重力式码头基本计算
重力式码头

㈢、倒滤层构造 • 1、位置:抛石棱体顶面,坡面,胸墙变形缝及
卸荷板顶面及侧面接缝处。 • 2、形式 • ⑴、碎石倒滤层:①可分层;②不分层:采用级配较 好的天然石料(或粒径5~8mm的碎石)一次合成,厚度 ≮60cm。 • ⑵、土工织物倒滤层:直接设置在墙身接缝处的土工 织物宜双层布置,抛石棱体后可单层布置。土工织物 的技术要求参见现行行业标准《水运工程土工织物应 用技术规程》。
第三章 重力式码头
• 重力式码头的结构型式及其特点 • 重力式码头的构造 • 重力式码头的一般计算
• 方块码头
• 沉箱码头 • 护壁码头 • 大直径圆筒码头
Ⅰ、重力式码头的结构型式及其特点
一、 重力式码头的一般特点
• 工作原理 • 优点
• 缺点
• 适用条件
二、重力式码头的主要组成部分及其作用
• 1、胸墙和墙身:是重 力式码头的主体结构, 挡土、承受并传递外力、 构成整体、便于安装码 头设备。 • 2、基础:⑴扩散、减 小地基应力,降低码头 沉降;⑵有利于保护地 基不受冲刷;⑶便于整 平地基,安装墙身。
• 针对设置前趾且高出基床 面的码头,为了防止船底 碰撞码头前趾,应保证前 趾与船舶舭龙骨之间的最 小净距不应小于0.3m。
㈡
变形缝的设置
• 码头结构中一般将沉降缝和伸缩缝合二为一,成为变 形缝,即一缝两用。 • 1、位置:⑴新、旧结构衔接处;⑵水深或结构型式 变化处;⑶地基土质变化较大处;⑷基床厚度变化处; ⑸沉箱接缝处等。 • 2、缝宽:2~5mm,垂直通缝。 • 3、间距:在考虑上述因素外,一般10~30m不等。
㈤、增强结构耐久性的措施:
• 适当提高材料的强度标号;适当增大构件厚度和钢筋 的砼保护层厚度;采用耐侵蚀性强,抗磨性高和抗冻 性能好的新材料;采用花岗石或预制钢筋砼板镶面。
重力式码头

二 墙身和胸墙
5. 卸荷板 一般采用预制钢筋混凝土结构 图2-2-5
卸荷板悬臂长和厚度:由稳定性和强度要求决定 一般 长1.5~3.0m 厚度0.8~1.2m
作用 : (1) 从构造上减少主动土压力; (2)利用一部分上部填土的重量,增加抗倾力矩, 从而增加主体结构的稳定性。
二 墙身和胸墙
6. 码头端部的处理 (1)码头端部在顺岸方向做成斜坡 适用码头有接长要求的情况 (2)码头端部设置翼墙 适用码头不再接长的情况 图2-2-6
三. 扶壁码头
扶壁结构是由立板、底 板和肋板互相整体连接 而成的钢筋混凝土结构
按肋板数分为单肋、双 肋和多肋
四. 大直径圆筒码头
主要有预制的大直径 薄壁钢筋混凝土无底 圆筒组成。
可沉入地基中,也可 放在抛石基床上。
优点 :结构简单、混 凝土和钢材用量少、 适应性强,可不作抛 石基床,造价低,施 工速度快。
1.方块码头的断面形式
阶梯形(图2-1-1) 衡重式(图2-1-2) 卸荷板式(图2-1-3)(属衡重式)
2.方块码头的结构型式(按墙身(块体)结构)
实心方块(图2-1-1,图2-1-2) 空心方块(有底板:图2-1-3和图2-1-6;无底板:图2-1-4 ) 异形块体(图2-1-7 )
二 沉箱码头
平整作用,不宜小于 0.5m
一 基础
3.基床肩宽(特别是外肩)
对夯实基床,不宜小于2m; 对不夯实基床,不应小于1m; 对有冲刷情况,适当加宽
4.基槽底宽及边坡坡度 底宽 不宜小于码头墙底宽度加 两倍基床厚度 坡度 根据土质由经验决定
一 基础
5. 基床夯实 使抛石基床紧密,减少建筑物在施工和使
用时的沉降。一般用重锤夯实。 6. 对抛石基床块石质量和品质要求
沉箱重力式码头课程教学设计计算书

目录第一章设计资料------------------------------------- 3第二章码头标准断面设计------------------------ 5第三章沉箱设计------------------------------------- 11第四章作用标准值分类及计算----------------- 15第五章码头标准断面各项稳定性验算------- 44第一章设计资料(一)自然条件1.潮位:极端高水位:+6.5m;设计高水位:+5.3m;极端低水位:-1.1m;设计低水位:+1.2m;施工水位:+2.5m。
2.波浪:拟建码头所在水域有掩护,码头前波高小于1米(不考虑波浪力作用)。
3.气象条件:码头所在地区常风主要为北向,其次为东南向;强风向(7级以上大风)主要为北~北北西向,其次为南南东~东南向。
4.地震资料:本地的地震设计烈度为7度。
5.地形地质条件:码头位置处海底地势平缓,底坡平均为1/200,海底标高为-4.0~-5.0m 。
根据勘探资料,码头所在地的地址资料见图1。
图一 地质资料(二)码头前沿设计高程:对于有掩护码头的顶标高,按照两种标准计算:基本标准:码头顶标高=设计高水位+超高值(1.0~1.5m )=5.30+(1.0~1.5)=6.30~6.80m 复核标准:码头顶标高=极端高水位+超高值(0~0.5m )=6.50+(0~0.5)=6.50~7.00m(三) 码头结构安全等级及用途:码头结构安全等级为二级,件杂货码头。
(四) 材料指标:拟建码头所需部分材料及其重度、内摩擦角的标准值可按表1选用。
表1(五)使用荷载:1.堆货荷载:前沿q1=20kpa;前方堆场q2=30kpa。
2.门机荷载:按《港口工程荷载规范》附录C荷载代号Mh-10 -25 设计。
3.铁路荷载:港口通过机车类型为干线机车,按《港口工程荷载规范》表7.0.3-2中的铁路竖向线荷载标准值设计。
第2章 重力式码头

三. 扶壁码头
扶壁结构是由立板、底 板和肋板互相整体连接 而成的钢筋混凝土结构 按肋板数分为单肋、双 肋和多肋
四. 大直径圆筒码头
主要有预制的大直径 薄壁钢筋混凝土无底 圆筒组成。
可沉入地基中,也可 放在抛石基床上。 优点 :结构简单、混 凝土和钢材用量少、 适应性强,可不作抛 石基床,造价低,施 工速度快。
1.三种设计状况
(1)持久状况
(2)短暂状况
(3)偶然状况
一 重力式码头设计状态和计算内容
2.计算内容
表2-3-1
二 重力式码头上的作用
作用分三类 1.永久作用:建筑物自重、固定机械设 备自重力、墙后填料产生的土压力、剩余 水压力等; 2.可变作用:堆货荷载、流动机械荷载、 码头面可变作用产生的土压力、船舶荷载、 冰荷载和波浪力等;
水平分力标准值:
3 土压力
(2) 粘性土的墙后主动土压力计算
当地面水平时,在铅垂墙背或计算垂 面上按下式计算土压力强度(郎肯公式): 永久作用部分:
eaH hKa 2c K a
eaqH qKa
可变作用部分:
3 土压力
2) 码头墙前被动土压力
当地面水平时,被动土压力
强度按下式计算(郎肯公式) :
图2-1-1
图2-1-2
图2-1-3
图2-1-4
图2-1-5
图2-1-6
图2-1-7
工形 空 T形
图2-1-8
深层水泥拌合
图2-1-9
图2-1-10
图2-1-11
图2-1-12
图2-1-13
图2-1-14
图2-1-15
图2-1-16
图2-2-1
图2-2-2
第二章重力式码头

一般适用于地基较好,当地有大量石料,缺少钢材和冰况 严重的情况。
(二) 沉箱码头
1、矩形沉箱 制作简单,浮游稳定性好,施工经验成熟
对称式
非对称式
前壁 前趾
纵隔墙
侧壁
后壁
沉箱的组成
后趾 横隔墙
南沙港集装箱码头 沉箱结构
开孔矩形沉箱
秦皇岛港煤码头
圆格形 扁格形
广州港新沙圆格形钢板桩码头
盐田港3.5和5万吨级码头剖面图
该种码头型式的主要特点: (1)格体及内部填料作为一非刚性结构,格底应力具有良好的重分布特性,地基应力均匀、连续,
对地基要求不高。
(2)格体采用预拼装整体吊运工艺,施工机械工程度高,格体拼装对预拼场地的要求不高,不需占 用已有岸线。
其他情况下的验算表达式类似抗滑稳定性验算。
(二)承载力验算 1.基床承载力验算
0max
m mianxVBK
(16e) B
1/3
当 1/3 时
max
2VK
3
,
min0
2、地基承载力验算
m axBB11 m 2da1xd1
m inBB 112 mdi1n d1
1/3
(三)整体滑动稳定性及地基沉降计算 详见《港口工程地基规范》及《土力学》 采用圆弧滑动法(瑞典条分法、毕肖普法等)等 地基沉降可采用分层总合法
立板:挡土并构成码头直立墙壁 趾板:增加抗倾稳定性,使基底反力分布均匀 内底板:所受外力传至基床 尾板:减小基床宽度,基底反力均匀 肋板:将立板和底板连成整体并支撑立板和
底板,扶壁顶端宜嵌入胸墙10cm;
扶壁码头结构图
扶壁码头优、缺点:介于块体结构和沉箱结构两者之间,主要缺点是结构整体性差。
港口专业码头毕业设计计算书重力式

总平面布置上海港改建码头是河口港码头,平面布置与工艺设计按《海港总平面设计规范》和《河港总平面设计规范》的有关规定确定。
根据水文、地质、地形、货种、装卸工艺及施工条件等因素综合分析,采用高桩码头结构型式(上层土为淤泥)。
码头前沿大致平行于黄浦江主流向,由于码头前江面宽约500米,水域面积不大,为了不使水流结构发生变化选用顺岸式。
码头前沿布置在规划前沿线,考虑到当地陆域面积紧张,采用满堂式,1#和2#码头连片布置,拆掉原有的防洪墙,将后桩台至陆地之间的短距离水域用当地廉价的砂石料抛填,当汛期来临时,码头停止作业,采用堆沙包的方法来防汛。
由资料得到的水位值:设计高水位:高潮位累积频率曲线的10%处————3.75 m设计低水位:高潮位累积频率曲线的90%处————1.22 m极端高水位:高潮位累积频率曲线的2%处————4.63m极端低水位:高潮位累积频率曲线的98%处————0.60 m1.1一号码头总平面布置1.1.1停靠方式停靠方式采用两点系泊(如图),受力系船柱数目根据船长查得为n=2,系船柱间距最大为20m,最少系船柱个数为6个。
1.1.2一号码头主要尺度的拟定1.1.2.1 泊位长度单个泊位长度:L=L+2dbL————单个泊位长度(m)bL————设计船长(m),L=82.6m;d————富裕长度(m),按《海港总平面设计规范》查表取值为8~10mL=82.6+2×(8~10)=98.6~102.6m,取码头长度为118m, 已b有岸线满足要求.1.1.2.2泊位宽度为了不占用主航道,泊位宽度:B=2bb————设计船宽(m),b=13.6mB=2×13.6=27.2m,取28m1.1.2.3 码头前沿顶高程(按有掩护港口的码头计算)基本标准:E=HWL + 超高值(1.0~1.5)复核标准:E=极端高水位+超高值(0~0.5)E————码头面高程(m)HWL————设计高水位(m)基本标准:E=3.75+(1.0~1.5)=4.75~5.25 m复核标准:E=4.63+(0~0.5)=4.63~5.13 m 由资料知,当地万吨级泊位的码头面标高一般为+4.8m,所以取E=4.8m1.1.2.4码头前沿设计水深D=T+Z1+Z2+Z3+Z4Z2 =KH- Z14%D————码头前沿设计水深(m)T————设计船型满载吃水(m),T=4.47m;Z1————龙骨下最小富裕深度(m),查得Z1=0.2mZ2————波浪富裕深度(m),K————系数,顺浪取0.3,横浪取0.5H————码头前的允许波高(m)4%由于地处黄浦江中,码头前江面宽度只有500米,波浪主要为顺浪,查《港口规划与布置》得3000吨级的杂货船的允许波高为H=0.8m,%4所以:Z2 =0.3 0.8-0.2=0.04 mZ3————船舶因配载不均而增加的船尾吃水值(m),杂货船可不计,Z3=0 m;Z4————备淤富裕深度(m),Z4=0.5mD=4.47+0.2+0.04+0+0.5=5.21m,所以码头前沿水底高程=设计最低水位-码头前沿设计水深=1.22-5.21=-3.99m,由于码头前沿布置在规划前沿线处,且规划挖至-9.0 m,所以水深条件肯定满足。
重力式码头稳定计算书

码头稳定性验算1.计算模型2.计算荷载设计高水位=2.77m ;设计低水位=-2.89m1) 结构自重力①重力(设计高水位2.77m)G1护栏作用力不计G2胸墙=(1.73*23+0.02*13)*1.3=52.065KN G3砼挡墙=0.5*(1.914+2.589)*1.75*13+0.5*(2.589+3.375)*1.0*13=93.21kn力臂计算:稳定力矩计算:②重力(设计低水位-2.89m ) G1护栏 作用力不计G2胸墙=1.75*1.3*23=52.325KN G3砼挡墙=0.5*(1.914+2.589)*1.75*23+ 0.5*(2.589+3.375)*1.0*23=164.91kn 力臂计算:稳定力矩计算:2)土压力强度计算后方回填碎石,二片石,开山石 ︒=45ϕ γ=18kn/m第二破裂角: 005.22)(21)90(21'=---=βεϕθ=β0=ε005.224521=⨯=δ有 15°<α1,α2<θ' ,故土压力可按公式2.4.1.1计算 对胸墙: α=0 ,cos α=1对砼挡墙: 0195.155.31==-tgα ; cos α=0.9613.作用分析1) 永久作用①设计高水位2.77m永久作用土压力强度 cos α1=1 ,cos α2=0.96111e = 0e 12=(18×1.48+11×0.02)×Kan ×cos α1=26.86×0.1597 =4.29kpa1597.0)841.01(924.05.00cos 5.22cos 45sin 5.67sin 1)5.22cos(145cos )cos()cos()sin()sin(1)cos(cos )(cos 2000002222=+⨯=⎥⎥⎦⎤⎢⎢⎣⎡︒+⨯=⎥⎦⎤⎢⎣⎡-+-+++-=βαδαβϕδϕδαααϕαn n n n n n n k 2835.0)9319.01(723.0765.095.15cos 45.38cos 45sin 5.67sin 1)45.38cos()95.15(cos 05.29cos )cos()cos()sin()sin(1)cos(cos )(cos 20000202222=+⨯=⎥⎥⎦⎤⎢⎢⎣⎡︒+⨯=⎥⎦⎤⎢⎣⎡-+-+++-=βαδαβϕδϕδαααϕαn n n n n n n ke 21 =(18×1.48+11×0.02)×0.2835×0.961=7.318kpa e 2=57.11×kan ×cos α2=57.11×0.2835×0.961=15.559kpa 胸墙后土压力合力水平合力:Eh n =竖直合力:Ev n = 计算得:(按填料分层,单位kn)力臂计算水平力壁di 和倾覆力矩MEHi 计算竖直力壁di 和稳定力矩MEVi 计算)cos(25.011n an n n i n n i i K h h r h r δα+⎪⎭⎫⎝⎛+∑-=)sin(25.011n an n n i n n i i K h h r h r δα+⎪⎭⎫ ⎝⎛+∑-=②设计低水位-2.89m永久作用土压力强度 cos α1=1 ,cos α2=0.961 e 11=0e 12=(18×1.5)×Kan ×cos α1=27×0.1597×1 =4.312kpa e 21=(18×1.5)×Kan ×cos α1=27×0.2835×0.961 =7.356kpae 22=76.5×kan ×cos α2=76.5×0.2835×0.961=20.842kpa 胸墙后土压力合力水平合力:Eh n =竖直合力:Ev n = 计算得:(按填料分层,单位kn)力臂计算水平力臂di 和倾覆力矩MEHi 计算)cos(25.011n an n n i n n i i K h h r h r δα+⎪⎭⎫⎝⎛+∑-=)sin(25.011n an n n i n n i i K h h r h r δα+⎪⎭⎫ ⎝⎛+∑-=竖直力臂di和稳定力矩MEVi计算2)可变作用取可变荷载Q=30kn/m①可变作用土压力强度胸墙Eq1=q·kq·Kan·hn=30×1×0.1597×1.5=7.187kn 砼挡墙Eq2=q·kq·Kan·hn=30×1×0.2835×2.75=23.389kn胸墙后土压力合力水平分力Eqh1=7.19×cos22.5°= 6.64kn竖向分力Eqv1=7.19×sin22.5°= 2.752kn砼挡墙后土压力合力水平分力Eqh2=23.39×cos38.45°= 18.313kn 竖向分力Eqv2=23.39×sin38.45°= 14.548kn 可变土压力合力水平力 Eqh=6.64+18.304 = 24.954kn 竖向力 Eqv=2.75+14.56 = 17.300kn ②可变土压力力臂及力矩计算水平力臂di 和倾覆力矩MEqhi 计算竖直力臂di 和稳定力矩MEqvi 计算3)波浪作用,地震作用和系缆力,剩余水压力暂不考虑。
港口水工建筑物沉箱重力式码头课程设计

第十一页,编辑于星期二:十点 四十一分。
2、沉箱长度 长度根据沉箱预制厂能力(尽量利用,减少沉箱个数)和
泊位长度综合确定。
沉箱安装缝 宜采用沉箱高度的4‰ ,一般采用 50mm 。 3、沉箱高度(由码头高程等确定)
=沉箱顶标高-沉箱底标高 4、沉箱宽度
由码头稳定性确定,应通过试算确定。
(包括前趾后趾) 经验上取(0.6~0.7)倍码头高度
(胸墙顶到沉箱底)
第十二页,编辑于星期二:十点 四十一分。
三、沉箱细部尺寸
第十三页,编辑于星期二:十点 四十一分。
1、外形尺寸(长、宽、高)如前定 由于背后有抛石棱体,所以本设计沉箱用 平接方式。(沉
箱前后壁厚度一致,对称,便于计算)
第三十页,编辑于星期二:十点 四十一分。
本次课程设计验算内容
一、胸墙稳定性验算(抗滑、抗倾)
持久组合一:
自重+系缆力+堆货+土压力 (土重和堆货引起)
水位:设计高水位
持久组合二: 自重+系缆力+铁路+土压力 (土重和铁路荷载引起) 水位:设计高水位
(门机前腿产生稳定力和稳定力矩,故不计门机荷载)
第三十一页,编辑于星期二:十点 四十一分。
2 、波浪
3、气象 九级风 v=22m/s ,垂直于码头前沿线。
4、地震(本次课程设计不考虑)
5 、地形地质 见设计任务书自然条件部分。
6、设计船型
第二页,编辑于星期二:十点 四十一分。
第二节、设计内容
一、码头各部分尺寸的初步确定
第三页,编辑于星期二:十点 四十一分。
1、码头顶标高(即胸墙顶标高)
度之和。
第八页,编辑于星期二:十点 四十一分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• M点以上按填土计算土压力 • M点以下按填石计算土压力 • M点位置以两种填料的综合
破裂角θ’确定: • 填料1:h1,φ1,θ1; • 填料2:h2,φ2,θ2,则: • θ1 =45°- φ1 /2, • θ2 =45°- φ2 /2 • θ’ =(θ1 h1+ θ2 h2)/
(h1 + h2)
PHoartbEorngEinnegeinrienegriTnegaSchtriuncgtuarned Research Section
⑷、有卸荷板的码头的土压力计算
• 上墙:C-C’按朗金公式,计算,δ=0。 • 下墙:相当于情况⑴。
4、系缆力沿码头方向的分布
PHoartbEorngEinnegeinrienegriTnegaSchtriuncgtuarned Research Section
②粘性土:按当地经验选用(按朗金公式计算;用经验内摩擦角或等代内摩 擦角取代C, φ值,采用库仑公式计算)
⑵、被动土压力
无论是粘性土还是无粘性土均按朗金公式计算。
2、特殊情况下主动土压力的计算
PHoartbEorngEinnegeinrienegriTnegaSchtriuncgtuarned Research Section
组合二:不考虑波浪力作用,沿胸墙底面的抗滑稳定性,系缆力为主导可变作用
0 (E E H P P W W P P R R E H E q ) 1 H d ( G G E E V P P R R E V E q ) fV
3、土压力
PHoartbEorngEinnegeinrienegriTnegaSchtriuncgtuarned Research Section
(一)土压力计算方法
1、朗金公式
• 假定:土体为半无限弹性体,滑 动楔体内土体每一点均达到塑性 极限平衡状态。
• 公式(略) • 适用条件: • ⑴、适用于粘性土(C≠0)及
砂性土(C=0 ); • ⑵、适用于地面水平,墙背垂直
且光滑。
PHoartbEorngEinnegeinrienegriTnegaSchtriuncgtuarned Research Section
2、库伦公式
• 由滑裂楔体平衡条件推得 • 适用条件: ⑴适用于无粘性土,不适用于粘性土; ⑵适用于地面倾斜或水平,墙背倾斜或
状态设计,必要时也需按正常使用极限状态设计。 3、偶然状况:在使用期遭受偶然荷载时仅按承载能力极限状态设计。
作用
PHoartbEorngEinnegeinrienegriTnegaSchtriuncgtuarned Research Section
重力式码头上的作用按时间变异可分为以下三类: 永久作用:自重(建筑物,固定机械设备),填土产生的土压力。 可变作用:地面使用荷载产生的土压力,船舶荷载,施工荷载,冰荷载,波浪
概念:墙后地下水位高于墙前计算低水位时产生的水压力差值,一般按静水 压力考虑。
剩余水压力应根据码头排水的好坏和后方填料的透水性来确定。 ⑴、墙后为抛石棱体或粗于中砂的填料,可不考虑剩余水压力。 ⑵、墙后为中砂或细于中砂的填料(包括粘性土)时: ①、潮汐港:剩余水头取1/5~1/3的平均潮差; ②、河港:取决于排水措施和墙前、后地下水位情况。
⑴、计算稳定时,不考虑撞击力、挤靠力。 ⑵、系缆力:Ny-对码头影响不大,不考虑。Nz-数
值较小,计算墙身稳定性时不考虑,而在计算系船块 体和胸墙稳定性时应考虑。 Nz-按各分层沿码头长度方向的分布长度考虑。 ①、对于阶梯形方块码头:沿墙以45°向下扩散,遇竖 缝中止,然后再从缝底端向下继续扩散。 ②、对于护壁码头:沿墙以45°向下扩散,遇竖缝中止。 ③、对于现浇砼和浆砌石码头、沉箱码头,在验算沿墙 底稳定是,以分段长度作为船舶荷载的分布长度。因 为此类码头在分段长度内为一整体。
力等。 偶然作用:地震作用。 1、建筑物的自重:G=γV (γ的选取) 材料重度:水上采用天然容重,水下采用浮容重。 填料重度:无粘性土,以墙后地下水位为界,地下水位以上采用天然容重,以
下采用浮容重。粘性土:根据当地经验选用,(应考虑饱和区)
Байду номын сангаас
2、剩余水压力
PHoartbEorngEinnegeinrienegriTnegaSchtriuncgtuarned Research Section
⑴、距墙背一定距离的均布荷载
PHoartbEorngEinnegeinrienegriTnegaSchtriuncgtuarned Research Section
⑵、距墙背一定距离的集中荷载
PHoartbEorngEinnegeinrienegriTnegaSchtriuncgtuarned Research Section
重力式码头的基本计算
PHoartbEorngEinnegeinrienegriTnegaSchtriuncgtuarned Research Section
一. 重力式码头的设计状态和计算内容
重力式码头的设计应考虑三种设计状况 1、持久状况:在结构使用期按承载能力极限状态和正常使用极限状态设计。 2、短暂状况:施工期或使用期可能临时承受某种特殊荷载时按承载能力极限
计算
PHoartbEorngEinnegeinrienegriTnegaSchtriuncgtuarned Research Section
1、码头稳定性验算
1)抗滑稳定性验算 组合一:不考虑波浪力作用,由可变作用产生的土压力为主导可变作用时,抗滑稳
定性应满足下式:
0 (E E H P P W W E E q H p P R R ) 1 H d (G G E E V E P q ) fV
垂直的陡墙,不适用于坦墙; ⑶适用于墙背粗糙或光滑,即δ≠0或δ=
0。
㈡、港口工程中土压力的计算
PHoartbEorngEinnegeinrienegriTnegaSchtriuncgtuarned Research Section
1、一般原则: ⑴、主动土压力
①无粘性土:陡墙情况( -15°≤α≤θ’),按库伦公式计算; 坦墙情况: 按假想墙背简化,并按朗金公式计算,假想墙背至实际墙背之间的土重应 计入结构中。