2017-2018学年成都市金堂县八年级(上)期末数学试卷(含解析)
2017-2018学年度上期八年级期末调研考试题数学
![2017-2018学年度上期八年级期末调研考试题数学](https://img.taocdn.com/s3/m/dbcbfe633b3567ec102d8ac5.png)
金堂县2017-2018学年度上期八年级期末考试题数 学本试卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟.A 卷分第I 卷和第II 卷,第I 卷为选择题,第II 卷为其他类型的题.第Ⅰ卷1至2页, 第Ⅱ卷和B 卷3至6页.考试结束时,监考人将第Ⅰ卷及第Ⅱ卷和B 卷的答题卡收回.A 卷(共100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在密封线内相应位置上.2.第Ⅰ卷各题均有四个选项,只有一项符合题目要求,每小题选出答案后,填在对应题目的答题卡上.3.A 卷的第II 卷和B 卷用蓝、黑钢笔或圆珠笔直接答在答题卡上.一.选择题(本大题共10个小题,每小题3分,共30分)1.下列实数是无理数的是( ) A.32C.010101.1- D .0 2.在平面直角坐标系中,点P (2,-3)位于第( )象限A. 一B. 二C. 三D.四3. 2的算术平方根是( )A. BC. D .14.在平面直角坐标系中,点P (3,-2)关于y 轴对称的点的坐标是( )A. (3,-2)B. (2,-3)C.(-3,-2)D. (3,2)5.以下列长度(单位:cm)为边长的三角形是直角三角形的是( )A .5,6,7B .7,8,9C .6,8,10D .5,7,96.已知:如图,//,AB CD BC 平分ABD ∠,且035C ∠=,则D ∠的度数是( )A.110°B.105°C.130°D.145°7.下列在一次函数32-=x y 的图象上的点的坐标是( )A.(2,3)B.(2,1)C.(0,3)D.(3,0)8.在中央电视台“朗读者”节目的影响下,金堂某中学开展了“让阅读成为习惯”读书话动,为了解6月份高一年级1100名学生读书情况,随机调查了高一年级50名学生读书的册数,统计数据如下表所示:关于这组数据,下列说法正确的是( )A .众数是17B . 中位数是3 C. 平均数是3 D .方差是29.一次函数12+-=x y 的图象不经过( )A .第一象限B . 第二象限C . 第三象限D .第四象限10.如图,直线l 是一次函数b kx y +=的图象,若点A (4-,a )在直线l 上,则a 的值是( )A .3B .3-C .2-D .1-第Ⅱ卷(非选择题,共70分)二.填空题:(每小题4分,共16分) 11.=⨯313计算: .12.如图,阴影部分是一个长方形,它的面积是 cm 2.13.已知b y ax y x y x =-⎩⎨⎧-==⎩⎨⎧==都是方程和2031的解,则a b -= .14.在平面直角坐标系中,已知一次函数y=x -+1的图象经过P 1(1x ,y 1)、P 2(2x ,y 2)两点,当1x 2x (填“>”或“<”)时,21y y >.三、解答下列各题(共54分.15题每题6分,16题6分,17—20题每题9分)15.计算:①.()10123π-⎛⎫--- ⎪⎝⎭.②.2186334-⨯⎪⎪⎭⎫ ⎝⎛+16.解方程组: ⎩⎨⎧=-=+4325y x y x17.如图,点D ,E 分别在AB 和AC 上,DE//BC ,∠DBE =30°,∠EBC =25°.(1)求∠BDE 的度数;(2)过点E 作EF ⊥BC 于F ,若BE =26,FC =1,EC =3,求△BEC 的面积.(2)班人数较多,有50多人.如果两班都以班级为单位分别购票,则一共应付1340元,如果将两班联合起来作为一个团体购票,则可以节省不少钱.求两班各有多少名学生?联合起来购票能省多少钱? 19.金堂某中学成立了一支大型合唱队,学校为了解合唱队员的年龄情况,作了一次年龄调查,根据合唱队员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的合唱队员人数为 ,图①中m 的值为 ;(2)扇形统计图中,13岁对应的圆心角α 等于 度,并补全条形统计图;(3)求统计的这组合唱团队员年龄数据的众数、中位数和平均数.20.如图,在平面直角坐标系xOy 中,一次函数3y kx =+的图象与正比例函数12y x =-的图象交于点A (,1a -),与y 轴相交于点B .⑴求一次函数的表达式;(2)若直线OA 向下平移3个单位后与AB 相交于点C,与y 轴相交于点D ,求点C 点坐标;(3)过点A 作y 轴的平行线,交直线CD 于点E ,连接AE ,求点E 的坐标及△ACE 的面积.B 卷(共50分)一、填空题(共20.每小题4分)21. 如图,数轴上点C 表示的实数是_____________,点E 表示的实数是_____________.21题图22.若关于x 、y 的二元一次方程组⎩⎨⎧=+=+322y mx ny x 有无数组解时,m = ;n =________. 23.如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为3,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是 .24.小明将一条长为a 2的绳子的两端分别固定在)0,3(1-F 和)0,3(2F 上,绷紧绳子作出了如图所示的曲线.点A B ,分别是曲线与x 轴正半轴、y 轴正半轴的交点,点P 是此曲线上的一动点...设点P 的横坐标为x ,1PF 的长为1d ,2PF 的长为2d ,当P 从点A 逆时针运动到点B 时,2d 与x 之间满足关系:)50(5352≤≤-=x x d ,则结论:①22=AF ; ②52=BF ;③3OB =;④)50(5351≤≤+=x x d ;⑤10=a ;⑥5OA =中,正确结论的序号是_ .25.如图,在平面直角坐标系中,直线y =x +1与y 轴交于点A 1,按如图方式作正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2…,A 1、A 2、A 3…在直线y =x +1上,点C 1、C 2、C 3…在x 轴上,点D 1、D 2、D 3…为对应正方形的中心,图中阴影部分三角形的面积从左到右依次记为S 1、S 2、S 3、…、S n ,则3S 的值_______,S n 的值为_______.(用含n 的代数式表示,n 为正整数).23题图26.1996年金堂三溪镇被中国柑桔研究所誉为“中国脐橙第一乡”,经过近10多年的选育改良,三溪脐橙更是味鲜色明。
2017-2018学年成都市金堂县土桥学区八年级(上)第一次月考数学试卷(含解析)
![2017-2018学年成都市金堂县土桥学区八年级(上)第一次月考数学试卷(含解析)](https://img.taocdn.com/s3/m/3925707ddd36a32d737581f2.png)
2017-2018学年成都市金堂县八年级(上)第一次月考数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(每小题3分,共30分)1.如图,阴影部分是一个长方形,它的面积是()A.3cm2B.4cm2C.5cm2D.6cm22.三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形3.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:64.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到斜边AB的距离是()A.B.C.9 D.65.下列说法正确的是()A.7是49的算术平方根,即=±7B.7是(﹣7)2的算术平方根,即=7C.±7是49的平方根,即±=7D.±7是49的平方根,即=±76.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|7.下列运算中,错误的有()①;②=±4;③=﹣=﹣2;④.A.1个B.2个C.3个D.4个8.在平面直角坐标系中,点P(﹣1,1)关于x轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限9.若点P(m,1)在第二象限内,则点Q(﹣m,0)在()A.x轴正半轴上B.x轴负半轴上C.y轴正半轴上D.y轴负半轴上10.a、b在数轴上的位置如图所示,那么化简的结果是()A.2a﹣b B.b C.﹣b D.﹣2a+b二、填空题(每小题4分,共16分)11.等腰△ABC的腰长AB为10cm,底边BC为16cm,则底边上的高为.12.已知点P在第二象限,点P到x轴的距离是2,到y轴的距离是3,那么点P的坐标是.13.已知点P(﹣3,2),点A与点P关于y轴对称,则点A的坐标是.14.已知a、b为有理数,m、n分别表示5﹣的整数部分和小数部分,且am+bn=9,则a+b=.三、解答题(共55分)15.(12分)(1)计算:﹣3×+﹣(π+1)0×()﹣1(2)计算:(﹣2)×﹣6.16.(8分)如图所示的一块地,已知AD=4m,CD=3m,AD⊥DC,AB=13m,BC=12m,求这块地的面积.17.(8分)如图,正方形网格中的△ABC,若小方格边长为1,试判断△ABC的形状?并说明理由.18.(8分)如图,圆柱形玻璃容器,高8cm,底面周长为30cm,在外侧下底的点S处有一只蚂蚁,与蚂蚁相对的圆柱形容器的上口外侧的点F处有食物,求蚂蚁要吃到食物所走的最短路线长度.(画出侧面展开图并计算)19.(9分)已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题:(1)在坐标系内描出点A、B、C的位置,并求△ABC的面积;(2)在平面直角坐标系中画出△A′B′C′,使它与△ABC关于x轴对称,并写出△A′B′C′三顶点的坐标;(3)若M(x,y)是△ABC内部任意一点,请直接写出这点在△A′B′C′内部的对应点M′的坐标.20.(10分)如图,长方形ABCD中AD∥BC,边AB=4,BC=8.将此长方形沿EF折叠,使点D与点B重合,点C落在点G处.(1)试判断△BEF的形状,并说明理由;(2)求△BEF的面积.B卷(50分)一、填空(每题4分,共20分)21.一个数的平方根是2a+5和a﹣2,则a=,这个数为.22.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为cm.23.若a,b为实数,且b=,则a+b=.24.如图,在平面直角坐标系中,点A、B、C的坐标分别是A(﹣2,5),B(﹣3,﹣1),C(1,﹣1),在第一象限内找一点D,使四边形ABCD是平行四边形,那么点D的坐标是.25.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为.二、解答题(共30分)26.(8分)已知a,b,c是△ABC三边,且满足,试判断△ABC形状.27.(9分)已知点A(﹣2,3),B(4,3),C(﹣1,﹣3),求(1)A,B两点之间的距离及点C到x轴的距离.(2)三角形ABC的面积.(3)若点P在y轴上,当△ABP的面积为6时,求点P的坐标.28.(12分)如图,△ABC是直角三角形,∠BAC=90°,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF.(1)如图1,试说明BE2+CF2=EF2;(2)如图2,若AB=AC,BE=12,CF=5,求△DEF的面积.参考答案与试题解析1.【解答】解:由勾股定理得:=5(cm),∴阴影部分的面积=5×1=5(cm2);故选:C.2.【解答】解:化简(a+b)2=c2+2ab,得,a2+b2=c2所以三角形是直角三角形,故选:C.3.【解答】解:A、∠A+∠B=∠C,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;B、∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;C、由a2=c2﹣b2,得a2+b2=c2,符合勾股定理的逆定理,是直角三角形;D、32+42≠62,不符合勾股定理的逆定理,不是直角三角形.故选:D.4.【解答】解:设点C到斜边AB的距离是h,∵在Rt△ABC中,∠C=90°,AC=9,BC=12,∴AB==15,∴h==.故选:A.5.【解答】解:∵代表的就是49的算术平方根,∴A、C、D选项均错误,故选:B.6.【解答】解:A、=2,﹣2与是互为相反数,故本选项正确;B、=﹣2,﹣2与相等,不是互为相反数,故本选项错误;C、﹣2与﹣是互为倒数,不是互为相反数,故本选项错误;D、|﹣2|=2,2与|﹣2|相等,不是互为相反数,故本选项错误.故选:A.7.【解答】解:①=,故错误;②=4,故错误;③==2,故错误;④=,故错误;故选:D.8.【解答】解:点P(﹣1,1)关于x轴的对称点为(﹣1,﹣1),在第三象限.故选:C.9.【解答】解:由点P(m,1)在第二象限内,得m<0,﹣m>0,点Q(﹣m,0)在x轴的正半轴上,故选:A.10.【解答】解:原式=a﹣b﹣a=﹣b.故选:C.11.【解答】解:如图所示,∵AB=AC=10cm,AD⊥BC,∴BD=CD=BC=8cm,在Rt△ABD中,根据勾股定理得:AD==6cm.故答案为:6cm12.【解答】解:∵点P在第二象限,点P到x轴的距离是2,到y轴的距离是3,∴点P的横坐标是﹣3,纵坐标是2,∴点P的坐标为(﹣3,2).故答案为:(﹣3,2).13.【解答】解:∵点P(﹣3,2),点A与点P关于y轴对称,∴点A的坐标是(3,2).14.【解答】解:∵4<7<9,∴2<<3,即m=2,n=5﹣﹣2=3﹣,∴am+bn=2a+(3﹣)b=9,即2a+3b﹣b=9,可得2a+3b=9,b=0,解得:a=4.5,b=0,则a+b=4.5,故答案为:4.515.【解答】解:(1)﹣3×+﹣(π+1)0×()﹣1=2﹣﹣2﹣1×=﹣2;(2)(﹣2)×﹣6=3﹣6﹣3=﹣6.16.【解答】解:连接AC.∵AD=4m,CD=3m,AD⊥DC∴AC=5m∵122+52=132∴△ACB为直角三角形∴S△ACB=×AC×BC=×5×12=30m2,S△ACD=AD•CD=×4×3=6m2,∴这块地的面积=S△ACB﹣S△ACD=30﹣6=24m2.17.【解答】解:△ABC是直角三角形.理由如下:∵在△ABC中,AC==;BC==;AB==;∴AC2+AB2=BC2,∴∠A=90°,△ABC是直角三角形.18.【解答】解:如图所示,∵圆柱形玻璃容器,高8cm,底面周长为30cm,∴SD=15cm,∴SF===17(cm).答:蚂蚁要吃到食物所走的最短路线长度是17cm.19.【解答】解:(1)描点如图,由题意得,AB∥x轴,且AB=3﹣(﹣2)=5,∴S△ABC=×5×2=5;(2)如图;A′(﹣2,﹣1)、B′(3,﹣1)、C′(2,﹣3);(3)M'(x,﹣y).20.【解答】解:(1)△BEF是等腰三角形.∵ED∥FC,∴∠DEF=∠BFE,根据翻折不变性得到∠DEF=∠BEF,故∠BEF=∠BFE.∴BE=BF.△BEF是等腰三角形;(2)∵矩形ABCD沿EF折叠点B与点D重合,∴BE=DE,BG=CD,∠EBG=∠ADC=90°,∠G=∠C=90°,∵AB=CD,∴AB=BG,设BE=DE=x,则AE=AD﹣DE=8﹣x,在Rt△ABE中,AB2+AE2=BE2,即42+(8﹣x)2=x2,解得x=5,∴BE=5,∵∠ABE+∠EBF=∠ABC=90°,∠GBF+∠EBF=∠EBG=90°,∴∠ABE=∠GBF,在△ABE和△GBF中,,∴△ABE≌△GBF(ASA),∴BF=BE=5,∴△EBF的面积=×5×4=10.21.【解答】解:根据题意得:2a+5+a﹣2=0,解得:a=﹣1,这个数为9,故答案为:﹣1,922.【解答】解:如图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,在直角△A′DB中,由勾股定理得A′B===20(cm).故答案为:20.23.【解答】解:由题意得,a2﹣1=0,1﹣a2=0,a+1≠0,解得,a=1,则b=,则a+b=,故答案为:.24.【解答】解:由平行四边形的性质,可知D点的纵坐标一定是5;又由C点相对于B点横坐标移动了1﹣(﹣3)=4,故可得点D横坐标为﹣2+4=2,即顶点D的坐标(2,5).故答案为:(2,5).25.【解答】解:如图,第6次反弹时回到出发点,∴每6次碰到矩形的边为一个循环组依次循环,∵2013÷6=335余3,∴点P第2013次碰到矩形的边时是第336个循环组的第3次碰边,坐标为(8,3).故答案为:(8,3).26.【解答】解:,a2﹣6a+9+b2﹣8b+16+=0(a﹣3)2+(b﹣4)2+=0,a﹣3=0,b﹣4=0,c﹣5=0,解得,a=3,b=4,c=5,∵a2+b2=32+42=25,c2=25,∴a2+b2=c2,∴△ABC是直角三角形.27.【解答】解:如右图所示,∵A(﹣2,3),B(4,3),C(﹣1,﹣3),∴AB=4﹣(﹣2)=6,点C到x的距离是|﹣3|=3;(2)△ABC的面积是:=18;(3))∵点P在y轴上,当△ABP的面积为6时,∴P到AB的距离为:6÷(×6)=2,故点P的坐标为:(0,1),(0,5).28.【解答】(1)证明:延长ED至点G,使得DG=DE,连接FG,CG,∵DE=DG,DF⊥DE,∴DF垂直平分DE,∴EF=FG,∵D是BC中点,∴BD=CD,在△BDE和△CDG中,,∴△BDE≌△CDG(SAS),∴BE=CG,∠DCG=∠DBE,∵∠ACB+∠DBE=90°,∴∠ACB+∠DCG=90°,即∠FCG=90°,∵CG2+CF2=FG2,∴BE2+CF2=EF2;(2)解:连接AD,∵AB=AC,D是BC中点,∴∠BAD=∠C=45°,AD=BD=CD,∵∠ADE+∠ADF=90°,∠ADF+∠CDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴AE=CF,BE=AF,AB=AC=17,∴S四边形AEDF=S△ABC,∴S△AEF=×5×12=30,∴△DEF的面积=S△ABC﹣S△AEF=。
2017-2018学年四川省成都市金堂县土桥中学八年级(上)期末数学试卷(带答案解析)
![2017-2018学年四川省成都市金堂县土桥中学八年级(上)期末数学试卷(带答案解析)](https://img.taocdn.com/s3/m/e20289ddbe1e650e52ea999b.png)
2017-2018学年四川省成都市金堂县土桥学区八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求,答案填在答题卡上.1.(3分)16的平方根是()A.±4 B.±2 C.4 D.﹣4【考点】21:平方根.【解答】解:∵(±4)2=16,∴16的平方根是±4.故选:A.2.(3分)在平面直角坐标系中,下列各点在第二象限的是()A.(2,1) B.(2,﹣1)C.(﹣2,1)D.(﹣2,﹣1)【考点】D1:点的坐标.【解答】解:∵点在第二象限的符号特点是横纵坐标均为负,∴符合题意的只有选项C.故选C.3.(3分)如图,AC∥DF,AB∥EF,若∠2=50°,则∠1的大小是()A.60°B.50°C.40°D.30°【考点】JA:平行线的性质.【解答】解:∵AC∥DF,∴∠1=∠A,∵AB∥EF,∠2=50°,∴∠A=∠2=50°,∴∠1=50°,故选:B.4.(3分)一次函数y=x+1不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】F7:一次函数图象与系数的关系.【解答】解:∵一次函数y=x+1中,k=1>0,b=1>0,∴此函数的图象经过一、二、三象限,不经过第四象限.故选:D.5.(3分)满足下列条件的△ABC,不是直角三角形的是()A.b2﹣c2=a2B.a:b:c=3:4:5C.∠A:∠B:∠C=9:12:15 D.∠C=∠A﹣∠B【考点】K7:三角形内角和定理;KS:勾股定理的逆定理.【解答】解:A、由b2﹣a2=c2得b2=a2+c2符合勾股定理的逆定理,故是直角三角形;B、由a:b:c=3:4:5得c2=a2+b2符合勾股定理的逆定理,故是直角三角形;C、由∠A:∠B:∠C=9:12:15,及∠A+∠B+∠C=180°得∠C=75°≠90°,故不是直角三角形.D、由三角形三个角度数和是180°及∠C=∠A﹣∠B解得∠A=90°,故是直角三角形;故选:C.6.(3分)已知{x=1y=2是方程组{ax+y=−12x−by=0的解,则a+b=()A.2 B.﹣2 C.4 D.﹣4【考点】97:二元一次方程组的解.【解答】解:∵{x =1y =2是方程组{ax +y =−1①2x −by =0②的解∴将{x =1y =2代入①,得 a +2=﹣1, ∴a=﹣3.把{x =1y =2代入②,得 2﹣2b=0, ∴b=1.∴a +b=﹣3+1=﹣2. 故选:B .7.(3分)将直尺和直角三角板按如图方式摆放,已知∠1=30°,则∠2的大小是( )A .30°B .45°C .60°D .65° 【考点】JA :平行线的性质.【解答】解:∵∠1+∠3=90°,∠1=30°, ∴∠3=60°.∵直尺的两边互相平行, ∴∠2=∠3=60°. 故选:C .8.(3分)在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为1.5,1.0,则下列说法正确的是( ) A .乙同学的成绩更稳定 B .甲同学的成绩更稳定C .甲、乙两位同学的成绩一样稳定D .不能确定哪位同学的成绩更稳定 【考点】W7:方差.【解答】解:因为S 甲2=1.5>S乙2=1.0,方差小的为乙,所以本题中成绩比较稳定的是乙. 故选:A .9.(3分)如图,以两条直线l 1,l 2的交点坐标为解的方程组是( )A .{x −y =12x −y =1B .{x −y =−12x −y =−1C .{x −y =−12x −y =1D .{x −y =12x −y =−1【考点】FE :一次函数与二元一次方程(组).【解答】解:直线l 1经过(2,3)、(0,﹣1),易知其函数解析式为y=2x ﹣1; 直线l 2经过(2,3)、(0,1),易知其函数解析式为y=x +1; 因此以两条直线l 1,l 2的交点坐标为解的方程组是:{x −y =−12x −y =1.故选:C .10.(3分)如图,长方体的底面边长分别为2cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈达到点B ,那么所用细线最短需要( )A.11cm B.2√34cm C.(8+2√10)cm D.(7+3√5)cm【考点】KV:平面展开﹣最短路径问题.【解答】解:把长方体的侧表面展开得到一个长方形,高6cm,宽=2+3+2+3=10cm,AB为对角线.AB=√62+102=2√34cm.故选:B.二、填空题(每小题4分,共l6分)11.(4分)计算√(−2)2=2.【考点】73:二次根式的性质与化简.【解答】解:√(−2)2=√22=2,故答案为:2.12.(4分)李老师最近6个月的手机话费(单位:元)分别为:27,36,54,29,38,42,这组数据的中位数是37.【考点】W4:中位数.【解答】解:把这6个数据按从小到大的顺序排列,可得27、29、36、38、42、54,处在中间位置的数为36、38,又∵36、38的平均数为37,∴这组数据的中位数为37,故答案为:37.13.(4分)点P(﹣2,3)关于x轴的对称点的坐标是(﹣2,﹣3).【考点】P5:关于x 轴、y 轴对称的点的坐标.【解答】解:点P (﹣2,3)关于x 轴的对称,即横坐标不变,纵坐标互为相反数,∴对称点的坐标是(﹣2,﹣3). 故答案为:(﹣2,﹣3).14.(4分)如图,直线l 过正方形ABCD 的顶点B ,点A 、点C 到直线l 的距离分别是3和4,则该正方形的面积是 25 .【考点】KD :全等三角形的判定与性质;LE :正方形的性质.【解答】解:∵四边形ABCD 是正方形, ∴∠ABC=90°,AB=BC , ∴∠ABE +∠CBF=90°. ∵∠AEB=∠CFB=90°, ∴∠CBF +∠BCF=90°, ∴∠ABE=∠BCF . 在△ABE 和△BCF 中, {∠AEB =∠CFB ∠ABE =∠BCF AB =BC, ∴Rt △ABE ≌Rt △BCF (AAS ), ∴AE=BF . ∵AE=3, ∴BF=3.在At △BFC 中,由勾股定理,得 BC=5,∴正方形的边长是5. ∴正方形的面积是25; 故答案为:25.三、解答题(本大题共6个小题,共54分) 15.(12分)(1)计算:√12﹣3√3﹣|1﹣√3|+(12)﹣1;(2)解方程组:{2x −2y =1−3yx 2−y =4.【考点】6F :负整数指数幂;79:二次根式的混合运算;98:解二元一次方程组.【解答】(1)解:原式=2√3﹣√3+1﹣√3+2 =3;(2){2x +y =1①12x −y =4②解:方程组可化为{2x +y =1①12x −y =4②,①+②得2x +12x=5,解得x=2,把x=2代入①得4+y=1,解得y=﹣3, 所以方程组的解为{x =2y =−3.16.(10分)如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A (1,2),解答以下问题:(1)请在图中建立适当的直角坐标系,并写出图书馆(B )位置的坐标;(2)若体育馆位置坐标为C (﹣3,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC ,求△ABC 的面积.【考点】D3:坐标确定位置.【解答】解:(1)建立直角坐标系如图所示:图书馆(B )位置的坐标为(﹣3,﹣2);(2)标出体育馆位置C 如图所示,观察可得,△ABC 中BC 边长为5,BC 边上的高为4,所以△ABC 的面积为=12×5×4=10.17.(6分)已知|3x ﹣y ﹣1|和√2x +y −4互为相反数,求x +4y 的平方根. 【考点】16:非负数的性质:绝对值;21:平方根;23:非负数的性质:算术平方根;98:解二元一次方程组.【解答】解:由题意得:|3x ﹣y ﹣1|+√2x +y −4=0, ∴{3x −y =12x +y =4,解得:{x =1y =2,则x +4y=1+8=9,9的平方根是±3.18.(8分)甲、乙两人相距50千米,若同向而行,乙10小时追上甲;若相向而行,2小时两人相遇.求甲、乙两人每小时各行多少千米? 【考点】9A :二元一次方程组的应用.【解答】解:设甲每小时行x 千米,乙每小时行y 千米, 则可列方程组为{10y −10x =502y +2x =50,解得{x =10y =15,答:甲每小时行10千米,乙每小时行15千米.19.(8分)某校九年级(1)班所有学生参加2010年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A 、B 、C 、D 四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)九年级(1)班参加体育测试的学生有 50 人; (2)将条形统计图补充完整;(3)在扇形统计图中,等级B 部分所占的百分比是 40% ,等级C 对应的圆心角的度数为 72° ;(4)若该校九年级学生共有850人参加体育测试,估计达到A 级和B 级的学生共有 595 人.【考点】V5:用样本估计总体;VB :扇形统计图;VC :条形统计图.【解答】(1)总人数=A 等人数÷A 等的比例=15÷30%=50人;(2)D 等的人数=总人数×D 等比例=50×10%=5人, C 等人数=50﹣20﹣15﹣5=10人, 如图:(3)B等的比例=20÷50=40%,C等的比例=1﹣40%﹣10%﹣30%=20%,C等的圆心角=360°×20%=72°;(4)估计达到A级和B级的学生数=(A等人数+B等人数)÷50×850=(15+20)÷50×850=595人.20.(10分)如图,在平面直角坐标系中,直线y=2x+3与y轴交于点A,直线y=kx﹣1与y轴交于点B,与直线y=2x+3交于点C(﹣1,n).(1)求n、k的值;(2)求△ABC的面积.【考点】F8:一次函数图象上点的坐标特征;K3:三角形的面积.【解答】解:(1)当x=﹣1时,n=2x+3=1,∴点C的坐标为(﹣1,1).∵点C(﹣1,1)在直线y=kx﹣1上,∴1=﹣k﹣1,解得:k=﹣2.∴n的值为1,k的值为﹣2.(2)当x=0时,y=2x+3=3,∴点A 的坐标为(0,3);当x=0时,y=﹣2x ﹣1=﹣1,∴点B 的坐标为(0,﹣1),∴AB=3﹣(﹣1)=4,∴S △ABC =12AB•|x C |=12×4×1=2.一、填空题(每小题4分,共20分)21.(4分)比较大小:58 > √5−12.(填“>”、“<”或“=”) 【考点】2A :实数大小比较.【解答】解:∵√5−12=4√5−48, ∴58﹣√5−12=9−4√58. ∵(9﹣4√5)×(9+4√5)=81﹣80=1>0,9+4√5>0,∴9﹣4√5>0,∴58﹣√5−12>0,即58>√5−12. 故答案为:>.22.(4分)三元一次方程组{x +y +z =102x +3y +z =173x +2y −z =8 的解是 {x =3y =2z =5.【考点】9C :解三元一次方程组.【解答】解:{x +y +z =10①2x +3y +z =17②3x +2y −z =8③,②﹣①,得x +2y=7④,③+①,得4x +3y=18⑤,④×4﹣⑤,得5y=10,解得,y=2,将y=2代入④,得x=3,将x=3,y=2代入①,得z=5,故原方程组的解是{x =3y =2z =5,故答案为:{x =3y =2z =5.23.(4分)若实数x ,y ,m 满足等式√3x +5y −3−m +(2x +3y ﹣m )2=√x +y −2﹣√2−x −y ,则m +4的算术平方根为 3 .【考点】1F :非负数的性质:偶次方;23:非负数的性质:算术平方根;72:二次根式有意义的条件.【解答】解:依题意得:{3x +5y −3−m =02x +3y −m =0x +y =2,解得m=5,∴√m +4=√5+4=3.故答案是:3.24.(4分)如图,圆柱形容器高为18cm ,底面周长为24cm ,在杯内壁离杯底4cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到达内壁B 处的最短距离为 20 cm .【考点】KV:平面展开﹣最短路径问题.【解答】解:如图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,在直角△A′DB中,由勾股定理得A′B=√A′D2+DB2=√122+162=20(cm).故答案为:20.25.(4分)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P 的坐标为(8,3).【考点】D2:规律型:点的坐标.【解答】解:如图,第6次反弹时回到出发点,∴每6次碰到矩形的边为一个循环组依次循环,∵2013÷6=335余3,∴点P第2013次碰到矩形的边时是第336个循环组的第3次碰边,坐标为(8,3).故答案为:(8,3).二、解答题(本大题共3个小题,共30分)26.(10分)某批发门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.新年来临之际,该门市为促销制定了两种优惠方案:方案一:买一件甲种商品就赠送一件乙种商品;方案二:按购买金额打八折付款.某公司为奖励员工,购买了甲种商品20件,乙种商品x(x≥20)件.(1)分别写出优惠方案一购买费用y1(元)、优惠方案二购买费用y2(元)与所买乙种商品x(件)之间的函数关系式;(2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w与m之间的关系式;利用w与m之间的关系式说明怎样购买最实惠.【考点】FH:一次函数的应用.【解答】解:(1)根据题意得:y1=20×300+80×(x﹣20)=80x+4400;y2=(20×300+80x)×0.8=64x+4800.(2)设按照方案一的优惠办法购买了m件甲种商品,则按照方案二的优惠办法购买了(20﹣m)件甲种商品,根据题意得:w=300m+[300(20﹣m)+80(40﹣m)]×0.8=﹣4m+7360,∵w是m的一次函数,且k=﹣4<0,∴w随m的增加而减小,∴当m=20时,w取得最小值,即按照方案一购买20件甲种商品、按照方案二购买20件乙种商品时,总费用最低.27.(10分)如图,在平面直角坐标系xOy中,直线y=2x+2与y轴交于点A,与x轴交于点B.直线l⊥x轴负半轴于点C,点D是直线l上一点且位于x轴上方.已知CO=CD=4.(1)求经过A,D两点的直线的函数关系式和点B的坐标;(2)在直线l上是否存在点P使得△BDP为等腰三角形,若存在,直接写出P 点坐标,若不存在,请说明理由.【考点】FI:一次函数综合题.【解答】解:(1)对于直线y=2x+2,当x=0时,y=2;当y=0时,x=﹣1,∴点A的坐标为(0,2),点B的坐标为(﹣1,0),又∵CO=CD=4,∴点D的坐标为(﹣4,4),设直线AD的函数表达式为y=kx+b,则有{2=b4=−4k+b,解得:{k=−1 2b=2,∴直线AD的函数表达式为y=﹣12x+2;(2)存在,设P(﹣4,p),分三种情况考虑:当BD=P1D时,可得(﹣1+4)2+(0﹣4)2=(p﹣4)2,解得:p=9或p=﹣1,此时P1(﹣4,9),P2(﹣4,﹣1);当BP3=BD时,则有(﹣1+4)2+(0﹣p)2=(﹣1+4)2+(0﹣4)2,解得:p=﹣4,此时P3(﹣4,﹣4);当BP4=DP4时,(﹣1+4)2+(0﹣p)2=(p﹣4)2,解得:p=78,此时P4(﹣4,78),综上,共有四个点满足要求.分别是P1(﹣4,9),P2(﹣4,﹣4),P3(﹣4,﹣1),P 4(﹣4,78).28.(10分)已知△ABC 中,AB=AC=BC=6.点P 射线BA 上一点,点Q 是AC 的延长线上一点,且BP=CQ ,连接PQ ,与直线BC 相交于点D .(1)如图①,当点P 为AB 的中点时,求CD 的长;(2)如图②,过点P 作直线BC 的垂线,垂足为E ,当点P ,Q 分别在射线BA 和AC 的延长线上任意地移动过程中,线段BE ,DE ,CD 中是否存在长度保持不变的线段?请说明理由.【考点】KD :全等三角形的判定与性质;KK :等边三角形的性质.【解答】解:(1)过P 点作PF ∥AC 交BC 于F∵点P 为AB 的中点,∴BP=12AB=3, ∵AB=AC=BC ,∴∠B=∠ACB=∠BAC=60°,∵PF ∥AC ,∴∠PFB=∠ACB=60°,∠BPF=∠BAC=60°,∴△PBF 是等边三角形,∴BF=FP=BP=3,∴FC=BC ﹣BF=3,由题意,BP=CQ ,∴FP=CQ ,∵PF ∥AC ,∴∠DPF=∠DQC又∠PDF=∠QDC ,∴△PFD ≌△QCD∴CD=DF=12FC=32(2)当点P ,Q 在移动的过程中,线段DE 的长度保持不变 分两种情况讨论:①当点P 在线段AB 上时,过点P 作PF ∥AC 交BC 于F ,由(1)知PB=PF ,∵PE ⊥BC ,∴BE=EF ,由(1)知△PFD ≌△QCD ,CD=DF ,∴DE=EF +DF=12BC=3, ②得点P 在BA 的延长线上时,同理可得DE=3,∴当点P 、Q 在移动的过程中,线段DE 的长度保持不变.。
《试卷3份集锦》成都市2017-2018年八年级上学期数学期末调研试题
![《试卷3份集锦》成都市2017-2018年八年级上学期数学期末调研试题](https://img.taocdn.com/s3/m/40756d24ba0d4a7303763a68.png)
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,O 是矩形ABCD 对角线AC 的中点,M 是AD 的中点,若8,5BC OB ==,则OM 的长为( )A .3B .4C .5D .6【答案】A 【分析】首先由O 是矩形ABCD 对角线AC 的中点,可求得AC 的长,然后由勾股定理求得AB 的长,即CD 的长,又由M 是AD 的中点,可得OM 是△ACD 的中位线,继而求得答案.【详解】解:∵O 是矩形ABCD 对角线AC 的中点,OB =5,∴AC =BD =2OB =10,∴CD =AB 221086-=,∵M 是AD 的中点,∴OM =12CD =1. 故选:A .【点睛】此题考查了矩形的性质、勾股定理以及三角形中位线的性质,利用勾股定理求得AB 的长是解题关键. 2.某一次函数的图象经过点(1,2),且y 随x 的增大而减小,则这个函数的表达式可能是( ) A .24y x =+B .31y x =-C .31y x =-+D .24y x =-+【答案】D【解析】设一次函数关系式为y=kx+b ,y 随x 增大而减小,则k <1;图象经过点(1,2),可得k 、b 之间的关系式.综合二者取值即可.【详解】设一次函数关系式为y=kx+b ,∵图象经过点(1,2),∴k+b=2;∵y 随x 增大而减小,∴k <1.即k 取负数,满足k+b=2的k 、b 的取值都可以.故选D .【点睛】本题考查了待定系数法求一次函数解析式及一次函数的性质,为开放性试题.3.对于任意的正数m ,n 定义运算※为:m ※n=))m n m n ≥<计算(3※2)×(8※12)的结果为( )A .2-B .2C .D .20 【答案】B【解析】试题分析:∵3>2,∴3※∵8<22,∴8※,∴(3※2)×(8※22)=×=2.故选B .考点:2.二次根式的混合运算;2.新定义.4.小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:1x -,-a b ,3,21x +,a ,1x +分别对应下列六个字:益,爱,我,数,学,广,现将223(1)3(1)a x b x ---因式分解,结果呈现的密码信息可能是( )A .我爱学B .爱广益C .我爱广益D .广益数学【答案】C【分析】先运用提公因式法,再运用公式法进行因式分解即可.【详解】因为223(1)3(1)a x b x ---=23(1)()x a b --=3(1)(1)()x x a b +--所以结果呈现的密码信息可能是:我爱广益.故选:C【点睛】考核知识点:因式分解.掌握提公因式法和套用平方差公式是关键.5.4的算术平方根是( )A .4B .2 CD .2± 【答案】B【分析】直接利用算术平方根的定义得出答案.【详解】解:4的算术平方根是:1.故选:B.【点睛】此题主要考查了实数的相关性质,正确把握相关定义是解题关键.6.下列长度的三条线段能组成三角形的是A .2,3,5B .7,4,2C .3,4,8D .3,3,4 【答案】D【解析】试题解析:A .∵3+2=5,∴2,3,5不能组成三角形,故A 错误;B .∵4+2<7,∴7,4,2不能组成三角形,故B 错误;C .∵4+3<8,∴3,4,8不能组成三角形,故C 错误;D .∵3+3>4,∴3,3,4能组成三角形,故D 正确;故选D .7.如图所示,下列推理及括号中所注明的推理依据错误的是( )A .∵∠1=∠3,∴AB ∥CD (内错角相等,两直线平行)B .∵AB ∥CD ,∴∠1=∠3(两直线平行,内错角相等)C .∵AD ∥BC ,∴∠BAD+∠ABC =180°(两直线平行,同旁内角互补)D .∵∠DAM =∠CBM ,∴AB ∥CD (两直线平行,同位角相等)【答案】D【解析】因为∠DAM 和∠CBM 是直线AD 和BC 被直线AB 的同位角,因为∠DAM =∠CBM 根据同位角相等,两直线平行可得AD ∥BC ,所以D 选项错误,故选D.8.点P (﹣3,﹣4)位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【解析】根据第三象限内点的横坐标小于零,纵坐标小于零,可得:点P (﹣3,﹣4)位于第三象限. 故选C.9.过元旦了,全班同学每人互发一条祝福短信,共发了380条,设全班有x 名同学,列方程为( ) A .()113802x x -= B .x (x ﹣1)=380C .2x (x ﹣1)=380D .x (x+1)=380 【答案】B【分析】设该班级共有同学x 名,每个人要发(x-1)条短信,根据题意可得等量关系:人数×每个人所发的短信数量=总短信数量.【详解】设全班有x 名同学,由题意得:x (x-1)=380,故选:B .【点睛】此题考查由实际问题抽象出一元二次方程,解题关键是正确理解题意,找出题目中的等量关系,列出方程. 10.点M (3,-4)关于y 轴的对称点的坐标是( )A .(3,4)B .(-3,4)C .(-3,-4)D .(-4,3)【答案】C 【分析】根据关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点P (x ,y )关于y 轴的对称点P ′的坐标是(−x ,y ).【详解】∵点M (3,−4),∴关于y 轴的对称点的坐标是(−3,−4).故选:C .【点睛】此题主要考查了关于x 轴、y 轴对称点的坐标特点,熟练掌握关于坐标轴对称的特点是解题关键.二、填空题11.如图,在四边形ABCD 中,AD BC =且//AD BC ,8AB =,5AD =,AE 平分DAB ∠交BC 的延长线于F 点,则CF =_________.【答案】3 ;【分析】由//AD BC ,AE 平分DAB ∠,得到∠EAB=∠F ,则AB=BF=8,然后即可求出CF 的长度.【详解】解:∵//AD BC ,∴∠DAE=∠F ,∵AE 平分DAB ∠,∴∠DAE=∠EAB ,∴∠EAB=∠F ,∴AB=BF=8,∵5AD BC ==,∴853CF CF BC =-=-=;故答案为:3.【点睛】本题考查了平行线的性质,角平分线的定义,以及等角对等边,解题的关键是熟练掌握所学的性质,得到AB=BF.12.如图,在△ABC 中,∠ACB=90°,AC=15,BC=9,点P 是线段AC 上的一个动点,连接BP ,将线段BP 绕点P 逆时针旋转90°得到线段PD ,连接AD ,则线段AD 的最小值是______.【答案】32【分析】如图,过点D作DE⊥AC于E,有旋转的性质可得DP=BP,∠DPB=90°,由“AAS”可证△DEP≌△PCB,可得DE=CP,EP=BC=9,可求AE+DE=6,由勾股定理和二次函数的性质可求解.【详解】如图,过点D作DE⊥AC于E,∵将线段BP绕点P逆时针旋转90°得到线段PD,∴DP=BP,∠DPB=90°,∴∠DPE+∠BPC=90°,且∠BPC+∠PBC=90°,∴∠DPE=∠PBC,且DP=BP,∠DEP=∠C=90°,∴△DEP≌△PCB(AAS)∴DE=CP,EP=BC=9,∵AE+PC=AC-EP=6∴AE+DE=6,∵AD2=AE2+DE2,∴AD2=AE2+(6-AE)2,∴AD2=2(AE-3)2+18,当AE=3时,AD有最小值为2,故答案为2.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,勾股定理,利用二次函数的性质求最小值是本题的关键.13.如图,等边△ABC的边长为6,点P沿△ABC的边从A→B→C运动,以AP为边作等边△APQ,且点Q 在直线AB下方,当点P、Q运动到使△BPQ是等腰三角形时,点Q运动路线的长为_____.【答案】3或1【分析】如图,连接CP,BQ,由“SAS”可证△ACP≌△ABQ,可得BQ=CP,可得点Q运动轨迹是A→H→B,分两种情况讨论,即可求解.【详解】解:如图,连接CP,BQ,∵△ABC,△APQ是等边三角形,∴AP=AQ=PQ,AC=AB,∠CAP=∠BAQ=60°,∴△ACP≌△ABQ(SAS)∴BQ=CP,∴当点P运动到点B时,点Q运动到点H,且BH=BC=6,∴当点P在AB上运动时,点Q在AH上运动,∵△BPQ是等腰三角形,∴PQ=PB,∴AP=PB=3=AQ,∴点Q运动路线的长为3,当点P在BC上运动时,点Q在BH上运用,∵△BPQ是等腰三角形,∴PQ=PB,∴BP=BQ=3,∴点Q运动路线的长为3+6=1,故答案为:3或1.【点睛】本题考查了点的运动轨迹,全等三角形的判定和性质,等边三角形的性质,确定点Q的运动轨迹是本题的关键.14.比较大小:(填“>”、“<”、“=”)【答案】>【分析】首先将3放到根号下,然后比较被开方数的大小即可. 【详解】39,98=>,3∴>故答案为:>.【点睛】本题主要考查实数的大小比较,掌握实数大小比较的方法是解题的关键. 15.若关于x 的分式方程3111m x x +=--无解,则m 的值是_____. 【答案】2【详解】解:去分母,得m ﹣2=x ﹣1,x=m ﹣1.∵关于x 的分式方程无解,∴最简公分母x ﹣1=0,∴x=1,当x=1时,得m=2,即m 的值为2.故答案为2.16.因式分解:3a a -=_________.【答案】()()11a a a +-【分析】3a a -提取公因式a 得()21a a -,利用平方差公式分解因式得()()11a a a +-. 【详解】解:3a a -=()21a a -=()()11a a a +-, 故答案为:()()11a a a +-.【点睛】本题考查了因式分解,掌握提公因式法和平方差公式是解题的关键.17.已知直线y kx 3=-与直线y x 2=-+相交于x 轴上一点,则k =______.【答案】1.5【解析】首先求出一次函数y x 2=-+与x 轴交点,再把此点的坐标代入y kx 3=-,即可得到k 的值.【详解】直线y x 2=-+与x 轴相交,x 20∴-+=,x 2∴=,∴与x 轴的交点坐标为()2,0,把()2,0代入y kx 3=-中:2k 30-=,k 1.5∴=,故答案为:1.5.【点睛】本题考查了两条直线的交点问题,两条直线与x 轴的交点坐标,就是由这两条直线相对应的一次函数表达的y=1.三、解答题18.如图,在△ABC 中,AC=BC ,∠ACB=90°,点D 在BC 上,BD=3,DC=1,点P 是AB 上的动点,当△PCD 的周长最小时,在图中画出点P 的位置,并求点P 的坐标.【答案】图见详解;P (197,127) 【分析】过C 作CF AB ⊥于F ,延长CF 到E ,使CF FE =,连接DE ,交AB 于P ,连接CP ,DP CP DP EP ED +=+=的值最小,即可得到P 点;通过A 和B 点的坐标,运用待定系数法求出直线AB 的函数表达式,再通过D 和E 点的坐标,运用待定系数法求出直线DE 的函数表达式,联合两个表达式解方程组求出交点坐标即可.【详解】解:如图所示,过C 作CF AB ⊥于F ,延长CF 到E ,使CF FE =,连接DE ,交AB 于P ,连接CP ;∵△PCD 的周长=CD DP CP ++∴DP CP DP EP ED +=+=时,可取最小值,图中P 点即为所求;又∵BD=3,DC=1∴平面直角坐标系中每一个小方格的边长为1,即:A(5,4),B(1,0),D(4,0),E(1,4)设直线AB 的解析式为AB AB AB y k x b =+,代入点A 和B 得:540AB AB k b k b +=⎧⎨+=⎩解得:11AB ABk b =⎧⎨=-⎩ ∴1AB y x =-设直线DE 的解析式为DE DE DE y k x b =+,代入点D 和E 得:404DE DE DE DE k b k b +=⎧⎨+=⎩解得:43163DE DE k b ⎧=-⎪⎪⎨⎪=⎪⎩∴416+33DE y x =- ∴联合两个一次函数可得: ∴1416+33y x y x =-⎧⎪⎨=-⎪⎩解得197127x y ⎧=⎪⎪⎨⎪=⎪⎩∴P (197,127) 【点睛】本题主要考查了轴对称最短路径的画法,待定系数法求一次函数解析式,两直线的交点与二元一次方程组的解,求出一次函数的解析式组建二元一次方程组是解题的关键.19.计算与化简求值:(1)()()2202002020213.14232π-⎛⎫⎛⎫--+⨯- ⎪ ⎪⎝⎭⎝⎭(2)()()()22x y x y x y +---(3)化简21111a a a a a -⎛⎫÷--⎪++⎝⎭,并选一个合适的数作为a 的值代入求值. 【答案】(1)94;(2)233xy y -;(3)12a - ,当a=1时,原式=-1. 【分析】(1)根据负指数幂1n n a a-=(n 为正整数),任何一个数的零指数幂是1(0除外)以及积的乘方()222ab a b =即可求解.(2)利用多项式乘以多项式和完全平方公式把原式展开,再合并同类项即可求解.(3)先将括号里的化成同分母,再把除法转化为乘法,在取a 的值时需要注意,a 不能使分母为0.【详解】解:(1)原式=()202091591214244⎡⎤-+⨯-=+=⎢⎥⎣⎦(2)原式()2222222x xy xy y x xy y =-+---+ 222222233x xy y x xy y xy y =+--+-=- (3)原式=2121111a a a a a a ⎛⎫--÷- ⎪+++⎝⎭()2121=1111212a a a a a a a a a a a --+÷+++=⨯+-=- 当a=1时,112a =--. 【点睛】本题主要考查的是实数的综合运算,多项式乘多项式以及分式的化简求值,掌握这几个知识点是解题的关键.20.如图,AB AC =,ME AB ⊥,MF AC ⊥,垂足分别为E F 、,ME MF =.求证:MB MC =.【答案】详见解析【分析】根据等腰三角形性质得B C ∠=∠,根据垂直定义得BEM CFM ∠=∠,证△BEM ≌△CFM(AAS)可得.【详解】证明:∵AB AC =∴B C ∠=∠∵ME AB ⊥,MF AC ⊥∴BEM CFM ∠=∠=90°在△BEM 和△CFM 中B C BEM CFM ME MF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BEM ≌△CFM(AAS)∴MB MC =【点睛】考核知识点:全等三角形的判定和性质.寻找条件,证三角形全等是关键.21.如图,在△ABC 中,∠BAC=50°,∠C=60°,AD ⊥BC ,(1)用尺规作图作∠ABC 的平分线BE ,且交AC 于点E ,交AD 于点F (不写作法,保留作图痕迹); (2)求∠BFD 的度数.【答案】(1)见解析;(2)55°【分析】(1)根据角平分线的尺规作图可得;(2)由三角形内角和定理得出∠ABC =70°,根据BE 平分∠ABC 知∠DBC =12∠ABC =35°,从而由AD ⊥BC 可得∠BFD =90°−∠DBC =55°.【详解】解:(1)如图所示,BE 即为所求;(2)∵∠BAC =50°,∠C =60°,∴∠ABC =180°−∠BAC−∠C =70°,由(1)知BE 平分∠ABC ,∴∠DBC =12∠ABC =35°, 又∵AD ⊥BC ,∴∠ADB =90°,则∠BFD =90°−∠DBC =55°.【点睛】本题主要考查作图−基本作图,解题的关键是熟练掌握角平分线的尺规作图及三角形内角和定理与直角三角形性质的应用.22.如图,在ABC ∆中,110ACB ∠=,B A ∠>∠,D ,E 为边AB 上的两个点,且BD BC =,AE AC =. (1)若30A ∠=,求DCE ∠的度数;(2)DCE ∠的度数会随着A ∠度数的变化而变化吗?请说明理由.【答案】(1)35°;(2)DCE ∠的度数不会随着A ∠度数的变化而变化,是35°.【分析】(1)根据等腰三角形性质求出∠ACE=∠AEC ,∠BCD=∠BDC ,得∠BCE=∠ACB-∠ACE =110°-75°=35°;再根据∠DCE=∠BCD-∠BCE 可得;(2)解题方法如(1),求∠ACE=∠AEC=180∠2A ;∠BCD=∠BDC=()1807018022A B --∠-∠=,∠BCE=∠ACB-∠ACE ,所以∠DCE=∠BCD-∠BCE=1102A +∠-(110°-180∠2A ). 【详解】因为BD BC =,AE AC =所以∠ACE=∠AEC=180180307522A -∠-== ; ∠BCD=∠BDC=180180407022B -∠-==所以∠BCE=∠ACB-∠ACE=110°-75°=35°所以∠DCE=∠BCD-∠BCE=70°-35°=35°;(2)DCE ∠的度数不会随着A ∠度数的变化而变化,理由:因为在ABC ∆中,110ACB ∠=,所以18011070;B A A ∠=--∠=-∠因为BD BC =,AE AC =所以∠ACE=∠AEC=180∠2A ;∠BCD=∠BDC=()18070180110222A B A --∠-∠+∠== 所以∠BCE=∠ACB-∠ACE=110°-180∠2A所以∠DCE=∠BCD-∠BCE=1102A +∠-(110°-180∠2A )=35° 故DCE ∠的度数不会随着A ∠度数的变化而变化,是35°.【点睛】考核知识点:等腰三角形.理解等腰三角形边角关系是关键.23.(1)解方程:242111x x x ++=---(2)计算:)21-【答案】(1)13x =;(2)﹣. 【分析】(1)方程两边同乘21x -,化为整式方程求解,然后检验即可;(2)先根据完全平方公式和平方差公式计算,然后算加减即可.【详解】(1) 242111x x x++=---, 方程两边同乘21x -,得24(2)(1)(1)x x x -++=--,解得 13x =, 检验:当13x =时,210x -≠, 所以13x =是原分式方程的解;(2) 解:原式=3﹣﹣(6﹣2)=4﹣ 4=﹣【点睛】本题考查了分式方程的解法,以及实数的混合运算,熟练掌握分式方程的求解步骤、乘法公式是解答本题的关键.24.计算:(1(2)-1)0﹣|1【答案】(1)0;(2)5【分析】(1)先求算术平方根与立方根,再进行减法运算,即可;(2)先求零次幂,绝对值和算术平方根,再进行加减法运算,即可求解.【详解】(1)原式=2﹣2=0;(2)原式=1+(1+3=5【点睛】本题主要考查实数的混合运算,掌握求算术平方根,立方根,零次幂是解题的关键.25.对于二次三项式222x ax a ++,可以直接用公式法分解为()2x a +的形式,但对于二次三项式2223x ax a +-,就不能直接用公式法了,我们可以在二次三项式2223x ax a +-中先加上一项2a ,使2223x ax a +-中的前两项与2a 构成完全平方式,再减去2a 这项,使整个式子的值不变,最后再用平方差公式进步分解.于是()()()()22222222232323x ax a x ax a a a x a a x a x a +-=++--=+-=+-.像上面这样把二次三项式分解因式的方法叫做配方法.请用配方法将下列各式分解因式:(1)2412x x +-;(2)224125x xy y -+.【答案】(1)()()62x x +-;(2)()()225x y x y --【分析】(1)先将24x x +进行配方,将其配成完全平方,再利用平方差公式进行因式分解即可;(2)先将2412x xy -进行配方,配成完全平方,在利用平方差公式进行因式分解.【详解】解:(1)2412x x +- 244412x x =++--()2216x =+- ()()2424x x =+++-()()62x x =+-(2)224125x xy y -+2222412995x xy y y y =-+-+()22234x y y =-- ()()232232x y y x y y =-+--()()225x y x y =--【点睛】本题主要考查的是因式分解,正确的理解清楚题目意思,掌握题目给的方法是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,是由7块颜色不同的正方形组成的长方形,已知中间小正方形的边长为1,这个长方形的面积为()A.45 B.48 C.63 D.64【答案】C【分析】由中央小正方形的边长为1厘米,设这7个正方形中最大的一个边长为x厘米,其余几个边长分别是x-1、x-2、x-3,根据长方形中几个正方形的排列情况,列方程求出最大正方形的边长,从而求得长方形长和宽,进而求出长方形的面积.【详解】因为小正方形边长为1厘米,设这7个正方形中最大的一个边长为x厘米,因为图中最小正方形边长是1厘米,所以其余的正方形边长分别为x−1,x−2,x−3,3(x-3)-1=x解得:x=5;所以长方形的长为x+x−1=5+5-1=9,宽为x-1+x−2=5-1+5-2=7长方形的面积为9×7=63(平方厘米);故选:C【点睛】本题考查了对拼组图形面积的计算能力,利用了正方向的性质和长方形面积的计算公式.2.如果把分式232x x y -中的x ,y 都扩大3倍,那么分式的值( ) A .扩大3倍B .不变C .缩小3倍D .扩大9倍【答案】B 【分析】根据分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变,可得答案.【详解】()23322332333232x x x x y x y x y⨯⋅==⨯-⨯--. 故选:B .【点睛】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变. 3.如图,直线a ,b 被直线c 所截,下列条件不能判定直线a 与b 平行的是( )A .∠1=∠3B .∠2+∠4=180°C .∠1=∠4D .∠3=∠4【答案】D 【解析】试题分析:A .∵∠1=∠3,∴a ∥b ,故A 正确;B .∵∠2+∠4=180°,∠2+∠1=180°,∴∠1=∠4,∵∠4=∠3,∴∠1=∠3,∴a ∥b ,故B 正确;C . ∵∠1=∠4,∠4=∠3,∴∠1=∠3,∴a ∥b ,故C 正确;D .∠3和∠4是对顶角,不能判断a 与b 是否平行,故D 错误.故选D .考点:平行线的判定.4.正比例函数y kx =(0k ≠)的函数值y 随着x 增大而减小,则一次函数2y x k =-的图象大致是( ) A . B .C .D .【答案】B【分析】根据正比例函数的性质得到k<0,然后根据一次函数的性质可得一次函数2y x k =-的图像经过一、三象限,且与y 轴的正半轴相交.【详解】解: 正比例函数y kx =(0k ≠)的函数值y 随着x 增大而减小.∴ k<0.一次函数2y x k =-的一次项系数大于0,常数项大于0.∴一次函数2y x k =-的图像经过一、三象限,且与y 轴的正半轴相交.故选:B .【点睛】本题考查了一次函数的图象和性质,灵活掌握一次函数图象和性质是解题的关键.5.如图,函数y=ax+b 和y=kx 的图像交于点P ,关于x ,y 的方程组0y ax b kx y -=⎧⎨-=⎩的解是( )A .23x y =-⎧⎨=-⎩B .32x y =-⎧⎨=⎩C .32x y =⎧⎨=-⎩D .32x y =-⎧⎨=-⎩【答案】D【分析】根据两图象的交点坐标满足方程组,方程组的解就是交点坐标.【详解】由图可知,交点坐标为(﹣3,﹣2),所以方程组的解是32x y =-⎧⎨=-⎩. 故选D .【点睛】本题考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.6.在化简分式23311x x x-+--的过程中,开始出现错误的步骤是( )A .AB .BC .CD .D【答案】B 【分析】观察解题过程,找出错误的步骤及原因,写出正确的解题过程即可.【详解】上述计算过程中,从B 步开始错误,分子去括号时,1没有乘以1.正确解法为: 23311x x x -+-- ()()33111x x x x -=-+--()()()()()3131111x x x x x x +-=-+-+- ()()33(1)11x x x x --+=+-()()33311x x x x ---=+-()()2611x x x --=+-. 故选:B .【点睛】本题考查了分式的加减法,熟练掌握运算法则是解答本题的关键.7.下列多项式① x²+xy -y² ② -x²+2xy-y² ③ xy+x²+y² ④1-x+14x 其中能用完全平方公式分解因式的是( )A .①②B .①③C .①④D .②④ 【答案】D【解析】①③均不能用完全平方公式分解;②-x 2+2xy -y 2=-(x 2-2xy +y 2)=-(x -y)2,能用完全平方公式分解,正确;④1-x +24x =14(x 2-4x +4)=14(x -2)2,能用完全平方公式分解. 故选D.8 )A .5B .﹣5CD .【答案】C【解析】解:∵,而5 ∴故选C .9.比较2的大小,正确的是( )A .2<<B .2<<C 2<<D 2<<【答案】C 【分析】先分别求出这三个数的六次方,然后比较它们的六次方的大小,即可比较这三个数的大小.【详解】解:∵26=64,362125⎡⎤==⎢⎥⎣⎦,26349⎡⎤==⎢⎥⎣⎦,而49<64<125∴6662<<2<<故选C .【点睛】此题考查的是无理数的比较大小,根据开方和乘方互为逆运算将无理数化为有理数,然后比较大小是解决此题的关键.10.下列四个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等.②如果1=2∠∠ ,那么1∠ 与2∠ 是对顶角.③三角形的一个内角大于任何一个外角.④如果0x > ,那么20x > .A .1 个B .2 个C .3 个D .4 个【答案】A 【分析】正确的命题是真命题,根据定义解答即可.【详解】①两条直线被第三条直线所截,内错角相等,是假命题;②如果1=2∠∠ ,那么1∠ 与2∠ 是对顶角,是假命题;③三角形的一个内角大于任何一个外角,是假命题;④如果0x > ,那么20x > ,是真命题,故选:A.【点睛】此题考查真命题,熟记真命题的定义,并熟练掌握平行线的性质,对顶角的性质,三角形外角性质,不等式的性质是解题的关键.二、填空题11.若26x x k -+是完全平方式,则k 的值为______.【答案】9【分析】利用完全平方公式的结构特征判断即可.【详解】∵26x x k -+是完全平方式,∴2226=233x x k x x -+-⨯⨯+,∴k=9,故答案为9.【点睛】此题考查完全平方式,解题关键在于掌握完全平方式的运算.12.a 2b b 2a a b b a a b++----=_________; 【答案】-1【分析】因为b-a=-(a-b ),所以可以看成是同分母的分式相加减. 【详解】a 2b b 2a a b b a a b ++----=221a b b a b a a b a b a b a b+---==----- 【点睛】本题考查了分式的加减法,解题的关键是构建出相同的分母进行计算.13.成人每天的维生素D 的摄入量约为0.0000046克,数据0.0000046用科学记数法可表示为_________________【答案】4.6×106-【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n -,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】数据0.0000046用科学记数法表示为4.6×106-故答案为4.6×106-【点睛】此题考查科学记数法,解题关键在于使用负指数幂进行表达14.计算:6x 2÷2x= .【答案】3x .【解析】试题解析:6x 2÷2x=3x .考点:单项式除以单项式.15.如图,在ABC ∆中,分别以点A 和点C 为圆心,大于12AC 长为半径画弧,两弧相交于点M 、N ;作直线MN 分别交BC 、AC 于点D 、点E ,若3AE m =,ABD ∆的周长为13cm ,则ABC ∆的周长为________.【答案】19cm【分析】根据尺规作图得到MN 是线段AC 的垂直平分线,根据线段垂直平分线的性质得到DA DC =,26AC AE ==,根据三角形的周长公式计算即可.【详解】解:由尺规作图可知,MN 是线段AC 的垂直平分线,DA DC ∴=,26AC AE ==,ABD ∆的周长为13,13AB AD BD AB DC BD AB BC ∴++=++=+=,则ABC ∆的周长13619()AB BC AC cm =++=+=,故答案为:19cm .【点睛】本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.16.将0.0021用科学记数法表示为___________.【答案】-32.110⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,其中110a ≤<,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】-30.0021=2.110⨯,故答案为:-32.110⨯.【点睛】科学记数法表示数时,要注意形式10n a -⨯中,a 的取值范围,要求110a ≤<,而且n 的值和原数左边起第一个不为零的数字前面的0的个数一样.17. “角平分线上的点到角两边的距离相等”的逆命题是_____________.【答案】到角的两边的距离相等的点在角平分线上【分析】把一个命题的题设和结论互换即可得到其逆命题.【详解】“角平分线上的点到角两边的距离相等”的逆命题是“到角的两边的距离相等的点在角平分线上”. 故答案为:到角的两边的距离相等的点在角平分线上.【点睛】此题考查命题与定理,解题关键在于掌握如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.三、解答题18.计算:(﹣13)﹣2+4×(﹣1)2019﹣|﹣23|+(π﹣5)0 【答案】-2【分析】根据零指数幂的意义以及负整数指数幂的意义,先进行计算,再进行有理数加减的混合运算,即可得到答案.【详解】解:原式=(﹣3)2+4×(﹣1)﹣8+1=9﹣4﹣8+1=﹣2【点睛】本题考查的是实数的运算,解题的关键是熟记幂的相关知识以及实数的运算法则.19.如图,已知,在Rt △ABC 中,∠C =Rt ∠,BC =6,AC =8,用直尺与圆规作线段AB 的中垂线交AC 于点D ,连结DB .并求△BCD 的周长和面积.【答案】作图见解析;△BCD 的周长为14;△BCD 的面积为214. 【分析】根据中垂线的作法作图,设AD =x ,则DC =8−x ,根据勾股定理求出x 的值,继而依据周长和面积公式计算可得.【详解】解:如图所示:由中垂线的性质可得AD=BD,∴△BCD的周长=BC+CD+BD=BC+CD+AD=BC+AC=6+8=14,设AD=BD=x,则DC=8−x,由勾股定理得:62+(8−x)2=x2,解得:x=254,即AD=254,∴CD=74,∴△BCD的面积=12×6×74=214.【点睛】此题考查了尺规作图、中垂线的性质以及勾股定理,熟练掌握尺规作图的方法是解题的关键.20.如图,△ABC中,∠B=90°,AB=3,BC=4,AC=5;实践与操作:过点A作一条直线,使这条直线将△ABC分成面积相等的两部分,直线与BC交于点D.(尺规作图,不写作法,保留作图痕迹,标清字母)推理与计算:求点D到AC的距离.【答案】作图见解析,点D到AC的距离为:6 5【分析】根据三角形的面积公式,只需过点A和BC的中点D画直线即可;作DH⊥AC,证得△CHD∽△CBA,利用对应边成比例求得答案.【详解】作线段BC的垂直平分线EF交BC于D,过A、D画直线,则直线AD为所求作DH ⊥AC 于H .∵∠C =∠C ,∠CHD =∠B =90°,∴△CHD ∽△CBA , ∴DH CD AB AC=, ∵BD =DC =2,AB =3,AC =5, ∴235DH =, ∴65DH = ∴点D 到AC 的距离为:65 【点睛】本题考查了作图—复杂作图以及相似三角形的判定和性质.熟练掌握相似三角形的判定是解题的关键. 21.2018年“清明节”前夕,宜宾某花店用1000元购进若干菊花,很快售完,接着又用2500元购进第二批 花,已知第二批所购花的数量是第一批所购花数的2倍,且每朵花的进价比第一批的进价多0.5元. (1)第一批花每束的进价是多少元.(2)若第一批菊花按3元的售价销售,要使总利润不低于1500元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?【答案】(1)2元;(2)第二批花的售价至少为3.5元;【解析】(1)设第一批花每束的进价是x 元,则第二批花每束的进价是(x+0.5)元,根据数量=总价÷单价结合第二批所购花的数量是第一批所购花数的2倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)由第二批花的进价比第一批的进价多0.5元可求出第二批花的进价,设第二批菊花的售价为m 元,根据利润=每束花的利润×数量结合总利润不低于1500元,即可得出关于m 的一元一次不等式,解之即可得出结论.【详解】(1)设第一批花每束的进价是x 元,则第二批花每束的进价是()0.5x +元, 根据题意得:1000250020.5x x ⨯=+,解得:2x =,经检验:2x =是原方程的解,且符合题意.答:第一批花每束的进价是2元.(2)由()1可知第二批菊花的进价为2.5元.设第二批菊花的售价为m 元, 根据题意得:()()1000250032 2.515002 2.5m ⨯-+⨯-≥, 解得: 3.5m ≥.答:第二批花的售价至少为3.5元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.22.如图已知ABC 的三个顶点坐标分别是(2,1)A -,(1,2)B -,(3,3)C -.(1)将ABC 向上平移4个单位长度得到111A B C △,请画出111A B C △;(2)请画出与ABC 关于y 轴对称的222A B C △;(3)请写出1A 的坐标,并用恰当的方式表示线段1AA 上任意一点的坐标.【答案】(1)图见解析;(2)图见解析;(3)1A 的坐标为1(2,3)A ;线段1AA 上任意一点的坐标为(2,)a ,其中13a -≤≤.【分析】(1)先利用平移的性质求出111,,A B C 的坐标,再顺次连接即可得;(2)先利用轴对称的性质求出222,,A B C 的坐标,再顺次连接即可得;(3)由(1)中即可知1A 的坐标,再根据线段1AA 所在直线的函数表达式即可得.【详解】(1)(2,1),(1,2),(3,3)A B C ---向上平移4个单位长度的对应点坐标分别为111(2,14),(1,24),(3,34)A B C -+-+-+,即111(2,3),(1,2),(3,1)A B C ,顺次连接111,,A B C 可得到111A B C ∆,画图结果如图所示;(2)(2,1),(1,2),(3,3)A B C ---关于y 轴对称的对应点坐标分别为222(2,1),(1,2),(3,3)A B C ------,顺次连接222,,A B C 可得到222A B C ∆,画图结果如图所示;(3)由(1)可知,1A 的坐标为1(2,3)A线段1AA 所在直线的函数表达式为2x =则线段1AA 上任意一点的坐标为(2,)a ,其中13a -≤≤.【点睛】本题考查了画平移图形、画轴对称图形、点坐标的性质等知识点,依据题意求出各点经过平移、轴对称后的对应点的坐标是解题关键.23.为庆祝2015年元且的到来,学校决定举行“庆元旦迎新年”文艺演出,根据演出需要,用700元购进甲、乙两种花束共260朵,其中甲种花束比乙种花束少用100元,已知甲种花束单价比乙种花束单价高20%,乙种花束的单价是多少元?甲、乙两种花束各购买了多少?【答案】乙种花束的单价是2.5元,甲、乙两种花束分别购买100个、160个【分析】设乙种花束的单价是x 元,则甲种花束的单价为(1+20%)x 元,根据用700元购进甲、乙两种花束共260朵,列方程求解.【详解】解:设乙种花束的单价是x 元,则甲种花束的单价为()120%x +元,又根据甲种花束比乙种花束少用100元可知,甲种花束花了300元,乙种花束花了400元, 由题意得,300400260(120%)x x+=+,。
四川省金堂县2017-2018学年八年级第一学期期末考试数学试卷
![四川省金堂县2017-2018学年八年级第一学期期末考试数学试卷](https://img.taocdn.com/s3/m/7ef93740a45177232f60a2fe.png)
四川省金堂县2017-2018学年八年级数学上学期期末考试试题(考试时间120分钟,总分150分)注意事项:1. 全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟.A 卷(共100分) 第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求,答案填在答题卡上.1. 16的平方根是( )(A )±4 (B )±2 (C )4 (D )4- 2.在平面直角坐标系中,下列的点在第二象限的是( )(A )(2,1) (B )(2,-1) (C )(-2,1) (D )(-2,-1) 3.如图,AC ∥DF ,AB ∥EF ,若∠2=50°,则∠1的大小是( ) (A )60° (B )50° (C )40° (D )30°4.一次函数y =x +1的图像不经过( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 5. 满足下列条件的△ABC ,不是直角三角形的是( ) (A )b 2-c 2=a 2(B )a:b:c =3:4:5 (C )∠A: ∠B: ∠C =9:12:15 (D )∠C =∠A -∠B6.下已知⎩⎪⎨⎪⎧x =1y =2是二元一次方程组⎩⎪⎨⎪⎧ax +y =-12x -by =0的解,则a +b 的值是( )(A )2 (B )-2 (C )4 (D )-47.将直尺和直角三角板按如图方式摆放(ACB ∠为直角),已知130∠=︒,则2∠的大小是( )A. 30︒B. 45︒C. 60︒D. 65︒AD B 1F 2 EC8.在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为1.5,1.0,则下列说法正确的是( )(A )乙同学的成绩更稳定 (B )甲同学的成绩更稳定(C )甲、乙两位同学的成绩一样稳定 (D )不能确定哪位同学的成绩更稳定 9. 如图,以两条直线1l ,2l 的交点坐标为解的方程组是((A )⎩⎪⎨⎪⎧x -y =12x -y =1 (B )⎩⎪⎨⎪⎧x -y =-12x -y =-1(C )⎩⎪⎨⎪⎧x -y =-12x -y =1 (D )⎩⎪⎨⎪⎧x -y =12x -y =-110.如图,长方体的底面边长分别为2cm 和3cm ,高为6cm. 如果用一根细线从点A 开始经过4个侧面缠绕一圈达到点B ,那么所用细线最短需要( ) (A )11cm (B )234cm (C )(8+210)cm (D )(7+35)cm第Ⅱ卷(非选择题,共70分) 二、填空题(每小题4分,共l6分) 11. 计算:(-2)2= .12.李老师最近6个月的手机话费(单位:元)分别为:27,36,54,29,38,42,这组数据的中位数是 .13、点A(-2,3)关于x 轴对称的点B 的坐标是14、如图,直线l 过正方形ABCD 的顶点B ,点A 、点B 到直线l 的距离分别是3和4,则该正方形的面积是 。
2017-2018学年成都市金堂县八年级(上)期中数学试卷(含解析)
![2017-2018学年成都市金堂县八年级(上)期中数学试卷(含解析)](https://img.taocdn.com/s3/m/2d1ac111284ac850ac02428b.png)
2017-2018学年成都市金堂县八年级(上)期中数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一.选择题(每小题3分,共30分)1.(﹣2)2的平方根是()A.2 B.﹣2 C.±D.±22.要使二次根式有意义,那么x的取值范围是()A.x>2 B.x<2 C.x≥2 D.x≤23.在下列四组数中,不是勾股数的一组数是()A.a=15,b=8,c=17 B.a=9,b=12,c=15C.a=7,b=24,c=25 D.a=3,b=5,c=74.下列各数:,π,,0,,其中无理数的个数是()A.1个B.2个C.3个D.4个5.在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.如图,在△ABD中,∠D=90°,CD=6,AD=8,∠ACD=2∠B,则BD的长是()A.12 B.14 C.16 D.187.在平面直角坐标系中,点P(﹣3,2)关于直线y=x对称点的坐标是()A.(﹣3,﹣2)B.(3,2)C.(2,﹣3)D.(3,﹣2)8.下列函数中,是一次函数的是()A.B.y=﹣2xC.y=x2+2 D.y=kx+b(k、b是常数)9.若函数y=(k+1)x+k2﹣1是正比例函数,则k的值为()A.0 B.1 C.±1 D.﹣110.函数y1=|x|,.当y1>y2时,x的范围是()A.x<﹣1 B.﹣1<x<2 C.x<﹣1或x>2 D.x>2二.填空题(共5小题,每题3分)11.的平方根是.12.已知点P(3,a)关于y轴的对称点为Q(b,2),则ab=.13.如图,在△ABC中,AB=AC,AD是△ABC的角平分线,若BC=10,AD=12,则AC=.14.一个三角形的三边长分别为15cm、20cm、25cm,则这个三角形最长边上的高是 cm.15.在平面直角坐标系中,已知一次函数y=x﹣1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1y2(填“>”,“<”或“=”)三.解答题(共55分)16.(24分)计算:(1)﹣(﹣1)﹣+(π﹣3.14)0 (2)2×(1﹣)+(3)(﹣)2﹣(1﹣)(1+)(4)×÷+×(5)4(x﹣)2=25 (6)(x+2)3﹣5=59.17.(6分)已知:四边形ABCD中,AC⊥BC,AB=17,BC=8,CD=12,DA=9;(1)求AC的长;(2)求四边形ABCD的面积.18.(8分)在平面直角坐标系xOy中,点A的坐标为(1,0),点B的坐标为(3,2),将点A向左平移两个单位,再向上平移4个单位得到点C.(1)写出点C的坐标,并作出三角形ABC;(2)求三角形ABC的面积.19.(8分)(1)已知:y=﹣﹣2016,求x+y的平方根.(2)已知一个正数x的两个平方根分别是a+1和a+3,求这个数x.20.(9分)如图,在平面直角坐标系xOy中,过点A(﹣2,0)的直线交y轴正半轴于点B(0,4),过点C(0,3)作直线AB的垂线,交x轴于点D.(1)求直线AB的函数关系式;(2)连接BD,求△ABD的面积.B卷(50分)一、填空题(每小题4分,共20分)21.在平面直角坐标系中,将P(﹣3,2)向右平移2个单位,再向下平移2个单位得点P′,则P′的坐标为.22.如果某公司一销售人员的个人月收入y与其每月的销售量x成一次函数(如图所示),那么此销售人员的销售量在4千件时的月收入是元.23.已知x+=7,则﹣的值是.24.已知m是整数,且一次函数y=(m+4)x+m+2的图象不过第二象限,则m=.25.正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,则A n的坐标是.二、解答题(共30分)26.(8分)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处;(1)求证:B′E=BF;(2)设AE=a,AB=b,BF=c,试猜想a,b,c之间的一种关系,并给予证明.27.(10分)同学们,我们以前学过完全平方公式,a2±2ab+b2=(a±b)2,你一定熟练掌握了吧?现在我么又学习了平方根,那么所有的正数和0都可以看作是一个数的平方,比如:2=()2,3=()2,7=()2,02=0,那么我们利用这种思想方法计算下面的题:例:求3﹣3的算术平方根解:3﹣3=2﹣2+1=()2﹣2+12=(﹣1)2∴3﹣3的算术平方根是﹣1同学们,你看明白了吗?大胆试一试,相信你能做正确!(1)(2)(3)++++.28.(12分)正方形ABCD的边长为4,将此正方形置于平面直角坐标系中,使AB边落在X轴的正半轴上,且A点的坐标是(1,0).(1)直线y=x经过点C,且与x轴交于点E,求四边形AECD的面积;(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;(3)若直线l1经过点F(﹣,0),且与直线y=3x平行,将(2)中直线l沿着y轴向上平移个单位交轴x于点M,交直线l1于点N,求△NMF的面积.参考答案与试题解析1.【解答】解:∵(﹣2)2=4,而2或﹣2的平方等于4,∴(﹣2)2的平方根是±2.故选:D.2.【解答】解:根据题意,得2x﹣4≥0,解得,x≥2.故选:C.3.【解答】解:由题意可知,在A组中,152+82=172=289,在B组中,92+122=152=225,在C组中,72+242=252=625,而在D组中,32+52≠72,故选:D.4.【解答】解:π,是无理数,故选:B.5.【解答】解:∵x2≥0,∴x2+1≥1,∴点P(﹣2,x2+1)在第二象限.故选:B.6.【解答】解:∵∠D=90°,CD=6,AD=8,∴AC==10,∵∠ACD=2∠B,∠ACD=∠B+∠CAB,∴∠B=∠CAB,∴BC=AC=10,∴BD=BC+CD=16,故选:C.7.【解答】解:如图所示,点P(﹣3,2)关于直线y=x对称点的坐标是(2,﹣3).故选:C.8.【解答】解:A、不是一次函数,故此选项错误;B、是一次函数,故此选项正确;C、不是一次函数,故此选项错误;D、不是一次函数,故此选项错误;故选:B.9.【解答】解:∵函数y=(k+1)x+k2﹣1是正比例函数,∴,解得k=1.故选:B.10.【解答】解:由图象可知:在(﹣1,1)左边,(2,2)的右边,y1>y2,∴x<﹣1或x>2.故选:C.11.【解答】解:∵=4∴的平方根是±2.故答案为:±212.【解答】解:∵点P(3,a)关于y轴的对称点为Q(b,2),∴a=2,b=﹣3,∴ab=﹣6,故答案为:﹣6.13.【解答】解:∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,BD=DC,在Rt△ADC中,AC===13.故答案为13.14.【解答】解:如图:设AB=25是最长边,AC=15,BC=20,过C作CD⊥AB于D,∵AC2+BC2=152+202=625,AB2=252=625,∴AC2+BC2=AB2,∴∠C=90°,∵S△ACB=AC×BC=AB×CD,∴AC×BC=AB×CD15×20=25CD,∴CD=12(cm);故答案为:12.15.【解答】解:∵一次函数y=x﹣1中k=1,∴y随x值的增大而增大.∵x1<x2,∴y1<y2.故答案为:<.16.【解答】解:(1)原式=1﹣2+1=0;(2)原式=2﹣2+2=2;(3)原式=3﹣2+2﹣1+2=6﹣2;(4)原式=8+2=10;(5)方程整理得:(x﹣)2=,开方得:x﹣=±,解得:x=3或x=﹣2;(6)方程整理得:(x+2)3=64,开立方得:x+2=4,解得:x=2.17.【解答】解:(1)∵AC⊥BC,AB=17,BC=8,∴AC===15;(2)∵122+92=152,∴CD2+AD2=AC2,∴∠D=90°,∴四边形ABCD的面积为:×8×15+12×9=60+54=114.18.【解答】解:(1)如图所示:△ABC即为所求,C(﹣1,4);(2)如图,过点B作BD⊥x轴于D,过点C分别作x轴,y轴的垂线,与x轴交于点E,与BD交于点F.∵点B,C的坐标分别为(3,2),(﹣1,4),∴点D,E,F的坐标分别为(3,0),(﹣1,0),(3,4),∴AD=AE=BD=BF=2,CE=CF=DE=DF=4,∴正方形CFDE的面积为16,∵△ACE的面积为4,△ABD的面积为2,△BCF的面积为4.∴△ABC的面积为:16﹣4﹣2﹣4=6.19.【解答】解(1)由题意可知:x﹣2017≥0且2017﹣x≥0,∴x≥2017且x≤2017,∴x=2017,y=﹣2016,∴x+y=2017﹣2016=1,∴x+y的平方根是±1(2)由题意可知:a+1+a+3=0,∴a=﹣2∴a+1=﹣1∴这个数为x=(﹣1)2=120.【解答】解:(1)∵B(0,4)∵A(﹣2,0),设直线AB的解析式为y=kx+b,则,解得,∴直线AB的解析式为y=2x+4;(2)将直线AB绕着点O顺时针旋转90°后,分别与x轴、y轴交于点D、C,设直线CD的解析式为:y=﹣x+b,∵C(0,3),∴b=3,∴直线CD的解析式为:y=﹣x+3,令y=0,可得:x=6,∴D(6,0),∴△ABD的面积=.21.【解答】解:已知平面直角坐标系中点P(﹣3,2),若将点P先向右平移2个单位,再将它向下平移2个单位,得到的坐标为(﹣3+2,2﹣2);即P′(﹣1,0).故答案是:(﹣1,0).22.【解答】解:设直线的解析式为y=kx+b.∵直线过点(1,500),(2,700),∴,解之得,∴解析式为y=200x+300,当x=4时,y=200×4+300=1100(元).故答案为1100.23.【解答】解:∵x+=7,∴x﹣1+=6∴(﹣)2=x﹣1﹣2+=4,∴﹣=±2故答案为:±224.【解答】解:∵一次函数y=(m+4)x+m+2的图象不过第二象限,∴,解得﹣4<m≤﹣2,而m是整数,则m=﹣3或﹣2.故填空答案:﹣3或﹣2.25.【解答】解:∵直线y=x+1和y轴交于A1,∴A1的坐标(0,1),即OA1=1,∵四边形C1OA1B1是正方形,∴OC1=OA1=1,把x=1代入y=x+1得:y=2,∴A2的坐标为(1,2),同理A3的坐标为(3,4),…A n的坐标为(2n﹣1﹣1,2n﹣1),故答案为:(2n﹣1﹣1,2n﹣1),26.【解答】(1)证明:由题意得B′F=BF,∠B′FE=∠BFE,在矩形ABCD中,AD∥BC,∴∠B′EF=∠BFE,∴∠B′FE=∠B'EF,∴B′F=B′E,∴B′E=BF;(2)a,b,c三者存在的关系是a2+b2=c2.证明:由(1)知A′B′=AB=c,A'E=AE=a,∵B′E=BF=c,∴在△A'B'E中,∠A′=90°,∴A'E2+A'B'2=B'E2,∴a2+b2=c2.27.【解答】解:(1)==;(2)====;(3)+=+==.28.【解答】解:(1)在y=x中,令y=4,即x=4,解得:x=5,则B的坐标是(5,0);令y=0,即x=0,解得:x=2,则E的坐标是(2,0).则OB=5,OE=2,BE=OB﹣OA=5﹣2=3,∴AE=AB﹣BE=4﹣3=1,边形AECD=(AE+CD)•AD=(4+1)×4=10;(2)经过点E且将正方形ABCD分成面积相等的两部分,则直线与CD的交点F,必有CF=AE=1,则F的坐标是(4,4).设直线的解析式是y=kx+b,则,解得:.则直线l的解析式是:y=2x﹣4;(3)∵直线l1经过点F(﹣,0)且与直线y=3x平行,设直线11的解析式是y1=kx+b,则:k=3,代入得:0=3×(﹣)+b,解得:b=,∴y1=3x+,已知将(2)中直线l沿着y轴向上平移个单位,则所得的直线的解析式是y=2x﹣4+,即:y=2x﹣3,当y=0时,x=,∴M(,0),解方程组得:,即:N(﹣7,﹣19),S△NMF=×[﹣(﹣)]×|﹣19|=.答:△NMF的面积是。
八年级2017-2018学年第一学期数学期末测试题及答案
![八年级2017-2018学年第一学期数学期末测试题及答案](https://img.taocdn.com/s3/m/c984fba0fd0a79563c1e7267.png)
AP 6 2,PC 8 2,所以AP PC 14 2........................8分 在备用图中,作点A关于BC的对称点A,连结AC,交BD于点P,. 此时AP PC值最小.........10分 过点A作AQ CD交CD的延长线于点Q,在Rt△AQC中, 根据勾股定理计算AC 14 2,即AP PC 14 2,所以 t 3时的值是使得AP PC的值最小的值....12分
A.25 海里 B.30 海里 C. 32 海里 D.34 海里
南
14.在平面直角坐标系中,把一个封闭图形的各个顶点的横坐标都
乘以 1,纵坐标不变,并把得到的顶点依次连接,那么得到
的封闭图形与原来图形相比位置上(
)
A.向左平移了 1 个单位 B.关于 y 轴对称
C.关于 x 轴对称
D.向下平移了 2 个单位 D
所以△ABD 为等腰三角形…………………..8 分 23、解(1)作图略……………4 分,描对一个点給一分.
(2)∵AB=3,AC=4,根据勾股定理得 BC=5,……6 分 ∴周长为 12……………………………7 分 △ABC 的面积为 6,……………8 分
24、证明:(1) ∵ EAC DAB,∴ BAC DAE,…………2 分
.
C
D
B
20. 现在有一个边长为 a 的正方形纸片 1 张、边长为 b 的正方形纸片 2 张,边长分别 为 a、b 的长方形纸片 3 张,把它们拼成一个长方形,请你利用此图中的面积关系,分
解因式: a 2 3ab 2b2 =
.
a a
b
b
b
a
b b
a
a
b
得分 评卷人
2017-2018学年度第一学期期末教学质量检测八年级数学试题(含答案)
![2017-2018学年度第一学期期末教学质量检测八年级数学试题(含答案)](https://img.taocdn.com/s3/m/1dc85760fe4733687f21aa02.png)
2017-2018学年度第一学期期末教学质量检测八年级数学试题(时间:120分钟)友情提示:亲爱的同学,你好!今天是你展示才能的时候,只要你仔细审题,认真答题,你就会有出色的表现!1.考生务必将姓名、班级、座号、准考证号填写在答题卡规定的位置上。
2.本试题分第Ⅰ卷和第Ⅱ卷,共25道小题。
3.第Ⅰ卷是选择题,共8道小题,每小题选出的答案后,用2B铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,答案不能答在试卷上。
4.第Ⅱ卷是填空题和解答题,共17小题,答案必须用0.5毫米黑色签字笔写在答题卡题目指定区域内相应的位置,不能写在试题上;如需改动,先划掉原来的答案,然后再写上新的答案。
不按以上要求作答的答案无效。
5.考试结束只上交答题卡。
第Ⅰ卷一、选择题:下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的,请将所选答案的字母标号涂在答题卡的相应位置。
1.3的相反数是()A、3B、-3C、3D、-32.在平面直角坐标系中,点P(-2,3)关于x轴的对称点坐标为()A、(-2,3)B、(2,-3)C、(-2,-3)D、(3,-2)3.下列语句:①三角形的内角和是180°;②作为一个角等于一个已知角;③两条直线被第三条直线所截,同位角相等;④延长线段AB到C,使BC=AB,其中是命题的有()A、①②B、②③C、①④D、①③4.方程组的解是()A、 B、 C、 D 、5.若一次函数y=kx+b,(k,b为常熟,且k≠0)的图像经过点(1,2)且y随x的增大而减小,则这个函数的表达式可能是()A、y=2x+4B、y=3x-1C、y=-3x-1D、y=-2x+46.如图,∠AOB的边OA为平面反光镜,一束光线从OB上的C点射出,经OA上的D点反射后,反射光线DE恰好与OB平行,若∠AOB=40°,则∠BCD的度数是()A、60°B、80°C、100°D、120°x +|y-2|=0,则(x+y)2017的值为()7.若3A、-1B、1C、±1D、08.若一组数据10,9.a,12,9的平均数是10,则这组数的方差是()A、0.9B、1C、1.2D、1.4第Ⅱ卷二、填空题:请把正确答案填写在答题卡的相应位置9.实数7的整数部分是_______10.命题“对顶角相等”的条件是_______________ ,结论是___________ 。
四川省成都市2017-2018学年八年级数学上学期期末试题
![四川省成都市2017-2018学年八年级数学上学期期末试题](https://img.taocdn.com/s3/m/aa394b94524de518974b7d5c.png)
四川省成都市2017-2018学年八年级数学上学期期末试题A 卷(满分100分) 第Ⅰ卷 选择题(30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1. 在实数-1,0,12中,最大的数是(C )A .1-B .0C .21 2.对于函数,自变量x 的取值范围是(A )A. x 4B. x -4C.D.3.点P ( 2,-3 )关于x 轴的对称点是( B )A .(-2, 3 )B .(2,3)C .(-2,-3 )D .(2,-3 )4.直线a 、b 、c 、d 的位置如图,如果1100∠=°,2100∠=°,3125∠=°,那么4∠等于(D )A.80°B.65°C.60°D.55° 5.下列四个命题中,真命题有(B )①内错角一定相等;②如果1∠和2∠是对顶角,那么12∠=∠;③三角形的一个外角大于任何一个与它不相邻的内角;④若22a b =,则a b =. A.1个 B.2个 C.3个 D.4个 6.某班10名学生的校服尺寸与对应人数如表所示:则这10 A.165cm ,170cm B.165cm ,165cm C.170cm ,165cm D.170cm ,170cm 7.一次函数y=kx+b 的图像如图,则y>0时,x 的取值范围是(D ) A. x 0 B.xC. x 2D. x<28.如图,长方形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则点E 表示的实数是(B )A 1B 1C .1-9.某公司去年的利润(总产值-总支出)为300万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为980万元,如果去年的总产值x 万元,总支出y 万元,则下列方程组正确的是(A )A.()()300120%110%980x y x y -=⎧⎪⎨+--=⎪⎩B.()()300120%110%980x y x y -=⎧⎪⎨--+=⎪⎩C.30020%10%980x y x y -=⎧⎨-=⎩D.()()300120%110%980x y x y -=⎧⎪⎨---=⎪⎩10. 如图所示,边长分别为1和2的两个正方形靠在一起,其中一边在同一水平线上.大正方形保持不动,小正方形沿该水平线自左向右匀速运动,设运动时间为t,大正方形内去掉小正方形重叠部分后的面积为s,那么s 与t 的大致图象应为( D )第Ⅱ卷非选择题(70分)二、填空题(本大题共4个小题,每小题4分,共16分) 11.比较大小:__<__;122(1)0y +=,则=__1___.13. 如图,已知函数1y x =+和3y ax =+图象交于点P ,点P 的横坐标为1,则关于x ,y 的方程组13x y ax y -=-⎧⎨-=-⎩的解是12x y =⎧⎨=⎩.14. 长方形ABCD 中,AB=6,AD=8,点E 是边BC 上一点,将ABE 沿AE 翻折,点B 恰好落在对角线AC 上的点F 处,则AE 的长为3.三、解答题(共六个大题,54分) 15、计算(每小题4分,共8分) (12(1-(2)021(2018)|5()2π--+--解:原式(13)=-解:原式15)4=+-4=+154=++-=-42=16.(每小题6分,共12分)解下列方程(不等式)组. (1)解方程组:2332x y x y -=⎧⎨+=-⎩解:由①×3+②,得:77x =,1x = 把1x =代入①得:23y -=,1y =-所以,原方程组的解为11x y =⎧⎨=-⎩(2) 解不等式组:23(2)421152x x x x --≥⎧⎪-+⎨<⎪⎩,并求其非负整数解.解:解不等式①,得:2x ≤ 解不等式②,得:7x >-所以,不等式组的解集为:72x -<≤ 非负整数解为:0,1, 217.(8分)如图,已知AB∥CD, 若∠C=35∘,AB是∠FAD的平分线.(1)求∠FAD的度数;(2)若∠ADB=110∘,求∠BDE的度数.答案:(1)700(4分)(2)350(4分)18.(8分)在平面直角坐标系中,每个小正方形网格的边长为单位1,格点三角形(顶点是网格线的交点的三角形)ABC如图所示.(1)请画出△ABC向右平移4个单位长度后的△A1B1C1,并写出点C1的坐标;(2)请计算△ABC的面积;答案:(1)C1(3,3)(2分);图(2分)(2)(4分)19. (本小题满分8分)2017年《政府工作报告》中提出了十二大新词汇,为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A:“蓝天保卫战”,B:“数字家庭”,C:“人工智能+第五代移动通信”,D:“全域旅游”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词、根据调查结果,该小组绘制了两幅不完整的统计图如图所示,请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学? (2)条形统计图中,m = ▲ ,n = ▲ .(3)若该校有3000名同学,请估计出选择C 、D 的一共有多少名同学?解:(1)调查的学生人数为:10530035%=名; (2)60m =,90n =(3)选择C 、D 的共有:904530001350300+⨯=名.20.(本小题满分10分)如图,直线1l 的解析式为;直线2l 与轴交于,两直线交于点P.(1)(4分)求点A ,B 的坐标及直线2l 的解析式; (2)(3分)求证:APC ;(3)(3分)若将直线2l 向右平移m 个单位,与轴,y 轴分别交于点C '、D ',使得以点A 、B 、C '、D '为顶点的图形是轴对称图形,求m 的值?答案:(1)A (-3,0)(1分);B (0,4)(1分) L 2:(2)(4分)方法1:连接AD,,又由OC=2,OD=得CD=BD ,在,(SSS) ,在,(ASA)方法2:可由K 1K 2=-1得0再由,AC=AB,证得(3)m=10(3分)B 卷(共50分)一、填空题(每小题4分,共20分) 21.若实数a =244a a -+的值为3.22、若点P(-3,),Q(2,)在一次函数3y x c =-+的图像上,则a 与b 的大小关系是a>b 23、如果有一种新的运算定义为:“32(,)a bT a b a b-=+,其中a 、b 为实数,且0a b +≠”,比如:34236(4,3)437T ⨯-⨯==+,解关于m 的不等式组(2,32)5(,6)3T m m T m m -≥⎧⎨-<⎩,则m 的取值范围是2.16m ≤<.24、已知,如图,正方形ABCD 在平面直角坐标系中,其中点A 、C 两点的坐标为A (6,6),C (-1,-7),则点B 的坐标为(-4,3).(第23题图) (第25题图)25、如图,已知直线的解析式为1y x =-,且与轴交于点于轴交于点B ,过点作作直线AB 的垂线交y 轴于点1B ,过点1B 作x 轴的平行线交AB 于点1A ,再过点1A 作直线AB 的垂线交y 轴于点2B …,按此作法继续下去,则点的坐标为(0,3),(,).二、解答题(共30分)26.(8分)某学校初二年级在元旦汇演中需要外出租用同一种服装若干件,已知在没有任何优惠的情况下,甲服装店租用2件和在乙服装店租用3件共需280元,在甲服装店租用4件和在乙服装店租用一件共需260元。
四川金堂2018-2019年初二上年末考试数学试题及解析
![四川金堂2018-2019年初二上年末考试数学试题及解析](https://img.taocdn.com/s3/m/e23a231b83c4bb4cf7ecd1b8.png)
四川金堂2018-2019年初二上年末考试数学试题及解析数 学本试卷分A 卷和B 卷,A 卷总分值100分,B 卷总分值50分;考试时刻120分钟.A 卷分第I 卷和第II 卷,第I 卷为选择题,第II 卷为其他类型旳题.第一卷1至2页, 第二卷和B 卷3至6页.考试结束时,监考人将第一卷及第二卷和B 卷旳答题卡收回.A 卷〔共100分〕考前须知:1.答卷前,考生务必将自己旳姓名、准考证号等填写在密封线内相应位置上.2.第一卷各题均有四个选项,只有一项符合题目要求,每题选出【答案】后,填在对应题目旳答题卡上.3. A 卷旳第II 卷和B 卷用蓝、黑钢笔或圆珠笔直截了当答在答题卡上.4.试卷中注有“▲”旳地点,是需要你在答题卡上作答旳内容或问题.第I 卷〔选择题,共30分〕【一】选择题:(本大题共有10个小题,每题3分,共30分) 1、以下各式中计算正确旳选项是〔 ▲ 〕A 、9)9(2-=-B 、525±=C 、1)1(33-=- D 、2)2(2-=-2、在平面直角坐标系中,位于第二象限旳点是 〔 ▲ 〕 A.〔-2,-3〕 B.〔2,4〕 C.〔-2,3〕 D.〔2,3〕3、在平面直角坐标系中,点P 〔-2,3〕关于原点对称旳点旳坐标是〔 ▲ 〕 A. 〔3,-2〕 B. 〔2,-3〕 C. 〔-3,2〕 D. 〔2,3〕 A 、大于锐角旳角是钝角;B 、假如一个实数有算术平方根,那么它旳算术平方根是整数;C 、假如AC=BC ,那么点C 是线段AB 旳中点D 、在同一平面,内错角相等,两直线平行5、一根旗杆在离地面6米处断裂,旗杆顶部落在离旗杆底部10米处,旗杆折断之前旳高度是〔▲〕()A B C D ....8142346234米米米米+6、以下各组数中,不是勾股数〔不能成为直角三角形边长〕旳是〔▲〕A 、5,12,13B 、3,5,9C 、8,15,17D 、7,24,257、⎩⎨⎧==12y x 是方程52=-ay x 旳一个解,那么a 旳值为〔▲〕A.1B.3C.-3D.-18、近年来,我国持续大面积旳雾霾天气让环保和健康问题成为焦点,为进一步普及环保和健康知识,我市某校进行了“建设宜居成都,关注环境爱护”旳知识竞赛,某班学生旳成绩统计如下:9、下如图,,,那么旳度数为(▲) A.115B.65 C.60 D.2510、一次函数b kx y +=满足条件b k ∙<0,且b k ->0时旳图象应是(▲)第二卷〔非选择题,共70分〕【二】填空题:(每题4分,共16分) 11、16旳算术平方根是▲。
2017-2018学年人教版八年级上册期末数学试卷含答案
![2017-2018学年人教版八年级上册期末数学试卷含答案](https://img.taocdn.com/s3/m/0a9fadcc3186bceb19e8bb71.png)
2017-2018学年八年级(上)期末数学试卷一、选择题(本题共12个小题,每小题3分,共36分)1.下面实数中无理数是()A.0.3333 B.πC. D.2.下列四组数据中,不能作为直角三角形的三边长的是()A.7,24,25 B.6,8,10 C.9,12,15 D.3,4,63.点P(3,﹣5)关于y轴对称的点的坐标为()A.(﹣3,﹣5)B.(5,3)C.(﹣3,5)D.(3,5)4.下列各式中,正确的是()A.=±4 B.±=4 C.=﹣3 D.=﹣45.下列命题是真命题的是()A.同旁内角互补B.直角三角形的两锐角互余C.三角形的一个外角等于它的两个内角之和D.三角形的一个外角大于内角6.如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60°B.65°C.75°D.80°7.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为()A.8,9 B.8,8 C.8.5,8 D.8.5,98.一次函数y=2x+1的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如图,ED为△ABC的AC边的垂直平分线,且AB=5,△BCE的周长为8,则BC的长度为()A.1 B.2 C.3 D.410.点A(﹣5,y1)和B(﹣2,y2)都在直线y=﹣3x+2上,则y1与y2的关系是()A.y1≤y2B.y1=y2C.y1<y2D.y1>y211.如果二元一次方程组的解是二元一次方程3x﹣5y﹣7=0的一个解,那么a值是()A.3 B.5 C.7 D.912.如图,在平面直角坐标系中,直线y=x﹣与矩形ABCO的边OC、BC分别交于点E、F,已知OA=3,OC=4,则△CEF的面积是()A.6 B.3 C.12 D.二、填空题(本题共6个小题,每小题3分,共18分)13.25的算术平方根是______.14.等边三角形ABC中,边长AB=6,则高AD的长度为______.15.当k=______时,方程(k2﹣9)x2+(k﹣3)x﹣7y=1是关于x,y的二元一次方程.16.如图所示,AD平分∠CAE,∠B=30°,∠CAD=65°,则∠ACD=______.17.如图,直线L是一次函数y=kx+b的图象,b=______,k=______,当x>______时,y >0.18.如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为______.三、解答题(本题共8个小题,共66分,解答应写出文字说明、证明过程或演算步骤)19.完成下列各题(1)+(1﹣)0(2)解方程组.20.完成下列各题(1)如图1△ABC中∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于E.求证:△ACD≌△AED.(2)如图2,∠1与∠D互余,CF⊥DF.求证:AB∥CD.21.在如图所示的平面直角坐标系中,将坐标是(1,0),(0,4),(2,4),(4,4),(3,0),的点用线段依次连接起来形成一个图案.(1)在下列坐标系中画出这个图案;(2)图形中哪些点的坐标在坐标轴上,它们的坐标分别有什么特点?(3)图中的哪几个点连接的线段所在的直线与坐标轴平行?此线段上的点的纵坐标有什么特点?22.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;23.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B 型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B 型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.24.“五一黄金周”的某一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩.该小汽车离家的距离s(千米)与时间t(时)的关系可以用图中的曲线表示.根据图象提供的有关信息,解答下列问题:(1)小明全家在旅游景点游玩了多少小时?(2)求出返程途中,s(千米)与时间t(时)的函数关系,并回答小明全家到家是什么时间?(3)若出发时汽车油箱中存油15升,该汽车的油箱总容量为35升,汽车每行驶1千米耗油升.请你就“何时加油和加油量”给小明全家提出一个合理化的建议.(加油所用时间忽略不计)25.如图,一次函数y=﹣x+3的图象与x轴和y轴分别交于点A和B,再将△AOB沿直线CD对折,使点A与点B重合、直线CD与x轴交于点C,与AB交于点D.(1)点A的坐标为______,点B的坐标为______;(2)求OC的长度;(3)在x轴上有一点P,且△PAB是等腰三角形,不需计算过程,直接写出点P的坐标.26.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.2017-2018学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,共36分)1.下面实数中无理数是()A.0.3333 B.πC. D.【考点】无理数.【分析】根据无理数是无限不循环小数小数,逐项判断即可.【解答】解:A、0.3333是有理数,故A选项不符合题意;B、π是无理数,故B选项符合题意;C、=4,是有理数,故C选项不符合题意;D、是有理数,故D选项不符合题意;故选B.2.下列四组数据中,不能作为直角三角形的三边长的是()A.7,24,25 B.6,8,10 C.9,12,15 D.3,4,6【考点】勾股数.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【解答】解:A、72+242=252,符合勾股定理的逆定理,故能作为直角三角形的三边长;B、62+82=102,符合勾股定理的逆定理,故能作为直角三角形的三边长;C、92+122=152,符合勾股定理的逆定理,故能作为直角三角形的三边长;D、32+42≠62,不符合勾股定理的逆定理,故不能作为直角三角形的三边长.故选D.3.点P(3,﹣5)关于y轴对称的点的坐标为()A.(﹣3,﹣5)B.(5,3)C.(﹣3,5)D.(3,5)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可直接得到答案.【解答】解:点P(3,﹣5)关于y轴对称的点的坐标为(﹣3,﹣5),故选:A.4.下列各式中,正确的是()A.=±4 B.±=4 C.=﹣3 D.=﹣4【考点】二次根式的混合运算.【分析】根据算术平方根的定义对A进行判断;根据平方根的定义对B进行判断;根据立方根的定义对C进行判断;根据二次根式的性质对D进行判断.【解答】解:A、原式=4,所以A选项错误;B、原式=±4,所以B选项错误;C、原式=﹣3=,所以C选项正确;D、原式=|﹣4|=4,所以D选项错误.故选:C.5.下列命题是真命题的是()A.同旁内角互补B.直角三角形的两锐角互余C.三角形的一个外角等于它的两个内角之和D.三角形的一个外角大于内角【考点】命题与定理.【分析】分别根据平行线的性质、直角三角形的性质、三角形的外角分别对每一项进行分析即可.【解答】解:A.两直线平行,同旁内角互补,故本选项错误,是假命题,B.直角三角形的两锐角互余,正确,是真命题,C.三角形的一个外角等于与它不相邻的两个内角之和,故本选项错误,是假命题,D.三角形的一个外角大于与它不相邻的内角,故本选项错误,是假命题,故选:B.6.如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60°B.65°C.75°D.80°【考点】平行线的性质.【分析】根据三角形外角性质求出∠EOB,根据平行线性质得出∠C=∠EOB,代入即可得出答案.【解答】解:∵∠A+∠E=75°,∴∠EOB=∠A+∠E=75°,∵AB∥CD,∴∠C=∠EOB=75°,故选C.7.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为()A.8,9 B.8,8 C.8.5,8 D.8.5,9【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:这组数据中出现次数最多的一个数是8,所以这组数据的众数是8环;22是偶数,按大小顺序排列后中间两个数是8和8,所以这组数据的中位数是8(环).故选B.8.一次函数y=2x+1的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数的性质.【分析】根据k,b的符号确定一次函数y=x+2的图象经过的象限.【解答】解:∵k=2>0,图象过一三象限,b=1>0,图象过第二象限,∴直线y=2x+1经过一、二、三象限,不经过第四象限.故选D.9.如图,ED为△ABC的AC边的垂直平分线,且AB=5,△BCE的周长为8,则BC的长度为()A.1 B.2 C.3 D.4【考点】线段垂直平分线的性质.【分析】根据ED为AC上的垂直平分线,得出AE=CE,再根据AB=5,△BCE的周长为AB+BC=8,即可求得BC.【解答】解:∵ED为AC上的垂直平分线,∴AE=EC,∵AB=AE+EB=5,△BCE的周长=AE+BE+BC=AB+BC=8,∴BC=8﹣5=3,故选C.10.点A(﹣5,y1)和B(﹣2,y2)都在直线y=﹣3x+2上,则y1与y2的关系是()A.y1≤y2B.y1=y2C.y1<y2D.y1>y2【考点】一次函数图象上点的坐标特征.【分析】根据一次函数图象上点的坐标特征,将点A(﹣5,y1)和B(﹣2,y2)分别代入直线方程y=﹣3x+2,分别求得y1与y2的值,然后进行比较.【解答】解:根据题意,得y1=﹣3×(﹣5)+2=17,即y1=17,y2=﹣3×(﹣2)+2=8;∵8<17,∴y1>y2.故选D.11.如果二元一次方程组的解是二元一次方程3x﹣5y﹣7=0的一个解,那么a值是()A.3 B.5 C.7 D.9【考点】解三元一次方程组.【分析】先用含a的代数式表示x,y,即解关于x,y的方程组,再代入3x﹣5y﹣7=0中可得a的值.【解答】解:由①+②,可得2x=4a,∴x=2a,将x=2a代入①,得y=2a﹣a=a,∵二元一次方程组的解是二元一次方程的一个解,∴将代入方程3x﹣5y﹣7=0,可得6a﹣5a﹣7=0,∴a=7故选C.12.如图,在平面直角坐标系中,直线y=x﹣与矩形ABCO的边OC、BC分别交于点E、F,已知OA=3,OC=4,则△CEF的面积是()A.6 B.3 C.12 D.【考点】一次函数综合题.【分析】根据直线解析式分别求出点E、F的坐标,然后利用三角形的面积公式求解即可.【解答】解:当y=0时,x﹣=0,解得x=1,∴点E的坐标是(1,0),即OE=1,∵OC=4,∴EC=OC﹣OE=4﹣1=3,∴点F的横坐标是4,∴y=×4﹣=2,即CF=2,∴△CEF的面积=×CE×CF=×3×2=3.故选B.二、填空题(本题共6个小题,每小题3分,共18分)13.25的算术平方根是5.【考点】算术平方根.【分析】根据算术平方根的定义即可求出结果,算术平方根只有一个正根.【解答】解:∵52=25,∴25的算术平方根是5.故答案为:5.14.等边三角形ABC中,边长AB=6,则高AD的长度为3.【考点】等边三角形的性质.【分析】根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可解题.【解答】解:由等边三角形三线合一,∴D为BC的中点,∴BD=DC=3,在Rt△ABD中,AB=6,BD=3,∴AD==3.故答案为3.15.当k=﹣3时,方程(k2﹣9)x2+(k﹣3)x﹣7y=1是关于x,y的二元一次方程.【考点】二元一次方程的定义.【分析】根据二元一次方程满足的条件,即只含有2个未知数,未知数的项的次数是1的整式方程,即可求得k的值.【解答】解:根据题意,得k2﹣9=0且k﹣3≠0,解得k=﹣3.故当k=﹣3时,方程(k2﹣9)x2+(k﹣3)x﹣7y=1是关于x,y的二元一次方程.故答案为:﹣3.16.如图所示,AD平分∠CAE,∠B=30°,∠CAD=65°,则∠ACD=80°.【考点】三角形的外角性质;三角形内角和定理.【分析】先根据角平分线求得∠DAE的度数,再根据∠DAE是△ABD的外角,求得∠D的度数,最后根据三角形内角和定理,求得∠ACD的度数.【解答】解:∵AD平分∠CAE,∠CAD=65°,∴∠DAE=65°,∵∠DAE是△ABD的外角,∴∠D=∠DAE﹣∠B=65°﹣30°=35°,∴△ACD中,∠ACD=180°﹣65°﹣35°=80°.故答案为:80°17.如图,直线L是一次函数y=kx+b的图象,b=﹣3,k=,当x>2时,y >0.【考点】待定系数法求一次函数解析式.【分析】根据图形确定直线所经过的两点的坐标,代入一次函数y=kx+b可求出k和b的值.【解答】如图所示直线L过(2,0),(0,﹣3),根据题意列出方程组,解得,则当x>2时,y>0.18.如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为(36,0).【考点】旋转的性质;坐标与图形性质;勾股定理.【分析】如图,在△AOB中,∠AOB=90°,OA=3,OB=4,则AB=5,每旋转3次为一循环,则图③、④的直角顶点坐标为(12,0),图⑥、⑦的直角顶点坐标为(24,0),所以,图⑨、⑩10的直角顶点为(36,0).【解答】解:∵在△AOB中,∠AOB=90°,OA=3,OB=4,∴AB=5,∴图③、④的直角顶点坐标为(12,0),∵每旋转3次为一循环,∴图⑥、⑦的直角顶点坐标为(24,0),∴图⑨、⑩的直角顶点为(36,0).故答案为:(36,0).三、解答题(本题共8个小题,共66分,解答应写出文字说明、证明过程或演算步骤)19.完成下列各题(1)+(1﹣)0(2)解方程组.【考点】解二元一次方程组;零指数幂;二次根式的混合运算.【分析】(1)根据二次根式混合运算的法则进行计算即可;(2)先用加减消元法求出x的值,再用代入消元法求出y的值即可.【解答】解:(1)原式=+1+1=4+1+1=6;(2),①×2﹣②得,x=2,把x=2代入①得,4﹣y=,解得y=﹣1,故方程组的解为.20.完成下列各题(1)如图1△ABC中∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于E.求证:△ACD≌△AED.(2)如图2,∠1与∠D互余,CF⊥DF.求证:AB∥CD.【考点】全等三角形的判定;平行线的判定.【分析】(1)根据角平分线的性质得出DC=DE,由HL定理得出△ACD≌△AED;(2)根据平角的定义得出∠1+∠CFD+∠2=180°,再由∠1与∠D互余,CF⊥DF得∠1=∠C,从而得出AB∥CD.【解答】证明:(1)∵AD平分∠CAB,∠C=90°,DE⊥AB,∴DC=DE,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED,(2)∵CF⊥DF,∴∠C+∠D=90°,∵∠1与∠D互余,∴∠1=∠C,∵∠1+∠CFD+∠2=180°,∴AB∥CD.21.在如图所示的平面直角坐标系中,将坐标是(1,0),(0,4),(2,4),(4,4),(3,0),的点用线段依次连接起来形成一个图案.(1)在下列坐标系中画出这个图案;(2)图形中哪些点的坐标在坐标轴上,它们的坐标分别有什么特点?(3)图中的哪几个点连接的线段所在的直线与坐标轴平行?此线段上的点的纵坐标有什么特点?【考点】坐标与图形性质.【分析】(1)根据点的坐标标出各点,依次连接可得;(2)由图可知位于坐标轴上的点,由坐标可得其特点;(3)观察图象即可得知.【解答】解:(1)如图,(2)点(1,0)、(3,0)在x轴上,x轴上的点纵坐标为0;点(0,4)在y轴上,y轴上的点横坐标为0;(3)(0,4),(2,4),(4,4)三点所在直线与x轴平行,此线段上点的纵坐标相等,都等于4.22.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;3【考点】条形统计图;算术平均数;中位数;众数.【分析】(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答;(2)根据平均数和中位数的统计意义分析得出即可;(3)分别求出初中、高中部的方差即可.【解答】解:(1)填表:初中平均数为:(75+80+85+85+100)=85(分),众数85(分);高中部中位数80(分).(2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下中位数高的初中部成绩好些.(3)∵= [(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+2]=70,= [(70﹣85)2+2+2+(75﹣85)2+(80﹣85)2]=160.∴<,因此,初中代表队选手成绩较为稳定.23.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B 型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B 型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.【考点】二元一次方程组的应用;二元一次方程的应用.【分析】(1)根据“用2辆A型车和1辆B型车载满货物一次可运货10吨;”“用1辆A型车和2辆B型车载满货物一次可运货11吨”,分别得出等式方程,组成方程组求出即可;(2)由题意理解出:3a+4b=31,解此二元一次方程,求出其整数解,得到三种租车方案;(3)根据(2)中所求方案,利用A型车每辆需租金100元/次,B型车每辆需租金120元/次,分别求出租车费用即可.【解答】解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:,解方程组,得:,答:1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意和(1)得:3a+4b=31,∴a=∵a、b都是正整数∴或或答:有3种租车方案:方案一:A型车9辆,B型车1辆;方案二:A型车5辆,B型车4辆;方案三:A型车1辆,B型车7辆.(3)∵A型车每辆需租金100元/次,B型车每辆需租金120元/次,∴方案一需租金:9×100+1×120=1020(元)方案二需租金:5×100+4×120=980(元)方案三需租金:1×100+7×120=940(元)∵1020>980>940∴最省钱的租车方案是方案三:A型车1辆,B型车7辆,最少租车费为940元.24.“五一黄金周”的某一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩.该小汽车离家的距离s(千米)与时间t(时)的关系可以用图中的曲线表示.根据图象提供的有关信息,解答下列问题:(1)小明全家在旅游景点游玩了多少小时?(2)求出返程途中,s(千米)与时间t(时)的函数关系,并回答小明全家到家是什么时间?(3)若出发时汽车油箱中存油15升,该汽车的油箱总容量为35升,汽车每行驶1千米耗油升.请你就“何时加油和加油量”给小明全家提出一个合理化的建议.(加油所用时间忽略不计)【考点】一次函数的应用.【分析】(1)由图可知:10﹣14小时的时间段内小明全家在旅游景点游玩,因此时间应该是4小时;(2)可根据14小时和15小时两个时间点的数值,用待定系数法求出函数的关系式;(3)可根据8小时和10小时两个时间段的数值求出函数关系式,那么这个函数关系式应该是s=90x﹣720,那么出发时的15升油,可行驶的路程是15÷=135千米,代入函数式中可得出x=9.5,因此9:30以前必须加一次油,如果刚出发就加满油,那么可行驶的路程=35÷=315千米>180千米,因此如果刚出发就加满油,到景点之前就不用再加油了.也可以多次加油,但要注意的是不要超出油箱的容量.【解答】解:(1)由图象可知,小明全家在旅游景点游玩了4小时;(2)设s=kt+b,由(14,180)及(15,120)得,解得∴s=﹣60t+1020(14≤t≤17)令s=0,得t=17.答:返程途中s与时间t的函数关系是s=﹣60t+1020,小明全家当天17:00到家;(3)答案不唯一,大致的方案为:①9:30前必须加一次油;②若8:30前将油箱加满,则当天在油用完前的适当时间必须第二次加油;③全程可多次加油,但加油总量至少为25升.25.如图,一次函数y=﹣x+3的图象与x轴和y轴分别交于点A和B,再将△AOB沿直线CD对折,使点A与点B重合、直线CD与x轴交于点C,与AB交于点D.(1)点A的坐标为(4,0),点B的坐标为(0,3);(2)求OC的长度;(3)在x轴上有一点P,且△PAB是等腰三角形,不需计算过程,直接写出点P的坐标.【考点】一次函数综合题.【分析】(1)令y=0求出x的值,再令x=0求出y的值即可求出A、B两点的坐标;(2)OC=x,根据翻折变换的性质用x表示出BC的长,再根据勾股定理求解即可;(3)根据x轴上点的坐标特点设出P点的坐标,再根据两点间的距离公式解答即可.【解答】解:(1)令y=0,则x=4;令x=0,则y=3,故点A的坐标为(4,0),点B的坐标为(0,3).(每空1分)(2)设OC=x,则AC=CB=4﹣x,∵∠BOA=90°,∴OB2+OC2=CB2,32+x2=(4﹣x)2,解得,∴OC=.(3)设P点坐标为(x,0),当PA=PB时,=,解得x=;当PA=AB时,=,解得x=9或x=﹣1;当PB=AB时,=,解得x=﹣4.∴P点坐标为(,0),(﹣4,0),(﹣1,0),(9,0).26.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.【考点】全等三角形的判定与性质;角平分线的性质;等腰直角三角形.【分析】(1)根据等腰直角三角形的性质求出∠B=∠ACB=45°,再求出∠ACF=45°,从而得到∠B=∠ACF,根据同角的余角相等求出∠BAE=∠CAF,然后利用“角边角”证明△ABE和△ACF全等,根据全等三角形对应边相等证明即可;(2)①过点E作EH⊥AB于H,求出△BEH是等腰直角三角形,然后求出HE=BH,再根据角平分线上的点到角的两边距离相等可得DE=HE,然后求出HE=HM,从而得到△HEM 是等腰直角三角形,再根据等腰直角三角形的性质求解即可;②求出∠CAE=∠CEA=67.5°,根据等角对等边可得AC=CE,再利用“HL”证明Rt△ACM和Rt△ECM全等,根据全等三角形对应角相等可得∠ACM=∠ECM=22.5°,从而求出∠DAE=∠ECM,根据等腰直角三角形的性质可得AD=CD,再利用“角边角”证明△ADE和△CDN 全等,根据全等三角形对应边相等证明即可.【解答】证明:(1)∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵FC⊥BC,∴∠BCF=90°,∴∠ACF=90°﹣45°=45°,∴∠B=∠ACF,∵∠BAC=90°,FA⊥AE,∴∠BAE+∠CAE=90°,∠CAF+∠CAE=90°,∴∠BAE=∠CAF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴BE=CF;(2)①如图,过点E作EH⊥AB于H,则△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC;②由题意得,∠CAE=45°+×45°=67.5°,∴∠CEA=180°﹣45°﹣67.5°=67.5°,∴∠CAE=∠CEA=67.5°,∴AC=CE,在Rt△ACM和Rt△ECM中,,∴Rt△ACM≌Rt△ECM(HL),∴∠ACM=∠ECM=×45°=22.5°,又∵∠DAE=×45°=22.5°,∴∠DAE=∠ECM,∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=CD=BC,在△ADE和△CDN中,,∴△ADE≌△CDN(ASA),∴DE=DN.2016年9月19日第21页(共21页)。
2017-2018八年级上期末数学试卷及答案
![2017-2018八年级上期末数学试卷及答案](https://img.taocdn.com/s3/m/a530bc15844769eae009edf8.png)
2017-2018八上期末数学试卷及答案一、你一定能选对(本大题共10小题,每小题3分,共30分)。
下列各题均有四个各选答案,其中有且只有一个是正确的,请将正确答案的代号在答题卡上将对应的答案标号涂黑.1.下列四个汽车标志图中,不是轴对称图形的是( )2.使分式1xx -有意义的x 的取值范围是( ) A.x ≠1 B.x ≠0 C.x ≠-1 D.x ≠0且x ≠1. 3.下列运算正确的是( )A. 2x+3y=5xyB.x 8÷x 2=x 4C.(x 2y)3=x 6y 3D.2x 3·x 2=2x 64.如图,已知AB=CD,添加一个条件后,仍然不能判定△ABC ≌△ADC 的是( ) A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°5.下列因式分解正确的是( )A. 6x+9y+3=3(2x+3y)B. x 2+2x+1=(x+1)2C.x 2-2xy-y 2=(x-y)2D.x 2+4=(x+2)2 6.点A 关于y 轴对称点是( ) A. (3,-4) B.(-3,4) C.(3,4) D.(-4,3) 7.下列各式从左到右的变形正确的是( ) A.2b a b +=12a + B. b a =22b a ++ C.a bc -+=-a b c+ D.22a a +-=224(2)a a --8.如图,由4个小正方形组成的田字格中,△ABC 的顶点都是小正方形的顶点,在田字格上画与△ABC 成轴对称的三角形,且顶点都是小正方形的顶点,则这样的DCBA三角形的个数有(不包含△ABC 本身)( ) A. 4个 B.3个 C.2个 D.1个 9.已知P=717m-1, Q=m 2-1017m(m 为任意实数),则P 与Q 的大小关系为( ) A.P>Q B.P=Q C.P<Q D.不能确定10.如图△ABC 与△CDE 都是等边三角形,且∠EBD=65°,则∠AEB 的度数是( ) A. 115° B.120° C.125° D.130°二.填空题(每题3分,共18分) 11.若分式8x x的值为0,则x=_____. 12.计算: 6a 2b ÷2a=_____.13.如图,在△ABC 中,AB=AC,点D 在AC 上,且BD=AD, ∠A=36°,则∠DBC=______.14.信息技术的存储设备常用B 、KB 、MB 、GB 等作为存储设备的单位,例如,我们常说的某计算机的硬盘容量是320GB,某移动硬盘的容量是80GB,某个文件夹的大小是156KB 等,其中1GB=210MB,1MB=210KB,1KB=210B(字节),对于一个容量为8GB 的内存盘,其容量为____B(字节).15.已知(x+p)(x+q)=x 2+mx+3,p 、q 为整数,则m=___.16.如图,点A(2,,0), ∠AON=60°,点M 为平面直角坐标系内一点,B C且MO=MA,则MN的最小值为_______.三.解下列各题(本大题共8小题,共72分)17.(8分)计算: (1) (3x+1)(x+2) (2) 123p++1 23p-18.(8分)因式分解: (1)4x2-9 (2) -3x2+6xy-3y219(8分)先化简,再求值: (m+2-52m-)×243mm--,其中m=4.20(8分)如图,“丰收1号”小麦试验田是一块边长为a米的正方形试验田上修建两条宽为1米的甬道后剩余的部分,“丰收2号”小麦试验田是边长为a米的正方形去掉一个边长为1米的蓄水池后余下的部分,两块试验田的小麦都收获了500千克.(1) “丰收1号”试验田的面积为_____平方米;“丰收2号”试验田的面积为_____平方米;(2)“丰收1号”小麦试验田的单位面积产量是“丰收1号”小麦试验田的单位面积产量的多少倍?21(8分)如图,△ABC 中, ∠BAC=∠ADB,BE 平分∠ABC 交AD 于点E,交AC 于点F,过点E 作EG//BC 交AC 于点G.(1)求证: AE=AF; (2)若AG=4,AC=7,求FG 的长.22(10分)从2007年4月18日开始,我国铁路第六次提速,某次列车平均提速v km/h.(1) 若提速前列车的平均速度为x km/h,行驶1200km 的路程,提速后比提速前少用多长时间?(2)若v=50,行驶1200km 的路程,提速后所用时间是提速前的45,求提速前列车的平均速度?(3)用相同的时间,列车提速前行驶s km,提速后比提速前多行驶50km,则提速前的平均速度为______km/h.23(10分)已知:在△ABC 中, ∠B=60°,D 、E 分别为AB 、BC 上的点,且AE 、CD 交于点F.(1)如图1,若AE 、CD 为△ABC 的角平分线. ①求证: ∠AFC=120°;②若AD=6,CE=4,求AC 的长?图1(2)如图2,若∠FAC=∠FCA=30°,求证:AD=CE.24(12分)如图1,直线AB 分别与x 轴、y 轴交于A 、B 两点,OC 平分∠AOB 交AB 于点C,点D 为线段AB 上一点,过点D 作DE//OC 交y 轴于点E,已知AO=m,BO=n,且m 、n 满足n 2-12+36+|n-2m|=0. (1)求A 、B 两点的坐标?(2)若点D 为AB 中点,求OE 的长?(3)如图2,若点P(x,-2x+6)为直线AB 在x 轴下方的一点,点E 是y 轴的正半轴上一动点,以E 为直角顶点作等腰直角△PEF,使点F 在第一象限,且F 点的横、纵坐标始终相等,求点P 的坐标.图2Axx2017~2018学年度上学期期末试题八年级数学参考答案一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案的标号填在下面的表格中.)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中横线上.) 11、812、3ab 13、36°14、23315、4或-4 16、32三、解答题:(本大题共8个小题.共72分.解答应写出文字说明、证明过程或演算步骤.)17、解:(1)原式=2362x x x +++…………(2分) =2372x x ++…………(4分) (2)112323p p ++- 解:原式=()()()()2-32323232323p p p p p p +++-+-…………(6分) =()()2-3232323p p p p +++-…………(7分)=2449pp -…………(8分) 18、解:(1)原式=()2223x -…………(2分) =(2x +3)(2x -3) …………(4分)(2)原式=22-3(2)x xy y -+…………(6分)=2-3()x y -…………(8分)19、解:原式=()()3422522--⋅---+m m m m m …………(2分)=()322292--⋅--m m m m =()()()322233--⋅--+m m m m m …………(4分)=2(m +3) …………(6分)当m =2时,原式=2×(2+3)=10…………(8分)20、解:(1) “丰收1号”试验田的面积为_(a -1)2_平方米;“丰收2号”试验田的面积为 (a 2-1)平方米.…………(4分) (2)()225005001-1a a ÷-…………(5分) =()()()211500500-1a a a +-⋅=()()()211500500-1a a a +-⋅=11a a +-…………(7分) ∴“丰收1号”小麦的单位面积产量是“丰收2号”小麦的单位面积产量的11a a +-倍……(8分)21、(1)∵BF 平分∠ABC∴∠ABF =∠CBF∵∠AFB =180°-∠ABF -∠BAF ∠BED =180°-∠CBF -∠ADB 又∵∠BAC =∠ADB∴∠AFB =∠BED …………(2分) ∵∠AEF =∠BED ∴∠AFB =∠AEF ∴AE =AF …………(4分)(2)如图,在BC 上截取BH =AB ,连接FH在△ABF 和△HBF 中∵⎪⎩⎪⎨⎧=∠=∠=BF BF HBF ABF BH AB ∴△ABF ≌△HBF (SAS )∴AF =FH ,∠AFB =∠HFB …………(5分) ∵∠AFB =∠AEF ∴∠HFB =∠AEF ∴AE ∥FH ∴∠GAE =∠CFH ∵EG ∥BC ∴∠AGE =∠C ∵AE =AF∴AE =FH …………(6分)H GFED CBA在△AEG 和△FHC 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠FH AE C AGE CFH GAE∴△AEG ≌△FHC (AAS ) ∴AG =FC =4…………(7分)∴FG =AG + FC -AC =1. …………(8分) 注:本题两问其它解法参照评分 22、解:(1)由题意得:12001200-x x v +…………(2分)…………(3分)∴提速后比提速前少用 小时. …………(4分) (2)依题意有:120041200505x x=⨯+…………(6分) 解得:x =200…………(7分)经检验x =200是原方程的解,且符合题意…………(8分) ∴提速前列车的平均速度为:200千米/时 (3) 提速前列车的平均速度为:50sv千米/时. …………(10分)1200()1200()()120012001200()x v xx x v x x v x v x x x v +=-+++-=+1200()v x x v =+1200()v x x v +23、(1)①∵AE 、CD 分别为△ABC 的角平分线 ∴∠FAC =BAC ∠21,∠FCA =BCA ∠21…………(1分) ∵∠B =60°∴∠BAC +∠BCA =120°…………(2分)∴∠AFC =180-∠FAC -∠FCA =180-)21BCA BAC ∠+∠(=120°…………(3分)②在AC 上截取AG =AD =6,连接FG ∵AE 、CD 分别为△ABC 的角平分线 ∴∠FAC =∠FAD ,∠FCA =∠FCE ∵∠AFC =120°∴∠AFD =∠CFE =60°…………(4分)在△ADF 和△AGF 中∵⎪⎩⎪⎨⎧=∠=∠=AF AF GAF DAF AG AD ∴△ADF ≌△AGF (SAS )∴∠AFD =∠AFG =60°…………(5分) ∴∠GFC =∠CFE =60° 在△CGF 和△CEF 中∵GFC EFC CF CF GCF ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△CGF ≌△CEF (ASA ) ∴CG =CE =4∴AC =10…………(6分)GFDE BCA(2)在AE 上截取FH =FD ,连接CH ∵∠FAC =∠FCA =30° ∴FA =FC …………(7分)在△ADF 和△CHF 中∵⎪⎩⎪⎨⎧=∠=∠=HF DF CFH AFD CF AF ∴△ADF ≌△CHF (SAS )∴AD =CH ,∠DAF =∠HCF …………(8分) ∵∠CEH =∠B +∠DAF =60°+∠DAF ∠CHE =∠HAC +∠HCA =60°+∠HCF ∴∠CEH =∠CHE …………(9分) ∴CH =CE∴AD =CE …………(10分) 注:本题两问其它解法参照评分24、(1)∵2123620n n n m -++-= ∴()0262=-+-m n n …………(1分)∵()260n -≥,-20n m ≥ ∴()260n -=,-20n m =∴ m =3,n =6…………(2分)∴点A 为(3,0),点B 为(0,6)…………(3分)(2)延长DE 交x 轴于点F ,延长FD 到点G ,使得DG =DF ,连接BG 设OE =xHFDE BCA∵OC 平分∠AOB ∴∠BOC =∠AOC =45° ∵DE ∥OC∴∠EFO =∠FEO =∠BEG =∠BOC =∠AOC =45°…………(4分) ∴OE =OF =x在△ADF 和△BDG 中∵ ⎪⎩⎪⎨⎧=∠=∠=DG DF BDG ADF BD AD∴△ADF ≌△BDG (SAS )∴BG =AF =3+x ,∠G =∠AFE =45°…………(5分) ∴∠G =∠BEG =45° ∴BG =BE =6-x∴6-x =3+x …………(6分) 解得:x =1.5∴OE =1.5…………(7分)(3)分别过点F 、P 作FM ⊥y 轴于点M ,PN ⊥y 轴于点N 设点E 为(0,m )∵点P 的坐标为(x ,-2x +6) 则PN =x ,EN =m +2x-6…………(8分)∵∠PEF =90°∴∠PEN+∠FEM=90°∵FM⊥y轴∴∠MFE+∠FEM=90°∴∠PEN=∠MFE在△EFM和△PEN中∵MFE PENFME PNE EF EP∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EFM≌△PEN(AAS)∴ME=NP=x,FM=EN=m+2x-6…………(9分) ∴点F为(m+2x-6,m+x)…………(10分) ∵F点的横坐标与纵坐标相等∴m+2x-6=m+x…………(11分)解得:x=6∴点P为(6,-6)…………(12分)注:本题其它解法参照评分。
成都市八年级(上)期末数学试卷含答案
![成都市八年级(上)期末数学试卷含答案](https://img.taocdn.com/s3/m/648a4afea0116c175f0e48c1.png)
������ ������
= =
������������������������−3的解是(
)
{A.
������ = −2 ������ = −1
{B.
������ = 2 ������ = −1
{C.
������ = 2 ������ = 1
{D.
������ = −2 ������ = 1
10. 如图,表示甲、乙两人以相同路线前往离学校 12 千米的地方参加植树活动.甲、 乙两人前往目的地所行驶的路程������(千米)随时间������(分)变化的函数图象,则每分钟乙 比甲多行驶的路程是( )
8. 如图,������������ △ ������������������沿直角边 BC 所在的直线向右平移得到 △ ������������������,下列结论中错误的 是( )
A. △ ������������������≌ △ ������������������ C. ������������ = ������������
{ 16.
若关于 x,y 的二元一次方程组
������ + ������−������
������ = = ������
3������的解也是二元一次方程������
+ 2������
= 8的解,
则 k 的值为������ = ______.
第 2 页,共 21 页
17.
用 ⊕ 表示一种运算,它的含义是:������
19. 如图,∠������������������ = 45°,点 M、点 C 在射线 OA 上,点 P、点 D 在 射线 OB 上,且������������ = 3 2,则������������ + ������������ + ������������的最小值是 ______.
2017-2018学年八年级(上)期末数学试卷含答案解析
![2017-2018学年八年级(上)期末数学试卷含答案解析](https://img.taocdn.com/s3/m/9272f4006bd97f192279e992.png)
2017-2018学年八年级(上)期末数学试卷一、选择题(本题共8小题,每小题3分,共24分,每小题给出4个选项,有且只有一个答案是正确的)1.下列四个汉字中,可以看作是轴对称图形的是()A.魅B.力C.黄D.冈2.下列各式计算正确的是()A.2a2+a3=3a5B.(3xy)2÷(xy)=3xy C.(2b2)3=8b5D.2x•3x5=6x6 3.一个等腰三角形的一边长为6cm,周长为30cm,则它的另两边长分别为()A.6cm,18cm B.12cm,12cmC.6cm,12cm D.6cm,18cm或12cm,12cm4.要使分式有意义,则x的取值应满足()A.x=﹣2 B.x<﹣2 C.x>﹣2 D.x≠﹣25.长为10,7,5,3的四根木条,选其中三根首尾顺次相连接组成三角形,选法有()A.1种 B.2种 C.3种 D.4种6.已知a﹣b=3,ab=2,则a2﹣ab+b2的值为()A.9 B.13 C.11 D.87.已知﹣=5,则分式的值为()A.1 B.5 C.D.8.如图,在等边△ABC中,BD平分∠ABC交AC于点D,过点D作DE⊥BC于点E,且CE=1.5,则AB的长为()A.3 B.4.5 C.6 D.7.5二、填空题(本题共8小题,每小题3分,共24分)9.因式分解3x3+12x2+12x=.10.石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为.11.计算(2m2n﹣2)2•3m﹣2n3的结果是.12.若分式的值为0,则x=.13.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为.14.计算2016×512﹣2016×492,结果是.15.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为cm.16.如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.三、解答题(共72分)17.计算下列各题:(1)(﹣2)3+×0﹣(﹣)﹣2.(2)[(x2+y2)﹣(x﹣y)2﹣2y(x﹣y)]÷4y.18.解方程:.19.先化简,再求值:(﹣)÷,其中x=3.20.如图,点E,C在BF上,BE=CF,AB=DF,∠B=∠F.求证:∠A=∠D.21.如图所示,△ABC的顶点分别为A(﹣2,3),B(﹣4,1),C(﹣1,2).(1)作出△ABC关于x轴对称的图形△A1B1C1;(2)写出A1、B1、C1的坐标;(3)求△ABC的面积.22.甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?23.如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)求证:CD=2BE.24.如图①,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数;(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图②,判断△CPQ的形状,并加以证明.2017-2018学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题3分,共24分,每小题给出4个选项,有且只有一个答案是正确的)1.下列四个汉字中,可以看作是轴对称图形的是()A.魅B.力C.黄D.冈【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、“魅”不是轴对称图形,故本选项错误;B、“力”不是轴对称图形,故本选项错误;C、“黄”是轴对称图形,故本选项正确;D、“冈”不是轴对称图形,故本选项错误.故选C.2.下列各式计算正确的是()A.2a2+a3=3a5B.(3xy)2÷(xy)=3xy C.(2b2)3=8b5D.2x•3x5=6x6【考点】整式的除法;幂的乘方与积的乘方;单项式乘单项式.【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;单项式的除法法则,单项式乘单项式的运算法则,对各选项计算后利用排除法求解.【解答】解:A、2a2与a3不是同类项不能合并,故本选项错误;B、应为(3xy)2÷(xy)=9x2y2÷xy=9xy,故本选项错误;C、应为(2b2)3=23×(b2)3=8b6,故本选项错误;D、2x•3x5=6x6,正确.故选D.3.一个等腰三角形的一边长为6cm,周长为30cm,则它的另两边长分别为()A.6cm,18cm B.12cm,12cmC.6cm,12cm D.6cm,18cm或12cm,12cm【考点】等腰三角形的性质;三角形三边关系.【分析】由等腰三角形的周长为30cm,三角形的一边长6cm,分别从6cm是底边长与6cm为腰长去分析求解即可求得答案.【解答】解:∵等腰三角形的周长为30cm,三角形的一边长6cm,∴若6cm是底边长,则腰长为:(30﹣6)÷2=12(cm),∵6cm,12cm,12cm能组成三角形,∴此时其它两边长分别为12cm,12cm;若6cm为腰长,则底边长为:30﹣6﹣6=18(cm),∵6+6<18,∴不能组成三角形,故舍去.∴其它两边长分别为12cm,12cm.故选B.4.要使分式有意义,则x的取值应满足()A.x=﹣2 B.x<﹣2 C.x>﹣2 D.x≠﹣2【考点】分式有意义的条件.【分析】根据分母不为零分式有意义,可得答案.【解答】解:由分式有意义,得x+2≠0,解得x≠﹣2,故选:D.5.长为10,7,5,3的四根木条,选其中三根首尾顺次相连接组成三角形,选法有()A.1种 B.2种 C.3种 D.4种【考点】三角形三边关系.【分析】根据任意两边之和大于第三边判断能否构成三角形.【解答】解:选其中3根组成一个三角形,不同的选法有3cm,5cm,7cm;3cm,5cm,10cm;5cm,7cm,10cm;3cm,7cm,10cm;能够组成三角形的只有:3cm,5cm,7cm;5cm,7cm,10cm;共2种.故选B.6.已知a﹣b=3,ab=2,则a2﹣ab+b2的值为()A.9 B.13 C.11 D.8【考点】完全平方公式.【分析】根据完全平方公式即可求出答案.【解答】解:∵(a﹣b)2=a2﹣2ab+b2,∴32=a2+b2﹣2×2∴a2+b2=9+4=13,∴原式=13﹣2=11故选(C)7.已知﹣=5,则分式的值为()A.1 B.5 C.D.【考点】分式的值.【分析】已知等式左边通分并利用同分母分式的减法法则变形,整理后代入原式计算即可得到结果.【解答】解:已知等式整理得:=5,即x﹣y=﹣5xy,则原式===1,故选A8.如图,在等边△ABC中,BD平分∠ABC交AC于点D,过点D作DE⊥BC于点E,且CE=1.5,则AB的长为()A.3 B.4.5 C.6 D.7.5【考点】等边三角形的性质;角平分线的性质.【分析】由在等边三角形ABC中,DE⊥BC,可求得∠CDE=30°,则可求得CD的长,又由BD平分∠ABC交AC于点D,由三线合一的知识,即可求得答案.【解答】解:∵△ABC是等边三角形,∴∠ABC=∠C=60°,AB=BC=AC,∵DE⊥BC,∴∠CDE=30°,∵EC=1.5,∴CD=2EC=3,∵BD平分∠ABC交AC于点D,∴AD=CD=3,∴AB=AC=AD+CD=6.故选C二、填空题(本题共8小题,每小题3分,共24分)9.因式分解3x3+12x2+12x=3x(x+2)2.【考点】提公因式法与公式法的综合运用.【分析】直接提取公因式3x,进而利用完全平方公式分解因式即可.【解答】解:3x3+12x2+12x=3x(x2+4x+4)=3x(x+2)2.故答案为:3x(x+2)2.10.石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为 3.4×10﹣10.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00 000 000 034=3.4×10﹣10,故答案为:3.4×10﹣10.11.计算(2m2n﹣2)2•3m﹣2n3的结果是.【考点】单项式乘单项式;幂的乘方与积的乘方;负整数指数幂.【分析】直接利用积的乘方运算法则进而结合同底数幂的乘法运算法则求出答案.【解答】解:(2m2n﹣2)2•3m﹣2n3=4m4n﹣4•3m﹣2n3=12m2n﹣1=.故答案为:.12.若分式的值为0,则x=﹣1.【考点】分式的值为零的条件.【分析】根据分式的值等于0的条件:分子=0且分母≠0即可求解.【解答】解:根据题意得x2﹣1=0,且x﹣1≠0,解得:x=﹣1.故答案是:﹣1.13.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为36°.【考点】等腰三角形的性质.【分析】根据AB=AC可得∠B=∠C,CD=DA可得∠ADB=2∠C=2∠B,BA=BD,可得∠BDA=∠BAD=2∠B,在△ABD中利用三角形内角和定理可求出∠B.【解答】解:∵AB=AC,∴∠B=∠C,∵CD=DA,∴∠C=∠DAC,∵BA=BD,∴∠BDA=∠BAD=2∠C=2∠B,又∵∠B+∠BAD+∠BDA=180°,∴5∠B=180°,∴∠B=36°,故答案为:36°.14.计算2016×512﹣2016×492,结果是403200.【考点】因式分解的应用.【分析】利用提取公因式法和平方差公式分解因式,再计算即可得到结果.【解答】解:2016×512﹣2016×492=2016=2016(51+49)(51﹣49)=2016×100×2=403200;故答案为:403200.15.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为9cm.【考点】翻折变换(折叠问题).【分析】由折叠中对应边相等可知,DE=CD,BE=BC,可求AE=AB﹣BE=AB﹣BC,则△AED的周长为AD+DE+AE=AC+AE.【解答】解:DE=CD,BE=BC=7cm,∴AE=AB﹣BE=3cm,∴△AED的周长=AE+AD+DE=AC+AE=6+3=9cm.16.如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=96°.【考点】全等三角形的判定与性质;线段垂直平分线的性质.【分析】首先过点D作DF⊥AB于E,DF⊥AC于F,易证得△DEB≌△DFC(HL),即可得∠BDC=∠EDF,又由∠EAF+∠EDF=180゜,即可求得答案;【解答】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180゜,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故答案为:96°.三、解答题(共72分)17.计算下列各题:(1)(﹣2)3+×0﹣(﹣)﹣2.(2)[(x2+y2)﹣(x﹣y)2﹣2y(x﹣y)]÷4y.【考点】整式的混合运算;实数的运算;零指数幂;负整数指数幂.【分析】(1)根据有理数的乘法和加法可以解答本题;(2)根据完全平方公式、整式的加减法和除法可以解答本题.【解答】解:(1)(﹣2)3+×0﹣(﹣)﹣2=(﹣8)+×1﹣9=(﹣8)+﹣9=﹣16;(2)[(x2+y2)﹣(x﹣y)2﹣2y(x﹣y)]÷4y=[x2+y2﹣x2+2xy﹣y2﹣2xy+2y2]÷4y=2y2÷4y=.18.解方程:.【考点】解分式方程.【分析】本题的最简公分母是3(x+1),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.【解答】解:方程两边都乘3(x+1),得:3x﹣2x=3(x+1),解得:x=﹣,经检验x=﹣是方程的解,∴原方程的解为x=﹣.19.先化简,再求值:(﹣)÷,其中x=3.【考点】分式的化简求值;约分;分式的乘除法;分式的加减法.【分析】先根据分式的加减法则算括号里面的,同时把除法变成乘法,再进行约分,最后把x=3代入求出即可.【解答】解:原式=[﹣]÷,=×,=×,=,当x=3时,原式==1.20.如图,点E,C在BF上,BE=CF,AB=DF,∠B=∠F.求证:∠A=∠D.【考点】全等三角形的判定与性质.【分析】根据等式的性质可以得出BC=EF,根据SAS可证明△ABC≌△DEF就可以得出结论.【解答】证明:∵BE=CF,∴BE+CE=EC+CF,∴BC=EF.在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴∠A=∠D.21.如图所示,△ABC的顶点分别为A(﹣2,3),B(﹣4,1),C(﹣1,2).(1)作出△ABC关于x轴对称的图形△A1B1C1;(2)写出A1、B1、C1的坐标;(3)求△ABC的面积.【考点】作图-轴对称变换.【分析】(1)分别作出各点关于x轴的对称点,再顺次连接即可;(2)根据各点在坐标系中的位置写出其坐标即可;(3)利用矩形的面积减去三角形各顶点上三角形的面积即可.【解答】解:(1)如图,△A1B1C1即为所求;(2)由图可知,A1(﹣2,﹣3),B1(﹣4,﹣1),C1(﹣1,﹣2);=2×3﹣×1×3﹣×1×1﹣×2×2=6﹣﹣﹣2=2.(3)S△ABC22.甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)直接利用队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,进而利用总工作量为1得出等式求出答案;(2)直接利用甲队参与该项工程施工的时间不超过36天,得出不等式求出答案.【解答】解:(1)设乙队单独施工,需要x天才能完成该项工程,∵甲队单独施工30天完成该项工程的,∴甲队单独施工90天完成该项工程,根据题意可得:+15(+)=1,解得:x=30,检验得:x=30是原方程的根,答:乙队单独施工,需要30天才能完成该项工程;(2)设乙队参与施工y天才能完成该项工程,根据题意可得:×36+y×≥1,解得:y≥18,答:乙队至少施工18天才能完成该项工程.23.如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)求证:CD=2BE.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据等腰直角三角形的性质得到∠A=∠B=45°,根据等腰三角形的性质计算即可;(2)作AF⊥CD,证明△AFD≌△CEB,根据全等三角形的性质证明即可.【解答】解:(1)∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∵AD=AC,∴∠ACD=∠ADC==67.5°,∴∠BCD=90°﹣67.5°=22.5°;(2)证明:作AF⊥CD,∵AD=AC,∴CF=FD=CD,∠FAD=CAB=22.5°,∵∠ADC=67.5°,∴∠BDE=67.5°,∴∠DBE=22.5°,∴∠CBE=67.5°,在△AFD和△CEB中,,∴△AFD≌△CEB,∴BE=DF,∴CD=2BE.24.如图①,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数;(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图②,判断△CPQ的形状,并加以证明.【考点】三角形综合题;全等三角形的判定与性质;等腰三角形的性质;等腰直角三角形.【分析】(1)由CA=CB,CD=CE,∠ACB=∠DCE=α,利用SAS即可判定△ACD≌△BCE;(2)根据△ACD≌△BCE,得出∠CAD=∠CBE,再根据∠AFC=∠BFH,即可得到∠AMB=∠ACB=α;(3)先根据SAS判定△ACP≌△BCQ,再根据全等三角形的性质,得出CP=CQ,∠ACP=∠BCQ,最后根据∠ACB=90°即可得到∠PCQ=90°,进而得到△PCQ为等腰直角三角形.【解答】解:(1)如图1,∵∠ACB=∠DCE=α,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD;(2)如图1,∵△ACD≌△BCE,∴∠CAD=∠CBE,∵△ABC中,∠BAC+∠ABC=180°﹣α,∴∠BAM+∠ABM=180°﹣α,∴△ABM中,∠AMB=180°﹣=α;(3)△CPQ为等腰直角三角形.证明:如图2,由(1)可得,BE=AD,∵AD,BE的中点分别为点P、Q,∴AP=BQ,∵△ACD≌△BCE,∴∠CAP=∠CBQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(SAS),∴CP=CQ,且∠ACP=∠BCQ,又∵∠ACP+∠PCB=90°,∴∠BCQ+∠PCB=90°,∴∠PCQ=90°,∴△CPQ为等腰直角三角形.。
2017—2018学年第一学期期末测试八年级数学试题及答案
![2017—2018学年第一学期期末测试八年级数学试题及答案](https://img.taocdn.com/s3/m/e353d201c5da50e2524d7f20.png)
2017—2018学年第一学期期末学业水平测试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共5页。
满分为120分。
考试用时100分钟。
考试结束后,只上交答题卡。
2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写在答题卡规定的位置上,并用2B 铅笔填涂相应位置。
3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案不能答在试题卷上。
4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;不准使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
第Ⅰ卷(选择题)一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.下列根式中不是最简二次根式的是(A )13 (B )12 (C )42+a (D )2 2.无论a 取何值时,下列分式一定有意义的是(A )221aa + (B )21aa +(C )112+-a a(D )112+-a a 3.如图,ABC ABD ∠=∠,要使ABC ABD ∆≅∆,还需添加一个条件,那么在①AC AD =;②BC BD =;③C D ∠=∠;④CAB DAB ∠=∠这四个关系中可以选择的是(A )①②③ (B )①②④ (C )①③④ (D )②③④4.如图是用直尺和圆规作一个角等于已知角的示意图, 则说明∠A ′O ′B ′=∠AOB 的依据是 (A )SSS (B )SAS (C )ASA (D )AAS(第4题图)5.如图,36DBC ECB ∠=∠=︒,72BEC BDC ∠=∠=︒,则图中等腰三角形的个数是 (A ) 5 (B ) 6 (C ) 8(D ) 96.下列运算:(1)a a a 2=+;(2)1243a a a =⨯;(3)()22ab ab = ;(4)()632a a =-.其中错误的个数是(A ) 1 (B ) 2 (C ) 3 (D ) 4 7.若A b a b a +-=+22)()(,则A 等于(A )ab 2 (B )ab 2- (C )ab 4- (D )ab 48.练习中,小亮同学做了如下4道因式分解题,你认为小亮做得正确的有 ①)1)(1(3-+=+x x x x x ②222)(2y x y xy x -=+- ③1)1(12+-=+-a a a a ④)4)(4(1622y x y x y x -+=- (A )1个(B )2个(C )3个(D )4个9.关于x 的分式方程101m x x -=+的解,下列说法正确的是 (A )不论m 取何值,该方程总有解(B )当1m ≠时该方程的解为1mx m=- (C )当1,0m m ≠≠且时该方程的解为1mx m=-(D )当2m =时该方程的解为2x = 10.如果把分式yx x 34y3-中的x 和y 的值都扩大为原来的3倍,那么分式的值(A )扩大为原来的3倍 (B )扩大6倍 (C )缩小为原来的12倍 (D )不变11.如图,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在C ′处,折痕为EF ,若AB=4,BC=8,则△BC ′F 的周长为(A )12 (B )16 (C )20 (D )2412.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE =2EC ,给出下列四个结论:①DE =DF ;②DB =DC ;③AD ⊥BC ;④AB =3BF ,其中正确的结论共有(A )①②③ (B )①③④ (C )②③ (D )①②③④第Ⅱ卷(非选择题)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分. 13.在△ABC 中,∠C=90°,BC=16,∠BAC 的平分线交BC 于D ,且BD :DC=5:3, 则D 到AB 的距离为_____________.14.已知等腰三角形的一个内角为50°,则顶角角的大小为________________. 15.分解因式:322318122xy y x y x -+- =__________________________________. 16.若362+-mx x 是一个完全平方式,则m=____________________.17.当x 的值为 ,分式242x x -+的值为0.18.如果直角三角形的三边长为10、6、x ,则最短边上的高为______.三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程. 19.(本小题满分8分) (1)计算:)35()35(45205152+--+-. (2)计算:2(3)(3)(2)a b a b a b ---+-20.(每小题5分,共10分)根据要求,解答下列问题: (1)计算:()()()()x x x x x-+--÷-123286234(2)化简:)111(3121322-+--+-⨯--x x x x x x . 21.(本小题满分10分)如图,已知点E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C 、D 是垂足.连接CD , 且交OE 于点F .(1)求证:OE 是CD 的垂直平分线. (2)若∠AOB=60°,求证:OE=4EF .22.(本小题满分10分)如图,已知B 、C 、E 三点在同一条直线上,△ABC 与△DCE 都是等边三角形.其中线段 BD 交AC 于点G ,线段AE 交CD 于点F.求证:(1)△ACE ≌△BCD ;(2)△GFC 是等边三角形.23.(本小题满分12分)如图,中,,若动点 P 从点C 开始,按的路径运动,且速度为每秒1cm ,设出发的时间为t 秒. (1)出发2秒后,求的周长. (2)问t 满足什么条件时,为直角三角形? (3)另有一点Q ,从点C 开始,按的路径运动,且速度为每秒2cm ,若P 、Q 两点同时出(第21题图)发,当P 、Q 中有一点到达终点时,另一点也停止运动当t 为何值时,直线PQ 把的周长分成相等的两部分?24.(本小题满分10分)如图所示,港口A 位于灯塔C 的正南方向,港口B 位于灯塔C 的南偏东60°方向,且港口B 在港口A 的正东方向的135公里处.一艘货轮在上午8时从港口A 出发,匀速向港口B 航行.当航行到位于灯塔C 的南偏东30°方向的D 处时,接到公司要求提前交货的通知,于是提速到原来速度的1.2倍,于上午12时准时到达港口B ,顺利完成交货.求货轮原来的速度是多少?2017—2018学年第一学期期末学业水平测试八年级数学试题参考答案一、选择题(本大题12个小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BDDACCDBCAAD二、填空题(本大题6个小题,每小题4分,共24分)13.6; 14.50°或80°; 15.232)(y x xy --;AC B第24题图D16.21±; 17.2 ; 18. 8或10 三、解答题(本大题6个小题,共60分) 19.(本小题满分10分)解:(1)原式=)35(453525-++- …………………………2分 =125453525-++- …………………………3分 =1256- ………………………………………………5分(2)2(3)(3)(2)a b a b a b ---+-= 2222944b a a ab b -+-+ ……………4分= 2134b ab - ……………5分20.(每小题5分,共10分)化简: 解:原式()()xx x x x23234322--+-+-=……………4分x x x x x23234322++--+-=23-=x . ……………5分(2)原式=()()()⎪⎭⎫ ⎝⎛++-+---⨯-+--1111311132x x x x x x x x ……2分 =111+++--x xx x ……………4分 =11+x . ……………5分21.(本小题满分10分)解:(1)∵OE 是∠AOB 的平分线,EC ⊥OB ,ED ⊥OA ,OE=OE ,∴Rt △ODE ≌Rt △OCE (AAS ), …………………………2分 ∴OD=OC ,∴△DOC 是等腰三角形, …………………………3分 ∵OE 是∠AOB 的平分线,∴OE 是CD 的垂直平分线. …………………………5分 (2)∵OE 是∠AOB 的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°, ………………6分∵EC⊥OB,ED⊥OA,∴OE=2DE,∠ODF=∠OED=60°,…………………………8分∴∠EDF=30°,∴DE=2EF,…………………………9分∴OE=4EF.…………………………10分22.(本小题满分10分)证明:(1)∵△ABC与△DCE都是等边三角形,∴AC=BC,CE =CD,∠ACB =∠DCE=60°, ------------------------3分∴∠ACB+∠ACD =∠DCE+∠ACD,即∠ACE =∠BCD,∴△ACE≌△BCD(SAS). ----------------------------5分(2)∵△ABC与△DCE都是等边三角形,CD=ED,∠ABC =∠DCE=60°(此步不再赋分),由平角定义可得∠GCF=60°=∠FCE, ---------------------7分又由(1)可得∠GDC=∠FEC,∴△GDC≌△FEC(AAS). ----------8分∴GC=FC, --------------------------9分又∠GCF=60°,∴△GFC是等边三角形. -----------------------10分23.解:,,动点P从点C开始,按的路径运动,速度为每秒1cm,出发2秒后,则,,,的周长为:;-----------------3分,动点P从点C开始,按的路径运动,且速度为每秒1cm,在AC上运动时为直角三角形,,当P在AB上时,时,为直角三角形,,,解得:,,,速度为每秒1cm,,综上所述:当或为直角三角形;-----------------8分当P点在AC上,Q在AB上,则,直线PQ把的周长分成相等的两部分,,;当P点在AB上,Q在AC上,则,直线PQ把的周长分成相等的两部分,,,当或6秒时,直线PQ把的周长分成相等的两部分.-------------12分24.(本小题满分10分)解:根据题意,A ∠=90°,ACB ∠=60°,ACD ∠=30°, ∴603030DCB ∠=︒-︒=︒, 906030B ∠=︒-︒=︒, ∴DCB B ∠=∠∴CD BD = -----------2分 ∵A ∠=90°,ACD ∠=30° ∴2CD AD =∴2BD AD = -----------4分 又135AB =∴45AD =,,90BD = -----------5分 设货轮原来的速度是x 公里/时,列方程得45901281.2x x+=- ----------8分 解得 x =30 ----------9分 检验,当x =30时,1.2x ≠0. 所以,原分式方程的解为x =30.答: 货轮原来的速度是30公里/时. -----------10分注意:评分标准仅做参考,只要学生作答正确,均可得分。
金堂县2018-2019学年八年级上期末考试数学试题含答案
![金堂县2018-2019学年八年级上期末考试数学试题含答案](https://img.taocdn.com/s3/m/cd6fb62f69eae009581becc9.png)
成都市金堂县2018-2019学年八年级上期末考试数学试题含答案数 学本试卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟.A 卷分第I 卷和第II 卷,第I 卷为选择题,第II 卷为其他类型的题.第Ⅰ卷1至2页, 第Ⅱ卷和B 卷2至6页.考试结束时,监考人将第Ⅰ卷及第Ⅱ卷和B 卷的答题卡收回.A 卷(共100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在密封线内相应位置上.2.第Ⅰ卷各题均有四个选项,只有一项符合题目要求,每小题选出答案后,填在对应题目的答题卡上.3. A 卷的第II 卷和B 卷用蓝、黑钢笔或圆珠笔直接答在答题卡上.4.试卷中注有“▲”的地方,是需要你在答题卡上作答的内容或问题.第I 卷(选择题,共30分)一、选择题:(本大题共有10个小题,每小题3分,共30分) 1.下列实数是无理数的是( ▲ )A .﹣1B .3C .3.14D .31 2.在平面直角坐标系中,点A (-2,1)在( ▲ ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 3. 9的算术平方根是( ▲ )(A )3 (B )3 (C )9 (D )3± 4.以下列各组数据为三角形的三边,能构成直角三角形的是( ▲ ) (A )4cm ,8cm ,7cm (B )2cm ,2cm ,2cm (C )2cm ,2cm ,4cm (D )6cm ,8cm ,10cm5.在平面直角坐标系中,点P (-2,3)关于x 轴对称的点的坐标是( ▲ )A.(-2,-3)B.(2,-3)C.(-3,2)D.(2,3) 6.如图,2l l 1∥,∠1=54°,则∠2的度数为( ▲ ) A.36° B.54° C.126° D.144° 7.已知⎩⎨⎧==53y x 的值为的解,则是方程k y kx 52-=+( ▲ ) A .3B .4C .5 D.﹣58.如下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选( ▲ )A.丁 B .丙 C .乙 D .甲9.一次函数y=x 1-的图象不经过( ▲ ) A .第一象限B . 第二象限C . 第三象限D . 第四象限10.如图,已知一次函数y =ax +b 和y =kx 的图象相交于点P ,则根据图象可得二元一次方程组⎩⎨⎧=-+=0y kx bax y 的解是( ▲ )A.⎩⎨⎧-=-=24y x B. ⎩⎨⎧-=-=42y x C. ⎩⎨⎧==42y x D. ⎩⎨⎧-==42y x第Ⅱ卷(非选择题,共70分)二、填空题:(每小题4分,共16分) 11.若02=-x ,则x = ▲ .12.如图,△ABC 中,AB =AC ,AD 是∠BAC 的平分线.已知AB =5,AD =3,则BC 的长为 ▲ .13.在平面直角坐标系中,已知一次函数y=12+-x 的图象经过P1(x 1,y 1)、P 2(x 2,y 2)两点,若x 1>x 2,则y 1 ▲ y 2(填“>”或“<”). 14.如图,正方形ABCD 的边长为4,点A 的坐标为(-1,1),AB 平行于x 轴,则点C 的坐标为 ▲ .三、解答下列各题(共54分.15题每小题6分,16题6分,17和19题每题9分,18题8分,20题10分)7201)6201(24)1(1.15----+-π)计算:((2)()21631526-⨯-16、(6分)解方程组: ⎩⎨⎧=-=-203752y x y x17.(9分)把长方形CD AB '沿对角形线AC 折叠,得到如图所示的图形,已知∠BAO=30°,(1)求∠AOC 和∠BAC 的度数;(2)若AD =33,OD=3,求CD 的长18、(8分)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产甲、乙两种饮料共100瓶,需加入同种添加剂260克,其中甲饮料每瓶需加添加剂2克,乙饮料每瓶需加添加剂3克,饮料加工厂生产了甲、乙两种饮料各多少瓶?19.(9分)年1月,国家发改委出台指导意见,要求年底前,所有城市原则上全面实行居民阶梯水价制度. 小军为了解市政府调整水价方案的社会反响,随机访问了自己居住在小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1,图2.小军发现每月每户的用水量在5m 3-35m 3之间,有7户居民对用水价格调价涨幅抱无所谓,不用考虑用水方式的改变. 根据小军绘制的图表和发现的信息,完成下列问题: (1)n = ▲ ,小明调查了 ▲ 户居民,并补全图1;(2)每月每户用水量的中位数落在 ▲ 之间,众数落在 ▲ 之间; (3)如果小明所在的小区有1200户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数有多少?20.(10分)如图,在平面直角坐标系中,一次函数b x y +-=的图象与正比例函数x y k =的图象都经过点B (3,1) (1)求一次函数和正比例函数的表达式;(2)若直线CD 与正比例函数x y k =平行,且过点C (0,-4),与直线AB 相交于点D ,求点D 的坐标.(注:二直线平行,k 相等) (3)连接CB ,求三角形BCD 的面积.B 卷(共50分)一、填空题:(每小题4分,共20分)21.已知:m 、n 为两个连续的整数,且m <13<n ,则mn 的平方根...= ▲ . 22.有长度为9cm ,12cm ,15cm ,36cm ,39cm 的五根木棒,从中任取三根可搭成(首尾连接)直角三角形的概率为 ▲ .23. 关于x ,y 的二元一次方程组⎩⎨⎧+=--=+m y x my x 3531中,与m 方程组的解中的x 或y 相等,则m 的值为 ▲ . 24.如图,直线y=x+6与x 轴、y 轴分别交于点A 和点B ,x 轴上有一点C (﹣4,0),点P 为直线一动点,当PC+PO 值最小时点P 的坐标为 ▲ .25.如图,在平面直角坐标系中,函数y=2x 和y =﹣x 的图象分别为直线1l ,2l ,过点(1,0)作x 轴的垂线交1l 于点A 1,过点A 1作y 轴的垂线交2l 于点A 2,过点A 2作x 轴的垂线交1l 于点A 3,过点A 3作y 轴的垂线交2l 于点A 4,…依次进行下去,则点A 2015的坐标为 ▲ .二.(共8分)26.甲、乙两人在某标准游泳池相邻泳道进行100米自由泳训练,如图是他们各自离出发点的距离y (米)与他们出发的时间x (秒)的函数图象.根据图象,解决如下问题.(注标准泳池单向泳道长50米,100米自由泳要求运动员在比赛中往返一次;返回时触壁转身的时间,本题忽略不计). (1)直接写出点A 坐标,并求出线段OC 的解析式; (2)他们何时相遇?相遇时距离出发点多远?(3)若甲、乙两人在各自游完50米后,返回时的速度相等;则快者到达终点时领先慢者多少米?三、(共10分)27. 已知C AB ∆中,12,26===BC AC AB .点P 从点B 出发沿线段BA 移动,同时点Q 从点C 出发沿线段AC 的延长线移动,点P 、Q 移动的速度相同,PQ 与直线BC 相交于点D .(1)如图①,当点P 为AB 的中点时,求CD 的长;(2)如图②,过点P 作直线BC 的垂线,垂足为E ,当点P 、Q 在移动的过程中,设λ=+CD BE ,λ是否为常数?若是请求出λ的值,若不是请说明理由.(3)如图③,E 为BC 的中点,直线CH 垂直于直线AD ,垂足为点H ,交AE 的延长线于点M ;直线BF 垂直于直线AD ,垂足为F ;找出图中与BD 相等的线段,并证明.四、(共12分)28.如图①,等腰直角三角形ABC的顶点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限,线段AC 与x 轴交于点D.将线段DC 绕点D 逆时针旋转90°至DE. (1)直接写出点B 、D 、E 的坐标并求出直线DE 的解析式.(2)如图②,点P 以每秒1个单位的速度沿线段AC 从点A 运动到点C 的过程中,过点P 作与x 轴平行的直线PG ,交直线DE 于点G ,求与△DPG 的面积S 与运动时间t 的函数关系式,并求出自变量t 的取值范围.(3)如图③,设点F 为直线DE 上的点,连接AF ,一动点M 从点A 出发,沿线段AF 以每秒1个单位的速度运动到F ,再沿线段FE 以每秒2个单位的速度运动到E 后停止.当点F 的坐标是多少时,是否存在点M 在整个运动过程中用时最少?若存在,请求出点F 的坐标;若不存在,请说明理由.ADCBP Q图②EA DCB PQ图① 图③金堂-学年度八年级上期期末测试数学参考答案及评分意见A 卷(共100分)11.2 ; 12. 8 ; 13.﹤; 14.()5,3 ;三、解答下列各题(本题满分54分. 15题每小题6分,16题6分,17题9分,18题8分, 19题9分, 20题10分)07201)6201(24)1(1.15----+-π)计算:(解:原式=1221--+- ………………………4分(每算对一个运算得1分) =2- ………………………6分(2)()21631526-⨯-解:原式=226315236⨯-⨯-⨯ ………………………3分(每个运算正确得1分)=235623-- ………………………5分=56- ………………………6分 16. 解方程组: 解:②-①×3得: ⎩⎨⎧=-=-20371536y x y x ………………………3分(单独由①×3得1536=-y x 仍得3分)5=x ………………………4分 把5=x 代入①得:5=y ………………………5分① ②①⎩⎨⎧=-=-203752y x y x∴原方程组的解为⎩⎨⎧==55y x …………6分(注:用其它方法计算正确也得全分) 17.(1)解 :∵四边形CD B A '是矩形∴AD ∥C B ' ,090='∠B∴∠1=∠3 ……………2分 ∵翻折后∠1=∠2∴∠2=∠3 ……………3分∵翻折后090='∠=∠B B ∠BAO=30°∴0120=∠+∠=∠BAO B AOC ……………4分 ∴∠2=∠3=30°∴0603=∠+∠=∠BAO BAC ……………5分 答:∠AOC 为120°,∠BAC 为60°.(不答不扣分) (2)∵∠2=∠3∴AO=CO ……………6分∵AD=33,OD=3∴AO=CO=32 ……………7分 ∵四边形CD B A '是矩形 ∴∠D 是直角∴在ODC Rt ∆中,()()33322222=-=-=OD OC CD ………9分答:CD 长3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年成都市金堂县八年级(上)期末数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(每小题3分,共30分)1.16的平方根是()A.±4 B.±2 C.4 D.﹣42.在平面直角坐标系中,下列各点在第二象限的是()A.(2,1)B.(2,﹣1)C.(﹣2,1)D.(﹣2,﹣1)3.如图,AC∥DF,AB∥EF,若∠2=50°,则∠1的大小是()A.60°B.50°C.40°D.30°4.一次函数y=x+1不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.满足下列条件的△ABC,不是直角三角形的是()A.b2﹣c2=a2B.a:b:c=3:4:5C.∠A:∠B:∠C=9:12:15 D.∠C=∠A﹣∠B6.已知是方程组的解,则a+b=()A.2 B.﹣2 C.4 D.﹣47.将直尺和直角三角板按如图方式摆放,已知∠1=30°,则∠2的大小是()A.30°B.45°C.60°D.65°8.在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为1.5,1.0,则下列说法正确的是()A.乙同学的成绩更稳定B.甲同学的成绩更稳定C.甲、乙两位同学的成绩一样稳定D.不能确定哪位同学的成绩更稳定9.如图,以两条直线l1,l2的交点坐标为解的方程组是()A.B.C.D.10.如图,长方体的底面边长分别为2cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈达到点B,那么所用细线最短需要()A.11cm B.2cm C.(8+2)cm D.(7+3)cm二、填空题(每小题4分,共l6分)11.计算=.12.李老师最近6个月的手机话费(单位:元)分别为:27,36,54,29,38,42,这组数据的中位数是.13.点P(﹣2,3)关于x轴的对称点的坐标是.14.如图,直线l过正方形ABCD的顶点B,点A、点C到直线l的距离分别是3和4,则该正方形的面积是.三、解答题(共54分)15.(12分)(1)计算:﹣﹣|1﹣|+()﹣1;(2)解方程组:.16.(10分)如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A(1,2),解答以下问题:(1)请在图中建立适当的直角坐标系,并写出图书馆(B)位置的坐标;(2)若体育馆位置坐标为C(﹣3,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.17.(6分)已知|3x﹣y﹣1|和互为相反数,求x+4y的平方根.18.(8分)甲、乙两人相距50千米,若同向而行,乙10小时追上甲;若相向而行,2小时两人相遇.求甲、乙两人每小时各行多少千米?19.(8分)某校九年级(1)班所有学生参加2010年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)九年级(1)班参加体育测试的学生有人;(2)将条形统计图补充完整;(3)在扇形统计图中,等级B部分所占的百分比是,等级C对应的圆心角的度数为;(4)若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有人.20.(10分)如图,在平面直角坐标系中,直线y=2x+3与y轴交于点A,直线y=kx﹣1与y轴交于点B,与直线y=2x+3交于点C(﹣1,n).(1)求n、k的值;(2)求△ABC的面积.B卷(50分)一、填空题(每小题4分,共20分)21.比较大小:.(填“>”、“<”或“=”)22.三元一次方程组的解是.23.若实数x,y,m满足等式+(2x+3y﹣m)2=﹣,则m+4的算术平方根为.24.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为cm.25.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为.二、解答题(共30分)26.(10分)某批发门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.新年来临之际,该门市为促销制定了两种优惠方案:方案一:买一件甲种商品就赠送一件乙种商品;方案二:按购买金额打八折付款.某公司为奖励员工,购买了甲种商品20件,乙种商品x(x≥20)件.(1)分别写出优惠方案一购买费用y1(元)、优惠方案二购买费用y2(元)与所买乙种商品x(件)之间的函数关系式;(2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w与m之间的关系式;利用w与m之间的关系式说明怎样购买最实惠.27.(10分)如图,在平面直角坐标系xOy中,直线y=2x+2与y轴交于点A,与x轴交于点B.直线l⊥x 轴负半轴于点C,点D是直线l上一点且位于x轴上方.已知CO=CD=4.(1)求经过A,D两点的直线的函数关系式和点B的坐标;(2)在直线l上是否存在点P使得△BDP为等腰三角形,若存在,直接写出P点坐标,若不存在,请说明理由.28.(10分)已知△ABC中,AB=AC=BC=6.点P射线BA上一点,点Q是AC的延长线上一点,且BP=CQ,连接PQ,与直线BC相交于点D.(1)如图①,当点P为AB的中点时,求CD的长;(2)如图②,过点P作直线BC的垂线,垂足为E,当点P,Q分别在射线BA和AC的延长线上任意地移动过程中,线段BE,DE,CD中是否存在长度保持不变的线段?请说明理由.参考答案与试题解析一、选择题1.【解答】解:∵(±4)2=16,∴16的平方根是±4.故选:A.2.【解答】解:∵点在第二象限的符号特点:横坐标为负,纵坐标为正,∴符合题意的只有选项C.故选:C.3.【解答】解:∵AC∥DF,∴∠1=∠A,∵AB∥EF,∠2=50°,∴∠A=∠2=50°,∴∠1=50°,故选:B.4.【解答】解:∵一次函数y=x+1中,k=1>0,b=1>0,∴此函数的图象经过一、二、三象限,不经过第四象限.故选:D.5.【解答】解:A、由b2﹣a2=c2得b2=a2+c2符合勾股定理的逆定理,故是直角三角形;B、由a:b:c=3:4:5得c2=a2+b2符合勾股定理的逆定理,故是直角三角形;C、由∠A:∠B:∠C=9:12:15,及∠A+∠B+∠C=180°得∠C=75°≠90°,故不是直角三角形.D、由三角形三个角度数和是180°及∠C=∠A﹣∠B解得∠A=90°,故是直角三角形;故选:C.6.【解答】解:∵是方程组的解∴将代入①,得a+2=﹣1,∴a=﹣3.把代入②,得2﹣2b=0,∴b=1.∴a+b=﹣3+1=﹣2.故选:B.7.【解答】解:∵∠1+∠3=90°,∠1=30°,∴∠3=60°.∵直尺的两边互相平行,∴∠2=∠3=60°.故选:C.8.【解答】解:因为S甲2=1.5>S乙2=1.0,方差小的为乙,所以本题中成绩比较稳定的是乙.故选:A.9.【解答】解:直线l1经过(2,3)、(0,﹣1),易知其函数解析式为y=2x﹣1;直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l1,l2的交点坐标为解的方程组是:.故选:C.10.【解答】解:把长方体的侧表面展开得到一个长方形,高6cm,宽=2+3+2+3=10cm,AB为对角线.AB==2cm.故选:B.二、填空题11.【解答】解:==2,故答案为:2.12.【解答】解:把这6个数据按从小到大的顺序排列,可得27、29、36、38、42、54,处在中间位置的数为36、38,又∵36、38的平均数为37,∴这组数据的中位数为37元,故答案为:37元.13.【解答】解:点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,∴对称点的坐标是(﹣2,﹣3).故答案为:(﹣2,﹣3).14.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∴∠ABE+∠CBF=90°.∵∠AEB=∠CFB=90°,∴∠CBF+∠BCF=90°,∴∠ABE=∠BCF.在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(AAS),∴AE=BF.∵AE=3,∴BF=3.在At△BFC中,由勾股定理,得BC=5,∴正方形的边长是5.∴正方形的面积是25;故答案为:25.三、解答题15.【解答】(1)解:原式=2﹣+1﹣+2 =3;(2)解:方程组可化为,①+②得2x+x=5,解得x=2,把x=2代入①得4+y=1,解得y=﹣3,所以方程组的解为.16.【解答】解:(1)建立直角坐标系如图所示:图书馆(B)位置的坐标为(﹣3,﹣2);(2)标出体育馆位置C如图所示,观察可得,△ABC中BC边长为5,BC边上的高为4,所以△ABC的面积为==10.17.【解答】解:由题意得:|3x﹣y﹣1|+=0,∴,解得:,则x+4y=1+8=9,9的平方根是±3.18.【解答】解:设甲每小时行x千米,乙每小时行y千米,则可列方程组为,解得,答:甲每小时行10千米,乙每小时行15千米.19.【解答】(1)总人数=A等人数÷A等的比例=15÷30%=50人;(2)D等的人数=总人数×D等比例=50×10%=5人,C等人数=50﹣20﹣15﹣5=10人,如图:(3)B等的比例=20÷50=40%,C等的比例=1﹣40%﹣10%﹣30%=20%,C等的圆心角=360°×20%=72°;(4)估计达到A级和B级的学生数=(A等人数+B等人数)÷50×850=(15+20)÷50×850=595人.20.【解答】解:(1)当x=﹣1时,n=2x+3=1,∴点C的坐标为(﹣1,1).∵点C(﹣1,1)在直线y=kx﹣1上,∴1=﹣k﹣1,解得:k=﹣2.∴n的值为1,k的值为﹣2.(2)当x=0时,y=2x+3=3,∴点A的坐标为(0,3);当x=0时,y=﹣2x﹣1=﹣1,∴点B的坐标为(0,﹣1),∴AB=3﹣(﹣1)=4,∴S△ABC=AB•|x C|=×4×1=2.一、填空题21.【解答】解:∵=,∴﹣=.∵(9﹣4)×(9+4)=81﹣80=1>0,9+4>0,∴9﹣4>0,∴﹣>0,即>.故答案为:>.22.【解答】解:,②﹣①,得x+2y=7④,③+①,得4x+3y=18⑤,④×4﹣⑤,得5y=10,解得,y=2,将y=2代入④,得x=3,将x=3,y=2代入①,得z=5,故原方程组的解是,故答案为:.23.【解答】解:依题意得:,解得m=5,∴==3.故答案是:3.24.【解答】解:如图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,在直角△A′DB中,由勾股定理得A′B===20(cm).故答案为:20.25.【解答】解:如图,第6次反弹时回到出发点,∴每6次碰到矩形的边为一个循环组依次循环,∵2013÷6=335余3,∴点P第2013次碰到矩形的边时是第336个循环组的第3次碰边,坐标为(8,3).故答案为:(8,3).二、解答题26.【解答】解:(1)根据题意得:y1=20×300+80×(x﹣20)=80x+4400;y2=(20×300+80x)×0.8=64x+4800.(2)设按照方案一的优惠办法购买了m件甲种商品,则按照方案二的优惠办法购买了(20﹣m)件甲种商品,根据题意得:w=300m+[300(20﹣m)+80(40﹣m)]×0.8=﹣4m+7360,∵w是m的一次函数,且k=﹣4<0,∴w随m的增加而减小,∴当m=20时,w取得最小值,即按照方案一购买20件甲种商品、按照方案二购买20件乙种商品时,总费用最低.27.【解答】解:(1)对于直线y=2x+2,当x=0时,y=2;当y=0时,x=﹣1,∴点A的坐标为(0,2),点B的坐标为(﹣1,0),又∵CO=CD=4,∴点D的坐标为(﹣4,4),设直线AD的函数表达式为y=kx+b,则有,解得:,∴直线AD的函数表达式为y=﹣x+2;(2)存在,设P(﹣4,p),分三种情况考虑:当BD=P1D时,可得(﹣1+4)2+(0﹣4)2=(p﹣4)2,解得:p=9或p=﹣1,此时P1(﹣4,9),P2(﹣4,﹣1);当BP3=BD时,则有(﹣1+4)2+(0﹣p)2=(﹣1+4)2+(0﹣4)2,解得:p=﹣4,此时P3(﹣4,﹣4);当BP4=DP4时,(﹣1+4)2+(0﹣p)2=(p﹣4)2,解得:p=,此时P4(﹣4,),综上,共有四个点满足要求.分别是P1(﹣4,9),P2(﹣4,﹣1),P3(﹣4,﹣4),P4(﹣4,).28.【解答】解:(1)过P点作PF∥AC交BC于F∵点P为AB的中点,∴BP=AB=3,∵AB=AC=BC,∴∠B=∠ACB=∠BAC=60°,∵PF∥AC,∴∠PFB=∠ACB=60°,∠BPF=∠BAC=60°,∴△PBF是等边三角形,∴BF=FP=BP=3,∴FC=BC﹣BF=3,由题意,BP=CQ,∴FP=CQ,∵PF∥AC,∴∠DPF=∠DQC又∠PDF=∠QDC,∴△PFD≌△QCD∴CD=DF=FC=(2)当点P,Q在移动的过程中,线段DE的长度保持不变分两种情况讨论:①当点P在线段AB上时,过点P作PF∥AC交BC于F,由(1)知PB=PF,∵PE⊥BC,∴BE=EF,由(1)知△PFD≌△QCD,CD=DF,∴DE=EF+DF=BC=3,②得点P在BA的延长线上时,同理可得DE=3,∴当点P、Q在移动的过程中,线段DE的长度保持不变.。