+-=u u u r u u u r r ,同时熟记向量的运算法则也是重要一环.8.在RtΔABC 中,AB ⊥AC ,AB =1,AC =2,点P 为ΔABC 内(包含边界)的点,且满足AP ⃑⃑⃑⃑⃑⃑=xAB ⃑⃑⃑⃑⃑⃑+yAC ⃑⃑⃑⃑⃑⃑(其中x,y 为正实数),则当xy 最大时,yx 的值是( )A .12B .1C .2D .与∠A 的大小有关【答案】B【解析】过点P 分别作AB,AC 的平行线,与AB,AC 的公共点分别是P,Q .首先,对于固定的角A ,要使得xy 最大,仅需xy|AB⃑⃑⃑⃑⃑⃑||AC ⃑⃑⃑⃑⃑⃑| 最大,即xy|AB ⃑⃑⃑⃑⃑⃑||AC ⃑⃑⃑⃑⃑⃑|sinA 最大,即平行四边形AMPN 的面积最大,显然P 需与B ,C 共线,此时x +y =1. 由基本不等式,知xy ≤(x+y 2)2=14 ,当且仅当x =y =12.时,取到等号,此时yx =1.故答案为:B.9.已知D 是∆ABC 则( )AC 【答案】B 【解析】 试题分析:由题意得AB AC AB AD BA BD )(136=-=++-=+=所以选B 考点:向量的运算10.已知点P(-3,5),Q(2,1),向量()21,1m λλ=-+,若//PQ m u u u r,则实数λ等于A .113 B .113- C .13 D .13- 【答案】B【解析】()5,4PQ =-u u u r ,因为PQ m u u u P r r ,所以5584λλ+=-+,解得113λ=-.选B.11.已知平面向量(3,2),(1,0),a b =-=-r r 向量a b λ+r r 与2a b -r r垂直,则实数λ的值为( ) A .17 B .17- C .16- D .16【答案】B 【解析】试题分析:(31,2)a b λλλ+=--r r ,2(1,2)a b -=-r r ,由于向量a b λ+r r 与2a b -r r垂直,所以()()2(31,2)(1,2)3140a b a b λλλλλ+⋅-=--⋅-=++=r r r r ,解得17λ=-.考点:1.向量的加法、减法、数乘的坐标运算;2.向量垂直的坐标运算. 12.4如图,正六边形ABCDEF 中,BA ⃑⃑⃑⃑⃑ +CD ⃑⃑⃑⃑⃑ +EF⃑⃑⃑⃑⃑ ="( " )A .0B .BE ⃑⃑⃑⃑⃑C .AD ⃑⃑⃑⃑⃑ D .CF ⃑⃑⃑⃑⃑ 【答案】D 【解析】 试题分析:,故选D.考点:向量的加法.二、填空题13.若向量i r ,j r 为互相垂直的单位向量,2a i j =-r r r ,b i m j =+r r r,且a r 与b r 的夹角为锐角,则实数m 的取值范围是 .【答案】(-∞,-2)∪,1⎛⎫-2 ⎪2⎝⎭【解析】解:因为向量i r ,j r 为互相垂直的单位向量,2a i j =-r r r ,b i m j =+r r r,且a r 与b r的夹角为锐角则(2)()120,||||=-+=->≠r r r r r r r r r u r g g g 且a b i j i m j m a b a b ,可得为(-∞,-2)∪,1⎛⎫-2 ⎪2⎝⎭14.已知2||=b ,a 与b 的夹角为ο120,则b 在a 上的射影为 . 【答案】1- 【解析】试题分析:b 在a 上的射影为1cos ,212b a b ⎛⎫⨯<>=⨯-=- ⎪⎝⎭r r r .考点:投影的概念.15.已知函数的图象是开口向下的抛物线,且对任意,都有,若向量,,则满足不等式的实数的取值范围.【答案】或.【解析】试题分析:,从条件“对任意,都有”得到抛物线的对称轴为,结合图象,即利用绝对值的定义去掉绝对值符号,得或,解得或.考点:1、抛物线的对称轴;2、向量数量积;3、绝对值不等式和对数不等式.【方法点睛】本题关键是先根据,找出抛物线的对称轴,结合开口向下利用抛物线的对称性去掉,把抽象不等式转化为具体的绝对值不等式;解绝对值不等式时,利用绝对值定义去掉绝对值符号,转化为对数不等式;解对数不等式时要注意限制真数大于零,化同底,根据对数函数的单调性转化为不等式组求解.16.设a=(x,3),b⃑=(2,−1),若a⊥b⃑,则|2a+b⃑|=.【答案】5√2【解析】【分析】,3),进而求得2a⃑+b⃑⃑=(5,5),然后由向量模的坐标运算可求得根据a⊥b⃑可求得a⃑=(32结果。

平面向量单元测试(含答案)

平面向量单元测试(含答案)

《平面向量》单元测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图1所示,D 是△ABC 的边AB 上的中点, 则向量=CD ( )A .BA BC 21+- B .BA BC 21--C .BA BC 21-D .BA BC 21+2.与向量a ==⎪⎭⎫ ⎝⎛b ,21,27⎪⎭⎫ ⎝⎛27,21的夹解相等,且模为1的向量是( )A .⎪⎭⎫- ⎝⎛53,54B .⎪⎭⎫- ⎝⎛53,54或⎪⎭⎫ ⎝⎛-53,54 C .⎪⎭⎫- ⎝⎛31,322 D .⎪⎭⎫-⎝⎛31,322或⎪⎭⎫⎝⎛-31,322 3.设a r 与b r 是两个不共线向量,且向量a b λ+r r 与()2b a --r r共线,则λ=( )A .0B .-1C .-2D .0.54.已知向量()1,3=a ,b 是不平行于x 轴的单位向量,且3=⋅b a ,则b =( )A .⎪⎪⎭⎫ ⎝⎛21,23 B .⎪⎪⎭⎫ ⎝⎛23,21 C .⎪⎪⎭⎫ ⎝⎛433,41 D .(1,0)5.如图,已知正六边形P 1P 2P 3P 4P 5P 6,下列向量 的数量积中最大的是( )A .3121P P P P ⋅B .4121P P P P ⋅C .5121P P P P ⋅D .6121P P P P ⋅ 6.在OAB ∆中,OA a =u u u r ,OB b =u u u r ,OD 是AB 边上的高,若AD AB λ=u u u r u u u r,则实数λ等 于 ( )A .2()a b a a b⋅-- B .2()a a b a b⋅--C .()a b a a b⋅--D .()a a b a b⋅--7.设1(1,)2OM =u u u u r ,(0,1)ON =u u u r ,则满足条件01OP OM ≤⋅≤u u u r u u u u r ,01OP ON ≤⋅≤u u u r u u u r 的动点P 的 变化范围(图中阴影部分含边界)是( )A .B .C .D . 8.将函数f (x )=tan(2x +3π)+1按向量a 平移得到奇函数g(x ),要使|a |最小,则a =( )A .(,16π-)B .(,16π-)C .(,112π)D .(,112π--)9.已知向量a r 、b r 、c r 且0a b c ++=r r r r ,||3a =r ,||4b =r ,||5c =r .设a r 与b r 的夹角为1θ,b r与c r 的夹角为2θ,a r 与c r的夹角为3θ,则它们的大小关系是( )A .123θθθ<<B .132θθθ<<C .231θθθ<<D .321θθθ<<10.已知向量),(n m a =,)sin ,(cos θθ=b ,其中R n m ∈θ,,.若||4||b a =,则当2λ<⋅b a 恒成立时实数λ的取值范围是( )A .2>λ或2-<λB .2>λ或2-<λC .22<<-λD .22<<-λ11.已知1OA =u u u r,OB =u u u r ,0OA OB ⋅=u u u r u u u r ,点C 在AOB ∠内,且30oAOC ∠=,设OC mOA nOB =+u u u r u u u r u u u r (,)m n R ∈,则mn等于( )A .13B .3 C.3D12.对于直角坐标平面内的任意两点11(,)A x y ,22(,)B x y ,定义它们之间的一种“距离”:2121.AB x x y y =-+-给出下列三个命题:①若点C 在线段AB 上,则;AC CB AB += ②在ABC ∆中,若90,o C ∠=则222;AC CB AB +=③在ABC ∆中,.AC CB AB +> 其中真命题的个数为( )A .0B .1C .2D .3二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.13.在中,,,3AB a AD b AN NC ===u u u r r u u u r r u u u r u u u r,M 为BC 的中点,则MN =u u u u r _______.(用a b r r 、表示)14.已知()()2,1,1,1,A B O --为坐标原点,动点M 满足OM mOA nOB =+u u u u r u u u r u u u r,其中,m n R ∈且2222m n -=,则M 的轨迹方程为 .15.在ΔABC 中,O 为中线AM 上的一个动点,若AM=2,则)(+⋅的最小值为 .16.已知向量)3,5(),3,6(),4,3(m m ---=-=-=,若点A 、B 、C 能构成三角形,则实数m 满足的条件是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知向量)sin 1,sin 1(x x -=,)2cos ,2(x =.(1)若]2,0(π∈x ,试判断与能否平行?(2)若]3,0(π∈x ,求函数x f ⋅=)(的最小值.18.(本小题满分12分)(2006年湖北卷)设函数()()c b a x f +⋅=,其中向量()()x x b x x a cos 3,sin ,cos ,sin -=-=,()R x x x c ∈-=,sin ,cos .(1)求函数()x f 的最大值和最小正周期;(2)将函数()x f y =的图像按向量d 平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的d .19.(本小题满分12分)(2006年全国卷II )已知向量a =(sin θ,1),b =(1,cos θ),-π2<θ<π2.(1)若a⊥b,求θ;(2)求|a+b|的最大值.20.(本小题满分12分)在ABC △中,2AB AC AB AC ⋅=-=u u u r u u u r u u u r u u u r. (1)求22AB AC +u u u r u u u r 的值;(2)当ABC △的面积最大时,求A ∠的大小.21.(本小题满分12分)(2006陕西卷)如图,三定点A (2,1),B (0,-1),C (-2,1); 三动点D ,E ,M 满足]1,0[,,,∈===t t t t (1)求动直线DE 斜率的变化范围; (2)求动点M 的轨迹方程.22.(本小题满分14分)已知点P 是圆221x y +=上的一个动点,过点P 作PQ x ⊥轴于点Q ,设OM OP OQ =+u u u u r u u u r u u u r .(1)求点M 的轨迹方程;(2)求向量OP uuu r 和OM u u u u r夹角的最大值,并求此时P 点的坐标参考答案1.21+-=+=,故选A . 2.B 设所求向量e r=(cos θ,sin θ),则由于该向量与,a b r r 的夹角都相等,故e b e a e b e a ⋅=⋅⇔=⋅||||||||7117cos sin cos sin 2222θθθθ⇔+=-⇔3cos θ=-4sin θ,为减少计算量,可将选项代入验证,可知B 选项成立,故选B .3.D 依题意知向量a b λ+r r 与-2共线,设a b λ+r rk =(-2),则有)()21(=++-k k λ,所以⎩⎨⎧=+=-0021λk k ,解得5.0=k ,选D . 4.解选B .设(),()b x y x y =≠,则依题意有1,y =+=1,22x y ⎧=⎪⎪⎨⎪=⎪⎩ 5.解析:利用向量数量积121(1,2,3,4,5,6)i PP PP i =u u u u r u u u rg 的几何意义:数量积121i PP PP u u u u r u u u rg 等于12P P u u u u r的长度12PP u u u u r 与1i PP u u u r 在12P P u u u u r 的方向上的投影1121cos ,i iPP PP PP <>u u u r u u u u r u u u r的乘积.显然由图可知13P P u u u u r 在12P P u u u u r 方向上的投影最大.所以应选(A).6.B (),,AD AB OD OA OB OA λλ=∴-=-u u u r u u u r u u u r u u u r Q 即得()()11,OD OA OB a b λλλλ=-+=-+u u u r u u u r u u u r又OD Q 是AB 边上的高,0OD AB ∴⋅=u u u r u u u r即()()()0,10OD OB OA a b b a λλ⋅-=∴-+⋅-=⎡⎤⎣⎦u u u r u u u r u u u r ,整理可得()2(),b a a a b λ-=⋅-即得()2a ab a bλ⋅-=-,故选B . 7.A 设P 点坐标为),(y x ,则),(y x =.由01OP OM ≤⋅≤u u u r u u u u r ,01OP ON ≤⋅≤u u u r u u u r得⎩⎨⎧≤≤≤+≤10220y y x ,在平面直角坐标系中画出该二元一次不等式组表示的平面区域即可,选A .8.A 要经过平移得到奇函数g(x),应将函数f(x)=tan(2x+3π)+1的图象向下平移1个单位,再向右平移)(62Z k k ∈+-ππ个单位.即应按照向量))(1,62(Z k k a ∈-+-=ππ进行平移.要使|a|最小,应取a=(,16π-),故选A .9.B 由0a b c ++=r r r r得)(+-=,两边平方得1222cos ||||2||||||θ++=,将||3a =r ,||4b =r ,||5c =r 代入得0cos 1=θ,所以0190=θ;同理,由0a b c ++=r r r r得)(b c a +-=,可得54cos 2-=θ,53cos 3-=θ,所以132θθθ<<.10. B 由已知得1||=b ,所以4||22=+=n m a ,因此)sin(sin cos 22ϕθθθ++=+=⋅n m n m b a 4)sin(4≤+=ϕθ,由于2λ<⋅恒成立,所以42>λ,解得2>λ或2-<λ.11.答案B ∵ 1OA =u u u r,OB =u u u r,0OA OB ⋅=u u u r u u u r∴△ABC 为直角三角形,其中1142AC AB ==∴11()44OC OA AC OA AB OA OB OA =+=+=+-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ∴31,44m n == 即3m n= 故本题的答案为B . 12.答案B 取特殊值、数形结合A BC在ABC ∆中, 90oC ∠=,不妨取A (0,1), C (0,0),B (0,1),则 ∵2121AB x x y y =-+- ∴ 1AC = 、1BC =、|10||01|2AB =-+-= 此时222AC CB +=、24AB = 、222AC CB AB +≠;AC CB AB +=即命题②、③是错误的.设如图所示共线三点11(,)A x y ,22(,)B x y ,33(,)C x y ,则1313||||||||||||AC x x y y AC CC ''-+-=+==||||||||AB B C C C C C ''''''''+++ =||||||||AB B B BC C C ''''''+++1212||||||||||||AB x x y y AB BB ''=-+-=+ 2323||||||||||||BC x x y y BC C C ''''=-+-=+∴ AC CB AB += 即命题①是正确的. 综上所述,真命题的个数1个,故本题的答案为B .13.解:343A =3()AN NC AN C a b ==+u u u r u u u r u u u r u u u r r r 由得,12AM a b =+u u u u r r r,所以3111()()4244MN a b a b a b =+-+=-+u u u u r r r r r r r .14.2222=-y x 设),(y x M ,则),(y x =,又)1,1(),1,2(-=-=,所以由OM mOA nOB =+u u u u r u u u r u u u r 得),(),2(),(n n m m y x -+-=,于是⎩⎨⎧+-=-=nm y n m x 2,由2222m n -=消去m, n 得M 的轨迹方程为:2222=-y x . 15.2- 如图,设x AO =,则x OM -=2,所以)(+⋅OM OA OM OA ⋅⋅-=⋅=222)1(242)2(222--=-=--x x x x x ,故当1=x 时,OM mOA nOB =+u u u u r u u u r u u u r取最小值-2.AC 'CBB 'C ''16.21≠m 因为)3,5(),3,6(),4,3(m m ---=-=-=,所以),1(),1,3(m m ---==.由于点A 、B 、C 能构成三角形,所以与不共线,而当AB 与BC 共线时,有m m -=--113,解得21=m ,故当点A 、B 、C 能构成三角形时实数m 满足的条件是21≠m .17.解析:(1)若与平行,则有2sin 12cos sin 1⋅-=⋅x x x ,因为]2,0(π∈x ,0sin ≠x ,所以得22cos -=x ,这与1|2cos |≤x 相矛盾,故a 与b 不能平行.(2)由于x f ⋅=)(xx x x x x x x x sin 1sin 2sin sin 21sin 2cos 2sin 2cos sin 22+=+=-=-+=,又因为]3,0(π∈x ,所以]23,0(sin ∈x , 于是22sin 1sin 22sin 1sin 2=⋅≥+x x x x ,当xx sin 1sin 2=,即22sin =x 时取等号.故函数)(x f 的最小值等于22.18.解:(Ⅰ)由题意得,f(x)=a·(b+c)=(sinx,-cosx)·(sinx -cosx,sinx -3cosx)=sin 2x -2sinxcosx+3cos 2x =2+cos2x -sin2x =2+2sin(2x+43π). 所以,f(x)的最大值为2+2,最小正周期是22π=π. (Ⅱ)由sin(2x+43π)=0得2x+43π=k.π,即x =832ππ-k ,k ∈Z , 于是d =(832ππ-k ,-2),,4)832(2+-=ππk d k ∈Z. 因为k 为整数,要使d 最小,则只有k =1,此时d =(―8π,―2)即为所求. 19.解析:解:(Ⅰ)若a ⊥b ,则sin θ+cos θ=0,由此得 tan θ=-1(-π2<θ<π2),所以 θ=-π4;(Ⅱ)由a =(sin θ,1),b =(1,cos θ)得|a +b |=(sin θ+1)2+(1+cos θ)2=3+2(sin θ+cos θ)=3+22sin(θ+π4),当sin(θ+π4)=1时,|a +b |取得最大值,即当θ=π4时,|a +b |最大值为2+1.20.解:(Ⅰ)由已知得:222,2 4.AB AC AB AB AC AC ⎧⋅=⎪⎨-⋅+=⎪⎩u u u r u u u r u u u r u u u r u u u r u u u r 因此,228AB AC +=u u u r u u u r . (Ⅱ)2cos AB AC A AB AC AB AC⋅==⋅⋅u u u r u u u ru u u r u u u r u u u r u u ur , 1sin 2ABC S AB AC A =⋅u u ur u u u r △12AB =⋅u u ur u u=≤=.(当且仅当2AB AC ==u u u r u u u r 时,取等号),当ABC △1cos 2AB AC A AB AC⋅==⋅u u u r u u u ru u u r u u u r,所以3π=∠A . 解:(I )由条件知: 0a b =≠r r 且2222(2)444a b a b a b b +=++=r r r r r r r g42-=⋅, 设a b r r 和夹角为θ,则41||||cos -==b a θ, ∴1cos 4arc θπ=-,故a b r r 和的夹角为1cos 4arc π-,(Ⅱ)令)a a b -r r r和(的夹角为βQ a b a -===r r r, ∴41021cos 222=+===β∴ )a a b -r r r和(的夹角为21.解析:如图,(Ⅰ)设D(x 0,y 0),E(x E ,y E ),M(x ,y).由AD →=tAB →, BE → = t BC →,知(x D -2,y D -1)=t(-2,-2). ∴⎩⎨⎧x D =-2t+2y D =-2t+1 同理 ⎩⎨⎧x E =-2ty E =2t -1.∴k DE = y E -y D x E -x D = 2t -1-(-2t+1)-2t -(-2t+2)= 1-2t. ∴t ∈[0,1] , ∴k DE ∈[-1,1].(Ⅱ) 如图, OD →=OA →+AD → = OA →+ tAB →= OA →+ t(OB →-OA →) = (1-t) OA →+tOB →,OE →=OB →+BE → = OB →+tBC → = OB →+t(OC →-OB →) =(1-t) OB →+tOC →,OM → = OD →+DM →= OD →+ tDE →= OD →+t(OE →-OD →)=(1-t) OD →+ tOE →= (1-t 2) OA → + 2(1-t)tOB →+t 2OC →.设M 点的坐标为(x ,y),由OA →=(2,1), OB →=(0,-1), OC →=(-2,1)得 ⎩⎨⎧x=(1-t 2)·2+2(1-t)t ·0+t 2·(-2)=2(1-2t)y=(1-t)2·1+2(1-t)t ·(-1)+t 2·1=(1-2t)2 消去t 得x 2=4y, ∵t ∈[0,1], x ∈[-2,2]. 故所求轨迹方程为: x 2=4y, x ∈[-2,2]22.解析:(1)设(,)P x y o o ,(,)M x y ,则(,)OP x y =o o u u u r ,(,0)OQ x =o u u u r,(2,)OM OP OQ x y =+=o o u u u u r u u u r u u u r222212,1,124x x x x x x y y y y y y⎧==⎧⎪∴⇒+=∴+=⎨⎨=⎩⎪=⎩o o o o o o Q .(2)设向量OP uuu r 与OM u u u u r的夹角为α,则22cos ||||OP OMOP OM α⋅===⋅u u u r u u u u r u u u r u u u u r 令231t x =+o,则cos α==≥当且仅当2t =时,即P点坐标为(时,等号成立.第21题解法图OP u u u r 与OM u u u u r夹角的最大值是.。

(完整版)平面向量单元测试卷含答案

(完整版)平面向量单元测试卷含答案

平面向量单元达标试卷一、选择题(每道题的四个选择答案中有且只有一个答案是正确的) 1.化简BC AC AB --等于( ) A .0B .2BCC .BC 2-D .AC 22.已知四边形ABCD 是菱形,有下列四个等式:①BC AB =②||||BC AB =③||||BC AD CD AB +=-④||||BC AB BC AB -=+,其中正确等式的个数是( )A .4B .3C .2D .13.如图,D 是△ABC 的边AB 的中点,则向量CD =( )A .BA BC 21+- B .BA BC 21-- C .BA BC 21-D .BA BC 21+4.已知向量a 、b ,且b a 2+=MN ,b a 65+-=NQ ,b a 27-=QR ,则一定共线的三点是( )A .M 、N 、QB .M 、N 、RC .N 、Q 、RD .M 、Q 、R5.下列各题中,向量a 与b 共线的是( )A .a =e 1+e 2,b =e 1-e 2B .2121e e a +=,2121e e b += C .a =e 1,b =-e 2D .2110131e e a -=,215132e e b +-=二、填空题6.一飞机从甲地按南偏东15°的方向飞行了2000千米到达乙地,再从乙地按北偏西75°的方向飞行2000千米到达丙地,则丙地相对于甲地的位置是________.7.化简=⎥⎦⎤⎢⎣⎡--+-)76(4131)34(32b a b b a ________. 8.已知数轴上三点A 、B 、C ,其中A 、B 的坐标分别为-3、6,且|CB |=2,则|AB |=________,数轴上点C 的坐标为________.9.已知2a +b =3c ,3a -b =2c ,则a 与b 的关系是________.三、解答题10.已知向量a、b,求作a+b,a-b.(1)(2)(3)(4)11.如图所示,D、E是△ABC中AB、AC边的中点,M、N分别是DE、BC的中点,已知BC=a ,BD=b.试用a、b表示DE、CE和MN.12.已知梯形ABCD中,AB∥DC,设E和F分别为对角线AC和BD的中点,求证EF 平行于梯形的底边.单元达标1.C 2.C 3.A 4.B 5.D6.丙地在甲地南偏西45°方向上,且距甲地2000千米. 7.b a 181135- 8.9,4或8 9.a =b10.图略11.由三角形中位线定理,知a 2121==BC DE ,b a +-=++=DE BD CB CE b a a +-=+2121.b a a -+-=++=++=21412121BC DB ED BN DB MD MN 即b a -=41MN .12.证:a =AB ,b =BC ,c =CD ,d =DA ,则a +b +c +d =0,∵DC AB // 故可设c =m a (m 为实数且m ≠-1),又BF AB EA EF ++=,但2121==CA EA )(21)(d c +=+DA CD ,)(21)(2121c b +=+==CD BC BD BF 故++=)(21d c EF a +21(b +c )=21(a +b +c +d )+21(a +c )=21(a +c )=21(m +1)a ,所以AB EF //,又因为EF 与AB 没有公共点,所以EF ∥AB .。

(完整版)《平面向量》测试题及答案

(完整版)《平面向量》测试题及答案

(完整版)《平面向量》测试题及答案《平面向量》测试题一、选择题1.若三点P (1,1),A (2,-4),B (x,-9)共线,则()A.x=-1B.x=3C.x=29D.x=512.与向量a=(-5,4)平行的向量是()A.(-5k,4k )B.(-k 5,-k 4)C.(-10,2)D.(5k,4k) 3.若点P 分所成的比为43,则A 分所成的比是()A.73B. 37C.- 37D.-73 4.已知向量a 、b ,a ·b=-40,|a|=10,|b|=8,则向量a 与b 的夹角为() A.60° B.-60° C.120° D.-120° 5.若|a-b|=32041-,|a|=4,|b|=5,则向量a ·b=() A.103B.-103C.102D.106.(浙江)已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =( )A.? ????79,73B.? ????-73,-79C.? ????73,79D.? ????-79,-737.已知向量a=(3,4),b=(2,-1),如果向量(a+x )·b 与b 垂直,则x 的值为() A.323B.233C.2D.-52 8.设点P 分有向线段21P P 的比是λ,且点P 在有向线段21P P 的延长线上,则λ的取值范围是() A.(-∞,-1) B.(-1,0) C.(-∞,0) D.(-∞,-21) 9.设四边形ABCD 中,有DC =21,且||=|BC |,则这个四边形是() A.平行四边形 B.矩形 C.等腰梯形 D.菱形10.将y=x+2的图像C 按a=(6,-2)平移后得C ′的解析式为()A.y=x+10B.y=x-6C.y=x+6D.y=x-1011.将函数y=x 2+4x+5的图像按向量a 经过一次平移后,得到y=x 2的图像,则a 等于() A.(2,-1) B.(-2,1) C.(-2,-1) D.(2,1)12.已知平行四边形的3个顶点为A(a,b),B(-b,a),C(0,0),则它的第4个顶点D 的坐标是() A.(2a,b) B.(a-b,a+b) C.(a+b,b-a) D.(a-b,b-a) 二、填空题13.设向量a=(2,-1),向量b 与a 共线且b 与a 同向,b 的模为25,则b= 。

第二章 平面向量单元检测(人教A版)(解析版)

第二章 平面向量单元检测(人教A版)(解析版)

第二章 平面向量单元检测(人教A 版)单元测试【满分:100分 时间:80分钟】一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2019年镇海区月考)已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=( ) A .(-7,-4) B .(7,4) C .(-1,4) D .(1,4)【答案】 A【解析】 法一:设C (x ,y ), 则AC →=(x ,y -1)=(-4,-3),所以⎩⎪⎨⎪⎧x =-4,y =-2,从而BC →=(-4,-2)-(3,2)=(-7,-4).故选A .法二:AB →=(3,2)-(0,1)=(3,1),BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4). 故选A .2.(2019年开福区月考)设a =(1,2),b =(1,1),c =a +k b .若b ⊥c ,则实数k 的值等于( ) A .-32B .-53C .53D .32【答案】 A【解析】 c =a +k b =(1+k,2+k ),又b ⊥c ,所以1×(1+k )+1×(2+k )=0,解得k =-32.3.(2019年香洲区月考)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →=( ) A .-32a 2B .-34a 2C .34a 2D .32a 2【答案】 D【解析】 由已知条件得BD →·CD →=BD →·BA →=3a ·a cos 30°=32a 2,故选D .4.(2019年文峰区月考)对任意向量a ,b ,下列关系式中不恒成立....的是( ) A .|a·b |≤|a ||b | B .|a -b |≤||a |-|b || C .(a +b )2=|a +b |2 D .(a +b )·(a -b )=a 2-b 2 【答案】 B【解析】 根据a·b =|a||b|cos θ,又cos θ≤1,知|a·b|≤|a||b|,A 恒成立.当向量a 和b 方向不相同时,|a -b |>||a|-|b||,B 不恒成立.根据|a +b |2=a 2+2a·b +b 2=(a +b )2,C 恒成立.根据向量的运算性质得(a +b )·(a -b )=a 2-b 2,D 恒成立.5.(2019年吉林期末)已知非零向量a ,b 满足|b|=4|a|,且a ⊥(2a +b ),则a 与b 的夹角为( ) A .π3B .π2C .2π3D .5π6【答案】 C【解析】 ∵a ⊥(2a +b ),∴a ·(2a +b )=0, ∴2|a |2+a ·b =0,即2|a |2+|a||b|cos 〈a ,b 〉=0.∵|b|=4|a|,∴2|a|2+4|a |2cos 〈a ,b 〉=0, ∴cos 〈a ,b 〉=-12,∴〈a ,b 〉=23π.6.(2019年上海)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论正确的是( )A .|b |=1B .a ⊥bC .a ·b =1D .(4a +b )⊥BC →【答案】 D【解析】 在△ABC 中,由BC →=AC →-AB →=2a +b -2a =b ,得|b |=2.又|a |=1,所以a ·b =|a ||b |cos 120°=-1,所以(4a +b )·BC →=(4a +b )·b =4a ·b +|b |2=4×(-1)+4=0,所以(4a +b )⊥BC →,故选D .7.(2019年广元模拟)已知向量a =(2,1),a·b =10,|a +b|=50,则|b|=( ) A .0 B .2 C .5 D .25【答案】 C【解析】 因为a =(2,1),则有|a|=5,又a·b =10, 又由|a +b|=50,所以|a|2+2a·b +|b|2=50, 即5+2×10+|b|2=50, 所以|b|=5.8.(2019年海南期末)已知AD ,BE 分别为△ABC 的边BC ,AC 上的中线,设AD →=a ,BE →=b ,则BC →等于( )图1A .43a +23bB .23a +43bC .23a -43bD .-23a +43b【答案】 B【解析】 BC →=2BD →=2⎝⎛⎭⎫23BE →+13AD → =43BE →+23AD →=23a +43b . 9.(2019年雁峰区月考)设非零向量a ,b ,c 满足|a|=|b|=|c|,a +b =c ,则向量a ,b 的夹角为( ) A .150° B .120° C .60° D .30°【答案】 B【解析】 设向量a ,b 夹角为θ, |c|2=|a +b|2=|a|2+|b|2+2|a||b|cos θ,则cos θ=-12,又θ∈[0°,180°],∴θ=120°.故选B .10.(2019年红谷滩新区月考)在矩形ABCD 中,AB =3,BC =1,E 是CD 上一点,且AE →·AB →=1,则AE →·AC →的值为( )A .3B .2C .32D .33【答案】 B【解析】 设AE →与AB →的夹角为θ,则AE →与AD →的夹角为π2-θ,又AD →∥BC →,故有AE →与BC →夹角为π2-θ,如图.∵AE →·AB →=|AE →|·|AB →|·cos θ=3|AE →|·cos θ=1, ∴|A E →|·cos θ=33, ∴AE →·BC →=|AE →|cos ⎝⎛⎭⎫π2-θ=|AE →|sin θ=1,∴AE →·AC →=AE →·(AB →+BC →)=AE →·AB →+AE →·BC →=1+1=2.二、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中横线上) 11.(2019年海南期末)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =________. 【答案】 -6【解析】 ∵a =(m,4),b =(3,-2),a ∥b , ∴-2m -4×3=0,∴m =-6.12.(2019年邵阳模拟)已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n的值为________.【答案】 -3【解析】 ∵m a +n b =(2m +n ,m -2n ) =(9,-8),∴⎩⎪⎨⎪⎧ 2m +n =9,m -2n =-8,∴⎩⎪⎨⎪⎧m =2,n =5,∴m -n =2-5=-3. 13.(2019年湖南模拟)已知向量a =(1,-1),b =(6,-4).若a ⊥(t a +b ),则实数t 的值为________. 【答案】 -5【解析】 ∵a =(1,-1),b =(6,-4),∴t a +b =(t +6,-t -4). 又a ⊥(t a +b ),则a ·(t a +b )=0,即t +6+t +4=0,解得t =-5.14.(2019年平湖市模拟)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________;y =________.【答案】 12 -16【解析】 ∵AM →=2MC →,∴AM →=23AC →.∵BN →=NC →,∴AN →=12(AB →+AC →),∴MN →=AN →-AM →=12(AB →+AC →)-23AC →=12AB →-16AC →. 又MN →=xAB →+yAC →,∴x =12,y =-16.三、解答题(本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤)15.(2019年莲都区月考)(本小题满分10分)不共线向量a ,b 的夹角为小于120°的角,且|a|=1,|b|=2,已知向量c =a +2b ,求|c|的取值范围.【答案】 |c|2=|a +2b|2=|a|2+4a·b +4|b|2=17+8cos θ(其中θ为a 与b 的夹角). 因为0°<θ<120°, 所以-12<cos θ<1,所以13<|c|<5,所以|c |的取值范围为(13,5).16.(2019年大兴区月考)(本小题满分10分)设OA →=(2,-1),OB →=(3,0),OC →=(m,3). (1)当m =8时,将OC →用OA →和OB →表示;(2)若A ,B ,C 三点能构成三角形,求实数m 应满足的条件.【答案】 (1)m =8时,OC →=(8,3), 设OC →=λ1OA →+λ2OB →, ∴(8,3)=λ1(2,-1)+λ2(3,0) =(2λ1+3λ2,-λ1),∴⎩⎪⎨⎪⎧2λ1+3λ2=8,-λ1=3,解得⎩⎪⎨⎪⎧λ1=-3,λ2=143,∴OC →=-3OA →+143OB →.(2)若A ,B ,C 三点能构成三角形, 则有AB →与AC →不共线,又AB →=OB →-OA →=(3,0)-(2,-1)=(1,1), AC →=OC →-OA →=(m,3)-(2,-1)=(m -2,4), 则有1×4-(m -2)×1≠0, ∴m ≠6.17.(2019年西湖区期末)(本小题满分10分)已知a ,b ,c 在同一平面内,且a =(1,2). (1)若|c |=25,且c ∥a ,求c ; (2)若|b |=52,且(a +2b )⊥(2a -b ),求a 与b 的夹角. 【答案】 (1)∵c ∥a ,∴设c =λa , 则c =(λ,2λ). 又|c |=25,∴λ=±2, ∴c =(2,4)或(-2,-4). (2)∵(a +2b )⊥(2a -b ), ∴(a +2b )·(2a -b )=0. ∵|a |=5,|b |=52,∴a ·b =-52, ∴cos θ=a ·b|a ||b |=-1,又θ∈[0°,180°],∴θ=180°.。

平面向量 单元测试(含答案)

平面向量 单元测试(含答案)

《平面向量》一、选择题1.在矩形ABCD 中,O 是对角线的交点,若OC e DC e BC 则213,5===( )A .)35(2121e e +B .)35(2121e e -C .)53(2112e e - D .)35(2112e e - 2.化简)]24()82(21[31b a b a --+的结果是( )A .b a -2B .a b -2C .a b -D .b a -3.对于菱形ABCD ,给出下列各式: ①BC AB =②||||BC AB =③||||BC AD CD AB +=- ④||4||||22AB BD AC =+ 2其中正确的个数为 ( )A .1个B .2个C .3个D .4个4 ABCD 中,设d BD c AC b AD a AB ====,,,,则下列等式中不正确的是( )A .c b a =+B .d b a =-C .d a b =-D .b a c =-5.已知向量b a 与反向,下列等式中成立的是( )A .||||||b a b a -=-B .||||b a b a -=+C .||||||b a b a -=+D .||||||b a b a +=+6.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个点的坐标为 ( ) A .(1,5)或(5,-5) B .(1,5)或(-3,-5) C .(5,-5)或(-3,-5) D .(1,5)或(-3,-5)或(5,-5) 7.下列各组向量中:①)2,1(1-=e )7,5(2=e ②)5,3(1=e )10,6(2=e ③)3,2(1-=e )43,21(2-=e 其中能作为表示它们所在平面内所有向量的基底的是 ( )A .①B .①③C .②③D .①②③ 8.与向量)5,12(=d 平行的单位向量为( )A .)5,1312(B .)135,1312(--C .)135,1312(或)135,1312(--D .)135,1312(±±9.若32041||-=-b a ,5||,4||==b a ,则b a 与的数量积为( )A .103B .-103C .102D .1010.若将向量)1,2(=a 围绕原点按逆时针旋转4π得到向量b ,则b 的坐标为( )A .)223,22(--B .)223,22(C .)22,223(-D .)22,223(-11.设k ∈R ,下列向量中,与向量)1,1(-=Q 一定不平行的向量是 ( )A .),(k k b =B .),(k k c --=C .)1,1(22++=k k dD .)1,1(22--=k k e12.已知12||,10||==b a ,且36)51)(3(-=b a ,则b a 与的夹角为( )A .60°B .120°C .135°D .150°二、填空题13.非零向量||||||,b a b a b a +==满足,则b a ,的夹角为 .14.在四边形ABCD 中,若||||,,b a b a b AD a AB -=+==且,则四边形ABCD 的形状是 15.已知)2,3(=a ,)1,2(-=b ,若b a b a λλ++与平行,则λ= .16.已知e 为单位向量,||a =4,e a 与的夹角为π32,则e a 在方向上的投影为 . 三、解答题17.已知非零向量b a ,满足||||b a b a -=+,求证: b a ⊥18.已知在△ABC 中,)3,2(=AB ,),,1(k AC =且△ABC 中∠C 为直角,求k 的值.19、设21,e e 是两个不共线的向量,2121212,3,2e e CD e e CB e k e AB -=+=+=,若A 、B 、D 三点共线,求k 的值.20.已知2||=a 3||=b ,b a 与的夹角为60o,b a c 35+=,b k a d +=3,当当实数k 为何值时,⑴c ∥dc⑵d21.如图,ABCD为正方形,P是对角线DB上一点,PECF为矩形,求证:①PA=EF;②PA⊥EF.22.如图,矩形ABCD内接于半径为r的圆O,点P是圆周上任意一点,求证:PA2+PB2+PC2+PD2=8r2.参考答案一.选择题:二、填空题:13. 120°; 14. 矩形 15、 1± 16. 2- 三、解答题: 17.证:()()22ba b a -=+⇒+=+⇒-=+0222222=⇒+-=++⇒b a b b a a b b a a为非零向量又b a ,b a ⊥∴18.解:)3,1()3,2(),1(--=-=-=k k AB AC BC0)3,1(),1(0=--⋅⇒=⋅⇒⊥⇒∠∠k k BC AC BC AC RT C 为 21330312±=⇒=-+-⇒k k k19.()212121432e e e e e e CB CD BD-=+--=-=若A ,B ,D 三点共线,则BD AB 与共线,BD AB λ=∴设即212142e e e k e λλ-=+由于不共线与21e e 可得:221142e e k e e λλ-==故8,2-==k λ20.⑴若c ∥d 得59=k ⑵若d c ⊥得1429-=k21.解以D 为原点DC 为x 轴正方向建立直角坐标系 则A(0,1), C:(1,0) B:(1,1))22,22(,r r P r DP 则设= )221,22(r r PA --=∴)0,22(:),22,1(r F r E 点为 )22,122(r r EF --=∴ 22)221()22(||r r PA -+-=∴ 22)22()221(||r r EF -+-=∴故EF PA =EF PA EF PA ⊥⇒=⋅0而22.证:PA PC AC PB PD BD-=-=,22222222||2||)(||||2||)(||PA PA PC PC PA PC AC PB PD PB PD PB PD BD +-=-=+-=-=∴0,,,=⋅=⋅⇒⊥⊥PC PA PB PD PC PA PB PD AC BD 故为直径 222222||||||||||||PD PC PB PA AC BD +++=+∴即2222222844r PD PC PB PA r r =+++=+。

最新《平面向量》单元测试卷A(含答案)

最新《平面向量》单元测试卷A(含答案)

《平面向量》单元测试卷A (含答案)一、选择题:(本题共10小题,每小题4分,共40分) 1.下列命题中的假命题是( )A 、AB BA -→-→与的长度相等; B 、零向量与任何向量都共线; C 、只有零向量的模等于零;D 、共线的单位向量都相等。

2.||||a b a b a b →→→→→→>若是任一非零向量,是单位向量;①;②∥;||0||1||aa b b a →→→→→>=±=③;④;⑤,其中正确的有() A 、①④⑤B 、③C 、①②③⑤D 、②③⑤3.0a b c a b c a b c →→→→→→→→→→++=设,,是任意三个平面向量,命题甲:;命题乙:把,,首尾相接能围成一个三角形。

则命题甲是命题乙的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、非充分也非必要条件 4.AD -→下列四式中不能化简为的是()A 、AB CD BC -→-→-→++()B 、AM MB BC CD -→-→-→-→+++()() C 、AC AB AD CB -→-→-→-→++-()()D 、OC OA CD -→-→-→-+ 5.),则(),(,),(设21b 42a -=-=→→A 、共线且方向相反与→→b a B 、共线且方向相同与→→b a C 、不平行与→→b aD 、是相反向量与→→b a6.如图1,△ABC 中,D 、E 、F 分别是边BC 、CA 和AB 的中点,G 是△ABC 中的重心,则下列各等式中不成立的是( )A 、→-→-=BE 32BG B 、→-→-=AG 21DG C 、→-→--=FG 2CGD 、→-→-→-=+BC 21FC 32DA 317.)(,则锐角∥,且),(,),(设=-+=--=→→→→θθθb a 41cos 1b cos 12aA 、4πB 、6πC 、3πD 、36ππ或ͼ18.)所成的比是(分,则所成比为分若→-→--CB A 3AB C A 、23-B 、3C 、32-D 、-29.)的范围是(的夹角与,则若θ→→→→<⋅b a 0b a A 、)20[π,B 、)2[ππ,C 、)2(ππ,D 、]2(ππ,10.→→→→→→→→b a 4a b 3b a b a 的模与,则方向的投影为在,方向的投影为在都是非零向量,若与设 的模之比值为( ) A 、43B 、34C 、73D 、74二、填空题(本题共4小题,每题5分,共20分)11.。

平面向量测试(人教A版)(含答案)

平面向量测试(人教A版)(含答案)

平面向量测试(人教A版)一、单选题(共12道,每道8分)1.下列四个命题:①时间、速度、加速度都是向量;②零向量的长度为零,方向是任意的;③若是单位向量,则;④若非零向量与是共线向量,则四点共线.其中正确的有( )A.0个B.1个C.2个D.3个答案:B解题思路:试题难度:三颗星知识点:向量的物理背景及概念2.如图,已知,则( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:向量的加法及几何意义3.如图,在正方体中,若,则的值为( )A.3B.1C.-1D.-3答案:B解题思路:试题难度:三颗星知识点:向量的几何表示4.如图,在中,点在边上,若,,则( )A. B.C.-3D.0答案:D解题思路:试题难度:三颗星知识点:向量的加减法的应用5.如图,在中,是边上的中线,是边上的中点,若,,则=( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:向量的加减法的应用6.下列向量中,能作为平面内所有向量基底的是( )A.,B.,C.,D.,答案:B解题思路:试题难度:三颗星知识点:平面向量的基本定理及其意义7.若把点按向量平移后的坐标为,则函数的图象按向量平移后的图象的函数表达式为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:平面向量的坐标运算8.已知向量,,,若点在函数的图象上,则实数的值为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:平面向量的坐标运算9.已知向量与的夹角为,且,,若,且,则实数的值为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:平面向量数量积的性质及其运算律10.已知平面向量的夹角为,且,,则=( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:平面向量数量积的性质及其运算律11.在等腰Rt△中,,,,则=( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:平面向量数量积的性质及其运算律12.如图,在△中,,的平分线交于点,若,且(),则的长为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:平面向量数量积的坐标表示、模、夹角。

平面向量单元测试题(含答案)

平面向量单元测试题(含答案)

平面向量单元测试题(含答案) 平面向量单元检测题学校:______ 姓名:______ 学号:______ 成绩:______一、选择题(每小题5分,共60分)1.若ABCD是正方形,E是CD的中点,且AB=a,AD=b,则BE的长度为()A。

b-1/2a。

B。

a-1/2b。

C。

b+1/2a。

D。

a+1/2b2.下列命题中,假命题是()A。

若a-b=0,则a=bB。

若ab=0,则a=0或b=0C。

若k∈R,ka=0,则k=0或a=0D。

若a,b都是单位向量,则XXX成立3.设i,j是互相垂直的单位向量,向量a=(m+1)i-3j,b=i+(m-1)j,(a+b)⊥(a-b),则实数m为()A。

-2.B。

2.C。

-1/2.D。

不存在4.已知非零向量a⊥b,则下列各式正确的是()A。

a+b=a-b。

B。

a+b=a+b。

C。

a-b=a-b。

D。

a+b=a-b5.在边长为1的等边三角形ABC中,设BC=a,CA=b,AB=c,则a·b+b·c+c·a的值为()A。

3/2.B。

-3/2.C。

1/2.D。

06.在△OAB中,OA=(2cosα,2sinα),O B=(5cosβ,5sinβ),若OA·OB=-5,则△OAB的面积为()A。

3.B。

3/2.C。

53.D。

53/27.在四边形ABCD中,AB=a+2b,BC=-4a-b,CD=-5a-3b,则四边形ABCD的形状是()A。

长方形。

B。

平行四边形。

C。

菱形。

D。

梯形8.把函数y=cos2x+3的图象沿向量a平移后得到函数y=sin(2x-π/6),则向量a的坐标是()A。

(π/3,-3)。

B。

(π/6,3)。

C。

(π/12,-3)。

D。

(-π/12,3)9.若点F1、F2为椭圆x^2/4+y^2/9=1的两个焦点,P为椭圆上的点,当△F1PF2的面积为1时,PF·PF的值为()A。

4.B。

1.C。

3.D。

平面向量测试题及答案

平面向量测试题及答案

平面向量测试题及答案【篇一:平面向量单元测试与答案】1.已知△abc的三个顶点a、b、c及所在平面内一点p满足pa?pb?pc?ab,则点p与△abc的关系为( )a.p在△abc内部b.p在△abc外部 c.p在ab边所在直线上 d. p在△abc的ac边的一个三等分点上2.已知向量op?(1,1),op?(4,?4),且p2点分有向线段pp 所成的比为-2,则op的坐标是112( )a.(?53532,2)b.(2,?2)c.(7,-9) d.(9,-7) 3.设?i,?j分别是x轴,y轴正方向上的单位向量,op?3cos??i?3sin??j,??(0,??2),oq??i。

若用?来表示op与oq的夹角,则?等于a.?b.?2??c.?2??d.???5.设平面上有四个互异的点a、b、c、d,已知(db?dc?2da)?(ab?ac)?0,则△abc的形状是( )a.直角三角形b.等腰三角形 c.等腰直角三角形d.等边三角形6.设非零向量a与b的方向相反,那么下面给出的命题中,正确的个数是()b.c.15d.168.下列命题中:a?b?b?c则b?c,当且仅当a?0时成立其中正确命题的序号是a.①⑤ b.②③④ c.②③ d.①④⑤() 9.在△abc中,已知|ab|?4,|ac|?1,s?abc?3,则ab?ac的值为a.-2b.210.已知,a(2,3),b(-4,5),则与ab共线的单位向量是a.e?(?310,)b.e?(?3,)或(3101010,?1010)c.e?(?6,2)d.e?(?6,2)或(6,2)11.设点p分有向线段p31p2所成的比为4,则点p1分p2p所成的比为a.?37b.?74c.?7 d.?43712.已知a?(1,2),b?(?3,2),ka?b与a?3b垂直时k值为a.17 b.18 c.19 d.2013.已知向量a,b的夹角为?3,|a|?2,|b|?1,则|a?b|?|a?b|? .( ))))))(((((14.把一个函数图像按向量a?(?3,?2)平移后,得到的图象的表达式为y?sin(x??6)?2,则原函数的解析式为15.已知|a|=5,|b|=5, |c|=25,且a?b?c?0,则a?b?b?c?c?a=_______16.已知点a(2,0),b(4,0),动点p在抛物线y2=-4x运动,则使ap?bp取得最小值的点p的坐标是17.设向量oa?(3,1),ob?(?1,2),向量oc垂直于向量ob,向量bc 平行于oa,则od?oa?oc时,od的坐标为_________?????????????18.已知m=(1+cos2x,1),n=(1,3sin2x+a)(x,a∈r,a是常数),且y=om2on (o是坐标原点)⑴求y关于x的函数关系式y=f(x);??⑵若x∈[0,],f(x)的最大值为4,求a的值,并说明此时f(x)的图象可由y=2sin(x+)的图象26经过怎样的变换而得到.(8分)19.已知a(-1,0),b(1,0)两点,c点在直线2x?3?0上,且ac?ab,ca?cb,ba?bc成等差数列,20.已知:a 、b、c是同一平面内的三个向量,其中a =(1,2)⑴若|c|?25,且c//a,求c的坐标;⑵若|b|=21.已知向量a?(cos32x,sin32x),b?(cosx2,?sinx2),且x?[0,52?2],求 32,求?的值;(8分)⑴a?b及|a?b|;⑵若f(x)?a?b?2?|a?b|的最小值是参考答案?1.d 2.c 3.d 4.b 5.b 6.a 7.c 8.c 9.d 10.b 11.c 12.c13.2114.y?cosx 15.-2516.(0,0) ????????????????????17.解:设oc?(x,y),?oc?ob ,∴oc?ob?0,∴2y?x?0①又?bc//oa,bc?(x?1,y?2)3(y?2)?(x?1)?0即:3y?x?7② ?????????????????x?14,联立①、②得? ∴ oc?(14,7),于是od?oc?oa?(11,6)y?7?.18.解:⑴y=om2on=1+cos2x+3sin2x+a,得f(x)=1+cos2x+3sin2x+a;⑵f(x) =1+cos2x+3sin2x+a化简得f(x) =2sin(2x+当x=?6?6)+a+1,x∈[0,?6?2]。

第二章平面向量单元综合测试卷(带答案新人教A版必修4 )

第二章平面向量单元综合测试卷(带答案新人教A版必修4 )

第二章平面向量单元综合测试卷(带答案新人教A版必修4 )第二章平面向量单元综合测试卷(带答案新人教A版必修4 ) (120分钟 150分) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(2013•三明高一检测)化简 - + - 得( ) A. B. C. D.0 2.已知a,b都是单位向量,则下列结论正确的是( ) A.a•b=1 B.a2=b2C.a∥b a=bD.a•b=0 3.已知A,B,C为平面上不共线的三点,若向量 =(1,1),n=(1,-1),且n• =2,则n• 等于( ) A.-2 B.2 C.0 D.2或-2 4.点C在线段AB上,且 = ,若 =λ,则λ等于( ) A. B. C.- D.- 5.若a=(1,2),b=(-3,0),(2a+b)∥(a-mb),则m= ( ) A.- B. C.2 D.-2 6.(2013•牡丹江高一检测)已知a+b=(1,2),c=(-3,-4),且b⊥c,则a在c方向上的投影是( ) A. B.-11C.-D.11 7.(2013•兰州高一检测)若|a|=1,|b|=2,c=a+b,且c⊥a,则向量a与b的夹角为( ) A.30° B.60° C.120° D.150° 8.已知△ABC满足2= • + • + • ,则△ABC是( ) A.等边三角形B.锐角三角形 C.直角三角形 D.钝角三角形9.(2013•西城高一检测)在矩形ABCD中,AB= ,BC=1,E是CD上一点,且• =1,则• 的值为( ) A.3 B.2 C. D. 10.已知向量a=(1,2),b=(2,-3).若向量c满足(c+a)∥b,c⊥(a+b),则c= ( ) A. B. C. D.11.(2013•六安高一检测)△ABC中,AB边上的高为CD,若 =a, =b,a•b=0,|a|=1,|b|=2,则 = ( ) A. a- b B. a- b C. a- b D. a- b 12.在△ABC所在平面内有一点P,如果 + + = ,则△PAB与△ABC 的面积之比是( ) A. B. C. D. 二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上) 13.已知a=(2,4),b=(-1,-3),则|3a+2b|= . 14.已知向量a=(1, ),b=(-2,2 ),则a与b的夹角是. 15.(2013•江西高考)设e1,e2为单位向量.且e1,e2的夹角为,若a=e1+3e2,b=2e1,则向量a在b 方向上的射影为. 16.(2013•武汉高一检测)下列命题中:①a∥b 存在唯一的实数λ∈R,使得b=λa;②e为单位向量,且a∥e,则a=±|a|e;③|a•a•a|=|a|3;④a与b共线,b与c共线,则a与c共线;⑤若a•b=b•c且b≠0,则a=c. 其中正确命题的序号是. 三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤) 17.(10分)已知梯形ABCD中,AB∥CD,∠CDA=∠DAB=90°,CD=DA= AB. 求证:AC⊥BC. 18.(12分)(2013•无锡高一检测)设 =(2,-1), =(3,0), =(m,3). (1)当m=8时,将用和表示. (2)若A,B,C三点能构成三角形,求实数m应满足的条件. 19.(12分)在边长为1的等边三角形ABC中,设=2 , =3 . (1)用向量,作为基底表示向量 . (2)求• . 20.(12分)(2013•唐山高一检测)已知a,b,c是同一平面内的三个向量,其中a=(1,2). (1)若|b|=2 ,且a∥b,求b的坐标. (2)若|c|= ,且2a+c与4a-3c垂直,求a与c的夹角θ. 21.(12分)(能力挑战题)已知a=(1,cosx),b=(,sinx),x∈(0,π). (1)若a∥b,求的值. (2)若a⊥b,求sinx-cosx的值. 22.(12分)(能力挑战题)已知向量a,b满足|a|=|b|=1, |ka+b|= |a-kb|(k>0,k∈R). (1)求a•b 关于k的解析式f(k). (2)若a∥b,求实数k的值. (3)求向量a与b夹角的最大值.答案解析 1.【解析】选D. - + - = + - = - =0. 2.【解析】选B.因为a,b都是单位向量,所以|a|=|b|=1,所以|a|2=|b|2,即a2=b2.3.【解析】选B.因为n• =n•( - ) =n• -n• ,又n• =(1,-1)•(1,1)=1-1=0,所以n• =n• =2.4.【解析】选C.由 = 知,| |∶| |=2∶3,且方向相反(如图所示),所以 =- ,所以λ=- .5.【解析】选A.因为a=(1,2),b=(-3,0),所以2a+b=(-1,4),a-mb=(1+3m,2),又因为(2a+b)∥(a-mb),所以(-1)×2=4(1+3m),解得m=- . 【拓展提升】证明共线(或平行)问题的主要依据 (1)对于向量a,b,若存在实数λ,使得b=λa,则向量a与b共线(平行). (2)a=(x1,y1),b=(x2,y2),若x1y2-x2y1=0,则向量a∥b. (3)对于向量a,b,若|a•b|=|a|•|b|,则a与b共线. 向量平行的等价条件有两种形式,其一是共线定理,其二是共线定理的坐标形式.其中,共线定理的坐标形式更具有普遍性,不必考虑向量是否为零和引入参数的存在性及唯一性. 6.【解析】选C.a•c=[(a+b)-b]•c=(a+b)•c-b•c. 因为a+b=(1,2),c=(-3,-4),且b⊥c,所以a•c=(a+b)•c =(1,2)•(-3,-4)=1×(-3)+2×(-4)=-11,所以a在c方向上的投影是 = =- . 7.【解析】选C.因为c=a+b,c⊥a,所以c•a=(a+b)•a=a2+b•a=0,所以a•b=-a2=-|a|2=-12=-1,设向量a与b的夹角为θ,则cosθ= = =- ,又0°≤θ≤180°,所以θ=120°. 8.【解析】选C.因为= • + • + • ,所以2= • + • + • ,所以•( - - )= • ,所以•( - )= • ,所以• =0,所以⊥ ,所以△ABC是直角三角形. 【变式备选】在四边形ABCD中, =a+2b, =-4a-b, =-5a-3b,其中a,b不共线,则四边形ABCD为( ) A.平行四边形 B.矩形 C.梯形 D.菱形【解析】选C.因为 = + + =-8a-2b=2 ,所以四边形ABCD为梯形. 9.【解析】选B.如图所示,以A为原点,AB所在直线为x轴建立平面直角坐标系. A(0,0),B( ,0),C( ,1),设点E 坐标为(x,1),则 =(x,1), =( ,0),所以• =(x,1)•( ,0)= x=1,x= ,所以• = •( ,1)= × +1×1=2. 10.【解析】选D.设c=(x,y),则c+a=(x+1,y+2), a+b=(1,2)+(2,-3)= ,因为(c+a)∥b,c⊥(a+b),所以即解得所以c= . 【误区警示】解答本题易混淆向量平行和垂直的坐标表示,导致计算错误. 11.【解析】选D.因为a•b=0,所以⊥ ,所以AB= = ,又因为CD⊥AB,所以△ACD∽△ABC,所以 = ,所以AD= = = ,所以 = = = (a-b)= a- b. 12.【解题指南】先对 + + = 进行变形,分析点P所在的位置,然后结合三角形面积公式分析△PAB与△ABC的面积的关系. 【解析】选A.因为 + + = = - ,所以2 + =0, =-2 =2 ,所以点P是线段AC的三等分点(如图所示). 所以△PAB与△ABC的面积之比是 . 13.【解析】因为3a+2b=3(2,4)+2(-1,-3) =(6,12)+(-2,-6)=(4,6),所以|3a+2b|= =2 . 答案:2 14.【解析】设a与b的夹角为θ,a•b=(1,)•(-2,2 )=1×(-2)+ ×2 =4, |a|= =2,|b|= =4,所以cosθ= = = ,又0°≤θ≤180°,所以θ=60°. 答案:60° 15.【解析】设a,b的夹角为θ,则向量a在b方向上的射影为|a|cosθ=|a| = ,而a•b=(e1+3e2)•2e1=2+6cos =5,|b|=2,所以所求射影为 . 答案: 16.【解析】①错误.a∥b且a≠0 存在唯一的实数λ∈R,使得b=λa;②正确.e为单位向量,且a∥e,则a=±|a|e;③正确. = = = ;④错误.当b=0时,a与b共线,b与c共线,则a与c不一定共线;⑤错误.只要a,c在b方向上的投影相等,就有a•b=b•c. 答案:②③17.【证明】以A为原点,AB所在直线为x轴,建立直角坐标系如图,设AD=1,则A(0,0),B(2,0), C(1,1),D(0,1),所以 =(-1,1), =(1,1),• =-1×1+1×1=0,所以AC⊥BC. 18.【解析】(1)当m=8时, =(8,3),设 =x +y ,则 (8,3)=x(2,-1)+y(3,0)=(2x+3y,-x),所以所以所以 =-3 + . (2)因为A,B,C三点能构成三角形,所以,不共线, =(1,1), =(m-2,4),所以1×4-1×(m-2)≠0,所以m≠6. 19.【解析】(1) = + =- + . (2) • = •(- + ) = •(- )+ • =| |•| |cos150°+ | |•| |cos30° = ×1× + × ×1× =- . 20.【解析】(1)设b=(x,y),因为a∥b,所以y=2x;① 又因为|b|=2 ,所以x2+y2=20;② 由①②联立,解得b=(2,4)或b=(-2,-4). (2)由已知(2a+c)⊥(4a-3c),(2a+c)•(4a-3c)=8a2-3c2-2a•c=0,又|a|= ,|c|= ,解得a•c=5,所以cosθ= = ,θ∈[0,π],所以a与c的夹角θ= . 21.【解题指南】一方面要正确利用向量平行与垂直的坐标表示,另一方面要注意同角三角函数关系的应用. 【解析】(1)因为a∥b,所以sinx= cosx⇒tanx= ,所以 = = =-2. (2)因为a⊥b,所以 +sinxcosx=0⇒sinxcosx=- ,所以(sinx-cosx)2=1-2sinxcosx= . 又因为x∈(0,π)且sinxcosx<0,所以x∈ ⇒sinx-cosx>0,所以sinx-cosx= . 22.【解题指南】(1)先利用a2=|a|2,将已知条件两边平方,然后根据数量积定义和运算律化简、变形求f . (2)先根据k>0和a∥b,判断a与b同向,再利用数量积的定义列方程求k的值. (3)先用求向量a与b夹角的公式表示出夹角的余弦值,再利用配方法求余弦值的最小值,最后根据余弦函数的单调性求夹角的最大值. 【解析】(1)由已知|ka+b|= |a-kb| 有|ka+b|2=( |a-kb|)2,k2a2+2ka•b+b2=3a2-6ka•b+3k2b2. 又因为|a|=|b|=1,得8ka•b=2k2+2,所以a•b= 即f(k)= (k>0). (2)因为a∥b,k>0,所以a•b= >0,则a与b同向. 因为|a|=|b|=1,所以a•b=1,即 =1,整理得k2-4k+1=0,所以k=2± ,所以当k=2± 时,a∥b. (3)设a,b的夹角为θ,则cosθ= =a•b = = = .当 = ,即k=1时,cosθ取最小值,又0≤θ≤π,所以θ= . 即向量a与b夹角的最大值为 .。

(完整版)平面向量单元测试题及答案

(完整版)平面向量单元测试题及答案

平面向量单元测试题2一,选择题:1,以下说法中错误的选项是()A .零向量没有方向B.零向量与任何向量平行C.零向量的长度为零D.零向量的方向是随意的2 ,以下命题正确的选项是()A. 若a、b都是单位向量,则 a = bB.若 AB = DC ,则A、B、C、D四点组成平行四边形C.若两向量 a 、b相等,则它们是始点、终点都同样的向量D.AB 与 BA 是两平行向量3,以下命题正确的选项是()A 、若a∥b,且b∥c,则a∥c。

B、两个有共同起点且相等的向量,其终点可能不一样。

C、向量AB的长度与向量BA 的长度相等,D 、若非零向量AB 与 CD 是共线向量,则 A 、 B、 C、 D 四点共线。

4,已知向量a m,1,若, a =2,则m()A .1 B.3 C. 1 D.35,若a =(x1,y1), b=( x2, y2), a ∥ b,则有(),且A ,x1y2+x2y1=0,B ,x1y2― x2 y1=0,C,x1x2+y1y2=0,D,x1x2―y1y2=0,6,若a =(x1,y1),b =(x2,y2),,且 a ⊥ b ,则有()A ,x1y2+x2y1=0,B ,x1y2― x2 y1=0,C,x1x2+y1y2=0,D,x1x2―y1y2=0,7,在ABC 中,若BA BC AC ,则ABC 必定是()1A .钝角三角形B.锐角三角形C.直角三角形 D .不可以确立r r r uur r r r r r r r r8,已知向量a, b, c知足| a |1,| b |2, c a b, c a ,则 a与b 的夹角等于()A .1200B600C300D90o二,填空题:( 5 分× 4=20 分)r rb =1, 3a2b =3,则3a b9。

已知向量a、b知足a ==r r r r10,已知向量a=( 4, 2),向量b=( x ,3),且a//b ,则x=11, . 已知三点 A(1,0),B(0,1),C(2,5),求 cos ∠ BAC =12, .把函数y x24x7 的图像按向量 a 经过一次平移此后获得y x2的图像,则平移向量 a 是(用坐标表示)三,解答题:( 10 分×6 = 60分)13,设P1(4,3), P2 (2,6), 且P在 P1 P2的延伸线上,使P1P 2 PP 2 ,,则求点P 的坐标14,已知两向量a (1r3,,1 3), ,b ( 1, 1), 求a与 b 所成角的大小,15,已知向量 a =(6,2),b=(-3,k),当k为什么值时,有1),a ∥b?2),a ⊥b?3a与 b 所成角θ是钝角?(((),216,设点 A ( 2, 2), B( 5, 4),O 为原点,点P知足OP = OA + t AB,( t 为实数);( 1),当点 P 在 x 轴上时,务实数t 的值;( 2),四边形 OABP 可否是平行四边形?假如,务实数t 的值;若否,说明原因,17,已知向量OA =(3,-4), OB =(6,-3), OC =(5-m,-3-m),( 1)若点 A 、 B 、C 能组成三角形,务实数 m 应知足的条件;( 2)若△ ABC 为直角三角形,且∠ A 为直角,务实数 m 的值.318,已知向量m(1,1), 向量 n 与向量m 的夹角为3, 且 m n1 . 4( 1)求向量n;(2)设向量a(1,0),向量 b(cos x,, sin x) ,此中x R ,若 n a0 ,试求| n b |的取值范围.平面向量单元测试题2答案:一,选择题:ADCD BCCA二,填空题:9 , 23;10,6;11,21312 ,(2, 3) 13三,解答题:13,解法一:设分点P(x,y),∵P1P =―2 PP2,=―2∴(x ―4,y+3)= ―2( ―2― x,6 ― y),x― 4=2x+4, y+3=2y ―12, ∴ x=―8,y=15, ∴ P(―8,15 )4解法二:设分点 P (x,y ), ∵ P 1P =―2 PP 2 , =―2∴ x=4 2( 2)=―8, 1 2y=3 2 6 =15,∴ P(―8,15 )1 2解法三:设分点 P (x,y ), ∵ P 1 P2 PP 2 ,∴ ―2=4x , x= ― 8,26= 3y , y=15,∴ P(―8,15 )214,解:a=2 2 ,b= 2<a ,b >=― 1, ∴< a , b > = 1200,, cos215 ,解:( 1), k= - 1;(2), k=9;(3),k < 9, k ≠ -116 ,解:( 1),设点 P ( x , 0),AB =(3,2),∵ OP = OA + t AB , ∴ (x,0)=(2,2)+t(3,2),则由 , x 2 3t∴ 即x10 2 2t, t1,(2),设点 P ( x,y ),假定四边形 OABP 是平行四边形,则有 OA ∥BP ,OP ∥ABy=x2y=3x―1,∴ 即x2 ①,y3又由 OP =OA + t AB ,(x,y)=(2,2)+ t(3,2),得 ∴ 即x3 2t ②,y2 2tt 43, 矛盾,∴假定是错误的,由①代入②得:t52∴四边形 OABP 不是平行四边形。

平面向量单元测试卷及答案汇编

平面向量单元测试卷及答案汇编

《平面向量》单元测试卷一、选择题:(本题共10小题,每小题4分,共40分) 1.下列命题中的假命题是( ) A 、→-→-BA AB 与的长度相等; B 、零向量与任何向量都共线; C 、只有零向量的模等于零;D 、共线的单位向量都相等。

2.;;④;③∥;②是单位向量;①是任一非零向量,若1|b |0|a |b a |b ||a |b a ±=>>→→→→→→→→),其中正确的有(⑤→→→=b a a|| A 、①④⑤B 、③C 、①②③⑤D 、②③⑤3.首尾相接能,,;命题乙:把命题甲:是任意三个平面向量,,,设→→→→→→→→→→=++c b a 0c b a c b a 围成一个三角形。

则命题甲是命题乙的( ) A 、充分不必要条件 B 、必要不充分条件C 、充要条件D 、非充分也非必要条件 4.)的是(下列四式中不能化简为→-AD A 、→-→-→-++BC CD AB )(B 、)()(→-→-→-→-+++CD BC MB AM C 、)()(→-→-→-→--++CB AD AB ACD 、→-→-→-+-CD OA OC5.),则(),(,),(设21b 42a -=-=→→A 、共线且方向相反与→→b a B 、共线且方向相同与→→b a C 、不平行与→→b aD 、是相反向量与→→b a6.如图1,△ABC 中,D 、E 、F 分别是边BC 、CA 和AB 的中点,G 是△ABC 中的重心,则下列各等式中不成立的是( )A 、→-→-=BE 32BG B 、→-→-=AG 21DG C 、→-→--=FG 2CGD 、→-→-→-=+BC 21FC 32DA 31A B C D EFG ͼ17.)(,则锐角∥,且),(,),(设=-+=--=→→→→θθθb a 41cos 1b cos 12aA 、4πB 、6πC 、3πD 、36ππ或 8.)所成的比是(分,则所成比为分若→-→--CB A 3AB C A 、23-B 、3C 、32-D 、-29.)的范围是(的夹角与,则若θ→→→→<⋅b a 0b a A 、)20[π,B 、)2[ππ,C 、)2(ππ,D 、]2(ππ,10.→→→→→→→→b a 4a b 3b a b a 的模与,则方向的投影为在,方向的投影为在都是非零向量,若与设 的模之比值为( ) A 、43B 、34 C 、73 D 、74二、填空题(本题共4小题,每题5分,共20分) 11.。

平面向量单元测试-2023届高考数学一轮复习(含答案)

平面向量单元测试-2023届高考数学一轮复习(含答案)

平面向量单元测试-2023届高考数学一轮复习(含答案)《平面向量》单元测试考试时间:120分钟 满分:150分一、单选题:本大题共8小题,每个小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知向量(),3a k =,()1,4b =,()2,1c =,且()23a b c -⊥,则实数k 的值为( )A .32-B .152C .32D .32.在平行四边形ABCD 中,E 是边CD 的中点,AE 与BD 交于点F .若AB a =,AD b =,则AF =( )A .1344a b +B .2133ab C .3144a b +D .1233a b +3.如图,ABC 中,3BD DC =,AE mAB =,AF nAC =,0m >,0n >,则13m n+=( )A .3B .4C .43D .344.如图,在平行四边形ABCD 中,点E 在线段BD 上,且EB mDE =(m R ∈),若AC AE AD λμ=+(λ,μ∈R )且20λμ+=,则m =( )A .13B .3C .14D .45.已知平面向量,,a b c 满足1a =,2b =,a 与b 的夹角为45,当1c b -=时,a c ⋅的最大值为( )A .1B .2C .3D .46.如图,在平行四边形ABCD 中,点E 是CD 的中点,点F 为线段BD 上的一动点,若AF x AE yDC =+,且0x m >>,0y >,则()my x m -的最大值为( )A .8243B .4243C .381D .4817.已知ABC 中,()min 2,||3R AB AC BQ QA AB BC λλ===+=∈,()1221,33AP AB AC μμμ=+-≤≤,则PQ 的最小值为( )A .3B .5CD 8.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,()(sin sin )sin sin a c A C b B a B +-+=,24b a +=,32CA CD CB =-,则线段CD 长度的最小值为( )A .2B C .3 D 二、多选题:本大题共4小题,每个小题5分,共20分.在每小题给出的选项中,只有一项或者多项是符合题目要求的.9.已知平面向量()1,0a =,()1,23b =,则下列说法正确的是( ) A .4a b +=B .()2a b a +⋅=C .向量a b +与a 的夹角为30︒D .向量a b +在a 上的投影向量为2a10.已知向量()3,1a =,()2,3b =,()1,2c =-,若()()ma c a nb ++∥(m ,n ∈R ),则(),m n 可能是( ) A .()2,1B .()0,1-C .()3,2D .11,2⎛⎫-- ⎪⎝⎭11.已知向量()()2,1,cos ,sin (0π)a b θθθ==<<,则下列命题正确的是( ) A .·a bB .存在θ,使得=+a b a b +C .若a b ⊥,则tan θ=D .若b 在a 上的投影向量为,则向量a 与b 的夹角为2π3 12.下列说法正确的是( )A .已知向量()2,3a =-,(),21b x x =-,若a ∥b ,则2x =B .若向量a ,b 共线,则a b a b +=+C .已知正方形ABCD 的边长为1,若点M 满足12DM MC =,则43AM AC ⋅= D .若O 是ABC 的外心,3AB =,5AC =,则OA BC ⋅的值为8-三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.已知向量a ,b 满足2a =,1b =,()5a a b ⋅+=,则cos ,a b =____________. 14.设向量,a b 的夹角的余弦值为13-,且|2||3|6a b ==,则|2|a b +=___________. 15.在ABC 中,点D 在边BC 上,且2BD DC =,若AD AC AB λμ=+,则λμ=____16.记ABC 的内角,,A B C 的对边分别为,,a b c ,已知ABC 的面积为S ,且2||2AC AB AC S -⋅=,则C =______.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知向量,a b 满足||2,||1a b ==,且()(2)9a b a b -⋅-=. (1)求|3|a b +;(2)记向量b 与向量3a b +的夹角为θ,求cos θ.18.如图,在矩形ABCD 中,点E 在边AB 上,且2AE EB =,M 是线段CE 上一动点.(1)若M 是线段CE 的中点,AM mAB nAD =+,求m n +的值; (2)若9AB =,43CA CE ⋅=,求解AD .19.如图,已知正方形ABCD 的边长为2,过中心O 的直线l 与两边AB ,CD 分别交于点M ,N .(1)若Q 是BC 的中点,求QM QN ⋅的取值范围;(2)若P 是平面上一点,且满足2(1)OP OB OC λλ=+-,求PM PN ⋅的最小值.20.已知向量()cos ,sin OA a αα==,()2cos ,2sin OB b ββ==,()0,OC c d ==(0d >),其中O 为坐标原点,且π0π2βα<<<<. (1)若()a b a ⊥-,求βα-的值;(2)若向量a 在向量c b c d ⋅=,求AOB 的面积,21.已知函数()f x a b =⋅,其中()(cos ,sin2,2cos ,R a x x b x x ==∈. (1)求函数()y f x =的单调递减区间;(2)在ABC 中,角,,A B C 所对的边分别为(),,,2,a b c f A a =且3sin 2sin B C =,求ABC 的面积.22.已知向量(1,3=-m ,()sin ,cos n x x =,函数()()f x m n n =+⋅,在ABC 中,内角,,A B C 的对边分别为,,a b c ,且()1f C =. (1)求C 的大小;(2)若ABC D 在边AC 上,且12CD DA =,求BD 的最小值.《平面向量》课时作业参考解析1.D【解析】由已知得,()()()232,331,423,6a b k k -=-=--. 又()23a b c -⊥,所以()230a b c -⋅=,即()()()23,62,12236k k --⋅=--4120k =-=.解得,3k =.故选:D. 2.D【解析】12AE AD DE AD AB =+=+.设AF AE λ=()01λ<<,则1122BF AF AB AD AB AB AD AB λλλ⎛⎫⎛⎫=-=+-=+- ⎪ ⎪⎝⎭⎝⎭,又BD AD AB =-,且,,B F D 三点共线,则,BF BD 共线,即R μ∃∈,使得BF BD μ=,即12AD AB AD AB λλμμ⎛⎫+-=- ⎪⎝⎭,又,AB AD 不共线,则有12λμλμ=⎧⎪⎨-=-⎪⎩,解得2323λμ⎧=⎪⎪⎨⎪=⎪⎩,所以,22112123323333AF AE AD AB AB AD a b ⎛⎫==+=+=+ ⎪⎝⎭. 故选:D.3.B【解析】由题意得:()33134444AD AB BD AB BC AB AC AB AB AC =+=+=+-=+, AE mAB =,AF nAC =,1344AD AE AF m n∴=+, ,,E D F 三点共线,13144m n ∴+=,即134m n+=.故选:B. 4.B【解析】方法1:在平行四边形ABCD 中,因为EB =mDE ,所以()AB AE m AE AD -=-,所以11AE AB m =++1m AD m+,又∵AB DC AC AD ==-, ∴()111mAE AC AD AD m m=-+++,∴()()11AC m AE m AD =++-, 又∵AC AE AD λμ=+,∴1m λ=+,1m μ=-,(平面向量基本定理的应用) 又∵20λμ+=,∴()1210m m ++-=,解得3m =,故选:B.方法2:如图,以A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,则()0,0A ,设(),0B a ,(),D b c ,∵AB DC = 则 (),C a b c +,又∵EB mDE =,设(),E x y ,则()()11mb a x a x m x b m y m y c mc y m ⎧+⎧=⎪⎪-=-⎪⎪+⇒⎨⎨-=-⎪⎪=⎪⎪+⎩⎩即:,11mb a mc E m m +⎛⎫⎪++⎝⎭,∴,11mb a mc AE m m +⎛⎫= ⎪++⎝⎭,(),AC a b c =+,(),AD b c =, 又∵AC AE AD λμ=+,20λμ+=,∴2AC AE AD μμ=-+ ∴()(),=2,,11mb a mc a b c b c m m μμ+⎛⎫+-+⎪++⎝⎭∴2()121a bm a b b m mc c c m μμμμ-+⎧+=+⎪⎪+⎨-⎪=+⎪+⎩①②由②得1=1m mμ+-,将其代入①得3m =,故选:B. 5.B【解析】1a =,2b =,a 与b 的夹角为45,∴可设()1,0a =,()1,1b =,设(),c x y =,由1c b -=得:()()22111x y -+-=,则点C 轨迹是以()1,1为圆心,1为半径的圆,a c x ⋅=,∴当2x =时,a c ⋅取得最大值2.故选:B.6.B【解析】由题意可得12AE AD DE AB AD =+=+,所以,1122x AB AD y AB A x A F xAE x yDC y B AD ⎛⎫⎛⎫=++=++ ⎪= ⎪⎝⎭⎝⎭+,因为F 为线段BD 上的点,所以,存在()0,1λ∈,使得DF DB λ=, 所以,()AF AD AB AD λ-=-,则()1AF AB AD λλ=+-,所以,121x y x λλ⎧+=⎪⎨⎪=-⎩,则312x y +=,因为03102x y x >⎧⎪⎨=->⎪⎩,则203x <<, 所以,()()()3321223my x m m x x m m x m x ⎛⎫⎛⎫-=--=-- ⎪ ⎪⎝⎭⎝⎭223232323448383839m x m x m m m m m ⎛⎫⎛⎫⎛⎫≤⋅-+-=-=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 令()32344839f m m m m ⎛⎫=-+ ⎪⎝⎭,其中203m <<, 则()238432233839833f m m m m m ⎛⎫⎛⎫⎛⎫'=-+=-- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,当209m <<时,()0f m '>,此时函数()f m 单调递增, 当2293m <<时,()0f m '<,此时函数()f m 单调递减,所以,()max 249243f m f ⎛⎫== ⎪⎝⎭,当且仅当29m =,49x =时,()my x m -取最大值4243.故选:B. 7.C【解析】如图,设点O 为BC 上的一点,令BO BC λ=,即AB BC AB BO AO λ==++,当AO BC ⊥时AO 取最小值3,此时根据勾股定理可得BO OC ==ABC 为等边三角形,当点O 为BC 的中点时建立如图直角坐标系:()0,3A ,3,0B,)C,()3AB =--,()3,3AC =-()226AB μμ=--,())()()131,31AC μμμ-=---()()213,33AP AB AC μμμ=+-=---,故),3Pμ-因为2BQ QA =,所以2Q ⎛⎫ ⎪ ⎪⎝⎭,则32PQ μ⎛⎫=+ ⎪ ⎪⎝⎭3PQ ⎛== 因为1233μ≤≤,所以当13μ=时PQ 取最小值,min 23PQ =:C 8.D【解析】由()(sin sin )sin sin a c A C b B a B +-+=及正弦定理, 得2()()a c a c b ab +-+=,即222a b c ab +-=,由余弦定理得,2221cos 22a b c C ab +-==,∵()0,C π∈,∴3C π=. 由32CA CD CB =-,1233CD CA CB =+,两边平方,得22144999CD CA CA CB CB =+⋅+,即222144cos 999CD b a ab C =++22142999b a ab =++()212299b a ab -=+()221122992b a b a +⎛+-⎫≥ ⎪⎝⎭()21212b a =+, 当且仅当224b a b a =⎧⎨+=⎩,即12a b =⎧⎨=⎩时取等号,即2214(2)123CD b a ≥+=,∴线段CD D . 9.ABD【解析】由题意得((11,0a b +=++=, 所以(224a b +=+,故A 正确;()21202a b a +⋅=⨯+=,故B 正确;()21cos ,142a ab a a b a a b⋅++===⨯+, 0,πa a b ≤+≤,∴π,3a ab +=,故C 错误;向量a b +在a 上的投影向量为()2a a baa aa⋅+⋅=,故D 正确,故选:ABD . 10.ABD【解析】由题意得()32,13a nb n n +=++,()31,2ma c m m +=-+, 由()()ma c a nb ++∥可得()()()()3221331n m n m ++=+-,整理得1mn n =+. 对于选项A ,2111⨯=+,故选项A 正确; 对于选项B ,()0111⨯-=-+,故选项B 正确; 对于选项C ,3221⨯≠+,故选项C 错误; 对于选项D ,()111122⎛⎫-⨯-=-+ ⎪⎝⎭,故选项D 正确,故选:ABD . 11.ABD【解析】对于A ,()2cos sin a b θθθϕ⋅=++,其中tan 0,2πϕϕ⎛⎫=∈ ⎪⎝⎭,所以当=2πθϕ+,a b ⋅A 正确.对于B ,因为0πθ<<,所以当a b λ=,且0λ>时,a b a b +=+,即θ使得cos θ=,sin θ=时,符合题意,所以B 正确. 对于C ,若a b ⊥,则2cos sin 0a b θθ⋅=+=,此时tan θ=C 错误. 对于D ,b 在a 上的投影向量为cos ,3cos ,63a ba b a b a a a⋅==-, 所以1cos ,2a b =-,所以a 和b 的夹角为2π3,D 正确. 故选:ABD. 12.CD【解析】对于A ,因为()2,3a =-,(),21b x x =-,a ∥b , 所以2(21)3x x --=,解得27x =,故错误;对于B ,因为向量a ,b 共线,当向量a ,b 同向时,则有a b a b +=+;当向量a ,b 反向时,则有||a b a b +=-,故错误;对于C ,因为12DM MC =,所以M 为CD 的三等分点中靠近D 的点, 所以13AM AD DM AD DC =+=+,AC AD DC =+,所以2211414()()||||1033333AM AC AD DC AD DC AD DC DC AD ⋅=+⋅+=++⋅=++=,故正确;对于D ,因为O 是ABC 的外心,所以||||||OA OB OC R ===(R 为ABC 的外接圆半径),又因为OB OA AB -=,所以22()||OB OA AB -=,即2229R OA OB -⋅=,① 同理可得22225R OA OC -⋅=,②由①-②可得:8OA OC OA OB ⋅-⋅=-,即有()8OA OC OB OA BC ⋅-=⋅=-,故正确. 故选:CD.13.【解析】∵()242cos ,5a a b a a b a b ⋅+=+⋅=+=,∴1cos ,2a b =14.【解析】由题意|2||3|6a b ==,所以||3,||2,a b ==所以1cos 232,3a b a b θ⎛⎫⋅=⋅=⨯⨯-=- ⎪⎝⎭所以2|2|(2)a b ab +=+2244a a b b =+⋅+==15.【解析】由2BD DC =,得23BD BC =, 则在ABC 中,()22123333AD AB BD AB BC AB AC AB AB AC =+=+=+-=+, 因AD λAC μAB =+,故2313λμ⎧=⎪⎪⎨⎪=⎪⎩,因此2λμ=. 16.【解析】22||cos sin 222AC AB AC b bc A bc AS -⋅-===,则()cos sin b c A A =+,由正弦定理得()()()sin cos sin sin sin πsin sin cos cos sin C A A B A C A C A C A C ⎡⎤+==-+=+=+⎣⎦,故 ()sin cos sin 0C C A -=,∵sin 0A ≠,∴πsin cos sin 04C C C ⎛⎫-=-= ⎪⎝⎭,∵()0,πC ∈,∴π4C =.17.【解析】(1)因为()(2)9a b a b -⋅-=,所以22329a a b b -⋅+=. 因为向量,a b 满足||2,||1a b ==,所以2223219a b -⋅+⨯=,所以1a b ⋅=-.所以()2222|3|3692a b a ba ab b +=+=+⋅+=+(2)因为()231323a b b b a b ⋅+=-+⋅==+,所以()32cos 173b a bb a bθ⋅+==⨯⨯+ 18.【解析】(1)因为点E 在边AB 上,且2AE EB =,所以23AE AB =, 因为M 是线段CE 的中点,所以1()2AM AC AE =+112()223AB AD AB =++⨯5162AB AD =+, 因为AM mAB nAD =+,,AB AD 不共线,所以51,62m n ==, 所以514623m n +=+=;(2)由题意可得CA CD CB AB AD =+=--,13CE CB BE AD AB =+=--, 因为43CA CE ⋅=,所以1()()433AB AD AD AB --⋅--=,所以1()()433AB AD AD AB +⋅+=,所以22144333AD AB AB AD ++⋅=,因为9AB =,0AB AD ⋅=,所以2219433AD +⨯=,得216AD =,所以4AD =. 19.【解析】(1)因为直线l 过中心O 且与两边AB 、CD 分别交于点M 、N . 所以O 为MN 的中点,所以OM ON =-, 所以()()QM QN QO OM QO ON ⋅=+⋅+22QO OM =-.因为Q 是BC 的中点,所以||1QO =,1||2OM ≤≤2210QO OM -≤-≤, 即的QM QN ⋅取值范围为[1,0]-;(2)令2OT OP =,则 2(1)OT OP OB OC λλ==+-,∴OT OB OC OC λλ=+-,即:OT OC OB OC λλ-=-,∴CT CB λ= ∴点T 在BC 上,又因为O 为MN 的中点,所以||1OT ≥,从而1||2OP ≥,()()PM PN PO OM PO ON ⋅=+⋅+22PO OM =-,因为1||2OM ≤≤,所以2217244PM PN PO OM ⋅=-≥-=-, 即PM PN ⋅的最小值为74-.20.【解析】(1)由题知(2cos cos ,2sin sin )b a βαβα-=--,因为()a b a ⊥-, 所以()cos (2cos cos )sin (2sin sin )2cos()10a b a αβααβααβ⋅-=-+-=--= 即1cos()2αβ-=,因为π0π2βα<<<<,所以0αβπ<-<,所以3παβ-=,所以3πβα-=-(2)由题知sin a c d d c α⋅==sin α=, 因为2απ<<π,所以23πα=,又2sin b c d d β⋅==,即1sin 2β=,因为02βπ<<,所以6πβ=,易知,2AOB π∠=,1,2OA OB ==,所以112AOBSOA OB =⨯=21.【解析】(1)因为函数()f x a b =⋅,其中()(cos ,sin2,2cos ,R a x x b x x ==∈,所以,()22cos cos212sin 216f x a b x x x x x π⎛⎫=⋅==+=++ ⎪⎝⎭,由题意有()3222Z 262k x k k πππππ+≤+≤+∈,解得()2Z 63k x k k ππππ+≤≤+∈, 所以,函数()y f x =的单调递减区间为()2,63k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ; (2)结合(1)得()12sin 212,sin 2662f A A A ππ⎛⎫⎛⎫=++=+= ⎪ ⎪⎝⎭⎝⎭,因为0A π<<,所以132666A πππ<+<,所以,5266A ππ+=,解得3A π=,因为3sin 2sin B C =,所以332,2b c c b ==,又在ABC 中,a =所以,由余弦定理得2222772cos34a b c bc b π==+-=,解得3,2c b ==,所以1232ABC S =⨯⨯=△.22【解析】(1)()1sin ,cos m n x x +=+,()()()22sin 1sin cos cos sin sin cos f x x x x x x x x x∴=++=++πsin 12sin 13x x x ⎛⎫=+=-+ ⎪⎝⎭,()π2sin 113f C C ⎛⎫∴=-+= ⎪⎝⎭,πsin 03C ⎛⎫∴-= ⎪⎝⎭,()0,πC ∈,ππ2π,333C ⎛⎫∴-∈- ⎪⎝⎭,π03C ∴-=,解得:π3C =.(2)1sin 2ABCSab C ===2ab ∴=;12CD DA =,13CD b ∴=, 在BCD △中,由余弦定理得:2222211112cos 3393BD a b a b C a b ab ⎛⎫=+-⋅=+- ⎪⎝⎭,2111223333BD a b ab ab ∴≥⋅-==(当且仅当13a b =,即a =,b 时取等号),BD ∴≥BD .。

高中数学必修四第二章《平面向量》单元测试题(含答案)

高中数学必修四第二章《平面向量》单元测试题(含答案)

高中数学必修四第二章单元测试题《平面向量》(时间:120分钟 满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量a 与b 的夹角是120︒,且5a =, 4b =,则 a b ⋅=( ).A. 20B. 10C. 10-D. 20-2.已知向量31,22BA ⎛⎫=⎪ ⎪⎝⎭, ()0,1BC =,则向量BA 与BC 夹角的大小为( ) A. π6 B. π4 C. π3 D. 2π33.已知向量()11a =-,, ()12b =-,,则()2a b a +⋅=( )A. 1-B. 0C. 1D. 24.已知向量,若,则实数m 的值为 ( ) A. 0 B. 2 C. D. 2或 5.如上图,向量1e , 2e , a 的起点与终点均在正方形网格的格点上,则向量a 用基底1e , 2e 表示为( )A. 1e +2eB. 21e -2eC. -21e +2eD. 21e +2e6.若三点()1,2A --、()0,1B -、()5,C a 共线,则a 的值为( )A. 4B. 4-C. 2D. 2-7.已知平面向量,a b 的夹角为60°,()1,3a =, 1b =,则a b +=( )A. 2B. 37 D. 48.已知向量a 与b 的夹角是120︒,且5a =, 4b =,则 a b ⋅=( ).A. 20B. 10C. 10-D. 20-9.已知向量()()()3,1,0,1,,3a b c k ==-=,若(2a b -)与c 互相垂直,则k 的值为 A. 1 B. 1- C. 3 D. 3-10.已知点()0,1A , ()1,2B , ()2,1C --, ()3,4D ,则向量AB 在CD 方向上的投影为( ) A. 322 B. 2 C. 322- D. 3152- 11.在矩形ABCD 中, 3AB =, 3BC =, 2BE EC =,点F 在边CD 上,若•3AB AF =,则•AE BF 的值为( )A. 0B. 833C. 4-D. 4 12.已知ABC ∆是边长为4的等边三角形, P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值为 ( )A. 3-B. 6-C. 2-D. 83-第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设a 与b 是两个不共线向量,且向量a b λ+与2a b -共线,则λ=__________.14.已知单位向量a , b 满足()1•232a ab -=,则向量a 与b 的夹角为__________. 15.在平行四边形ABCD 中, AC 与BD 交于点O , E 是线段OD 的中点, AE 的延长线与CD 交于点F . 若AC a =, BD b =,则AF 等于_______(用a , b 表示).16.已知正方形ABCD 的边长为1,点E 在线段AB 边上运动(包含线段端点),则DE CB ⋅的值为__________; DE DB ⋅的取值范围为__________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题10分)已知四点A (-3,1),B (-1,-2),C (2,0),D (23,4m m +)(1)求证: AB BC ⊥;(2) //AD BC ,求实数m 的值.18.(本小题12分)已知向量()1,2a =,()3,4b =-.(1)求a b +与a b -的夹角;(2)若()a ab λ⊥+,求实数λ的值.19.(本小题12分)已知是夹角为的两个单位向量,,.(1)求;(2)求与的夹角.20.(本小题12分)如图,在平行四边形中,,是上一点,且. (1)求实数的值;(2)记,,试用表示向量,,.21.(本小题12分)已知向量a 与b 的夹角为120︒, 2,3a b ==, 32,2m a b n a kb =-=+. (I )若m n ⊥,求实数k 的值; (II )是否存在实数k ,使得//m n ?说明理由.22.(本小题12分)已知点(1,0),(0,1)A B -,点(,)P x y 为直线1y x =-上的一个动点.(1)求证:APB ∠恒为锐角;(2)若四边形ABPQ 为菱形,求BQ AQ ⋅的值.高中数学必修四第二章单元测试题《平面向量》参考答案(时间:120分钟 满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量a 与b 的夹角是120︒,且5a =, 4b =,则 a b ⋅=( ).A. 20B. 10C. 10-D. 20- 【答案】C【解析】向量a 与b 的夹角是120︒,且5a =, 4b =,则a b a b ⋅=⨯ 1cos12054102⎛⎫︒=⨯⨯-=- ⎪⎝⎭. 故选:C .2.【2017届北京房山高三上期末】已知向量31,22BA ⎛⎫=⎪ ⎪⎝⎭, ()0,1BC =,则向量BA 与BC 夹角的大小为( )A. π6B. π4C. π3D. 2π3【答案】C3.【2018届四川省成都市郫都区高三上期中】已知向量()11a =-,, ()12b =-,,则()2a b a +⋅=( ) A. 1- B. 0 C. 1 D. 2【答案】C【解析】()()()21,01,11a b a +⋅=-=,故选:C.4.已知向量,若,则实数m 的值为 ( ) A. 0 B. 2 C.D. 2或 【答案】C 【解析】∵向量,且 ∴, ∴.选C. 5.如上图,向量1e , 2e , a 的起点与终点均在正方形网格的格点上,则向量a 用基底1e , 2e 表示为( )A. 1e +2eB. 21e -2eC. -21e +2eD. 21e +2e【答案】C6.若三点()1,2A --、()0,1B -、()5,C a 共线,则a 的值为( )A. 4B. 4-C. 2D. 2-【答案】A【解析】()1,2A --, ()()0,1,5B C a -,三点共线ABAC λ∴→=→即()()1162a λ=+,,()16{ 12a λλ==+ 16λ∴=, 4a = 故答案选A .7.【2018届全国名校大联考高三第二次联考】已知平面向量,a b 的夹角为60°,()1,3a =, 1b =,则a b +=( ) A. 2 B. 23 C. 7 D. 4 【答案】C 8.已知向量a 与b 的夹角是120︒,且5a =, 4b =,则 a b ⋅=( ).A. 20B. 10C. 10-D. 20-【答案】C【解析】向量a 与b 的夹角是120︒,且5a =, 4b =,则a b a b ⋅=⨯ 1cos12054102⎛⎫︒=⨯⨯-=- ⎪⎝⎭. 故选:C .9.【2018届福建省福安市一中上学期高三期中】已知向量()()()3,1,0,1,,3a b c k ==-=,若(2a b -)与c 互相垂直,则k 的值为A. 1B. 1-C. 3D. 3-【答案】D【解析】()23,3a b -=,因为(2a b -)与c 互相垂直,则()233303a b c k k -⋅=+=⇒=-,选D. 10.【2018届河南省中原名校高三第三次考评】已知点()0,1A , ()1,2B , ()2,1C --, ()3,4D ,则向量AB 在CD 方向上的投影为( )A. 322B. 2C. 322-D. 3152-【答案】B【解析】()()1,1.5,5AB CD ==则向量AB 在CD 方向上的投影为10cos ,252AB CDAB AB CD AB AB CD ⋅=⋅==故选B.11.【2018届黑龙江省齐齐哈尔地区八校高三期中联考】在矩形ABCD 中, 3AB =,3BC =, 2BE EC =,点F 在边CD 上,若•3AB AF =,则•AE BF 的值为( )A. 0B. 833 C. 4- D. 4【答案】C【解析】12.【2018届河南省漯河市高级中学高三上期中】已知ABC ∆是边长为4的等边三角形, P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值为 ( )A. 3-B. 6-C. 2-D. 83-【答案】B【解析】如图建立坐标系, (()()0,23,2,0,2,0A B C -,设(),P x y ,则()()(),23,2,,2,PA x y PB x y PC x y =--=---=--,()()()22,232,22243PA PB PC x y x y x y ∴⋅+=-⋅--=+-(222366x y ⎡⎤=+--≥-⎢⎥⎣⎦,∴最小值为6-,故选B.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设a 与b 是两个不共线向量,且向量a b λ+与2a b -共线,则λ=__________.【答案】12-【解析】由题意得()11:2:12λλ=-∴=- .14.【2018届河北省邢台市高三上学期第二次月考】已知单位向量a , b 满足()1•232a ab -=,则向量a 与b 的夹角为__________. 【答案】60°(或3π) 【解析】因为()1232a a b ⋅-=,化简得: 2123232a a b a b -⋅=-⋅=,即12a b ⋅=,所以1cos ,2a b a b a b⋅==⋅,又0,a b π≤≤,所以,3a b π=,故填3π. 15.【2018届福建省三明市第一中学高三上学期期中】在平行四边形ABCD 中, AC 与BD 交于点O ,E 是线段OD 的中点, AE 的延长线与CD 交于点F . 若AC a =, BD b =,则AF 等于_______(用a ,b 表示).【答案】2133a b + 【解析】∵AC a =, BD b =,∴11112222AD AC BD a b =+=+. ∵E 是OD 的中点,∴=,∴DF=AB .∴111111332266DF AB AC BD a b ⎛⎫==-=- ⎪⎝⎭, ∴111121226633AF AD DF a b a b a b =+=++-=+. 16.已知正方形ABCD 的边长为1,点E 在线段AB 边上运动(包含线段端点),则DE CB ⋅的值为__________; DE DB ⋅的取值范围为__________. 【答案】 1 []1,2【解析】如图,以D 为坐标原点,以DC , DA 分别为x , y 轴,建立平面直角坐标系, ()0,0D , ()0,1DE x , ()1,1B , ()0,1CB ,()1,0C , ()1,1DB , ()0,1E x , []00,1x ∈,∴1DE CB ⋅=, 01DE DB x ⋅=+,∵001x ≤≤,0112x ≤+≤,∴DE DB ⋅的取值范围为[]1,2,故答案为1, []1,2.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题10分)已知四点A (-3,1),B (-1,-2),C (2,0),D (23,4m m +) (1)求证: AB BC ⊥; (2) //AD BC ,求实数m 的值. 【答案】(1)见解析(2) 12-或1 【解析】试题分析:(1)分别根据向量的坐标运算得出AB BC ,算出AB BC ⋅(2)由向量的平行进行坐标运算即可. 试题解析:(1)依题意得, ()()2,3,3,2AB BC =-= 所以()23320AB BC ⋅=⨯+-⨯= 所以AB BC ⊥.18.(本小题12分)已知向量()1,2a =,()3,4b =-. (1)求a b +与a b -的夹角; (2)若()a ab λ⊥+,求实数λ的值. 【答案】(1)34π;(2)1-. 【解析】(1)因为()1,2a =,()3,4b =-,所以()2,6a b +=-,()4,2a b -=- 所以()()2,64,2202cos ,240204020a b a b -⋅--+-===-⨯⨯,由[],0,a b a b π+-∈,则3,4a b a b π+-=; (2)当()a ab λ⊥+时,()0a a b λ⋅+=,又()13,24a b λλλ+=-+,所以13480λλ-++=,解得:1λ=-.19.(本小题12分)已知是夹角为的两个单位向量,,.(1)求; (2)求与的夹角. 【答案】(1);(2)与的夹角为.【解析】试题分析:(1)向量点积的运算规律可得到再展开根据向量点积公式得最终结果;(2)同第一问,由向量点积公式展开=0.∵是夹角为的两个单位向量,∴,(1)(2) ,,∴,∴与的夹角为.20.(本小题12分)如图,在平行四边形中,,是上一点,且. (1)求实数的值;(2)记,,试用表示向量,,.【答案】(1);(2),,.【解析】试题分析:(1)根据平面向量共线定理得到,由系数和等于1,得到即。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平面向量》单元测试卷A (含答案)
一、选择题:(本题共10小题,每小题4分,共40分) 1.下列命题中的假命题是( )
A 、A
B BA -→
-→
与的长度相等; B 、零向量与任何向量都共线; C 、只有零向量的模等于零;
D 、共线的单位向量都相等。

2.||||a b a b a b →





>若是任一非零向量,是单位向量;①;②∥;
||0||1||
a
a b b a →
→→


>=±=③;④;⑤
,其中正确的有(

A 、①④⑤
B 、③
C 、①②③⑤
D 、②③⑤
3.0a b c a b c a b c →









++=设,,是任意三个平面向量,命题甲:;命题乙:把,,
首尾相接能围成一个三角形。

则命题甲是命题乙的( )
A 、充分不必要条件
B 、必要不充分条件
C 、充要条件
D 、非充分也非必要条件
4.AD -→
下列四式中不能化简为的是(

A 、A
B CD B
C -→
-→
-→
++()
B 、AM MB B
C C
D -→
-→
-→
-→
+++()()
C 、AC AB A
D CB -→
-→
-→
-→
++-()() D 、OC OA CD -→
-→
-→
-+
5.)
,则(
),(,),(设21b 42a -=-=→
→ A 、共线且方向相反与→
→b a
B 、共线且方向相同与→
→b a
C 、不平行与→

b a D 、是相反向量与→

b a
6.如图1,△ABC 中,D 、E 、F 分别是边BC 、CA 和AB 的中点,G 是△ABC 中的重心,则下列各等式中不成立的是( )
A 、→-→
-=BE 3
2BG B 、→-→
-=AG 2
1DG C 、→
-→--=FG 2CG D 、→
-→
-→
-=+BC 2
1FC 3
2DA 3
1
7.
)(,则锐角∥,且),(,),(设=-+=--=→→→→θθθb a 4
1
cos 1b cos 12a
A 、4
π
B 、
6
π
C 、3
π
D 、
3
6ππ或 8.)
所成的比是(
分,则所成比为分若→
-→--CB A 3AB C A 、2
3
- B 、3 C 、3
2- D 、-2
9.)
的范围是(
的夹角与,则若θ→
→→→<⋅b a 0b a A 、)2
0[π

B 、)2
[ππ

C 、)2
(ππ

D 、]2
(ππ

10.→
→→→→→→→b a 4a b 3b a b a 的模与,则方向的投影为在,方向的投影为在都是非零向量,若与设 的模之比值为( ) A 、4
3
B 、3
4
C 、7
3
D 、7
4
二、填空题(本题共4小题,每题5分,共20分)
图1
11.。

的取值范围是都是单位向量,则与若_________|b a |b a →
→→→-
12.。

表示和,则用中,△_________AD AC AB BC 3
1BD ABC ==
→-→-→-→
-→
- 13.,则,和,两点的坐标分别为、相等,且与,若,设)23()21(B A AB a )4y 3x 3x (a →
-→→--+=
x= 。

14.。

,则,是共线向量,与设_________b a 5|b |3|a |b a →
→→→→→⋅==
三、解答题:本题共4小题,每题10分,共40分
15.已知),sin 32),4
(cos(),cos ),4sin(
2(x x x x -=-=π
π
记x f •=)(.
(1)求)(x f 的周期和最小值;
(2)若)(x f 按m 平移得到x y 2sin 2=,求向量m .
16.已知、是两个不共线的向量,且=(cos α,sin α),=(cos β,sin β) (Ⅰ)求证:+与-垂直;
(Ⅱ)若α∈(4
,

π-),β=4
π
,且|a +|=
5
16
,求sin α. 17.设12121211222,32,其中且 1.a e e b e e e e e e e e →→→→→→






=+=-+⊥⋅=⋅=
(1)计算||的值;a b →

+
(2)当为何值时与3互相垂直?k k a b a b →



+-
18.已知向量a →=(cos 32x ,sin 32x ),b →=(cos x 2,-sin x 2),其中x ∈[0,π2
]
(1)求a →·b →及|a →+b →|;(2)若f (x )=a →·b →-2λ|a →+b →|的最小值为-3
2,求λ的

参考答案
一、1.D 2.B
3.B
4.C 5.A
6.B 7.A 8.A 9.D 10.A
二、11.[0,2] 12.
→→→
+=
AC 3
1AB 32AD 13.-1 14.±15
三、15.
16.解:(1)∵a =(4cos α,3sin α),b =(3cos β,4sin β)
∴||=||=1
又∵(+)·(-)=2-2=||2-||2=0
∴(a +b )⊥(a -b )
(2)|a +b |2=(a +b )2=|a |2+|b |2+2a ·b =2+2·a ·b =
5
16
又·=(cos βαβαsin sin cos +)=5
3
∴5
3)cos(=-βα∵)4,4(π
πα-∈∴2
π
-
<βα-<0 ∴sin(βα-)=5
4-∴sin ])sin[(ββαα+-=
=sin (βα-)·cos ββαβsin )cos(⋅-+
=10
2
22532254-
=⨯+⨯
- 17.解:
.
19k 0133k 31k 50b 3a b a k 1
43e 2e 3e 2e b a 13
e 2e 3b 5
e 2e a
b
3b a k 31a
k b 3a b a k 2.
5220|b a |20
|b a |.
1|e ||e |.0e e .1e e e e e e e 16e e 16e 4e 4e 2|b a |1212122122
212
2
22
21212221212
2
212
12
212
==⨯--+=-⋅+∴=+-=+-⋅+=⋅=+-==+=-⋅-+=-⋅+==+∴=+∴===⋅∴=⋅=⋅⊥+⋅-=+-=+→






→→
→→




→→

→→→









→→→


→→



→→




得)(即)()由()()()()(又)()()()(,又)()(ΘΘ
18.解:(1)a →·b →=cos 32xcos x 2-sin 32xsin x 2
=cos 2x ,|a →+b →|=2+2cos 2x =2cosx
(2)f (x )=a →·b →-2λ|a →+b →|=cos 2x -4λcosx =2cos 2x -1-4λcosx =2(cosx -
λ)2-2λ2-1
注意到x ∈[0,π2
],故cosx ∈[0,1],若λ<0,当cosx =0时f (x )取最小值-1。

不合条件,舍去.若0≤λ≤1,当cosx =λ时,f (x )取最小值-2λ2-1,令-2λ2-1
=-32且0≤λ≤1,解得λ=1
2,若λ>1,当cosx =1时,f (x )取最小值1-4λ,令
1-4λ=-32且λ>1,无解综上:λ=1
2
为所求.。

相关文档
最新文档