交流电动机调速系统的分类

合集下载

第8章 交流调压调速系统

第8章 交流调压调速系统

调压调速的功率损耗
转速负反馈闭环控制交流调压调速系统
1.异步电动机传递函数 • 在机械特性近似线性段上的稳态工作点A附近,可以证明:
2 3 pn U1A Td (2U1A sA U1 ) ' 1R2 1
J G d ( ) Td TL pn dt
转速负反馈闭环控制交流调压调速系统
调压调速和变极调压调速效率曲线及 机械特性曲线
•低速时,多速电动机效率比4极单速电动机提高很多,定子 电流也减小许多。 •机械特性最上面为 4极,最下面为 10 极。中间部为 6 极。端 电压各为U1>U2>U3>U4,可见调速范围扩大了。
Δ-Y变换节电




采用由交流接触器和时间继电器等简单电器就可构成 ΔY切换降压装置。其显著的特点是:体积小、成本低、 寿命长、动作可靠。因此在工矿企业中某些轻载设备上 使用,可取得显著的节电效果。 当电动机定子绕组由 Δ 形联结改接成 Y 形联结后,电动 1 =3 机每相定子绕组电压降为原来的,即:UY/U 。 Δ 电动机线电流、电磁转矩均降为原来的 1/3 ,即: IY/IΔ =1/3,TY/TΔ =1/3。 由于 Y 接法与 Δ 接法虽然有电压变化,但是电动机的转 速变化不大,可近似的认为n近似为nN,所以Y接法时电 动机的功率降为原来的1/3,即: PY TY n 1 = P T nN 3
第8章 交流调压调速系统
8.1概述 8.1.1交流调压调速的发展 8.1.2交流调速系统的分类 8.2异步电动机调压调速系统工作原理 8.2.1调压调速的工作原理 8.2.2交流调压器原理 8.3异步电动机调压调速系统 8.3.1调压调速系统的组成 8.3.2调压调速系统的特性 8.3.3调压调速的功率损耗

第六章 交流调速系统

第六章 交流调速系统
华南理工大学
交流电机的同步转速表达式为:
n1

60 f1 p
异步电动机的转速表达式为:
n1=
60 f1 p
(1
s)
因此,异步电动机的调速方法有改变电动机
定子供电频率,改变转差率及改变极对数等三种。
其中改变转差率又可通过调定子电压、转子电阻、
转差电压及定、转子频率差等方法实现。同步电
动机的调速可用改变供电频率从而改变同步转速
Sm
R2
R12 12 (Ll1 Ll2 )2
Tm
21[R1
3 pU12
R12 12 (Ll1 L'l 2 ) 2 ]
华南理工大学
上式表明,当转速或转差率一定时,电磁转
矩与电压平方成正比。对应不同的定子电压,可 得到一组机械特性曲线,如图6—3 所示,图中
U1N表示定子额定电压。
右图分析: 带恒转矩负载时,普 通笼型异步电动机调 压时的稳定工作点为 A—B—C,转差率在 0—Sm范围内变化,调 速范围很小。如带风 机类负载运行,工作 点为D、E、F,调速范 围稍大些。
电路(e)只用三个晶闸管,它们位于三相绕 组后面可减少电网浪涌电压对它的冲击,即使 三相绕组发生相间短路也不致损坏晶闸管,它 的移相范围为2100。此电路要求定子绕组中性 点能拆开,且只能接成Y形。电路上有偶次谐 波,对电机不利。
华南理工大学
优胜电路:
综上所述,电路(b)、(e)性能 较好,在交流调压调速系统中多采 用这两个方案。
华南理工大学
6.2.2 异步电动机 在调压时的机械特性
根据电机学原理,异步电动机稳态时的简化 等值电络图如图6—2所示。
I1
R1
Ll1

交流伺服电动机调速系统介绍

交流伺服电动机调速系统介绍

交流伺服电动机调速系统介绍概述交流伺服电动机调速系统是一种广泛应用于工业自动化领域的高性能电动机控制系统。

它通过对电机的电流和速度进行精准控制,实现高速度、高精度的电动机调速。

本文将详细介绍交流伺服电动机调速系统的工作原理、组成部分、应用领域以及优势等内容。

工作原理交流伺服电动机调速系统的工作原理基于闭环控制理论。

它通过反馈电机的位置、速度和转矩等信号,与预设值进行比较,并根据比较结果调整电机的控制信号,使电机以预期的速度和转矩运行。

系统主要包含三个部分:电机驱动器、位置反馈装置和控制器。

其中,电机驱动器将控制信号转换为电机驱动所需的电流和电压;位置反馈装置用于实时监测电机的位置和速度;控制器根据反馈信号和预设值进行控制算法运算,并输出控制信号给电机驱动器。

组成部分1. 电机驱动器电机驱动器是交流伺服电动机调速系统的核心组件。

它通过将控制信号转换为电机驱动所需的电流和电压,控制电机的转速和转矩。

通常使用的电机驱动器有两种类型:直流耦合型和速度闭环型。

直流耦合型驱动器适用于要求较低的精度和转速要求较高的应用,而速度闭环型驱动器则适用于对精度和速度要求较高的应用。

2. 位置反馈装置位置反馈装置用于实时监测电机的位置和速度。

常用的位置反馈装置有编码器、光电传感器和霍尔传感器等。

编码器是最常用的位置反馈装置,它通过检测电机轴上的旋转磁场脉冲来计算电机的位置和速度。

光电传感器和霍尔传感器则通过检测旋转齿轮的牙齿或永磁体的磁场变化来实现位置和速度的反馈。

3. 控制器控制器是交流伺服电动机调速系统的智能核心。

它根据反馈信号和预设值进行控制算法运算,并输出控制信号给电机驱动器。

常用的控制器有PID控制器和模糊控制器等。

PID控制器通过比例、积分和微分三个控制参数对反馈信号和预设值进行加权求和,得出控制信号。

模糊控制器则是一种基于模糊逻辑的控制方法,它通过定义模糊集合和规则库来实现对电机的控制。

应用领域交流伺服电动机调速系统广泛应用于以下领域:1.机床工业:用于铣床、车床、磨床等机床设备的高速度、高精度调速。

第四章 交流电动机调速控制系统

第四章 交流电动机调速控制系统

r12

(X1

c1 X
' 20
)2
]
(4-8)
因 r12

(X1

c1
X
' 20
)
2
,近似得:
Mm

1 2c1

2f1[r1
m1PU12

(X1

c1 X
' 20
)]
(4-9)
2. 生产机械的转矩特性
摩擦类 特性曲线见图(a) 负载: ,位于1、3象限。
生产机械
恒转矩负载:它的负载转矩是一 个恒值,不随转速 而改变。
——定子极对数
(4-3)
4).传给转子的功率(又称电磁功率)与机械功率、转子铜耗之间有如下
关系式 : PMX PM PM 2 (1 S)PM
(4-4)
式中:
PM ——传给转子的功率(又称电磁功率)
PMX ——机械功率
PM 2 ——转子铜耗
5).电机的平均转矩为:
M CP

PMX
M0 Mn 否则电机无法进入正常运转工作区。
交流机的起动电流一般为额定电流的4~6倍 ,起动时 一般要考虑以下几个问题:
图4-7 机械特性曲线
1. 应有足够大的起动力矩和适当的机械特性曲线。 2. 尽可能小的起动电流。 3.起动的操作应尽可能简单、经济。 4.起动过程中的功率损耗应尽可能小。
普通交流电机在起动过程中为了限制起动电流,常用的起动方法有三种。即:
图6-1的等效电路,经化简后得到能耗制动的等效电路如图4-10所示。
图4-10 能耗制动的等效电路
图中:

I1 ——直流励磁电流的等效交流电流

交流电动机的调速方法

交流电动机的调速方法

交流电动机的调速方法一、电压调速法电压调速法是通过改变电动机的供电电压来实现调速。

在实际应用中,可以通过调节电源电压的大小来改变电动机的转速。

电压调速法简单、成本低,但是在低速调节和大功率调节方面不够灵活。

二、变频调速法变频调速法是通过改变供电电压的频率来实现调速。

通过使用变频器,可以将电源的固定频率电压转换为可调节频率的电压,并将其供给电动机。

变频调速法调节范围广,调速性能好,但是设备成本相对较高。

三、电流调速法电流调速法是通过调节电动机的电流来实现调速。

可以通过调节供电电压的大小,使电动机的工作点在不同的电流区域内变化,从而实现对电动机的调速。

电流调速法适用于一些负载要求变化范围较大的情况,但是调速性能较差。

四、定子电压调速法定子电压调速法是通过改变电动机的定子电压来实现调速。

可以通过变压器等设备,将电源电压按一定比例切割,从而改变电动机的输出电压和转速。

定子电压调速法调速性能较好,但是设备成本较高。

五、转子电阻调速法转子电阻调速法是通过改变电动机转子电路中的电阻来实现调速。

可以通过串联电阻的方式改变电动机的发电电动势和转矩之间的关系,从而实现对电动机的调速。

转子电阻调速法适用于一些负载启动和调速时的特殊要求。

六、磁阻调速法磁阻调速法是通过改变电动机励磁电路的磁阻来实现调速。

可以通过调节励磁电路的磁阻,改变电动机的励磁电流和励磁电动势之间的关系,从而实现对电动机的调速。

磁阻调速法适用于一些对调速性能要求较高的精密控制系统中。

以上是常见的交流电动机调速方法,每种调速方法在不同的应用场景中有其独特的优势和适用性。

在实际应用中,需要根据具体的工作需求和经济性考虑,选择合适的调速方法。

同时,需要注意调速系统的稳定性和可靠性,避免因调速方法选择不当而导致电动机的故障和损坏。

2-交流电机变频调速详解

2-交流电机变频调速详解

以下情况要选用交流输出电抗器
变频器到电机线路超过100米(一般原则)

以下情况一般要选用制动单元和制动电阻 提升负载 频繁快速加减速 大惯量(自由停车需要1min以上,恒速运行电流小于加速电流的设备)
变频器选型—选型原则
使用通用变频器的行业和设备 使用矢量变频器的行业和设备
纺织绝大多数设备
冶金辅助风机水泵、辊道、高炉卷扬 石化用风机、泵、空压机 电梯门机、起重行走 供水 油田用风机、水泵、抽油机、空压机

0.4-315KW
EV1000 EV2000
TD3000 2.2-75KW TD3100 高 TD3300
高动态性能 动态性能好 总线设计 精确控制 网络化应用 行业专用
0.4-5.5KW
功 能
TD900
调速、通讯 操作简便
功能丰富 适用面广
高稳态性能
成 本
完整的功率段 行业专用

宽电压范围
元件化设计
R S T P1 (+) PB (-) U V
MOTOR
W
PE
POWER SUPPLY
制动电阻
工频电网输入 380V 3PH/220V 3PH
直流电抗器
三相交流电机
220V 1PH
变频器的构成—控制回路接口
接口类型 主要特点 主要功能
开关量输入
开关量输出 模拟量输入
无源输入,一般由变频 启/停变频器,接收编码器信号、多 器内部24V供电, 段速、外部故障等信号或指令
2.3 交流电机变频调速
•概 述
异步电机的变压变频调速系统一 般简称为变频调速系统。由于在调速 时转差功率不随转速而变化,调速范 围宽,无论是高速还是低速时效率都 较高,在采取一定的技术措施后能实 现高动态性能,可与直流调速系统媲 美。因此现在应用面很广,是本篇的 重点。

交流调速简答 (1)

交流调速简答 (1)

直流调速系统:控制简单、调速平滑、性能良好。

但换向器存在,维护工作量加大,单机容量、最高转速以及使用环境都受到限制交流调速系统:交流调速系统,励磁电流和转矩电流互相耦合,调速困难。

现代交流调速系统由交流电动机、电力电子功率变换器、控制器及电量检测器组成,称为变频器。

课后习题1.交流调速的主要应用领域:1.冶金机械2.电气牵引3.数控机床4.矿井提升机械5.起重、装卸机械6.原子能及化工设备7.建筑电气设备8.纺织、食品机械2.异步电动机的优点:结构简单,运行可靠,便于维护,价格低廉。

3.异步电动的调速方法:改变电源频率、改变极对数以及改变转差率。

4.变频调速的基本要求:1.保持磁通为额定值 2.保持电压为额定值5.交-直-交变频器与交-交变频器的主要特点比较:比较项目类型交-直-交变频器交-交变频器换能方式两次换能,效率略低一次换能,效率高晶闸管换向方式强迫换向或负载换向电网换向所用器件数量较少较多调频范围频率调节范围宽一般情况下,输出最高频率为电网频率的1/3~1/2电网功率因素采用晶闸管可控整流调压,低频低压时功率因数较低,采用斩波器或PWM方式调压,功率因数高较低适用场所可用于各种电力拖动装置,稳频稳压电源和不间断电源适用于低速大功率拖动6.同步电动机变频调速方法:他控式变频调速、自控式变频调速。

不同:他控式变频调速采用独立的变频器(即输出频率由外部振荡器控制)作为同步电机的变压变频电源。

自控式变频器调速由电动机轴上所带的转子位置检测器发出信号来控制逆变器的触发换相,即采用输出频率由转子位置来控制的变压变频电源为同步电机供电。

这样就从内部结构和原理上保证了频率与转速必然同步,构成“自控式”。

7.各种变频调速的基本原理:按结构分为交-直-交变频器与交-交变频器;按电源性质分电压型变频器:变频器主电路中的中间直流环节采用大电容滤波,使直流电压波形比较平直,对于负载来说,是一个内阻抗为零的恒压源,这类变频调速装置叫做电压源变频器。

交流电动机调速方法

交流电动机调速方法

交流电动机调速方法
交流电动机调速方法有多种,以下是常见的几种方法:
1. 变频调速:通过调节电动机供电频率,改变电动机转速来实现调速。

变频器可以根据负载情况和工艺要求,自动调整输出频率,从而控制电动机的转速。

2. 阻抗调速:通过改变电动机回路的阻抗,来改变电动机的转速。

常用的方法有电阻调速、自耦变压器调速和感性电压调速等。

3. 矢量控制:利用矢量控制技术,通过改变电动机的电流和电压矢量,来实现对电动机转速的控制。

矢量控制可以实现高精度、高动态性能的调速效果。

4. 直接转矩控制:通过测量电动机的转子位置和转子电流,直接计算出电机的转矩,从而实现对电机转速的控制。

直接转矩控制具有响应速度快、控制精度高的特点。

5. 恒定电压调速:在给电动机供电时保持恒定的电压,通过改变电动机的绕组电阻或连接不同的绕组,来改变电动机的转速。

选择适合的调速方法需要考虑到具体的应用场景、负载要求和经济效益等因素。

在实际应用中,可以根据需要采用单一的调速方法,也可以结合多种调速方法进行组合使用,以达到更好的调速效果。

交流调压调速

交流调压调速

• 参数定义
Rs、Rr′ —定子每相电阻和折合到定子侧的 转子每相电阻;
Lls、Llr′ —定子每相漏感和折合到定子侧的 转子每相漏感;
Lm—定子每相绕组产生气隙主磁通的 等效电感,即励磁电感;
Us、1 —定子相电压和供电角频率;
s —转差率。
•电流公式 由图可以导出
式中
(2-1)
在一般情况下,LmLl1,则,C1 1 这相当于将上述假定条件的第③条改为忽 略铁损和励磁电流。这样,电流公式可简 化成
1.交流调压调速
第二篇 交流调速系统
交流调速系统的主要类型 交流变压调速系统 绕线转子异步电机串级调速系统 ——转差功率馈送型调速系统 交流变频调速系统
• 第一章 •
•概 述
要求
•掌握几种主要的交流调速方法
交流调速系统的主要类型
交流调速系统(AC Speed Regulating System):
• 交流力矩电机的机械特性
•s,n •0 •n0
•恒转矩负载特性 •A •B
•0.5UsN •C
•UsN
•0.7UsN
•1
•0 •TL
•Te
•图2-5 高转子电阻电动机(交流力矩电动机)
•在不同电压下的机械特性
2.3 闭环控制的变压调速系统及其静特性
采用普通异步电机的变电压调速时, 调速范围很窄,采用高转子电阻的力矩电 机可以增大调速范围,但机械特性又变软 ,因而当负载变化时静差率很大(见图2-5 ),开环控制很难解决这个矛盾。
•从定子传入转 子的电磁功率
•定义:转差功率 Ps= s Pem
•总机械功率 •转子铜耗 •(转差功率)
按照交流异步电机
的原理,从定子传入转

4章 交流异步电动机变频调速系统

4章 交流异步电动机变频调速系统

为交流异步电动机转矩系数,其中Nr为转子绕组有效匝数;
φr为转子功率因数角。
可见,转矩控制的困难体现在以下几点: T T ① m 是由定子电流is iA , iB , iC 和转子电流 ir ia , ib , ic 共同产生的,它的
空间位置相对于定子和转子都是运动的。 ② m 与 I r 是两个相互耦合的变量,且 I 对于一般的鼠笼形异步电机是无法 r ③ r 是与转速相关的时变量(与转差s有关), 且当电机运行时转子电阻 Rr 随温度变化而变化, Te 也随之变化。除此以外,式中的 Te 只是平均转矩的概念, 对平均转矩的控制已十分困难了,更何况瞬时转矩。对转速的控制实质上就是 对转矩的控制,转矩控制的困难是实现交流电机高性能调速的主要障碍,也是 过去限制交流调速系统获得广泛应用的主要原因。 2)调速装置中器件发展的限制:调速装置中两大组成部件是主电路和控制电路。 主电路中的主要器件—电力电子功率器件在近五十年来更新换代了五代之多,以 适应变频调速(PWM脉宽调制)的需要。控制电路中的主要器件—微处理器在 近二十年中运算速度提高了数倍,以适应高性能变频调速复杂算法的需要。交流 调速系统的发展依赖于新型电力电子器件的应用、微电子技术的发展。
直流调速系统中各部分分别为5%,40%和55%,而交流调速系统中各部分分别 为10%,60%和30%。特别是当功率大于500 kW,交流调速系统的成本比直流 调速系统的成本明显降低。 4.1.2交流电动机的调速方法及其主要应用领域 1.交流电动机的调速方法 由电机学可知,交流电动机的同步转速表达式为 60 f s (4.6) ns np ns 为同步转速。 式(4.6)中,np为电机极对数;fs为电机定子供电频率; (1) 同步电动机的调速方法 可见,均匀地改变同步电动机的定子供电频率fs,就可以平滑地调节电动机

电机调速的分类

电机调速的分类

1.1 电气调速系统性能指标机电传动控制系统调速方案的选择,主要是根据生产机械对调速系统提出的调速技术指标来决定的,技术指标又静态指标和动态指标。

静态技术指标静差度<S=Δn/n0 >静差度指电动机在某一转速下运行时,负载由理想空载增加到额定值时所对应的转速降Δn与理想空载转速n0之比。

调速范围<在额定负载时D =nmax/nmin >调速范围是指系统在额定负载时电机的最高转速与最低转速之比。

动态指标跟随性能指标在给定信号作用下,系统输出量变化的情况用跟随性能指标来描述。

当给定信号的变化方式不同时,输出响应也不同。

具体的跟随指标如下:(1)上升时间tr在阶跃响应时间中,输出量从零起第一次上升到稳定值C¥所需时间,它反映动态响应的快速性。

(2)超调量σ在阶跃响应时间中,输出量超出稳态值的最大偏差与稳态值之比的百分值。

(3)调节时间ts在阶跃响应过程中,输出衰减到与稳态值之差进入±5%或±2%允许误差范围之内所需的最小时间,称为调节时间,又称为过渡过程时间。

调节时间用来衡量系统整个调节过程的快慢,ts小,表示系统的快速性好。

抗扰性能指标控制系统在稳态运行中,由于电动机负载的变化,电网电压的波动等干扰因素的影响,都会引起输出量的变化,经历一段动态过程后,系统总能达到新的稳态。

这就是系统的抗扰过程。

具体的跟随指标如下:(1)动态降落ΔCmax%系统稳定运行时,突加一定数值的阶跃扰动(例如额定负载扰动)后所引起的输出量最大降落,用原稳态值C¥l的百分数表示,叫做动态降落。

(2)恢复时间tv 从阶跃扰动作用开始,到输出量恢复到与新稳态值C¥2之差进入某基准量Cb的±5%(或±2%)范围之内所需的时间,定义为恢复时间tv 。

其中Cb称为抗扰指标中输出量的基准值,视具体情况选定。

一、单闭环有静差直流调速系统1、系统结构该系统的主电路采用晶闸管三相全控桥式整流电路。

交流异步电动机的调速方法及特点

交流异步电动机的调速方法及特点

交流异步电动机的调速方法及特点异步电动机是一种常用的电动机类型,其调速方法主要有电压调制调速、转子电流调制调速和频率调制调速。

下面将分别介绍这三种调速方法的特点。

1. 电压调制调速:电压调制调速是通过改变电动机的供电电压来实现调速的方法。

在这种方法中,通过改变电动机的输入电压,可以改变电动机的转矩和转速。

电压调制调速主要通过改变电动机的输入电压和功率因数来实现调速。

其特点是调速范围广,调速精度高,但是调速过程中容易产生谐波和电磁干扰。

2. 转子电流调制调速:转子电流调制调速是通过改变电动机的转子电流来实现调速的方法。

在这种方法中,通过改变电动机的转子电流,可以改变电动机的转速和转矩。

转子电流调制调速主要通过改变电动机的转矩特性来实现调速。

其特点是调速范围广,调速精度高,但是调速过程中容易产生转子电流过大和电磁干扰的问题。

3. 频率调制调速:频率调制调速是通过改变电动机的输入频率来实现调速的方法。

在这种方法中,通过改变电动机的输入频率,可以改变电动机的转速和转矩。

频率调制调速主要通过改变电动机的输入频率和电压来实现调速。

其特点是调速范围广,调速精度高,但是调速过程中需要改变电动机的输入电压和频率,所以需要特殊的调速设备。

总的来说,异步电动机的调速方法主要有电压调制调速、转子电流调制调速和频率调制调速。

这三种调速方法各有特点,可以根据实际需求选择合适的调速方法。

电压调制调速适用于调速范围广、调速精度高的场合;转子电流调制调速适用于调速范围广、对调速精度要求较高的场合;频率调制调速适用于调速范围广、对调速精度要求较高的场合。

在实际应用中,根据不同的调速需求和系统要求,可以采用不同的调速方法。

同时,还可以结合多种调速方法,如电压调制和转子电流调制相结合,以实现更精确的调速效果。

在选择调速方法时,需要考虑电动机的负载特性、调速精度要求、系统稳定性等因素,并选择合适的调速设备和控制策略,以实现理想的调速效果。

第六章交流异步电动机变频调速系统PPT课件

第六章交流异步电动机变频调速系统PPT课件

电动势值较高时,可以忽略定子绕组的漏磁阻
抗压降,而认为定子相电压 Us ≈ Eg,
8
则得 U s 常值
这是恒压频f1 比的控制方式。
(6-3)
但是,在低频时 Us 和 Eg 都较小,定子阻 抗压降所占的份量就比较显著,不再能忽略。
这时,需要人为地把电压 Us 抬高一些,以便 近似地补偿定子压降。
3
第一节 变频调速的基本控制方式和机械特性 通过改变定子供电频率来改变同步转速实现
对异步电动机的调速,在调速过程中从高速到 低速都可以保持有限的转差率,因而具有高效 率、宽范围和高精度的调速性能。可以认为, 变频调速是异步电动机的一种比较合理和理想 的调速方法 。
原理:利用电动机的同步转速随频率变化的特 性,通过改变电动机的供电频率进行调速。保
带定子压降补偿的恒压频比控制特性示于下
图中的 b 线,无补偿的控制特性则为a 线。
2. 基频以上调速
在基频以上调速时,频率应该从f1N向上升高,
但定子电压Us 却不可能超过额定电压
9
UsN ,最多只能保持Us = UsN ,这将迫使磁通
与频率成反比地降低,相当于直流电机弱磁升 速的情况。
Us UsN
11
Us Φm
恒转矩调速
UsN ΦmN
Us
恒功率调速
Φm
O
f1N
f1
图6-2 异步电机变压变频调速的控制特性
异步电动机的变压变频调速是进行分段控制的:
基频以下,采取恒磁恒压频比控制方式;
基频以上,采取恒压弱磁升速控制方式。
12
U Te
P
N
UN
Te
U
P
O
变电压调速

交流电动机的调速方式

交流电动机的调速方式

(6)变频调速 变频调速是通过改变异步电动机供电电源的频率f来实现无级 调速的,其接线简单。
5.调速方式汇总
变频器技术与应用
(2)电磁调速 适用于容量在0.55~630kW范围内的风机、水泵或压缩机。 电磁调速电动机的调速系统主要由笼型感应电动机、涡流式电磁转差离合器 和直流励磁电源等3部分组成(见图1.5),直流励磁电源功率较小,通过改变晶 闸管的控制角以改变直流励磁电压的大小来控制励磁电流。当电动机带动电 枢在磁极磁场中旋转时,就会感生涡流,涡流与磁极磁场作用产生的转矩将使 电枢牵动磁极拖动负载同向旋转,通过控制励磁电流改变磁场强度,使离合器 产生大小不同的转矩,从而达到调速。
变频器技术与应用
交流电动机的调速方式
1.异步电动机
※三相异步电动机外观
※异步电动机的内部结构
※先决条件:一个旋转磁场 旋转磁场的转速为:n=60f/p
ቤተ መጻሕፍቲ ባይዱ
2.同步电动机
※一般分为转场式同步电动机和转枢式同步电动机
转场式同步电动机
3.交流电动机的调速
4.交流电动机的调速方式
(1)异步电动机的变极调速 这种多速电动机大都为笼型转子电动机,其结构与基本 系列异步电动机相似,现国内生产的有双、三、四速等 几类。
(3)串级调速 电气串级调速与电动机串级调速
(4)定子调压调速 定子调压调速是用改变定子电压实现调速的方法来改变电动 机的转速,调度过程中它的转差功率以发热形式损耗在转子 绕组中,属于低效调速方式。
(5)转子串电阻调速 转子串电阻调速是通过改变绕线型感应电动机转子串接附加 外接电阻从而改变转子电流使转速改变的方式进行调速。

交流调速系统直流调速简介

交流调速系统直流调速简介

《交直流调速系统》上篇《直流调速系统》《交直流调速系统》课程介绍一,课程地性质与地位•《交直流调速系统》主要学习交流电动机与直流电动机地调速方法,调速系统地构成和工作原理。

•所谓调速,就是通过改变电源或电机地参数,对电动机实现变速控制或恒速控制。

•调速在工业生产与生活中地应用实例:升旗电机转速地控制;轧钢电机转速控制;龙门刨床工作台驱动电机地控制等。

调速技术广泛应用于各行各业。

•《交直流调速系统》是对《电路基础》《电机与拖动》《变流技术》《自动控制原理》等课程知识地综合应性应用课程,是电气自动化专业必修地专业课程。

《交直流调速系统》课程介绍三,课程地内容•交直流调速包含交流调速与直流调速两部分内容,交流电动机地调速在《变频器应用技术》中讲授。

本课程主要讲授直流电动机地调速,教学内容如下:章节和内容实训项目第1章:直流调速简介开环调速系统地机械特性测试第2章:单闭环调速系统第3章:双闭环调速系统第4章:可逆调速系统第5章:直流脉宽调速系统单闭环调速系统地静特性测试双闭环调速系统地静特性测试逻辑无环流调速系统地安装与调试 PWM调速系统地安装与调试三,课程地内容•学时分配:•理论48学时;实训16学时,共64学时分配如下:理论教学学时实训教学学时第1章:直流调速系统地概述-4学时开环调速-2学时第2章:单闭环调速系统------6学时第3章:双闭环调速系统-----8学时第4章:可逆调速系统--------12学时第5章:直流脉宽调速系统—8学时单闭环调速-2学时双闭环调速-4学时逻辑无环流调速-4学时 PWM调速-4学时四,教学目标通过本课程地学习,应达到以下教学目标:1. 掌握直流调速地一般方法,基本概念。

2. 掌握五种调速系统地构成和特点。

3. 能在实验室完成五个调速系统地安装与调试。

4. 掌握单闭环,双闭环调速系统地稳态性能指标地计算方法。

五,学习指导本课程是一门综合性应用课程,应用知识较多,但只要学习目标明确,方法得当,学习起来并不难:1. 掌握典型调速系统地构成。

交流电动机无级调速系统

交流电动机无级调速系统
交流电动机无级调速系统
长期以来,在电动机调速领域中,直流调速方案一 直占主要地位。 60年代以后,随着电力电子学与电子技术的发展, 使得采用半导体变流技术的交流调速系统得以实现, 特别是70年代以来,大规模集成电路和计算机控制 技术的发展,为交流电力传动的进一步开发创造了 有利的条件。 在实际应用中,由于交流调速技术不仅具有优良的 调速性能,而且还带来节约能源与占地面积、减少 维护费用等优点,尤其是在大容量或工作于恶劣环 境时,更为直流拖动所不及。
共阳极组
1、3、1、2、4、 2管顺序导通频 率为 f /3 1、3、1、3、4、 2、4、2管顺序 导通 频率为 f /4
改变4只可控硅通电顺序可改变输出电压的频率; 改变可控硅控制角可改变输出电压的大小。
教材里面的是: 1:使移相角α不断地按照余弦规律变化,同时对正负组整流器按一定得频率进 行切换,这样输出的电压平均值是按正弦规律变化的。 2: 改变移相角α变化的速度,可以改变输出电压的频率。
2. 交-交变频系统
3. 特点 交-交变频系统,电路简单; 频率不能连续。
工作原理: 图中给定信号经电压/频率变换转换成与给定信号成比例的脉冲信号,然后经环行分 配器分频,依次形成相差T/6、持续时间为T/3 的选组脉冲。选组脉冲规定了什么时 间允许哪组晶闸管工作。与此同时,给定信号被变换成与之相应的移相脉冲,从而 决定每组晶闸管导通的次序及控制角α的大小。移相脉冲与选组脉冲经逻辑电路确 定了每个晶闸管的导通时刻,低速时为了补偿定子的压降,引入了函数发生器以适 当提高电压。
4.4.1交流变频调速和控制方式
1.异步电动机的调速
由第一章的三相异步电动机的转速: 60 f n n0 ( 1 S ) (1 S ) p 即改变转差率S; 定子电压、转子电阻、转子电压 改变极对数p; 改变频率f。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

交流电动机调速系统的分类
1.同步电动机调速系统
同步电动机只能依靠改变频率来进行调速,而根据频率控制方式的不同,可把同步电动机调速系统分为他控式和自控式两种类型。

如果用独立的变频装置作为同步电动机的变频电源进行调速,则称之为他控式同步电动机调速系统,大多用于类似永磁同步电动机的小容量场合。

采用频率闭环方式的同步电动机调速系统称为自控式同步电动机调速系统,它是用电动机轴上安装的位置检测器来控制变频装置触发脉冲,使同步电动机工作在自同步状态。

自控式同步电动机调速系统又可细分为负载换向自控式同步电动机调速系统和交一交变频供电的自控式同步电动机调速系统。

负载换向自控式同步电动机调速系统叉称为x换向器电机,它的主电路采用交一直-交电流型变流器,利用同步电动机电流超前电压的特点,使逆变器的晶闸管工作在自然换向状态。

这种系统又被称为LCI(Load Commutated Inve11er),它的容量已达到数万千伏安,电压达万伏以上。

交一交变频同步电动机调速系统的逆变器由晶闸管组成,采用交一交循环变流结构和矢量控制技术,具有优良的动态性能,广泛地用于轧钢机主传动系统中。

交一交变频同步电动机调速系统的容量很大,但调频范围只能限制在工频的三分之一左右。

2.异步电动机调速系统
在异步电动机中,从定子传入转子的电磁功率可以分成两部分:一部分是拖动负载的有效功率;另一部分是转差功率,与转差率成正比,它的去向是调速系统效率高低的标志。

就转差功率的处理方式的不同,异步电动机调速系统可分成三大类。

(1)转差功率消耗型调速系统。

这种调速系统全部转差功率都被消耗掉,用增加转差功率的消耗来换取转速的降低,因而效率也随之降低。

降电压调速、电磁转差离合器调速及绕线异步电动机转子串电阻调速这三种方法都属于这一类。

(2)转差功率回馈型调速系统。

这种调速系统的大部分转差功率通过变流装置回馈给电网或者加以利用,转速越低回馈的功率越多,但是增设的装置也要多消耗一部分功率。

绕线异步电动机转子双馈调速即属于这一类。

(3)转差功率不变型调速系统。

在这种调速系统中,转差功率仍旧消耗在转子里,但小论转速高低,转差功率基本不变。

如变极对数调速、变频调速两种调速方法即属于这一类。

2.异步电动机转差回馈型调速系统
双馈调速足指将电能分别馈入异步电动机的定子绕组和转子绕组,通常将定子绕组接入工频电源,将转子绕组接到频率、幅值、相位和相序都可以调节的变频电源。

如果改变转子绕组电源的频率、幅值、相位和相序,就可以调节异步电机的转矩、转速、转向及和定子侧的无功功率。

这种双馈调速的异步电动机可以超同步或亚同步运行,不但可以工作在电动状态,而且可以工作在发电状态。

因为交一交变流器采用晶闸管自然换向方式,结构简单,可靠性高,而且交,交变流器能够直接进行能量转换,效率高,所以,在双馈调速方式中采用交.交变流器作为转子绕组的变频电源是比较合适的。

绕线式异步电动机串级调速系统是从定子侧馈入电能,从转子侧馈出电能的系统。

从广义上说,它也是双馈调速系统的一种。

在双馈调速中,所用变频器的功率仅占电动机总功率的一小部分,可以大大降低变频器的容量,从而降低了调速系统的成本,此外,双馈电机还可以调节功率因数,由于具有这些优点,双馈电机特别适合应用于大功率的风机、水泵类负载的调速场合;双馈调速方式在风力、
水力等能源开发领域也是一种比较先进、理想的发电技术,具有一定的应用前景。

相关文档
最新文档