新人教版九年级数学上册期末测试题及答案

合集下载

人教版九年级数学上册期末测试题(附参考答案)

人教版九年级数学上册期末测试题(附参考答案)

人教版九年级数学上册期末测试题(附参考答案)满分120分考试时间120分钟一、选择题:本大题共10个小题,每小题3分,共30分。

每小题只有一个选项符合题目要求。

1.方程x2+4x+3=0的两个根为( )A.x1=1,x2=3B.x1=-1,x2=3C.x1=1,x2=-3D.x1=-1,x2=-32.一个口袋里装有4个白球,5个黑球,除颜色外,其余如材料、大小、质量等完全相同,随意从中抽出一个球,抽到白球的概率是( )A.49B.59C.14D.193.将抛物线y=x2向右平移3个单位长度,再向上平移4个单位长度,得到的抛物线是( )A.y=(x-3)2+4 B.y=(x+3)2+4C.y=(x+3)2-4 D.y=(x-3)2-44.如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是( )A BC D5.如图,AB切⊙O于点B,连接OA交⊙O于点C,BD∥OA交⊙O于点D,连接CD.若∠OCD=25°,则∠A的度数为( )A.25°B.35°C.40°D.45°6.若关于x的一元二次方程x2-8x+m=0的两根为x1,x2,且x1=3x2,则m的值为( )A.4 B.8C.12 D.167.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A,B,与y轴交于点C,对称轴为直线x=-1.若点A的坐标为(-4,0),则下列结论正确的是( )A.2a+b=0B.4a-2b+c>0C.x=2是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根D.点(x1,y1),(x2,y2)在抛物线上,当x1>x2>-1时,y1<y2<08.图1是一把扇形纸扇,图2是其完全打开后的示意图,外侧两竹条OA和OB 的夹角为150°,OA的长为30 cm,贴纸部分的宽AC为18 cm,则CD⏜的长为( )A.5π cm B.10π cmC.20π cm D.25π cm9.如图,⊙O与正五边形ABCDE的两边AE,CD相切于A,C两点,则∠AOC的度数是( )A.144°B.130°C.129°D.108°10.在如图所示的运算程序中,若开始输入x的值为48,我们发现第一次输出的结果为24,第二次输出的结果为12……则第2 023次输出的结果为( )A.6 B.3C.622 021D.322 022二、填空题:本题共6个小题,每小题3分,共18分。

人教版九年级上学期期末考试数学试卷及答案解析(共4套)

人教版九年级上学期期末考试数学试卷及答案解析(共4套)

人教版九年级上学期期末考试数学试卷(一)一、选择题(共10小题,每小题3分,满分30分)1.在下列四个图案中,既是轴对称图形,又是中心对称图形是()A.B.C.D.2.方程x2=x的解为()A.x=﹣1或x=0 B.x=0 C.x=1 D.x=1或x=03.判断一元二次方程x2﹣2x+1=0的根的情况是()A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根4.如图,把一个宽度为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么光盘的直径是()A.5cm B.8cm C.10cm D.12cm5.把抛物线y=x2+1向左平移3个单位,再向下平移2个单位,得到的抛物线表达式为()A.y=(x﹣3)2+2 B.y=(x﹣3)2﹣1 C.y=(x+3)2﹣1 D.y=(x﹣3)2﹣2 6.学校要组织足球比赛.赛制为单循环形式如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为()A.20°B.25°C.30°D.40°8.下列事件是必然事件的是()A.有两边及一角对应相等的两三角形全等B.若a2=b2则有a=bC.方程x2﹣x+1=0有两个不等实根D.圆的切线垂直于过切点的半径9.已知⊙O的直径为8cm,P为直线l上一点,OP=4cm,那么直线l与⊙O的公共点有()A.0个B.1个C.2个D.1个或2个10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当﹣1<x<5时,y<0.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(共8小题,每小题3分,满分24分)11.已知⊙O的半径为2,则其内接正三角形的面积为.12.某产品出现次品的概率为0.05,任意抽取这种产品600件,那么大约有件是次品.13.若n(n≠0)是关于x的方程x2+mx+3n=0的一个根,则m+n的值是.14.已知点P(﹣2,3)关于原点的对称点为M(a,b),则a+b= .15.如图,已知圆锥的高为8,底面圆的直径为12,则此圆锥的侧面积是.16.若一个直角三角形的两边分别为6和8,则这个直角三角形外接圆直径是.17.如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,若其与x轴一交点为B(3,0),则由图象可知,不等式ax2+bx+c>0的解集是.18.将除去零以外的自然数按以下规律排列(提示:观察第一列的奇数行的数的规律和第一行的偶数列的数的规律)判断2016所在的位置是.三、解答题(共8小题,满分66分)19.(8分)解方程:(1)x(x﹣2)+x﹣2=0(2)2x2﹣7x+6=0.20.(5分)已知点(3,0)在抛物线y=﹣3x2+(k+3)x﹣k上,求此抛物线的对称轴.21.(8分)如图,在边长为1的正方形组成的网格中建立直角坐标系,△AOB 的顶点均在格点上,点O为原点,点A、B的坐标分别是A(3,2)、B(1,3).(1)将△AOB向下平移3个单位后得到△A1O1B1,则点B1的坐标为;(2)将△AOB绕点O逆时针旋转90°后得到△A2OB2,请在图中作出△A2OB2,并求出这时点A的坐标为;2(3)在(2)中的旋转过程中,线段OA扫过的图形的面积.22.(6分)张师傅2014年1月份开了一家商店.2014年9月份开始盈利,10月份盈利2400元,12月份的盈利达到3456元,且从10月到12月,每月盈利的平均增长率都相同.(1)求2014年10月到12月,每月盈利的平均增长率;(2)按照这个平均增长率,预计2015年1月份这家商店的盈利将达到多少元?23.(8分)在一个口袋里装着白、红、黑三种颜色的小球(除颜色外形状大小完全相同),其中白球3个、红球2个、黑球1个.(1)随机从袋中取出一个球,求取出的球是黑球的概率;(2)若取出的第一只球是红球,不将它放回袋里,从袋中余下的球中再随机地取出1个,这时取出的球是黑球的概率是多少?(3)若取出一个球,将它放回袋中,从袋中再随机地取出一个球,两次取出的球都是白球的概率是多少?(用列表法或树状图计算)24.(9分)某水果批发商经销一种高档水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价0.1元,销售量将减少1千克(1)现该商场保证每天盈利1500元,同时又要照顾顾客,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,使该商场获利最大?25.(10分)如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE为直径的⊙O上.(1)求证:BC是⊙O的切线;(2)已知∠B=30°,CD=4,求线段AB的长.26.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交与点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3(1)求抛物线的解析式并配成顶点式(要求写出过程);(2)求△ABD的面积;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.在下列四个图案中,既是轴对称图形,又是中心对称图形是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,以及中心对称图形的定义分别判断即可得出答案.【解答】解:A、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,也是中心对称图形,故此选项正确;B、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.C、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,旋转180°不能与原图形重合,不是中心对称图形,故此选项错误;D、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.故选:A.【点评】此题主要考查了中心对称图形与轴对称图形的定义,熟练掌握其定义是解决问题的关键.2.方程x2=x的解为()A.x=﹣1或x=0 B.x=0 C.x=1 D.x=1或x=0【考点】A8:解一元二次方程﹣因式分解法.【分析】先把方程变形为一般式,然后利用因式分解法解方程.【解答】解:x2﹣x=0,x(x﹣1)=0,x=0或x﹣1=0,所以x1=0,x2=1.故选D.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).3.判断一元二次方程x2﹣2x+1=0的根的情况是()A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根【考点】AA:根的判别式.【分析】先计算出△=(﹣2)2﹣4×1×1=0,然后根据△的意义进行判断方程根的情况.【解答】解:∵△=(﹣2)2﹣4×1×1=0,∴方程有两个相等的实数根.故选B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.如图,把一个宽度为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么光盘的直径是()A.5cm B.8cm C.10cm D.12cm【考点】M3:垂径定理的应用;KQ:勾股定理.【分析】设光盘的圆心为O,过点O作OA垂直直尺于点A,连接OB,再设OB=r,利用勾股定理求出r的值即可.【解答】解:设光盘的圆心为O,如图所示:过点O作OA垂直直尺于点A,连接OB,设OB=r,∵一边与光盘边缘两个交点处的读数恰好是“2”和“10”,∴AB=×(10﹣2)=4,∵刻度尺宽2cm,∴OA=r﹣2,在Rt△OAB中,OA2+AB2=OB2,即(r﹣2)2+42=r2,解得:r=5.∴该光盘的直径是10cm.故选:C.【点评】本题考查的是垂径定理的应用勾股定理;根据题意作出辅助线,构造出直角三角形是解答此题的关键.5.把抛物线y=x2+1向左平移3个单位,再向下平移2个单位,得到的抛物线表达式为()A.y=(x﹣3)2+2 B.y=(x﹣3)2﹣1 C.y=(x+3)2﹣1 D.y=(x﹣3)2﹣2 【考点】H6:二次函数图象与几何变换.【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将抛物线y=x2+1向左平移3个单位所得直线解析式为:y=(x+3)2+1;再向下平移2个单位为:y=(x+3)2+1﹣2.即:y=(x+3)2﹣1.故选:C.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.6.学校要组织足球比赛.赛制为单循环形式如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为()A.20°B.25°C.30°D.40°【考点】MC:切线的性质;K7:三角形内角和定理;K8:三角形的外角性质;KH:等腰三角形的性质;M5:圆周角定理.【分析】连接OC,根据切线的性质求出∠OCD,求出∠COD,求出∠A=∠OCA,根据三角形的外角性质求出即可.【解答】解:连接OC,∵CD切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∵∠D=40°,∴∠COD=180°﹣90°﹣40°=50°,∵OA=OC,∴∠A=∠OCA,∵∠A+∠OCA=∠COD=50°,∴∠A=25°.故选B.【点评】本题考查了三角形的外角性质,三角形的内角和定理,切线的性质,等腰三角形的性质的应用,主要考查学生运用这些性质进行推理的能力,题型较好,难度也适中,是一道比较好的题目.8.下列事件是必然事件的是()A.有两边及一角对应相等的两三角形全等B.若a2=b2则有a=bC.方程x2﹣x+1=0有两个不等实根D.圆的切线垂直于过切点的半径【考点】X1:随机事件.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、有两边及一角对应相等的两三角形全等是随机事件,故A错误;B、若a2=b2则有a=b是随机事件,故B错误;C、方程x2﹣x+1=0有两个不等实根是不可能事件,故C错误;D、圆的切线垂直于过切点的半径是必然事件,故D正确;故选:D.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.已知⊙O的直径为8cm,P为直线l上一点,OP=4cm,那么直线l与⊙O的公共点有()A.0个B.1个C.2个D.1个或2个【考点】MB:直线与圆的位置关系.【分析】根据垂线段最短,得圆心到直线的距离小于或等于4cm,再根据数量关系进行判断.若d<r,则直线与圆相交;若d=r,则直线与圆相切;若d>r,则直线与圆相离;即可得出公共点的个数.【解答】解:根据题意可知,圆的半径r=4cm.∵OP=4cm,当OP⊥l时,直线和圆是相切的位置关系,公共点有1个;当OP与直线l不垂直时,则圆心到直线的距离小于4cm,所以是相交的位置关系,公共点有2个.∴直线L与⊙O的公共点有1个或2个,故选:D.【点评】本题主要考查了直线与圆的位置关系.特别注意OP不一定是圆心到直线的距离.10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当﹣1<x<5时,y<0.其中正确的有()A.1个B.2个C.3个D.4个【考点】H4:二次函数图象与系数的关系.【分析】根据函数图象可得各系数的关系:a>0,b>0,即可判断①,根据对称轴为x=2,即可判断②;由对称轴x=﹣=2,即可判断③;求得抛物线的另一个交点即可判断④.【解答】解:∵抛物线开口向下,∴a<0,∵对称轴x=2,∴﹣=2,∴b=﹣4a>0,∴a、b异号,故①错误;∵对称轴x=2,∴x=1和x=3时,函数值相等,故②正确;∵对称轴x=2,∴﹣=2,∴b=﹣4a,∴4a+b=0,故③正确;∵抛物线与x轴交于(﹣1,0),对称轴为x=2,∴抛物线与x轴的另一个交点为(5,0),∴当﹣1<x<5时,y<0,故④正确;故正确的结论为②③④三个,故选C.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab <0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(共8小题,每小题3分,满分24分)11.已知⊙O的半径为2,则其内接正三角形的面积为3.【考点】MM:正多边形和圆.【分析】连接OB、OC,作OD⊥BC于D,则∠ODB=90°,BD=CD,∠OBC=30°,由含30°角的直角三角形的性质得出OD,由勾股定理求出BD,得出BC,根据△ABC 计算即可.的面积=3S△OBC【解答】解:如图所示,连接OB、OC,作OD⊥BC于D,则∠ODB=90°,BD=CD,∠OBC=30°,∴OD=OB=1,∴BD==,∴BC=2BD=2,∴△ABC的面积=3S=3××BC×OD=3××2×1=3.△OBC【点评】本题考查了等边三角形的性质、垂径定理、勾股定理、三角形面积的计算;熟练掌握正三角形和圆的关系,并能进行推理计算是解决问题的关键.12.某产品出现次品的概率为0.05,任意抽取这种产品600件,那么大约有30 件是次品.【考点】X3:概率的意义.【分析】利用总数×出现次品的概率=次品的数量,进而得出答案.【解答】解:由题意可得:次品数量=600×0.05=30.故答案为:30.【点评】此题主要考查了概率的意义,正确把握概率的定义是解题关键.13.若n(n≠0)是关于x的方程x2+mx+3n=0的一个根,则m+n的值是=3 .【考点】A3:一元二次方程的解.【分析】根据一元二次方程的解的定义得到n2+mn+3n=0,然后两边除以n即可得到m+n的值.【解答】解:把x=n代入x2+mx+3n=0得n2+mn+3n=0,∵n≠0,∴n+m+3=0,即m+n=﹣3.故答案是:﹣3.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.14.已知点P(﹣2,3)关于原点的对称点为M(a,b),则a+b= ﹣1 .【考点】R6:关于原点对称的点的坐标.【分析】根据两个点关于原点对称时,它们的坐标符号相反可得a、b的值.【解答】解:点P(﹣2,3)关于原点的对称点为M(2,﹣3),则a=2,b=﹣3,a+b=﹣1,故答案为:﹣1.【点评】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.15.如图,已知圆锥的高为8,底面圆的直径为12,则此圆锥的侧面积是60π.【考点】MP:圆锥的计算.【分析】圆锥的侧面积是一个扇形,根据扇形公式计算即可.【解答】解:底面圆的直径为12,则半径为6,∵圆锥的高为8,根据勾股定理可知:圆锥的母线长为10.根据周长公式可知:圆锥的底面周长=12π,∴扇形面积=10×12π÷2=60π.故答案为60π.【点评】本题主要考查了圆锥的侧面积的计算方法.解题的关键是熟记圆锥的侧面展开扇形的面积计算方法.16.若一个直角三角形的两边分别为6和8,则这个直角三角形外接圆直径是10或8 .【考点】MA:三角形的外接圆与外心.【分析】有两种情况:(1)当两直角边是6和8时,求出AB长即可得到答案;(2)当一个直角边是6,斜边是8时,即可得出答案.【解答】解:此题有两种情况:(1)当两直角边是6和8时,由勾股定理得:AB===10,此时外接圆的半径是5,直径是10;(2)当一个直角边是6,斜边是8时,此时外接圆的半径是4,直径是8.故答案为:10或8.【点评】本题主要考查了三角形的外接圆和外心,勾股定理等知识点,解此题的关键是知道直角三角形的外接圆的半径等于斜边的长,求出斜边长即可,用的数学思想是分类讨论思想.17.如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,若其与x轴一交点为B(3,0),则由图象可知,不等式ax2+bx+c>0的解集是x<﹣1或x>3 .【考点】HC:二次函数与不等式(组).【分析】由抛物线与x轴的一个交点(3,0)和对称轴x=1可以确定另一交点坐标为(﹣1,0),又y=ax2+bx+c>0时,图象在x轴上方,由此可以求出x的取值范围.【解答】解:∵抛物线与x轴的一个交点(3,0)而对称轴x=1∴抛物线与x轴的另一交点(﹣1,0)当y=ax2+bx+c>0时,图象在x轴上方此时x<﹣1或x>3故答案为:x<﹣1或x>3.【点评】解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,本题锻炼了学生数形结合的思想方法.18.将除去零以外的自然数按以下规律排列(提示:观察第一列的奇数行的数的规律和第一行的偶数列的数的规律)判断2016所在的位置是第45行,第10列.【考点】37:规律型:数字的变化类.【分析】根据已知数据可得出第一列的奇数行的数的规律是第几行就是那个数平方,同理可得出第一行的偶数列的数的规律,从而得出2016所在的位置.【解答】解:由已知可得:根据第一列的奇数行的数的规律是第几行就是那个数平方,第一行的偶数列的数的规律,与奇数行规律相同;∵45×45=2025,2016在第45行,向右依次减小,故201所在的位置是第45行,第10列.故答案为:第45行,第10列.【点评】此题主要考查了数字的规律知识,得出第一列的奇数行的数的规律与第一行的偶数列的数的规律是解决问题的关键.三、解答题(共8小题,满分66分)19.解方程:(1)x(x﹣2)+x﹣2=0(2)2x2﹣7x+6=0.【考点】A8:解一元二次方程﹣因式分解法.【分析】(1)通过提取公因式(x﹣2)对等式的左边进行因式分解;(2)利用十字相乘法对等式的左边进行因式分解.【解答】解:(1)由原方程,得(x+1)(x﹣2)=0,则x+1=0或x﹣2=0,解得x1=﹣1,x2=2;(2)2x2﹣7x+6=0,(2x﹣3)(x﹣2)=0,∴2x﹣3=0,x﹣2=0,x 1=,x2=2.【点评】此题主要考查了解一元二次方程,因式分解等知识点的理解和掌握,能把一元二次方程转换成一元一次方程是解此题的关键.20.已知点(3,0)在抛物线y=﹣3x2+(k+3)x﹣k上,求此抛物线的对称轴.【考点】H5:二次函数图象上点的坐标特征.【分析】把(3,0)代入y=﹣3x2+(k+3)x﹣k,求得k的值,然后根据二次函数的对称轴公式列式计算即可得解.【解答】解:把(3,0)代入y=﹣3x2+(k+3)x﹣k得,0=﹣27+(k+3)×3﹣k,解得,k=9,∴抛物线为y=﹣3x2+12x﹣9,∴对称轴为直线x=﹣=﹣=2,即直线x=2.【点评】本题考查了二次函数的性质以及二次函数图象上点的坐标特征,熟记对称轴公式是解题的关键.21.如图,在边长为1的正方形组成的网格中建立直角坐标系,△AOB的顶点均在格点上,点O为原点,点A、B的坐标分别是A(3,2)、B(1,3).(1)将△AOB向下平移3个单位后得到△A1O1B1,则点B1的坐标为(1,0);(2)将△AOB绕点O逆时针旋转90°后得到△A2OB2,请在图中作出△A2OB2,并求出这时点A2的坐标为(﹣2,3);(3)在(2)中的旋转过程中,线段OA扫过的图形的面积.【考点】R8:作图﹣旋转变换;MO:扇形面积的计算;Q3:坐标与图形变化﹣平移.【分析】(1)根据平移的性质,上下平移在在对应点的坐标上,纵坐标上上加下减就可以求出结论;(2)过点O作OA的垂线,在上面取一点A2使OA2=OA,同样的方法求出点B2,顺次连接A2、B2、O就得出△A2OB2,就可以相应的结论;(3)根据条件就是求扇形A2OA的面积即可.【解答】解:(1)由题意,得B1(1,3﹣3),∴B1(1,0).故答案为:(1,0);(2)如图,①,过点O作OA的垂线,在上面取一点A2使OA2=OA,②,同样的方法求出点B2,顺次连接A2、B2、O就得出△A2OB2,∴△A2OB2是所求作的图形.由作图得A2(﹣2,3).故答案为:(﹣2,3);(3)由勾股定理,得OA=,∴线段OA扫过的图形的面积为: =.故答案为:.【点评】本题考查了旋转作图的运用,勾股定理的运用,扇形的面积公式的运用,平移的运用,解答时根据图形变化的性质求解是关键.22.张师傅2014年1月份开了一家商店.2014年9月份开始盈利,10月份盈利2400元,12月份的盈利达到3456元,且从10月到12月,每月盈利的平均增长率都相同.(1)求2014年10月到12月,每月盈利的平均增长率;(2)按照这个平均增长率,预计2015年1月份这家商店的盈利将达到多少元?【考点】AD:一元二次方程的应用.【分析】(1)设该商店的月平均增长率为x,根据等量关系:10月份盈利额×(1+增长率)2=12月份的盈利额列出方程求解即可;(2)1月份盈利=12月份盈利×增长率列式计算即可.【解答】解:(1)设2014年10月到12月,每月盈利的平均增长率为x,由题意可得:2400(1+x)2=3456解得:x1=0.2=20%,x2=﹣2.2(舍去)答:2014年10月到12月,每月盈利的平均增长率为20%.(2)由题意:3456+3456×20%=4147.2(元)答:按照这个平均增长率,预计2015年1月份这家商店的盈利将达到4147.2元.【点评】此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量×(1±x)2=后来的量,其中增长用+,减少用﹣.23.在一个口袋里装着白、红、黑三种颜色的小球(除颜色外形状大小完全相同),其中白球3个、红球2个、黑球1个.(1)随机从袋中取出一个球,求取出的球是黑球的概率;(2)若取出的第一只球是红球,不将它放回袋里,从袋中余下的球中再随机地取出1个,这时取出的球是黑球的概率是多少?(3)若取出一个球,将它放回袋中,从袋中再随机地取出一个球,两次取出的球都是白球的概率是多少?(用列表法或树状图计算)【考点】X6:列表法与树状图法.【分析】(1)根据概率的意义解答即可;(2)根据袋中还剩5只球,然后根据概率的意义解答即可;(3)列出图表,然后根据概率公式列式进行计算即可得解.【解答】解:(1)∵一共有6只球,黑球1只,∴取出的球是黑球的概率为;(2)∵取出1只红球,∴袋中还有5只球,还有1只黑球,∴取出的球还是黑球的概率是;(3)根据题意列表如下:白1 白2 白3 红1 红2 黑白1 白1白1 白1白2 白1白3 白1红1 白1红2 白1黑白2 白2白1 白2白2 白2白3 白2红1 白2红2 白2黑白3 白3白1 白3白2 白3白3 白3红1 白3红2 白3黑红1 红1白1 红1白2 红1白3 红1红1 红1红2 红1黑红2 红2白1 红2白2 红2白3 红2红1 红2红2 红2黑黑黑白1 黑白2 黑白3 黑红1 黑红2 黑黑一共有36种情况,两次取出的球都是白球的情况数有9种,所以,P(两次取出的球都是白球)==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.24.某水果批发商经销一种高档水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价0.1元,销售量将减少1千克(1)现该商场保证每天盈利1500元,同时又要照顾顾客,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,使该商场获利最大?【考点】HE:二次函数的应用;AD:一元二次方程的应用.【分析】(1)根据题意列出一元二次方程,然后求出其解,最后根据题意确定其值;(2)根据题意列出二次函数解析式,然后转化为顶点式,最后求其最值即可.【解答】解:(1)设每千克应涨价x元,由题意列方程得:(5+x)(200﹣)=1500解得:x=5或x=10,答:为了使顾客得到实惠,那么每千克应涨价5元;(2)设涨价x元时总利润为y,则y=(5+x)(200﹣)=﹣10x2+150x+1000=﹣10(x2﹣15x)+1000=﹣10(x﹣7.5)2+1562.5,答:若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.【点评】本题考查了二次函数的应用,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=﹣x2﹣2x+5,y=3x2﹣6x+1等用配方法求解比较简单.25.(10分)如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE为直径的⊙O上.(1)求证:BC是⊙O的切线;(2)已知∠B=30°,CD=4,求线段AB的长.【考点】MD:切线的判定.【分析】(1)连结OD,根据角平分线的定义得到∠BAD=∠CAD,而∠OAD=∠ODA,则∠ODA=∠CAD,于是判断OD∥AC,由于∠C=90°,所以∠ODB=90°,然后根据切线的判定定理即可得到结论;(2)由∠B=30°得到∠BAC=60°,则∠CAD=30°,在Rt△ADC中,根据含30度的直角三角形三边的关系得到AC=4,然后在Rt△ABC中,根据含30度的直角三角形三边的关系可得到AB=8.【解答】(1)证明:连结OD,如图,∵∠BAC的平分线交BC于点D,∴∠BAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,∴OD⊥BC,∴BC是⊙O的切线;(2)解:∵∠B=30°,∴∠BAC=60°,∴∠CAD=30°,在Rt△ADC中,DC=4,∴AC=DC=4,在Rt△ABC中,∠B=30°,∴AB=2AC=8.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了含30度的直角三角形三边的关系.26.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交与点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3(1)求抛物线的解析式并配成顶点式(要求写出过程);(2)求△ABD的面积;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.【考点】HF:二次函数综合题.【分析】(1)由矩形的性质可求得C、E的坐标,代入抛物线解析式可求得其解析式,再利用配方法化为顶点式即可;(2)由(1)可求得D点坐标,令y=0可求得A、B的坐标,则可求得AB的长,利用三角形的面积可求得△ABD的面积;(3)由旋转的性质可求得G点的坐标,再代入抛物线解析式进行验证即可.【解答】解:(1)∵四边形OCEF为矩形,∴OC=EF=3,∴C(0,3),∵OF=2,∴E(2,3),代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4;(2)由(1)可知D(1,4),在y=﹣x2+2x+3中,令y=0可得﹣x2+2x+3=0,解得x=﹣1或x=3,∴A(﹣1,0),B(3,0),∴AB=3﹣(﹣1)=4,=×4×4=8;∴S△ABD(3)点G不在抛物线上,理由如下:将△AOC绕点C逆时针旋转90°,点A对应点为点G,设O点对应点为H,如图,则CH=OC=3,HG=AO=1,∴G(3,2),。

人教版九年级上册数学期末试卷附答案

人教版九年级上册数学期末试卷附答案

人教版九年级上册数学期末试卷附答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .||4a >B .0c b ->C .0ac >D .0a c +>4.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .45.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( )A .0B .±1C .1D .1-6.已知二次函数242y x x =-+,关于该函数在﹣1≤x ≤3的取值范围内,下列说法正确的是( )A .有最大值﹣1,有最小值﹣2B .有最大值0,有最小值﹣1C .有最大值7,有最小值﹣1D .有最大值7,有最小值﹣27.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.如图,Rt △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D ,AB=10,S △ABD =15,则CD 的长为( )A .3B .4C .5D .610.如图,抛物线y =ax 2+bx +c(a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx +c =0的两个根是x 1=-1,x 2=3;③3a +c >0;④当y >0时,x 的取值范围是-1≤x <3;⑤当x <0时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个二、填空题(本大题共6小题,每小题3分,共18分)1.计算:02(3)π-+-=_____________.2.分解因式:x 2-2x+1=__________.3.已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式m ²-m+2019的值为__________.4.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C 平移的距离CC '=_________.5.如图,在矩形纸片ABCD 中,AD =10,AB =8,将AB 沿AE 翻折,使点B 落在B '处,AE 为折痕;再将EC 沿EF 翻折,使点C 恰好落在线段EB '上的点C '处,EF 为折痕,连接AC '.若CF =3,则tan B AC ''∠=__________.6.如图,小军、小珠之间的距离为2.7 m ,他们在同一盏路灯下的影长分别为1.8 m ,1.5 m ,已知小军、小珠的身高分别为1.8 m ,1.5 m ,则路灯的高为__________m.三、解答题(本大题共6小题,共72分)1.解方程:23121x x =+-2.已知关于x 的一元二次方程220x x k +-=有两个不相等的实数根.(1)求k 的取值范围;(2)若方程的两个不相等实数根是a ,b ,求111a ab -++的值.3.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.4.如图,ABC中,点E在BC边上,AE AB=,将线段AC绕点A旋转到AF 的位置,使得CAF BAE∠=∠,连接EF,EF与AC交于点G=;(1)求证:EF BC(2)若65ABC∠=︒,求FGC∠的度数.∠=︒,28ACB5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.5.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、C5、D6、D7、D8、D9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、32、(x-1)2.3、20204、55、1 46、3三、解答题(本大题共6小题,共72分)1、x=52、(1)k>-1;(2)13、(1)略;(2)S平行四边形ABCD=244、(1)略;(2)78°.5、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定6、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.。

2024年最新人教版初三数学(上册)期末考卷及答案(各版本)

2024年最新人教版初三数学(上册)期末考卷及答案(各版本)

2024年最新人教版初三数学(上册)期末考卷一、选择题(每题3分,共30分)1. 若一个数的立方根等于它的平方根,则这个数是()A. 0B. 1C. 1D. ±12. 若一个数是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±13. 若一个数的绝对值等于它本身,则这个数是()A. 正数B. 负数C. 0D. 正数或04. 若一个数的绝对值等于它的相反数,则这个数是()A. 正数B. 负数C. 0D. 正数或05. 若一个数的平方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或16. 若一个数的立方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或17. 若一个数的平方根是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±18. 若一个数的立方根是它自己的相反数,则这个数是()A. 0B. 1C. 1D. ±19. 若一个数的绝对值等于它的立方,则这个数是()A. 正数B. 负数C. 0D. 正数或010. 若一个数的绝对值等于它的平方,则这个数是()A. 正数B. 负数C. 0D. 正数或0二、填空题(每题3分,共30分)11. 若一个数的平方根是它自己的倒数,则这个数是______。

12. 若一个数的立方根是它自己的相反数,则这个数是______。

13. 若一个数的绝对值等于它的立方,则这个数是______。

14. 若一个数的绝对值等于它的平方,则这个数是______。

15. 若一个数的平方等于它本身,则这个数是______。

16. 若一个数的立方等于它本身,则这个数是______。

17. 若一个数的平方根是它自己的倒数,则这个数是______。

18. 若一个数的立方根是它自己的相反数,则这个数是______。

19. 若一个数的绝对值等于它的立方,则这个数是______。

20. 若一个数的绝对值等于它的平方,则这个数是______。

新人教版九年级数学上册期末考试(参考答案)

新人教版九年级数学上册期末考试(参考答案)

新人教版九年级数学上册期末考试(参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的相反数是( )A .13-B .13C .3-D .32.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.若抛物线2y x ax b =++与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线1x =,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A .()3,6--B .()3,0-C .()3,5--D .()3,1--4.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( )A .平均数B .中位数C .众数D .方差5.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .66.关于x 的方程2(1)(2)x x ρ-+=(ρ为常数)根的情况下,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根7.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .8.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒9.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.已知0ab <,一次函数y ax b =-与反比例函数a y x =在同一直角坐标系中的图象可能( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算(6-18)×13+26的结果是_____________.2.分解因式:244m m++=___________.3.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.4.(2017启正单元考)如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若FG=4,ED=8,求EB+DC=________.5.如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是__________.6.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解方程:12133xx x -+=--2.先化简,再求值:2221111x x xx x++⎛⎫-÷⎪--⎝⎭,其中2x=.3.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.4.如图,ABC中,点E在BC边上,AE AB=,将线段AC绕点A旋转到AF 的位置,使得CAF BAE∠=∠,连接EF,EF与AC交于点G=;(1)求证:EF BC(2)若65∠的度数.∠=︒,求FGCABCACB∠=︒,285.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B 种书包各有几个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、B4、D5、B6、C7、D8、C9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)12、()22m+3、24、125、12 76、2.5×10-6三、解答题(本大题共6小题,共72分)1、1x=2、11x+,13.3、(1)略(2)64、(1)略;(2)78°.5、(1)30;(2)①补图见解析;②120;③70人.6、(1)A,B两种书包每个进价各是70元和90元;(2)共有3种方案,详见解析;(3)赠送的书包中,A种书包有1个,B种书包有个,样品中A种书包有2个,B种书包有2个.。

2024年全新九年级数学上册期末试卷及答案(人教版)

2024年全新九年级数学上册期末试卷及答案(人教版)

2024年全新九年级数学上册期末试卷及答案(人教版)一、选择题(每题2分,共20分)1. 下列哪个数是质数?A. 2B. 4C. 6D. 82. 一个三角形的两边长分别为5厘米和8厘米,第三边长为多少厘米?A. 3B. 6C. 10D. 123. 下列哪个图形是等腰三角形?A. △ABCB. △DEFC. △GHID. △JKL4. 下列哪个图形是直角三角形?A. △ABCB. △DEFC. △GHID. △JKL5. 下列哪个图形是等边三角形?A. △ABCB. △DEFC. △GHID. △JKL6. 下列哪个数是合数?A. 2B. 3C. 4D. 57. 一个正方形的边长为6厘米,它的周长是多少厘米?A. 12B. 18C. 24D. 308. 一个长方形的长为8厘米,宽为4厘米,它的面积是多少平方厘米?A. 16B. 24C. 32D. 409. 下列哪个数是偶数?A. 2B. 3C. 5D. 710. 下列哪个数是奇数?A. 2B. 3C. 4D. 6二、填空题(每题2分,共20分)1. 一个等边三角形的边长是5厘米,它的周长是______厘米。

2. 一个正方形的边长是8厘米,它的面积是______平方厘米。

3. 一个长方形的长是10厘米,宽是5厘米,它的周长是______厘米。

4. 一个三角形的两边长分别是6厘米和8厘米,第三边长是______厘米。

5. 一个直角三角形的两条直角边长分别是3厘米和4厘米,它的斜边长是______厘米。

6. 一个等腰三角形的底边长是10厘米,腰长是8厘米,它的周长是______厘米。

7. 一个长方形的长是12厘米,宽是6厘米,它的面积是______平方厘米。

8. 一个正方形的边长是7厘米,它的周长是______厘米。

9. 一个三角形的两边长分别是5厘米和12厘米,第三边长是______厘米。

10. 一个直角三角形的两条直角边长分别是5厘米和12厘米,它的斜边长是______厘米。

最新人教版九年级上册数学期末测试卷及答案

最新人教版九年级上册数学期末测试卷及答案

最新人教版九年级上册数学期末测试卷及答案九年级上册数学期末试卷一、选择题1.下列图形中,既是中心对称图形又是轴对称图形的是()A。

B。

C。

D。

2.将函数y=2x^2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是()A。

y=2(x-1)^2-3B。

y=2(x-1)^2+3C。

y=2(x+1)^2-3D。

y=2(x+1)^2+33.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于( )A。

55°B。

70°C。

125°D。

145°4.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( ) A。

4B。

5C。

6D。

35.一个半径为2cm的圆内接正六边形的面积等于()A。

24cm^2B。

63cm^2C。

123cm^2D。

83cm^26.如图,XXX是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为()A。

35°B。

45°C。

55°D。

75°7.函数y=-2x^2-8x+m的图象上有两点A(x1,y1),B(x2,y2),若x1<x2<-2,则()A。

y1<y2B。

y1>y2C。

y1=y2D。

y1、y2的大小不确定8.将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为()A。

B。

C。

D。

9.一次函数y=ax+b与二次函数y=ax^2+bx+c在同一坐标系中的图像可能是()A。

B。

C。

D。

10.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是m.(结果不取近似值)A。

最新部编人教版九年级数学(上册)期末试卷(附参考答案)

最新部编人教版九年级数学(上册)期末试卷(附参考答案)

最新部编人教版九年级数学(上册)期末试卷(附参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .44.下列各数:-2,0,13,0.020020002…,π,9,其中无理数的个数是( )A .4B .3C .2D .15.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .66.定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根7.如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A →B →C 的方向运动到点C 停止,设点P 的运动路程为x(cm),在下列图象中,能表示△ADP 的面积y(cm 2)关于x(cm)的函数关系的图象是( )A.B.C.D.8.二次函数y=ax2+bx+c的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b2,③2a+b=0,④a-b+c>2,其中正确的结论的个数是()A.1 B.2 C.3 D.49.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)14=____________.2.分解因式:2++=___________.242a a3.若代数式1x x -有意义,则x 的取值范围为__________. 4.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,水面下降2m ,水面宽度增加__________m.5.如图,已知AB 是⊙O 的直径,AB=2,C 、D 是圆周上的点,且∠CDB=30°,则BC 的长为______.6.如图,已知正方形ABCD 的边长为5,点E 、F 分别在AD 、DC 上,AE=DF=2,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为__________.三、解答题(本大题共6小题,共72分) 1.解方程:23121x x =+-2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =.3.如图,在平面直角坐标系xOy 中,一次函数152y x =+和2y x =-的图象相交于点A,反比例函数kyx=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数152y x=+的图象与反比例函数kyx=的图象的另一个交点为B,连接OB,求ABO∆的面积.4.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PD=3,求PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.5.某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)图①中m的值为;(2)求统计的这组数据的平均数、众数和中位数;(3)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?6.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、B6、A7、B8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、22、22(1)a +3、0x ≥且1x ≠.4、-45、16三、解答题(本大题共6小题,共72分)1、x =52.3、(1)反比例函数的表达式为8y x-=;(2)ABO ∆的面积为15.4、(1)略;(2)1;(3)略.5、(1)28. (2)平均数是1.52. 众数为1.8. 中位数为1.5. (3)200只.6、(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.。

人教版九年级上册《数学》期末考试卷及答案【可打印】

人教版九年级上册《数学》期末考试卷及答案【可打印】

人教版九年级上册《数学》期末考试卷及答案【可打印】一、选择题(每题1分,共5分)1. 若x^2 3x + 2 = 0,则x的值为多少?A. 1B. 2C. 1D. 22. 若sin(θ) = 1/2,则θ的值为多少?A. 30°B. 45°C. 60°D. 90°3. 若一个正方形的边长为4cm,则其面积为多少?A. 16cm^2B. 8cm^2C. 12cm^2D. 6cm^24. 若一个长方体的长、宽、高分别为2cm、3cm、4cm,则其体积为多少?A. 24cm^3B. 12cm^3C. 6cm^3D. 8cm^35. 若一个等腰三角形的底边长为6cm,腰长为5cm,则其面积为多少?A. 15cm^2B. 10cm^2C. 12cm^2D. 8cm^2二、判断题(每题1分,共5分)1. 一个等边三角形的三个内角都是60°。

()2. 一个正方形的对角线互相垂直且平分。

()3. 一个圆的半径是直径的一半。

()4. 一个长方体的对角线互相垂直。

()5. 一个等腰三角形的底角等于顶角。

()三、填空题(每题1分,共5分)1. 一个等边三角形的每个内角是______度。

2. 一个正方形的对角线长是边长的______倍。

3. 一个圆的周长是直径的______倍。

4. 一个长方体的体积是长、宽、高的______。

5. 一个等腰三角形的底边长是腰长的______倍。

四、简答题(每题2分,共10分)1. 简述等边三角形的性质。

2. 简述正方形的性质。

3. 简述圆的性质。

4. 简述长方体的性质。

5. 简述等腰三角形的性质。

五、应用题(每题2分,共10分)1. 一个等边三角形的边长为10cm,求其周长。

2. 一个正方形的边长为8cm,求其对角线长。

3. 一个圆的直径为14cm,求其周长。

4. 一个长方体的长、宽、高分别为6cm、4cm、3cm,求其体积。

5. 一个等腰三角形的底边长为10cm,腰长为8cm,求其周长。

人教版九年级数学上册期末考试试题及答案精选6套

人教版九年级数学上册期末考试试题及答案精选6套

人教版九年上期末测试题01一、细心填一填(每小题3分,共36分) 1、已知式子31+-x x有意义,则x 的取值范围是 2、计算20102009)23()23(+-=3、若关于x 的一元二次方程(a +1)x 2+4x +a 2—1=0的一根是0,则a = 。

4、成语“水中捞月”用概率的观点理解属于不可能事件,请你仿照它写出一个必然事件 。

5、点P 关于原点对称的点Q 的坐标是(—1,3),则P 的坐标是6、已知圆锥的底面半径为9cm,母线长为10cm ,则圆锥的全面积是 cm 27、已知:关于x 的一元二次方程041)(22=++-d x r R x 有两个相等的实数根,其中R 、r 分别是⊙O 1 ⊙O 2的半径,d 为两圆的圆心距,则⊙O 1 与⊙O 2的位置关系是 8、中国象棋中一方16个棋子,按兵种不同分布如下:1个帅,5个兵、士、象、马、车、炮各2个.若将这16个棋子反面朝上放在棋盘中,任取1个是兵的概率是 。

9、如图,过圆心O 和图上一点A 连一条曲线,将OA 绕O 点按同一 方向连续旋转90°, 把圆分成四部分,这四部分面积 .(填“相等”或“不相等”) 二、选择题(每小题3分,共15分)10、下列二次根式中,与35-是同类二次根式的是( )(A ) 18 (B)3.0 (C ) 30 (D )30011、已知关于x 的一元二次方程(m —2)2x 2+(2m +1)x +1=0有两个实数根,则m 的取值范围是( )(A )43>m (B )43≥m (C )43>m 且2≠m (D )43≥m 且2≠m 12、如图:下列四个图案中既是轴对称图形,又是中心对称图形的是( )A B C13、如图,⊿ABC 内接于⊙O,若∠OAB=28°则∠C 的大小为( )(A)62° (B )56° (C)60° (D )28°D19、(7分)在一个不透明的袋子中装有三个完全相同的小球,分别标有数字2,3,4。

2024年最新人教版初三数学(上册)期末试卷及答案(各版本)

2024年最新人教版初三数学(上册)期末试卷及答案(各版本)

2024年最新人教版初三数学(上册)期末试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. 3/4C. πD. √12. 下列函数中,哪个函数是奇函数?A. y = x^3B. y = x^2C. y = |x|D. y = x^43. 下列哪个图形是正方体?A. 长方体B. 正方体C. 球体D. 圆柱体4. 下列哪个命题是假命题?A. 对顶角相等B. 两直线平行,同旁内角相等C. 两直线平行,内错角相等D. 两直线平行,同旁内角互补5. 下列哪个数是无理数?A. 1/2B. √9C. πD. 0.333二、判断题5道(每题1分,共5分)1. 任何两个实数的和都是实数。

()2. 任何两个实数的积都是实数。

()3. 0是正数。

()4. 1是质数。

()5. 2是偶数。

()三、填空题5道(每题1分,共5分)1. 两个角的和为180°,这两个角互为__________。

2. 两个角的和为90°,这两个角互为__________。

3. 两个角的和为360°,这两个角互为__________。

4. 两个角的和为270°,这两个角互为__________。

5. 两个角的和为__________°,这两个角互为补角。

四、简答题5道(每题2分,共10分)1. 请简要说明有理数的定义。

2. 请简要说明无理数的定义。

3. 请简要说明实数的定义。

4. 请简要说明函数的定义。

5. 请简要说明奇函数的定义。

五、应用题:5道(每题2分,共10分)1. 计算下列表达式的值:(3/4 + 1/3) ÷ (5/6 1/2)2. 计算下列表达式的值:(2/3)^2 × (3/4)^33. 计算下列表达式的值:√(27) + √(48) √(75)4. 计算下列表达式的值:log2(64) + log2(16) log2(8)5. 计算下列表达式的值:sin(45°) + cos(45°) tan(45°)六、分析题:2道(每题5分,共10分)1. 请分析并解释勾股定理及其应用。

最新人教版九年级数学上册期末试卷及答案

最新人教版九年级数学上册期末试卷及答案

最新人教版九年级数学上册期末试卷及答案九年级上期数学期末检测一、精心选一选(每小题3分,共30分)1.下列函数中,自变量x的取值范围是x≥2的是()。

A。

y=2xB。

y=1/(x2)C。

y=4x2D。

y=x/(x2)2.如图中∠BOD的度数是()。

A。

55°B。

110°C。

125°D。

150°3.如图,⊙O是△XXX的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是()。

A。

55°B。

60°C。

65°D。

70°4.有一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同。

XXX通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()。

A。

6B。

16C。

18D。

245.化简x1/x得()。

A。

x-1B。

-xC。

-1/xD。

-16.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是()。

A。

有两个正根B。

有两个负根C。

有一正根一负根且正根绝对值大D。

有一正根一负根且负根绝对值大7.在⊿ABC中,∠A=50°,O为⊿ABC的内心,则∠BOC的度数是()。

A。

115°B。

65°C。

130°D。

155°8.关于x的一元二次方程(k-1)x2-2x+3=0有两不等实根,则k的取值范围是()。

A。

k<4/4B。

k<3/3且k≠1C。

0<k<3/3D。

k≠19.两圆的圆心坐标分别为(3,0)、(0,4),它们的直径分别为4和6,则这两圆的位置关系是()。

A。

外离B。

相交C。

外切D。

内切10.以下命题正确的是()。

A。

圆的切线一定垂直于半径B。

圆的内接平行四边形一定是正方形C。

直角三角形的外心一定也是它的内心D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版九年级数学上册期末测试题
一、选择题(每小题3分,共30分)
1.下列关于x 的方程中,是一元二次方程的有( ) A .2
2
1x x +
B .02
=++c bx ax
C .
()()121=+-x x D .052322=--y xy x
2.化简
1
321
21++
-的结果为( )
A 、
23+ B 、23- C 、322+ D 、223+
3.已知关于x 的方程2
60x
kx --=的一个根为3x =,则实数k 的值为( )
A .2
B .1-
C .1
D .2-
4.要使二次根式
1-x 有意义,那么x 的取值范围是( )
(A )x >-1 (B ) x <1 (C ) x ≥1 (D )x ≤1
5.有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上(如图2),从中任意一张是数字3的概率是( ) A 、
6
1 B 、
31 C 、21 D 、3
2 6.已知x 、y 是实数,3x +4 +y 2
-6y +9=0,则xy 的值是( ) A .4 B .-4 C .94 D .-9
4
7、下列图形中,既是轴对称图形,又是中心对称图形的是( )
A B C D
8.已知两圆的半径分别是5cm 和4cm ,圆心距为7cm ,那么这两圆的位置关系是( ) A .相交 B .内切 C .外切 D .外离
9.如图3,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为( ) A.2 B.3 C.4 D.5
10.已知:如图4, ⊙O 的两条弦AE 、BC 相交于点D,连接AC 、BE.
图2
O
A
B
M
图3
若∠ACB =60°,则下列结论中正确的是( )
A .∠AO
B =60° B . ∠ADB =60°
C .∠AEB =60°
D .∠AEB =30° 二、填空题(每小题3分,共24分)
11.方程 x 2
= x 的解是______________________
12.如图所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个
基本图形(图中的阴影部分)绕中心O 至少经过____________次旋转而得到, 每一次旋转_______度.
13.若实数a 、b 满足1
112
2+-+-=
a a a
b ,则a+b 的值为________.
14.圆和圆有不同的位置关系.与下图不同的圆和圆的位置关系是_____.(只填一种)
15.若关于x 方程kx 2
–6x+1=0有两个实数根,则k 的取值范围是 . 16.如图6,在Rt △ABC 中,∠C=90°,CA=CB=2。

分别以A 、B 、C 为圆心,以2
1
AC 为半径画弧,三条弧与边AB 所围成的阴影部分的面积是______.
17.已知:如图7,等腰三角形ABC 中,AB=AC=4,若以AB 为直径的⊙O 与BC 相交于点D ,DE ∥AB ,DE 与AC 相交于点E ,则DE=____________。

18. 如图,是一个半径为6cm ,面积为π12cm 2
的扇形纸片,现需要一个半径为R 的圆形纸片,使两张
纸片刚好能组合成圆锥体,则R 等于 cm
三.解答题
图5
图7
图6
12题图
O
R
游戏规则
随机抽取一张卡片,记下数字放回,洗匀后再抽一张.将抽取的第一张、第二张卡片上的数字分别作为十位数字和个位数字,若组成的两位数不超过32,则小贝胜,反之小晶胜.
236
219.(6分)计算:13229453
21036
÷-⨯. (6分)解方程:2(x+2)2
=x 2
-4
20(10分)
如图9所示,每个小方格都是边长为1的正方形,以O 点为坐标原点建立平面直角坐标系. (1)画出四边形OABC 关于y 轴对称的四边形OA 1B 1C 1,并写出点B 1的坐标是 .
(2)画出四边形OABC 绕点O 顺时针方向旋转90°后得到的四边形OA 2B 2C 2. 并写出点B 2的坐标是 .
21(10分)
四张质地相同的卡片如图所示. 将卡片洗匀后,背面朝上放置在桌面上. (1)求随机抽取一张卡片,恰好得到数字2的概率;
(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树状图法说明理由,若认为不公平,请你修改规则,使游戏变得公平.
22.(10分)
某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.
23.(12分)
如图15,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径画圆。

求证:(1)AC是⊙D的切线;(2)AB+EB=AC。

图15
24.(12分)
高致病性禽流感是比SARS病毒传染速度更快的传染病。

(1)某养殖场有8万只鸡,假设有1只鸡得了禽流感,如果不采取任何防治措施,那么,到第二天将新增病鸡10只,到第三天又将新增病鸡100只,以后每天新增病鸡数依次类推,请问:到第四天,共有多少只鸡得了禽流感病?到第几天,该养殖场所有鸡都会被感染?
(2)为防止禽流感蔓延,政府规定:离疫点3千米范围内为扑杀区,所有禽类全部扑杀;离疫点3至5千米范围内为免疫区,所有的禽类强制免疫;同时,对扑杀区和免疫区内的村庄、道路实行全封闭管理。

现有一条笔直的公路AB通过禽流感病区,如图11,O为疫点,在扑杀区内的公路CD长为4千米,问这条公路在该免疫区内有多少千米?
图11
新人教版九年级数学上册期末答案
一、选择题
1.C 2.A 3.C 4.C 5.C 6.B 7 .B 8.A 9.C 10.C 二、填空题 11.
1,021==x x 13.四、72 13.1 14.相切(内切或外切) 15.k ≤9
且k ≠0
16.2

-
17.2 18. 2
三、解答题
19.1)..x 1
=-2,x 2
=-6
20.略
21.(1)0.5 (2)树形图(略)
53
88
≠不公平修改规则(略) 22.解:设3月份到5月份营业额的月平均增长率为x ,由题意列方程得
6.633)1%)(101(4002=++x ,
解得),(2.1%,1202.121
舍去不合题意-===x x 。

答:3月份到5月份营业额的月平均增长率为120%。

23.略
24.解:(1)由题意可知,到第4天得禽流感病鸡数为1+10+100+1000=1111,到第5天得禽流感病鸡数为10000+1111=11111,到第6天得禽流感病鸡数为100000+11111>80000。

所以到第6天所有的鸡都会被感染。

(2)过点O 作OE ⊥CD 交CD 于点E ,连接OC 、OA ,∵OA=5,OC=3,CD=4,∴CE=2。

在Rt △OCE 中,AE=5222=-OE OA ,∴AC=AE-CE=252-,∵AC=BD ,
∴AC+BD=454-。

答:这条公路在该免疫区内有(454-)千米。

相关文档
最新文档