直线与椭圆相切
直线与双曲线的位置关系及判断方法
复习:椭圆与直线的位置关系及判断方法
复习
椭圆与直线的位置关系
相离 相切 相交
复习
椭圆与直线的位置关系判别方法
第一步:将直线方程代入椭圆方程中
第二步:计算一元二次方程的判别式△
第三步:若△>0,则直线与椭圆相交 若△=0,则直线与椭圆相切 若△<0,则直线与椭圆相离
双曲线与直线的位置关系及判断方法
相交 相离
一个交点 两个交点
相切
双曲线与直线的位置关系
双曲线与直线的位置关系判别方法
双曲线与直线的位置关系判别方法
特别注意直线与双曲 线的位置关系中:
一解不一定相切 相交不一定两解 两解不一定同支
双曲线与直线的位置关系
题目练习
习题
双曲线与直线的位置关系
x2 y2
(2009·福建)已知双曲线12- 4 =1
的右焦点为
F,若过点
F
的直线
与双曲线的右支有且只有一个交点,则此直线斜率的取值范围
(
33 )A.(- 3 , 3 ) B.(-
3,
3)C.-
33,
33D.[-
3, 3]
答案:C
Thanks for your listening!
若00则直线与椭圆相交若00则直线与椭圆相切若00则直线与椭圆相离复习椭圆与直线的位置关系判别方法双曲线与直线的位置关系及判断方法相离相切相交一个交点两个交点双曲线与直线的位置关系双曲线与直线的位置关系判别方法双曲线与直线的位置关系判别方法特别注意直线与双曲线的位置关系中
直线与双曲线的位置关系
高二数学选修2-1 第二章 圆锥曲线与方程
直线和椭圆相切状态下的一个简单性质
直线和椭圆相切状态下的一个简单性质作者:庄志刚杨云显来源:《中学数学杂志(高中版)》2014年第04期椭圆中的性质很多,大多是针对焦半径和焦点弦的某种形式出现的定值问题的研究.对于直线和椭圆相交或相切状态下的简单适用的结果不多.笔者曾写过一篇关于“直线和椭圆相交状态下的一个通用性质”[1]的文章,对标准方程下焦点三角形的面积和坐标间的对应关系进行了一点初步的研究.近来通过直线和椭圆相切状态下的有关计算,得到下面结论,期待能对实践应用有所帮助.如果先以中心在原点,焦点在x轴上的标准椭圆为载体进行研究,可以得到如下结论:图1性质1 如图1,若P(x0,y0)为椭圆x2a2+y2b2=1(a>b>0,a2b2=λ)上异于长轴、短轴端点外的任意一点,F1,F2为椭圆的两焦点,如果两焦半径PF1,PF2的斜率存在且分别为k1,k2,设过P(x0,y0)的椭圆的切线l的斜率为k,则1k(1k1+1k2)为定值,且定值为-2λ.为了证明上面结论,先不妨证明以下结论.结论1 若P(x0,y0)为椭圆x2a2+y2b2=1(a>b>0)上异于长轴端点外的任意一点,F1,F2为椭圆的两焦点,设两焦半径PF1,PF2的斜率存在且分别为k1,k2,则(1k1+1k2)=2x0y0.证明设椭圆的两焦点F1(-c,0),F2(c,0)(其中c=a2-b2),则1k1=x0+cy0,1k2=x0-cy0,所以1k1+1k2=x0+cy0+x0-cy0=2x0y0.得到这个结果的过程比较容易,从这个结果可以看出,过焦点在x轴上的标准椭圆上异于长轴端点外的任意一点所得两条焦半径(斜率都存在)的斜率的倒数和与点的横纵坐标有关.结论2 设P(x0,y0)为椭圆x2λb2+y2b2=1(b>0,λ>1)上异于长轴端点外的任意一点,l为过P(x0,y0)的椭圆的切线,则其斜率k与点P坐标有关,且k=-x0λy0.证明λ>1,曲线表示以坐标轴为对称轴,焦点在x轴上的椭圆,设过P(x0,y0)的直线斜率为k,则l的方程为y-y0=k(x-x0).联立方程组:x2λb2+y2b2=1,y-y0=k(x-x0),消去y得:(1+λk2)x2+2(λky0-λk2x0)x+(λk2x20-2λkx0y0+λy20-λb2)=0. (1)因为l为过P(x0,y0)的椭圆的切线,所以有Δ=4(λky0-λk2x0)2-4(1+λk2)(λk2x20-2λkx0y0+λy20-λb2)=0整理得:λ(λb2-x20)k2+2λx0y0k+λ(b2-y20)=0.(2)又因为P(x0,y0)在椭圆上,所以x20λb2+y20b2=1.所以λb2-x20=λy20,b2-y20=x20λ.将结果代入(2)式,得到λ2y20k2+2λx0y0k+x20=0,也即(λy0k+x0)2=0,所以k=-x0λy0.可以看出:过焦点在x轴上的标准椭圆上异于长轴端点外的任意一点所做椭圆的切线的斜率与坐标有关,也与a2,b2的比值有关系.在结论1和结论2的支持下,我们来证明性质1就不难了.因为a>b>0,a2b2=λ,所以椭圆方程即x2λb2+y2b2=1,P(x0,y0)为椭圆x2a2+y2b2=1(a>b>0,a2b2=λ)上异于长轴、短轴端点外的任意一点,所以由结论2,过P所做椭圆的切线的斜率k=-x0λy0,所以1k=-λy0x0.焦半径PF1,PF2的斜率分别为k1,k2,所以由结论1得:1k1+1k2=2x0y0,由上面的结果,容易得到:1k1k1+1k2=-λy0x02x0y0=-2λ,性质1得到证明.有些与直线和圆锥曲线的位置关系有关的题目中,经常进行一些类似的定量计算,如2013年高考山东卷理科数学试题22题第三问,就考查了如下问题:椭圆C:x24+y2=1的左右焦点分别为F1,F2,P(x0,y0)为其上异于长轴端点外的任意一点,过点P做斜率为k的直线l,使得l与椭圆C有且只有一个交点.设PF1,PF2的斜率分别为k1,k2,若k≠0,试证明:1kk1+1kk2为定值,并求出这个定值.可以看出,这是以上性质的特殊情形,单从结论的角度,不难得到:a2=4,b2=1,λ=a2b2=4,所以1k(1k1+1k2)=-2λ=-8.计算过程参照定理的证明,不难得到结果.如果椭圆是中心在原点,焦点在y轴上的标准椭圆,模仿以上结论,进行以上步骤的计算研究,不难得到上面定理的另一种形式下的结论:图2性质2 如图2,若P(x0,y0)为椭圆y2a2+x2b2=1(a>b>0,a2b2=λ)上异于长轴、短轴端点外的任意一点,F1,F2为椭圆的两焦点,如果两焦半径PF1,PF2的斜率存在且分别为k1,k2,设过P(x0,y0)的椭圆的切线l的斜率为k,则k(k1+k2)为定值,且定值为-2λ.定理2的算式部分形式与定理1稍有区别,但最后的结果完全一样.证明过程与定理1的证明类似,从略.综合性质1和性质2,可以看出,它们的共同特点是:结果形式简单,关系直接明确,易于理解掌握,便于实践应用.圆锥曲线的学习过程中,老师们经常会遇到大量的涉及直线和圆锥曲线的定量运算的题目,解答这些题目的过程中,多加用心反思和对比,也许就会发现一些隐藏其中的有用的规律,规律的探索过程和成就感也是数学美的重要方面吧.参考文献[1] 杨云显,孟艳双.直线和椭圆相交状态下的一个通用性质[J].中国数学教育,2012(6):21-22.作者简介庄志刚,男,山东青岛人,1966年9月生,中学高级教师,主要从事高中数学教育教学,曾获全国教研工作先进个人,在各类刊物发表十几篇论文;杨云显,男,山东即墨人,1971年6月生人,中学高级教师,主要从事高中数学教育教学,曾获青岛市教学能手,在各类刊物发表多篇论文.。
双曲线的简单几何性质(直线与双曲线的位置关系)
例2. 直线 y=kx+1与双曲线3x2- y2 =1相交于A、B两点. 且以AB为直径的圆经过坐标原点,求该圆的面积. 解: y kx 1
2 2 3 k x 2kx 2 0 2 2 3 x y 1
设 A( x1 , y1 ) , B( x2 , y2 ) ,则由以AB为直径的圆经过坐标原点,
2
x1 x2
2
4 x1 x2
2 2 1 k 2 k
2 2k 1 k 2 4 2 2 1 k 1 k
2
1 k
2 2
依题意得 2
4
2 2 1 k 2 k
1 k
2 2
6 3
2 1 - 3 k ≠0, Δ=361-k2>0,
6 2k 3 xA+xB=1-3k2<0,解得 3 <k<1. xAxB= -9 2>0, 1-3k
3 ∴当 3 <k<1 时,l 与双曲线左支有两个交点.
(3)由(2)得:xA+xB=
6 2k , 1-3k2
∴yA+yB=(kxA+ 2)+(kxB+ 2) =k(xA+xB)+2 2= 2 2 . 1-3k2
x2 y2 解析:(1)设双曲线 C 的方程为a2-b2=1(a>0,b>0). 由已知得:a= 3,c=2,再由 a2+b2=c2, x2 2 得 b =1,∴双曲线 C 的方程为 3 -y =1.
2
(2)设 A(xA,yA)、B(xB,yB), x2 2 将 y=kx+ 2代入 3 -y =1, 得,(1-3k2)x2-6 2kx-9=0. 由题意知
a=2, c 2 解析: (1)由题意得 = , a 2 2 2 2 a = b + c , 解得 b= 2. x2 y2 所以椭圆 C 的方程为 4 + 2 =1. y=kx-1, 2 2 (2)由x y + 2 =1 4 得(1+2k2)x2-4k2x+2k2-4=0.
圆锥曲线公式大全(高中珍藏版)
圆锥曲线公式大全1、椭圆的定义、椭圆的标准方程、椭圆的性质椭圆定义焦点位置椭圆的图象和性质若M 为椭圆上任意一点,则有|MF 1|+|MF 2|=2ax 轴y图形o xy 轴y o x标准方程焦点坐标焦距顶点坐标a ,b ,c 的关系式长、短轴对称轴离心率范围x 2y 2+2=12a b F 1(-c, 0 ), F 2( c, 0 )|F 1F 2| = 2c(±a , 0 ), ( 0,±b )a 2 =b 2 +c 2y 2x 2+2=12a b F 1(0,-c, ), F 2( 0, c )(0,±a ), (±b , 0 )长轴长=2a ,短轴长=2b ,长半轴长=a ,短半轴长=b 无论椭圆是x 型还是y 型,椭圆的焦点总是落在长轴上关于x 轴、y 轴和原点对称e =c ( 0 <e < 1),离心率越大,椭圆越扁,反之,越圆a-a ≤x ≤a ,-b ≤y ≤b 2-b ≤x ≤b ,-a ≤y ≤a22、判断椭圆是x 型还是y 型只要看x 对应的分母大还是y 对应的分母大,若x 对应的分母大则x 型,若y 对应的分母大则y 型.22x 2y 23、求椭圆方程一般先判定椭圆是x 型还是y 型,若为x 型则可设为2+2=1,若为y a b y 2x 222型则可设为2+2=1,若不知什么型且椭圆过两点,则设为稀里糊涂型:mx +ny =1a b 4、双曲线的定义、双曲线的标准方程、椭圆的性质双曲线的图象和性质若M为双曲线上任意一点,则有MF1-MF2=2a(2a<2c)双曲线定义若MF1-MF2=2a=2c,则点M的轨迹为两条射线若MF1-MF2=2a>2c,则点M无轨迹焦点位置x轴y轴图形标准方程焦点坐标焦距顶点坐标(±a, 0 )x2y2-2=12a bF1(-c, 0 ), F2( c, 0 )|F1F2| = 2cy2x2-2=12a bF1(0,-c, ), F2( 0, c )(0,±a )a,b,c的关系式椭圆形状长的像a,所以a是老大,a2 = b2 + c2;双曲线形状长的像c,所以c是老大,c2 = a2 + b2实轴、虚轴对称轴离心率范围渐近线实轴长=2a,虚轴长=2b,实半轴长=a,虚半轴长=b无论双曲线是x型还是y型,双曲线的焦点总是落在实轴上关于x轴、y轴和原点对称e=c(e >1)aa≤x或x≤-a,y∈R a≤y或y≤-a,x∈Ry=±bxay=±axb2、判断双曲线是x 型还是y 型只要看x 前的符号是正还是y 前的符号是正,若x 前的符号为正则x 型,若y 前的符号为正则y 型,同样的,哪个分母前的符号为正,则哪个分母就为a 22222x 2y 23、求双曲线方程一般先判定双曲线是x 型还是y 型,若为x 型则可设为2-2=1,若a b y 2x 2为y 型则可设为2-2=1,若不知什么型且双曲线过两点,则设为稀里糊涂型:a b mx 2-ny 2=1(mn <0)6、若已知双曲线一点坐标和渐近线方程y =mx ,则可设双曲线方程为y 2-m 2x 2=λ(λ≠0),而后把点坐标代入求解7、椭圆、双曲线、抛物线与直线l :y =kx +b 的弦长公式:AB =(k 2+1)(x 1-x 2)2=(12+1)(y -y )122k 8、椭圆、双曲线、抛物线与直线问题出现弦的中点往往考虑用点差法9、椭圆、双曲线、抛物线与直线问题的解题步骤:(1)假化成整(把分式型的椭圆方程化为整式型的椭圆方程),联立消y 或x (2)求出判别式,并设点使用伟大定理(3)使用弦长公式1、抛物线的定义:平面内有一定点F 及一定直线l (F 不在l 上)P 点是该平面内一动点,当且仅当点P 到F 的距离与点P 到直线l 距离相等时,那么P 的轨迹是以F 为焦点,l 为准线的一条抛物线.————见距离想定义!!!2、(1)抛物线标准方程左边一定是x 或y 的平方(系数为1),右边一定是关于x 和y 的一次项,如果抛物线方程不标准,立即化为标准方程!(2)抛物线的一次项为x 即为x 型,一次项为y 即为y 型!(3)抛物线的焦点坐标为一次项系数的四分之一,准线与焦点坐标互为相反数!一次项为x ,则准线为”x=多少”,一次项为y ,则准线为”y=多少”!(4)抛物线的开口看一次项的符号,一次项为正,则开口朝着正半轴,一次项为负,则开口朝着负半轴!(5)抛物线的题目强烈建议画图,有图有真相,无图无真相!3、求抛物线方程,如果只知x 型,则设它为y =ax (a ≠0),a>o,开口朝右;a<0,开口朝左;如果只知y 型,则设它为x =ay (a ≠0),a>o,开口朝上;a<0,开口朝下。
圆锥曲线的切线切点弦总结归纳(转换坐标系法)
圆锥曲线的切线、切点弦推论总结归纳1、椭圆切线推论:已知椭圆C 方程22221x y a b+=(a>b>0),C 上一点P (00,y x ),过点P 且与C 相切的切线L 方程为:12020=+byy a x x 。
12222=+by a x'2'2()()1x y +=推导:如图所示,当切线'L 斜率存在且不为0时(即切线L 斜率存在且不为0),设'OP 、'L 的斜率分别为1k ,2k ,0010000y ay b k x bx a-==-,由圆的切线性质易知'OP ⊥'L ,即121k k ⋅=-,∴02101bx k k ay -==-,∴由点斜式易得'L 方程为:''0000()y bx xy x b ay a -=--,又'',x yx y a b ==,∴ 0000()y bx x y x b b ay a a-=--,即为椭圆切线L 方程,化简如下:0000y y bx x x b ay a --=-⋅,000022()()y y y x x x b a --=-,2200002222x x y y x y a b a b +=+,又点P(00,y x )是椭圆上一点,∴2200221x y a b +=,即切线L 方程化简后为:0022x x y ya b+=1;易知当切线L 斜率为0时,P (0,b ±),切线L 方程为:y b =±,满足上式;当切线L 斜率不存在时,P (,0a ±)切线L 方程为:x a =±,也满足上式。
综上,推导完毕。
2、直线与椭圆位置关系判定推论:已知椭圆C 方程12222=+by a x (a>b>0),一直线L 方程为:0Ax By C ++=,则L 与C 相交⇔2222A a B b +>2C ;L 与C 相切⇔2222A a B b +=2C ;L 与C 相离⇔2222A a B b +<2C 。
直线与曲线的位置关系
直线与曲线的位置关系直线与曲线在数学中是两个基本概念,它们的位置关系对于理解几何学和解决实际问题都具有重要的作用。
本文将探讨直线和曲线的位置关系,并讨论它们之间可能的相交情况。
一、直线与曲线的定义首先,我们来明确直线和曲线的定义。
直线是最简单的几何图形之一,它由无数个点组成,这些点在同一条直线上。
直线没有开始和结束的点,可以延伸到无限远。
直线可以用数学方程或者两点确定。
曲线则是比直线更为复杂的几何图形,它由一系列点组成,这些点的位置不在同一条直线上。
曲线可以是平滑的弧线,也可以是不规则的路径。
曲线通常可以用函数方程、参数方程或者隐式方程来描述。
二、直线与曲线的相交情况直线和曲线之间的相交情况主要有三种:相离、相切和相交。
1. 相离:直线和曲线没有公共的点,它们永远不会相交。
在平面几何中,如果直线和曲线的图像不重叠,它们就是相离的。
2. 相切:直线和曲线有且只有一个公共的点,它们在这一点处相切。
相切点是直线和曲线的切点,此时切线的斜率与直线相同。
3. 相交:直线和曲线有两个或者更多个公共的点,它们相互穿过或重叠。
相交点是直线和曲线的交点,交点的个数可能有限也可能是无穷多。
三、直线与曲线的位置关系示例接下来,我们通过几个具体的示例来讨论直线与曲线的位置关系。
1. 直线与抛物线考虑一条直线和一个抛物线的情况。
假设直线的方程为y = ax + b,抛物线的方程为y = cx^2 + dx + e。
当直线和抛物线的图像相交时,我们可以通过解方程组得到交点的坐标。
2. 直线与圆考虑一条直线和一个圆的情况。
假设直线的方程为y = mx + n,圆的方程为(x - a)^2 + (y - b)^2 = r^2。
当直线和圆的图像相交时,我们可以通过代入方程得到交点的坐标。
3. 直线与椭圆考虑一条直线和一个椭圆的情况。
假设直线的方程为y = mx + n,椭圆的方程为(x - a)^2 / h^2 + (y - b)^2 / k^2 = 1。
直线和圆锥曲线的位置关系
直线和圆锥曲线的位置关系知识点一:直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系有三种:相交、相切、相离.判断的方法均是把直线方程代入曲线方程中,判断方程解的个数,从而得到直线与曲线公共点的个数,最终得到直线与曲线的位置关系.一般利用二次方程判别式来判断有无解,有几个解.1.直线0=++C By Ax 椭圆)0(12222>>=+b a by a x 的位置关系: 将直线的方程与椭圆的方程联立成方程组,消元转化为关于x 或y 一元二次方程,其判别式为∆.(1)⇔>∆0直线和椭圆相交⇔直线和椭圆有两个交点(或两个公共点);(2)⇔=∆0直线和椭圆相切⇔直线和椭圆有一个切点(或一个公共点);(3)⇔<∆0直线和椭圆相离⇔直线和椭圆无公共点.2.直线0=++C By Ax 和双曲线)0,0(12222>>=-b a by a x 的位置关系: 将直线的方程与双曲线的方程联立成方程组,消元转化为关于x 或y 的方程.(一)若为一元一次方程,则直线和双曲线的渐近线平行,直线和双曲线只有一个交点,但不相切不是切点;(二)若为一元二次方程,则(1)若0>∆,则直线和双曲线相交,有两个交点(或两个公共点);(2)若0=∆,则直线和双曲线相切,有一个切点;(3)若0<∆,则直线和双曲线相离,无公共点.注意:(1)⇒>∆0直线与双曲线相交,但直线与双曲线相交不一定有0>∆,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故0>∆是直线与双曲线相交的充分条件,但不是必要条件;(2)当直线与双曲线的渐近线不平行时,⇔=∆0直线与双曲线相切;(3)如说直线和双曲线有一个公共点,则要考虑两种情况:一个切点和一个交点;当直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;(4)过双曲线)0,0(12222>>=-b a by a x 外一点),(00y x P 的直线与双曲线只有一个公共点的情况如下:①P 点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;②P 点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;③P 在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;④P 为原点时不存在这样的直线;3.直线0=++C By Ax 和抛物线)0(22>=p px y 的位置关系:将直线的方程与抛物线的方程联立成方程组,消元转化为关于x 或y 方程.(一)若方程为一元一次方程,则直线和抛物线的对称轴平行,直线和抛物线有一个交点,但不相切不是切点;(二)若为一元二次方程,则(1)若0>∆,则直线和抛物线相交,有两个交点(或两个公共点);(2)若0=∆,则直线和抛物线相切,有一个切点;(3)若0<∆,则直线和抛物线相离,无公共点.注意:(1)⇒>∆0直线与抛物线相交,但直线与抛物线相交不一定有0>∆,当直线与抛物线的对称轴重合或平行时,直线与抛物线相交且只有一个交点,故0>∆也仅是直线与抛物线相交的充分条件,但不是必要条件.(2)当直线与抛物线的对称轴不重合或平行时,⇔=∆0直线与抛物线相切;(3)如说直线和抛物线有一个公共点,则要考虑两种情况:一个切点和一个交点;当直线与抛物线的轴平行时,直线与抛物线相交,也只有一个交点;(4)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线.知识点二:圆锥曲线的弦1.直线被圆锥曲线截得的线段称为圆锥曲线的弦.当直线的斜率k 存在时,直线b kx y +=与圆锥曲线相交于),(),,(2211y x B y x A ,两点,把直线方程代入曲线方程中,消元后所得一元二次方程为02=++c bx ax .则弦长公式:2121x x k AB -+=其中aa c ab x x x x x x ∆=--=-+=-4)(4)(22122121 当k 存在且不为零时, 弦长公式还可以写成:21211y y k AB -+=. 注意:当直线的斜率不存在时,不能用弦长公式解决问题,21y y AB -=.2.焦点弦:若弦过圆锥曲线的焦点叫焦点弦;抛物线)0(22>=p px y 的焦点弦公式α221sin 2p p x x AB =++=,其中α为过焦点的直线的倾斜角.3.通径:若焦点弦垂直于焦点所在的圆锥曲线的对称轴,此时焦点弦也叫通径.椭圆和双曲线的通径为ab AB 22=,抛物线的通径p AB 2=. 知识点三:圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解. ①在椭圆12222=+b y a x 中,以),(00y x P 为中点的弦所在直线的斜率0202y a x b k -=;②在双曲线12222=-b y a x 中,以),(00y x P 为中点的弦所在直线的斜率0202y a x b k =; ③在抛物线)0(22>=p px y 中,以),(00y x P 为中点的弦所在直线的斜率0y p k =. 注意:因为0>∆是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验0>∆!知识点四:求曲线的方程1. 定义:在直角坐标系中,用坐标表示点,把曲线看成满足某种条件的点的集合或轨迹,用曲线上点的坐标),(y x 所满足的方程0),(=y x f 表示曲线,通过研究方程的性质间接地来研究曲线的性质.这就是坐标法.2. 坐标法求曲线方程的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中涉及的几何因素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:把代数运算结果“翻译”成几何结论.通过坐标法,把点和坐标、曲线和方程联系起来,实现了形和数的统一.用坐标法解决几何问题时,先用坐标和方程表示相应的几何对象,然后对坐标和方程进行代数讨论;最后再把代数运算结果“翻译”成相应的几何结论.这就是用坐标法解决平面几何问题的“三步曲”. 3.求轨迹方程的常用方法:直接法、定义法、代入法、参数法等.规律方法指导1.直线与圆锥曲线的位置关系的研究方法可通过代数方法即解方程组的办法来研究.因为直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程是否有实数解或实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法.2.直线与圆锥曲线的位置关系,是高考考查的重中之重.主要涉及弦长、弦中点、对称、参量的取值范围、求曲线方程等问题.解题中要充分重视韦达定理和判别式的应用.3.当直线与圆锥曲线相交时涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来相互转化,同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”.4.解决直线与圆锥曲线的位置关系问题时,对消元后的一元二次方程,必须讨论二次项的系数和判别式,有时借助于图形的几何性质更为方便.。
高中数学直线与椭圆相切
每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每一条成功之路,都是充满坎坷的,只有那些坚信自己目标,不断努力、不断奋斗的人,才能取得最终的成功。
但有一点我始终坚信,那就是,当你能把自己感动得哭了的时候,你就成功了! 切线方程
1、已知直线l 过点(4,0),且与椭圆22
143
x y +=相切,求直线l 的方程
解:设直线l 的方程:(4)y k x =-
联立直线与椭圆得:22(4)143
y k x x y =-⎧⎪⎨+=⎪⎩ 消y 整理得:2222(34)324(163)0k x k x k +-+-=
直线l 与椭圆相切,2222(32)4(34)4(163)0k k k ∆=--+⋅-=
解得:12
k =± 直线l 的方程:1(4)2y x =±
- 即122y x =-或122y x =-+
设所求直线方程为:y=k*(x-4) 把直线方程代入椭圆x^2/4+y^2/3=1之中,可以得到关于x 的二元一次方程: (4*k^2+3)*x^2-(32k^2)*x+64k^2-12=0
令方程的判别式=0 得到k=-1/2或1/2即为直线的斜率.。
1-10--例17-直线与椭圆位置关系-典型题-两根之和两根之积(代数法)-有答案
类型一:标准方程的求解例1 已知椭圆06322=-+m y mx 的一个焦点为(0,2)求m 的值.分析:把椭圆的方程化为标准方程,由2=c ,根据关系222c b a +=可求出m 的值.解:方程变形为12622=+my x .因为焦点在y 轴上,所以62>m ,解得3>m . 又2=c ,所以2262=-m ,5=m 适合.故5=m .例2 已知椭圆的中心在原点,且经过点()03,P ,b a 3=,求椭圆的标准方程.分析:因椭圆的中心在原点,故其标准方程有两种情况.根据题设条件,运用待定系数法,求出参数a 和b (或2a 和2b )的值,即可求得椭圆的标准方程.解:当焦点在x 轴上时,设其方程为()012222>>=+b a by a x .由椭圆过点()03,P ,知10922=+b a .又b a 3=,代入得12=b ,92=a ,故椭圆的方程为1922=+y x .当焦点在y 轴上时,设其方程为()012222>>=+b a bx a y .由椭圆过点()03,P ,知10922=+b a .又b a 3=,联立解得812=a ,92=b ,故椭圆的方程为198122=+x y .例3 已知方程13522-=-+-k y k x 表示椭圆,求k 的取值范围. 解:由⎪⎩⎪⎨⎧-≠-<-<-,35,03,05k k k k 得53<<k ,且4≠k .∴满足条件的k 的取值范围是53<<k ,且4≠k .说明:本题易出现如下错解:由⎩⎨⎧<-<-,03,05k k 得53<<k ,故k 的取值范围是53<<k .出错的原因是没有注意椭圆的标准方程中0>>b a 这个条件,当b a =时,并不表示椭圆.例4 已知1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围.分析:依据已知条件确定α的三角函数的大小关系.再根据三角函数的单调性,求出α的取值范围.解:方程可化为1cos 1sin 122=+ααy x .因为焦点在y 轴上,所以0sin 1cos 1>>-αα. 因此0sin >α且1tan -<α从而)43,2(ππα∈.说明:(1)由椭圆的标准方程知0sin 1>α,0cos 1>-α,这是容易忽视的地方. (2)由焦点在y 轴上,知αcos 12-=a ,αsin 12=b . (3)求α的取值范围时,应注意题目中的条件πα<≤0.例5 求中心在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆方程.分析:由题设条件焦点在哪个轴上不明确,椭圆标准方程有两种情形,为了计算简便起见,可设其方程为122=+ny mx (0>m ,0>n ),且不必去考虑焦点在哪个坐标轴上,直接可求出方程.解:设所求椭圆方程为122=+ny mx (0>m ,0>n ).由)2,3(-A 和)1,32(-B 两点在椭圆上可得⎪⎩⎪⎨⎧=⋅+-⋅=-⋅+⋅,11)32(,1)2()3(2222n m n m 即⎩⎨⎧=+=+,112,143n m n m 所以151=m ,51=n .故所求的椭圆方程为151522=+y x . 例6 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和352,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.解:设两焦点为1F 、2F ,且3541=PF ,3522=PF .从椭圆定义知52221=+=PF PF a .即5=a . 从21PF PF >知2PF 垂直焦点所在的对称轴,所以在12F PFRt ∆中,21sin 1221==∠PF PF F PF , 可求出621π=∠F PF ,3526cos21=⋅=πPF c ,从而310222=-=c a b .∴所求椭圆方程为1103522=+y x 或1510322=+y x .例7 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程. 分析:关键是根据题意,列出点P 满足的关系式.解:如图所示,设动圆P 和定圆B 内切于点M .动点P 到两定点, 即定点()03,-A 和定圆圆心()03,B 距离之和恰好等于定圆半径,即8==+=+BM PB PM PB PA .∴点P 的轨迹是以A ,B 为两焦点,半长轴为4,半短轴长为73422=-=b 的椭圆的方程:171622=+y x . 说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法.类型二:直线与椭圆的位置关系(代数法-两根之和-积-判别式)一、公共点问题通过方程判别式来判断直线与椭圆的位置关系,几何的交点问题与代数的方程根问题完美结合于此例8 判断直线03=+-y kx 与椭圆141622=+y x 的位置关系 解:由⎪⎩⎪⎨⎧=++=1416322y x kx y 可得02024)14(22=+++kx x k )516(162-=∆∴k (1)当45450)516(162-<>>-=∆k k k 或即时,直线03=+-y kx 与椭圆141622=+y x 相交 (2)当45450)516(162-===-=∆k k k 或即时,直线03=+-y kx 与椭圆141622=+y x 相切(3)当45450)516(162<<-<-=∆k k 即时,直线03=+-y kx 与椭圆141622=+y x 相离 例9 若直线)(1R k kx y ∈+=与椭圆1522=+my x 恒有公共点,求实数m 的取值范围 解法一:由⎪⎩⎪⎨⎧=++=15122m y x kx y 可得05510)5(22=-+++m kx x m k ,0152≥--=∆∴k m 即1152≥+≥k m 51≠≥∴m m 且解法二:直线恒过一定点)1,0(当5<m 时,椭圆焦点在x 轴上,短半轴长m b =,要使直线与椭圆恒有交点则1≥m 即51<≤m 当5>m 时,椭圆焦点在y 轴上,长半轴长5=a 可保证直线与椭圆恒有交点即5>m综述:51≠≥m m 且 解法三:直线恒过一定点)1,0(要使直线与椭圆恒有交点,即要保证定点)1,0(在椭圆内部115022≤+m 即1≥m 51≠≥∴m m 且[评述]由直线方程与椭圆方程联立的方程组解的情况直接导致两曲线的交点状况,而方程解的情况由判别式来决定,直线与椭圆有相交、相切、相离三种关系,直线方程与椭圆方程联立,消去y 或x 得到关于x 或y 的一元二次方程,则(1)直线与椭圆相交0>∆⇔(2)直线与椭圆相切0=∆⇔(3)直线与椭圆相离0<∆⇔,所以判定直线与椭圆的位置关系,方程及其判别式是最基本的工具。
直线与椭圆相切条件的几种几何解释
直线与椭圆相切条件的几种几何解释作者:田广明来源:《中学数学杂志(高中版)》2011年第06期受直线与圆的位置关系判断方式有代数法和几何法两种的启发,笔者从直线l:Ax+By+C=0与椭圆E:x2a2+y2b2=1相切的条件“a2A2+b2B2=C2”出发,通过代数式的变形,发现了有趣的几何意义,在此与大家共享.1 结论直线l:Ax+By+C=0与椭圆E:x2a2+y2b2=1(a>b>0)相切①2 形式变形及几何解释形式变形1 (1)若B≠0,①式两边同除以B2得--C+aAB)•(-C-aAB)=b2,令y1=-C+aAB,y2=-C-aAB,则y1、y2分别是直线x=±a与直线Ax+By+C=0的交点的纵坐标.几何解释1 斜率存在的直线l与椭圆E相切,则直线l与x=±a交点的纵坐标y1、y2之积等于椭圆短半轴的平方,即y1•y2=b2.形式变形2 (2)若A≠0,①式两边同除以A2得,a2A2--C+bBA)•(-C-bBA)=a2,令x1=-C+bBA,x2=-C-bBA,则x1、x2分别是y=±b与直线Ax+By+C=0的交点的横坐标.几何解释2 斜率不为零的直线l与椭圆E相切,则直线l与y=±b交点的横坐标x1、x2之积等于椭圆长半轴的平方,即x1•x2=a2.形式变形3 (3)不妨令AB>0,C如图1,E(0,b)、Q(a,0)、M(0,-CB)、N(-CA,0),作EF∥PQ∥MN,F、P分别是直线EF和PQ 与x轴、y轴的交点,则P(0,aAB),F(bBA,0),分别作MN、PQ、EF关于x轴、y轴的对称直线,显然由对称性得,它们分别围成三个菱形.则②式△OPQ+S△OEF=S△△OPQ=S△OMN-S△OEF=S梯形菱形MN1M1N=S菱形PQ1P1Q+S菱形EF1E1F几何解释3 斜率存在且不为零的直线l与椭圆E相切,则直线l和过椭圆顶点与l平行的直线及它们关于两坐标轴的对称直线围成的菱形中,最大的菱形面积等于其余两菱形面积之和,即S菱形MN1M1N=S菱形PQ1P1Q+S菱形EF1E1F.注 (Ⅰ)当AB=0时,不能围成四边形,此时直线l与椭圆E相切的几何意义明显.(Ⅱ)当PQ、EF重合时,内部两菱形重合,结论亦成立,即S菱形MN1M1N=2S菱形PQ1P1Q(Ⅲ) 由S△OPQ=S△OMN-S△OEF=S梯形EFMN得,两阴影部分面积相等,即SⅠ=SⅡ(如图1).形式变形4 因为A2+B2≠0,故-(a2--c2A2=(A2+B2)b2(其中c为椭圆的半焦距--cA+C|A2+B2•|cA+C|A2+B2=b2,令d1=|-cA+C|A2+B2,d2=|C+cA|A2+B2,则d1、d2分别表示焦点F1(-c,0)、F2(c,0)到直线l:Ax+By+C=0的距离.几何解释4 直线l与椭圆E相切,则椭圆E的两焦点到直线l的距离d1、d2之积等于椭圆短半轴的平方.即d1•d2=b2.个人简介田广明,男,毕业于山东师范大学数学教育专业,本科学历,山东济南人,出生于1973年12月,中学一级教师,研究方向:中学(高中)数学教育.。
关于AutoCAD椭圆相切浅析
关于AutoCAD椭圆相切浅析摘要:椭圆作为一种重要图元广泛应用于光学,机械,天文等行业。
为达到工程设计的要求,提高工作效率,本文通过尺规作图,数学证明以及AutoCAD中命令的应用结合个人实践工作经验做绘制椭圆上一点的切线,椭圆外一点的切线,以及椭圆同其他图元相切圆的分析。
关键词:椭圆相切PELLIPSEAutoCAD是现代产品设计中广泛采用的现代设计方法和手段。
多年来,它一直是国内使用最广泛、应用最成熟的计算机辅助绘图及设计软件,在机械、建筑和电器工程方面使用更为广泛。
尽管今年来,PRO-E、UG等大型三维CAD/CAM继承软件逐步流行,由于AutoCAD的种种独特优点和我国国情,AutoCAD软件的生命力仍然长久,在现在和将来一段时间将与三维CAD软件相辅相成,继续广泛使用。
下面,根据一段时间的学习和实践经验,介绍AutoCAD同其他图元做相切线和相切圆的体会。
情况1.过椭圆外一点,做直线与椭圆相切。
已知一椭圆,一点P,做直线PP’与椭圆相切。
作法:首先需将“对象捕捉”和“对象追踪”打开,并在“对象追踪”中的“对象捕捉”下“切点”选项前打钩。
然后点选“直线”命令图标,选择点P为直线指定第一点,当移动到椭圆上出现切点图标后点选作为直线下一点,则线段PP’相切与椭圆,切点为P’。
2.过椭圆上一点做切线。
已知一椭圆,F1,F2为椭圆焦点,椭圆上一点P,过点P做直线AB与椭圆相切。
方法一:做∠F1P F2角平分线,将角平分线旋转90°,所得的线段AB即为点P在椭圆上切线。
(证明略)(图1)方法二:以点P为端点做与原椭圆相同的椭圆弧,然后将椭圆弧偏移任意距离,连接点P与偏移点P’’,将PP’’旋转90°,所得的线段PP’即为点P在椭圆上切线(图2)。
方法一同方法二的区别:容易发现,做椭圆弧的方法更快,更简单,但方法二做的切线却是近似切线,参照AutoCAD帮助文件中PELLIPSE系统变量的定义PELLIPSE系统变量控制由ELLIPSE命令创建的椭圆类型。
求曲线(圆、椭圆、抛物线和一般曲线)的切线方程专题讲义-云南民族大学附属中学高三数学复习
求曲线(圆、椭圆、抛物线和一般曲线)的切线方程专题一 考纲解析:曲线的切线方程是近几年高考的重点和难点,一般出现在选择、填空和大题等位置。
常出现的题型包括圆的切线方程,椭圆、双曲线、抛物线以及一般曲线的切线方程。
处理方法有用直线与曲线联立∆判别式为零确定相切情况和利用导数几何意义求曲线的切线方程。
二、题型解析题型一 圆的切线方程方法指导:圆切线问题处理步骤首先看点),(000y x P 是在圆上还是圆外:若过圆上一点且与圆相切的切线方程只要一条;若过圆外一点且与圆相切需结合图形分析,过圆外一点且与圆相切要考虑切线斜率是否存在?如果斜率存在一般设切线方程:)(00x x k y y -=-切通过点到切线距离等于圆半径求出切线斜率,最后可通过图形检验切线斜率的正负性。
典例一 过点M (0,5)、N (3,-4)的圆圆心C 在直线:-2x+3y+3=0.求过点H (-2,4)且与圆C 相切的切线方程【解】:根据圆知识点圆内两条相交弦的交点即为圆心,3354-=--=MN k ,M,N 的中点为 (21,23),直线MN 的中垂线为:)23(3121-=-x y ,设圆心坐标为(a,b) 联立方程⎪⎩⎪⎨⎧-=-=++-)23(31210332a b b a 解得圆心坐标(3,1),故圆C 方程:25)1()3(22=-+-y x 如上图所示,H 点在圆外部,其中一条切线方程显然为:x=-2另外一条存在斜率,设为:)2(4+=-x k y ,圆心C(3,1)到直线的距离51|35|2=++=k k d ,解出,158则方程为:8x-15y+16=0,综述切线方程为:x=-2或8x-15y+16=0. 变式训练:(1)(2010年课标全国)圆心在原点且与直线x+y+2=0相切的圆的方程为【解】设圆的方程为:222r y x =+,根据题意,得22|2|=-=r ,所以圆的方程为:222=+y x(2) (2020.浙江)已知直线1)4(1)0(2222=+-=+>+=y x y x k b kx y 和圆与圆均相切,则k= ,b= .【解】: 如下图所示:满足k>0的直线方程即与122=+y x 圆相切且又与1)4(22=+-y x 圆相切的直线为直线AB ,则设直线AB方程为:)2(-=x k y ,圆心O (0,0)到直线AB的距离11|2|2=+-=k k d ,解得332,33-==b k 进而得到。
椭圆的简单几何性质(讲课)
1.范 围:
(0,b)
从图形上看: a x a, b y b.
从 方程 上看:
x2 a2
1
y2 b2
1
x2
a2
a
x
a;
y2 b2
1
x2 a2
1
y2
b2
b
y
b
故 整个 椭圆 位 于y b, x a所 围成 的矩 形 内.
y
y2 b2
1(a
b
0)
x2 b2
y2 a2
1(a
b
0)
范 围 a x a,b y b b x b,a y a
对称性 顶点坐标 焦点坐标 半轴长
关于x轴、y轴成轴对称;关于原点成中心对称。
(a,0) ,(0,b) (b,0) , (0,a)
复习:
1.椭圆的定义:
到两定点F1、F2的距离之和为常数(大于|F1F2 |)的
动点的轨迹叫做椭圆.
| PF1 | | PF2 | 2a(2a | F1F2 |)
2.椭圆的标准方程是:
当焦点在X轴上时
x2 y2 a2 b2 1(a b 0)
当焦点在Y轴上时
y2 x2 a2 b2 1(a b 0)
顶点:椭圆与它的对称轴
B2 (0,b)
的四个交点,叫做椭圆的
顶点. 长轴、短轴:线段A1A2、 B1B2分别叫做椭圆的长轴
A1
(-a,0) F1
和短轴.
a、b分别叫做椭圆的长半 轴长和短半轴长.
b
a
与椭圆有关的最值问题
与椭圆有关的最值问题圆锥曲线在高考中占很重要的地位,每年必考。
对椭圆、双曲线、抛物线的研究方法基本相同,椭圆为三曲线之首,对椭圆的学习就更为重要了。
而椭圆中的最值问题是比较重要的课题,它主要体现了转化思想及数形结合的应用,涉及到的知识有椭圆定义、标准方程、参数方程、三角函数、二次函数、不等式等内容。
能够考查学生的分析能力、理解能力、知识迁移能力、解决问题的能力等等。
下面介绍几种常见的与椭圆有关的最值问题的解决方法。
1.定义法例1。
P(-2,3),F 2为椭圆1162522=+y x 的右焦点,点M 在椭圆上移动,求︱MP ︱+︱MF 2︱的最大值和最小值。
分析:欲求︱MP ︱+︱MF 2︱的最大值和最小值 可转化为距离差再求。
由此想到椭圆第一定义 ︱MF 2︱=2a-︱MF 1︱, F 1为椭圆的左焦点。
解:︱MP ︱+︱MF 2︱=︱MP ︱+2a-︱MF 1︱连接PF 1延长PF 1交椭圆于点M 1,延长F 1P 交椭圆于点M 2由三角形三边关系知–︱PF 1︱≤︱MP ︱-︱MF 1︱≤︱PF 1︱当且仅当M 与M 122a=10, ︱PF 1︱=2所以(︱MP ︱+︱MF 2︱)max =12, (︱MP ︱+︱MF 2︱)min =8结论1:设椭圆12222=+by a x 的左右焦点分别为F 1、F 2, P(x 0,y 0)为椭圆内一点,M(x,y)为椭圆上任意一点,则︱MP ︱+︱MF 2︱的最大值为2a+︱PF 1︱,最小值为2a –︱PF 1︱。
例2:P(-2,6),F 2为椭圆1162522=+y x 的右焦点,点M 在椭圆上移动,求︱MP ︱+︱MF 2︱的最大值和最小值。
分析:点P 在椭圆外,PF 2交椭圆于M ,此点使︱MP ︱+︱MF 2︱值最小,求最大值方法同例1。
解:︱MP ︱+︱MF 2︱=︱MP ︱+2a-︱MF 1︱连接PF 1并延长交椭圆于点M 1,则M 在M 1处时︱MP ︱-︱MF 1︱取最大值︱PF 1︱。
高考数学一轮讲义:平面解析几何 椭圆
8.5 椭圆[知识梳理] 1.椭圆的定义(1)定义:在平面内到两定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.(2)集合语言:P ={M ||MF 1|+|MF 2|=2a ,且2a >|F 1F 2|},|F 1F 2|=2c ,其中a >c >0,且a ,c 为常数.注:当2a >|F 1F 2|时,轨迹为椭圆;当2a =|F 1F 2|时,轨迹为线段F 1F 2;当2a <|F 1F 2|时,轨迹不存在.2.椭圆的标准方程和几何性质图3.直线与椭圆位置关系的判断直线与椭圆方程联立方程组,消掉y ,得到Ax 2+Bx +C =0的形式(这里的系数A 一定不为0),设其判别式为Δ:(1)Δ>0⇔直线与椭圆相交; (2)Δ=0⇔直线与椭圆相切; (3)Δ<0⇔直线与椭圆相离. 4.弦长公式(1)若直线y =kx +b 与椭圆相交于两点A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=1+1k 2|y 1-y 2|.(2)焦点弦(过焦点的弦):最短的焦点弦为通径长2b 2a ,最长为2a . 5.必记结论(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,P点在短轴端点处;当x=±a时,|OP|有最大值a,P点在长轴端点处.(2)已知过焦点F1的弦AB,则△ABF2的周长为4a.[诊断自测]1.概念思辨(1)平面内与两个定点F1、F2的距离之和等于常数的点的轨迹是椭圆.()(2)方程mx2+ny2=1(m>0,n>0且m≠n)表示的曲线是椭圆.()(3)椭圆上一点P与两焦点F1,F2构成△PF1F2的周长为2a+2c(其中a为椭圆的长半轴长,c为椭圆的半焦距).()(4)x2a2+y2b2=1(a>b>0)与y2a2+x2b2=1(a>b>0)的焦距相同.()答案(1)×(2)√(3)√(4)√2.教材衍化(1)(选修A1-1P35例3)已知椭圆的方程是x2a2+y225=1(a>5),它的两个焦点分别为F1,F2,且F1F2=8,弦AB过点F1,则△ABF2的周长为()A.10 B.20C.241 D.441答案 D解析因为a>5,所以椭圆的焦点在x轴上,所以a2-25=42,解得a=41.由椭圆的定义知△ABF2的周长为4a=441.故选D.(2)(选修A1-1P42A组T6)已知点P是椭圆x25+y24=1上y轴右侧的一点,且以点P及焦点F1,F2为顶点的三角形的面积等于1,则点P的坐标为________.答案 ⎝ ⎛⎭⎪⎫152,1或⎝ ⎛⎭⎪⎫152,-1 解析 设P (x ,y ),由题意知c 2=a 2-b 2=5-4=1,所以c =1,则F 1(-1,0),F 2(1,0),由题意可得点P 到x 轴的距离为1,所以y =±1,把y =±1代入x 25+y 24=1,得x =±152,又x >0,所以x =152,∴P 点坐标为⎝ ⎛⎭⎪⎫152,1或⎝ ⎛⎭⎪⎫152,-1. 3.小题热身(1)(2014·大纲卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1 B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1答案 A解析 由题意及椭圆的定义知4a =43,则a =3,又c a =c 3=33,∴c =1,∴b 2=2,∴C 的方程为x 23+y 22=1,故选A.(2)椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2c .若直线y =3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.答案3-1解析 由已知得直线y =3(x +c )过M ,F 1两点,所以直线MF 1的斜率为3,所以∠MF 1F 2=60°,则∠MF 2F 1=30°,∠F 1MF 2=90°,则MF 1=c ,MF 2=3c ,由点M 在椭圆Γ上知:c +3c =2a ,故e =ca =3-1.题型1 椭圆的定义及应用典例1 已知椭圆x 225+y 216=1上一点P 到椭圆一个焦点F 1的距离为3,则P 到另一个焦点F 2的距离为( )A .2B .3C .5D .7应用椭圆的定义.答案 D解析 根据椭圆的定义|PF 1|+|PF 2|=2a =10,得|PF 2|=7,故选D.[条件探究] 若将典例中的条件改为“F 1,F 2分别为左、右焦点,M 是PF 1的中点,且|OM |=3”,求点P 到椭圆左焦点的距离?解 由M 为PF 1中点,O 为F 1F 2中点,易得|PF 2|=6,再利用椭圆定义易知|PF 1|=4.典例2(2018·漳浦县校级月考)椭圆x 24+y 2=1上的一点P 与两焦点F 1,F 2所构成的三角形称为焦点三角形.(1)求PF 1→·PF 2→的最大值与最小值; (2)设∠F 1PF 2=θ,求证:S △F 1PF 2=tan θ2.(1)利用向量数量积得到目标函数,利用二次函数求最值;(2)利用余弦定理、面积公式证明.解 (1)设P (x ,y ),∴F 1(-3,0),F 2(3,0),则PF 1→·PF 2→=(-3-x ,-y )·(3-x ,-y )=x 2+y 2-3=34x 2-2, ∵x 2∈[0,4],∴34x 2-2∈[-2,1]. ∴PF 1→·PF 2→的最大值为1,最小值为-2. (2)证明:由椭圆的定义可知||PF 1|+|PF 2||=2a , |F 1F 2|=2c ,设∠F 1PF 2=θ, 在△F 1PF 2中,由余弦定理可得: |F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos θ =(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|(1+cos θ),可得4c 2=4a 2-2|PF 1|·|PF 2|(1+cos θ)⇒|PF 1|·|PF 2|=2b21+cos θ,即有△F 1PF 2的面积S =12|PF 1|·|PF 2|sin ∠F 1PF 2=b 2·sin θ1+cos θ=b 2tan θ2=tan θ2.方法技巧椭圆定义的应用技巧1.椭圆定义的应用主要有两个方面:一是判定平面内动点与两定点的轨迹是否为椭圆;二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率等.2.通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题.见典例2.冲关针对训练已知A ⎝ ⎛⎭⎪⎫-12,0,B 是圆⎝ ⎛⎭⎪⎫x -122+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于点P ,则动点P 的轨迹方程为________.答案 x 2+43y 2=1解析 如图,由题意知|P A |=|PB |,|PF |+|BP |=2.所以|P A |+|PF |=2且|P A |+|PF |>|AF |,即动点P 的轨迹是以A ,F 为焦点的椭圆,a =1,c =12,b 2=34.所以动点P 的轨迹方程为x 2+43y 2=1.题型2 椭圆的标准方程及应用典例1(2018·湖南岳阳模拟)在平面直角坐标系xOy 中,椭圆C 的中心为坐标原点,F 1、F 2为它的两个焦点,离心率为22,过F 1的直线l 交椭圆C 于A ,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为________.在未明确焦点的具体位置时,应分情况讨论.答案 x 216+y 28=1或x 28+y 216=1解析 由椭圆的定义及△ABF 2的周长知4a =16,则a =4,又ca =22,所以c =22a =22,所以b 2=a 2-c 2=16-8=8.当焦点在x 轴上时,椭圆C 的方程为x 216+y 28=1;当焦点在y 轴上时,椭圆C 的方程为y 216+x 28=1.综上可知,椭圆C 的方程为x 216+y 28=1或x 28+y 216=1.典例2(2017·江西模拟)椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2为椭圆的左、右焦点,且焦距为23,O 为坐标原点,点P 为椭圆上一点,|OP |=24a ,且|PF 1|,|F 1F 2|,|PF 2|成等比数列,求椭圆的方程.用待定系数法,根据已知列出方程组.解 设P (x ,y ),则|OP |2=x 2+y 2=a28,由椭圆定义,|PF 1|+|PF 2|=2a ,|PF 1|2+2|PF 1|·|PF 2|+|PF 2|2=4a 2, 又∵|PF 1|,|F 1F 2|,|PF 2|成等比数列, ∴|PF 1|·|PF 2|=|F 1F 2|2=4c 2, |PF 1|2+|PF 2|2+8c 2=4a 2,∴(x +c )2+y 2+(x -c )2+y 2+8c 2=4a 2,整理得x 2+y 2+5c 2=2a 2,即a 28+5c 2=2a 2,整理得c 2a 2=38,又∵2c =23,∴c =3, ∴a 2=8,b 2=5.85方法技巧求椭圆标准方程的步骤1.判断椭圆焦点位置. 2.设出椭圆方程.3.根据已知条件,建立方程(组)求待定系数,注意a 2=b 2+c 2的应用.4.根据焦点写出椭圆方程.见典例1,2.提醒:当椭圆焦点位置不明确时,可设为x 2m +y 2n =1(m >0,n >0,m ≠n ),也可设为Ax 2+By 2=1(A >0,B >0,且A ≠B ).可简记为“先定型,再定量”.冲关针对训练已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2.P 为椭圆上的一点,PF 1与y 轴相交于M ⎝ ⎛⎭⎪⎫0,14,且M 为PF 1的中点,S △PF 1F 2=32.求椭圆的方程.解 设P (x 0,y 0)∵M 为PF 1的中点,O 为F 1F 2的中点. ∴x 0=c ,y 0=12.PF 2∥y 轴,△PF 1F 2是∠PF 2F 1=90°的直角三角形,由题意得,⎩⎪⎨⎪⎧c 2a 2+14b 2=1,12·2c ·12=32,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.4题型3 椭圆的几何性质典例 F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆上存在点P ,使∠F 1PF 2=90°,则椭圆的离心率的取值范围是________.由∠F 1PF 2=90°,求出x 20=a 2(c 2-b 2)c 2后,利用x 20∈[0,a 2]求解.答案 ⎣⎢⎡⎭⎪⎫22,1解析 设P (x 0,y 0)为椭圆上一点,则x 20a 2+y 20b 2=1.PF 1→=(-c -x 0,-y 0),PF 2→=(c -x 0,-y 0), 若∠F 1PF 2=90°,则PF 1→·PF 2→=x 20+y 20-c 2=0.∴x 20+b 2⎝ ⎛⎭⎪⎫1-x 20a 2=c 2,∴x 20=a 2(c 2-b 2)c 2. ∵0≤x 20≤a 2,∴0≤c 2-b 2c 2≤1.∴b 2≤c 2,∴a 2≤2c 2,∴22≤e <1.[条件探究] 将典例2中条件“∠F 1PF 2=90°”改为“∠F 1PF 2为钝角”,求离心率的取值范围.解椭圆上存在点P 使∠F 1PF 2为钝角⇔以原点O 为圆心,以c 为半径的圆与椭圆有四个不同的交点⇔b <c ,如图,由b <c ,得a 2-c 2<c 2,即a 2<2c 2,解得e =c a >22,又0<e <1,故椭圆C 的离心率的取值范围是⎝ ⎛⎭⎪⎫22,1. 方法技巧求解椭圆离心率(或其范围)常用的方法1.若给定椭圆的方程,则根据椭圆方程确定a 2,b 2,进而求出a ,c 的值,从而利用公式e =ca 直接求解.2.若椭圆的方程未知,则根据条件及几何图形建立关于a ,b ,c 的齐次等式(或不等式),化为关于a ,c 的齐次方程(或不等式),进而化为关于e 的方程(或不等式)进行求解.见典例.冲关针对训练(2015·重庆高考)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程; (2)若|PF 1|=|PQ |,求椭圆的离心率e .解 (1)由椭圆的定义,有2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2.设椭圆的半焦距为c ,由已知PF 1⊥PF 2, 得2c =|F 1F 2| =|PF 1|2+|PF 2|2 =(2+2)2+(2-2)2=23,即c =3,从而b =a 2-c 2=1. 故所求椭圆的标准方程为x 24+y 2=1.(2)连接QF 1,由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a .从而由|PF 1|=|PQ |=|PF 2|+|QF 2|,有|QF 1|=4a -2|PF 1|.又由PF 1⊥PQ ,|PF 1|=|PQ |,知|QF 1|=2|PF 1|,因此,4a -2|PF 1|=2|PF 1|.|PF 1|=2(2-2)a ,从而|PF 2|=2a -|PF 1|=2a -2(2-2)a =2(2-1)a .由PF 1⊥PF 2,知|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2, 因此e =c a =|PF 1|2+|PF 2|22a = (2-2)2+(2-1)2=9-62=6- 3.题型4 直线与椭圆的综合问题角度1 利用直线与椭圆的位置关系研究椭圆的标准方程及性质典例(2014·全国卷Ⅱ)设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .本题(2)用代入法列出方程,用方程组法求解.解 (1)根据c =a 2-b 2及题设知M ⎝ ⎛⎭⎪⎫c ,b 2a , 2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12或ca =-2(舍去).故C 的离心率为12.(2)由题意,得原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a =4,即b 2=4a .①由|MN |=5|F 1N |得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎨⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a =1.解得a =7,b 2=4a =28,故a =7,b =27.角度2 利用直线与椭圆的位置关系研究直线及弦的问题 典例 (2014·全国卷Ⅰ)已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.直线与椭圆构成方程组,用设而不求的方法求弦长,再求△OPQ 的面积.解 (1)设F (c,0),由条件知,2c =233,得c = 3. 又c a =32,所以a =2,b 2=a 2-c 2=1.故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2).将y =kx -2代入x 24+y 2=1得(1+4k 2)x 2-16kx +12=0.当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-34k 2+1.从而|PQ |=k 2+1|x 1-x 2|=4k 2+1·4k 2-34k 2+1.又点O 到直线PQ 的距离d =2k 2+1,所以△OPQ 的面积 S △OPQ =12d ·|PQ |=44k 2-34k 2+1.设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t.因为t +4t ≥4,当且仅当t =2,即k =±72时等号成立,且满足Δ>0, 所以,当△OPQ 的面积最大时,l 的方程为y =72x -2或y =-72x -2.方法技巧直线与椭圆相交时有关弦问题的处理方法1.合理消元,消元时可以选择消去y ,也可以消去x .见角度1典例.2.利用弦长公式、点到直线的距离公式等将所求量表示出来. 3.构造基本不等式或利用函数知识求最值.见角度2典例. 4.涉及弦中点的问题常用“点差法”解决.冲关针对训练(2015·陕西高考)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的半焦距为c ,原点O 到经过两点(c,0),(0,b )的直线的距离为12c .(1)求椭圆E 的离心率;(2)如图,AB 是圆M :(x +2)2+(y -1)2=52的一条直径,若椭圆E经过A ,B 两点,求椭圆E 的方程.解 (1)过点(c,0),(0,b )的直线方程为bx +cy -bc =0,则原点O 到该直线的距离d =bc b 2+c2=bca ,由d =12c ,得a =2b =2a 2-c 2,解得离心率c a =32. (2)由(1)知,椭圆E 的方程为 x 2+4y 2=4b 2.①依题意,圆心M (-2,1)是线段AB 的中点,且|AB |=10. 易知,AB 与x 轴不垂直,设其方程为y =k (x +2)+1,代入①得 (1+4k 2)x 2+8k (2k +1)x +4(2k +1)2-4b 2=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-8k (2k +1)1+4k 2,x 1x 2=4(2k +1)2-4b 21+4k 2.由x 1+x 2=-4,得-8k (2k +1)1+4k 2=-4,解得k =12. 从而x 1x 2=8-2b 2. 于是|AB |=1+⎝ ⎛⎭⎪⎫122|x 1-x 2| =52(x 1+x 2)2-4x 1x 2=10(b 2-2).由|AB |=10,得10(b 2-2)=10,解得b 2=3.故椭圆E 的方程为x 212+y 23=1.1.(2017·浙江高考)椭圆x 29+y 24=1的离心率是( ) A.133 B.53 C.23 D.59答案 B解析 ∵椭圆方程为x 29+y 24=1,∴a =3,c =a 2-b 2=9-4=5.∴e =c a =53.故选B.2.(2017·河北衡水中学二调)设椭圆x 216+y 212=1的左、右焦点分别为F 1,F 2,点P 在椭圆上,且满足PF 1→·PF 2→=9,则|PF 1|·|PF 2|的值为( )A .8B .10C .12D .15 答案 D解析 由椭圆方程x 216+y 212=1,可得c 2=4,所以|F 1F 2|=2c =4,而F 1F 2→=PF 2→-PF 1→,所以|F 1F 2→|=|PF 2→-PF 1→|,两边同时平方,得|F 1F 2→|2=|PF 1→|2-2PF 1→·PF 2→+|PF 2→|2,所以|PF 1→|2+|PF 2→|2=|F 1F 2→|2+2PF 1→·PF 2→=16+18=34,根据椭圆定义得|PF 1|+|PF 2|=2a =8,所以34+2|PF 1||PF 2|=64,所以|PF 1|·|PF 2|=15.故选D.3.(2018·武汉调研)已知直线MN 过椭圆x 22+y 2=1的右焦点F ,与椭圆交于M ,N 两点.直线PQ 过原点O 且与直线MN 平行,直线PQ 与椭圆交于P ,Q 两点,则|PQ |2|MN |=________.答案 2 2解析 解法一:由题意知,直线MN 的斜率不为0,设直线MN :x =my +1,则直线PQ :x =my .设M (x 1,y 1),N (x 2,y 2),P (x 3,y 3),Q (x 4,y 4).⎩⎨⎧x =my +1,x 22+y 2=1⇒(m 2+2)y 2+2my -1=0⇒y 1+y 2=-2mm 2+2,y 1y 2=-1m 2+2.∴|MN |=1+m 2|y 1-y 2|=22·m 2+1m 2+2.⎩⎨⎧x =my ,x 22+y 2=1⇒(m 2+2)y 2-2=0⇒y 3+y 4=0,y 3y 4=-2m 2+2.∴|PQ |=1+m 2|y 3-y 4|=2 2m 2+1m 2+2.故|PQ |2|MN |=2 2. 解法二:取特殊位置,当直线MN 垂直于x 轴时,易得|MN |=2b 2a =2,|PQ |=2b =2,则|PQ |2|MN |=2 2.4.(2015·安徽高考)设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足|BM |=2|MA |,直线OM 的斜率为510.(1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程.解 (1)由题设条件知,点M 的坐标为⎝ ⎛⎭⎪⎫23a ,13b ,又k OM =510,从而b 2a =510,进而得a =5b ,c =a 2-b 2=2b ,故e =c a =255.(2)由题设条件和(1)的计算结果可得,直线AB 的方程为x 5b +yb=1,点N 的坐标为⎝ ⎛⎭⎪⎫52b ,-12b .设点N 关于直线AB 的对称点S 的坐标为⎝ ⎛⎭⎪⎫x 1,72,则线段NS 的中点T 的坐标为⎝ ⎛⎭⎪⎫54b +x 12,-14b +74.又点T 在直线AB 上,且k NS ·k AB =-1,从而有⎩⎪⎪⎨⎪⎪⎧5b 4+x 125b+-14b +74b =1,72+12b x 1-52b=5,解得b =3.所以a =35, 故椭圆E 的方程为x 245+y 29=1.[重点保分 两级优选练]A 级一、选择题1.(2018·江西五市八校模拟)已知正数m 是2和8的等比中项,则圆锥曲线x 2+y2m =1的焦点坐标为( )A .(±3,0)B .(0,±3)C .(±3,0)或(±5,0)D .(0,±3)或(±5,0)答案 B解析 因为正数m 是2和8的等比中项,所以m 2=16,则m =4,所以圆锥曲线x 2+y 2m =1即为椭圆x 2+y 24=1,易知其焦点坐标为(0,±3),故选B.2.(2017·湖北荆门一模)已知θ是△ABC 的一个内角,且sin θ+cos θ=34,则方程x 2sin θ-y 2cos θ=1表示( )A .焦点在x 轴上的双曲线B .焦点在y 轴上的双曲线C .焦点在x 轴上的椭圆D .焦点在y 轴上的椭圆 答案 D解析 因为(sin θ+cos θ)2=1+2sin θcos θ=916,所以sin θcos θ=-732<0,结合θ∈(0,π),知sin θ>0,cos θ<0,又sin θ+cos θ=34>0,所以sin θ>-cos θ>0,故1-cos θ>1sin θ>0,因为x 2sin θ-y 2cos θ=1可化为y 2-1cos θ+x 21sin θ=1,所以方程x 2sin θ-y 2cos θ=1表示焦点在y 轴上的椭圆.故选D.3.(2018·湖北八校联考)设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( )A.514B.513C.49D.59答案 B解析 由题意知a =3,b =5,c =2.设线段PF 1的中点为M ,则有OM ∥PF 2,∵OM ⊥F 1F 2,∴PF 2⊥F 1F 2,∴|PF 2|=b 2a =53.又∵|PF 1|+|PF 2|=2a =6,∴|PF 1|=2a -|PF 2|=133,∴|PF 2||PF 1|=53×313=513,故选B.4.(2017·全国卷Ⅲ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( )A.63B.33C.23D.13答案 A解析 由题意知以A 1A 2为直径的圆的圆心为(0,0),半径为a . 又直线bx -ay +2ab =0与圆相切, ∴圆心到直线的距离d =2ab a 2+b2=a ,解得a =3b , ∴b a =13,∴e =ca =a 2-b 2a =1-⎝ ⎛⎭⎪⎫b a 2= 1-⎝ ⎛⎭⎪⎫132=63.故选A. 5.已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n 2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),若c 是a ,m 的等比中项,n 2是2m 2与c 2的等差中项,则椭圆的离心率为( )A.32B.22C.12D.14答案 C解析 因为椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n 2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),所以c 2=a 2-b 2=m 2+n 2.因为c 是a ,m 的等比中项,n 2是2m 2与c 2的等差中项,所以c 2=am,2n 2=2m 2+c 2,所以m 2=c 4a 2,n 2=c 4a 2+c 22,所以2c 4a 2+c 22=c 2,化为c 2a 2=14,所以e =c a =12.故选C.6.(2017·荔湾区期末)某宇宙飞船运行的轨道是以地球中心为一焦点的椭圆,测得近地点距地面m 千米,远地点距地面n 千米,地球半径为r 千米,则该飞船运行轨道的短轴长为( )A .2(m +r )(n +r )千米 B.(m +r )(n +r )千米 C .2mn 千米 D .mn 千米答案 A解析 ∵某宇宙飞船的运行轨道是以地球的中心F 2为一个焦点的椭圆,设长半轴长为a ,短半轴长为b ,半焦距为c , 则近地点A 距地心为a -c ,远地点B 距地心为a +c . ∴a -c =m +r ,a +c =n +r , ∴a =m +n 2+r ,c =n -m 2.又∵b 2=a 2-c 2=⎝ ⎛⎭⎪⎫m +n 2+r2-⎝ ⎛⎭⎪⎫n -m 22=mn +(m +n )r +r 2=(m +r )(n +r ).∴b =(m +r )(n +r ),∴短轴长为2b =2(m +r )(n +r )千米,故选A.7.(2017·九江期末)如图,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,A 和B 是以O 为圆心,以|OF 1|为半径的圆与该椭圆左半部分的两个交点,且△F 2AB 是等边三角形,则该椭圆的离心率为( )A.32B.12C.3-1D.22答案 C解析 连接AF 1,∵F 1F 2是圆O 的直径,∴∠F 1AF 2=90°, 即F 1A ⊥AF 2,又∵△F 2AB 是等边三角形,F 1F 2⊥AB , ∴∠AF 2F 1=12∠AF 2B =30°, 因此,在Rt △F 1AF 2中,|F 1F 2|=2c , |F 1A |=12|F 1F 2|=c ,|F 2A |=32|F 1F 2|=3c .根据椭圆的定义,得2a =|F 1A |+|F 2A |=(1+3)c ,解得a =1+32c ,∴椭圆的离心率为e =ca =3-1.故选C.8.(2018·郑州质检)椭圆x 25+y 24=1的左焦点为F ,直线x =a 与椭圆相交于点M ,N ,当△FMN 的周长最大时,△FMN 的面积是( )A.55B.655C.855D.455答案 C解析 设椭圆的右焦点为E ,由椭圆的定义知△FMN 的周长为L =|MN |+|MF |+|NF |=|MN |+(25-|ME |)+(25-|NE |).因为|ME |+|NE |≥|MN |,所以|MN |-|ME |-|NE |≤0,当直线MN 过点E 时取等号,所以L =45+|MN |-|ME |-|NE |≤45,即直线x =a 过椭圆的右焦点E 时,△FMN 的周长最大,此时S △FMN =12×|MN |×|EF |=12×2×45×2=855,故选C.9.如图所示,内外两个椭圆的离心率相同,从外层椭圆顶点向内层椭圆引切线AC ,BD ,设内层椭圆方程为x 2a 2+y 2b 2=1(a >b >0),若直线AC 与BD 的斜率之积为-14,则椭圆的离心率为( )A.12B.22 C.32 D.34答案 C解析 设外层椭圆方程为x 2(ma )2+y 2(mb )2=1(a >b >0,m >1),则切线AC 的方程为y =k 1(x -ma ),切线BD 的方程为y =k 2x +mb ,则由⎩⎪⎨⎪⎧y =k 1(x -ma ),(bx )2+(ay )2=a 2b 2,消去y ,得(b 2+a 2k 21)x 2-2ma 3k 21x +m 2a 4k 21-a 2b 2=0.因为Δ=(2ma 3k 21)2-4(b 2+a 2k 21)(m 2a 4k 21-a 2b 2)=0,整理,得k 21=b 2a 2·1m 2-1. 由⎩⎪⎨⎪⎧y =k 2x +mb ,(bx )2+(ay )2=a 2b 2,消去y ,得(b 2+a 2k 22)x 2+2a 2mbk 2x +a 2m 2b 2-a 2b 2=0,因为Δ2=(2a 2mbk 2)2-4×(b 2+a 2k 22)(a 2m 2b 2-a 2b 2)=0,整理,得k 22=b 2a 2·(m 2-1).所以k 21·k 22=b 4a 4.因为k 1k 2=-14,所以b 2a 2=14,e 2=c 2a 2=a 2-b 2a 2=34,所以e =32,故选C.10.(2018·永康市模拟)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)和圆x 2+y 2=b 2,若椭圆C 上存在点P ,使得过点P 引圆O 的两条切线,切点分别为A ,B ,满足∠APB =60°,则椭圆的离心率e 的取值范围是( )A .0<e ≤32 B.12≤e <1 C.32<e <1 D.32≤e <1答案 D解析 由椭圆C :x 2a 2+y 2b 2=1(a >b >0)焦点在x 轴上, 连接OA ,OB ,OP ,依题意,O ,P ,A ,B 四点共圆, ∵∠APB =60°,∠APO =∠BPO =30°, 在直角三角形OAP 中,∠AOP =60°, ∴cos ∠AOP =b |OP |=12,∴|OP |=b12=2b ,∴b <|OP |≤a ,∴2b ≤a ,∴4b 2≤a 2, 由a 2=b 2+c 2,即4(a 2-c 2)≤a 2,∴3a 2≤4c 2,即c 2a 2≥34,∴e ≥32,又0<e <1, ∴32≤e <1,∴椭圆C 的离心率的取值范围是32≤e <1.故选D. 二、填空题11.(2017·湖南东部六校联考)设P ,Q 分别是圆x 2+(y -1)2=3和椭圆x 24+y 2=1上的点,则P ,Q 两点间的最大距离是________.答案 733解析 依据圆的性质可知,P ,Q 两点间的最大距离可以转化为圆心到椭圆上点的距离的最大值加上圆的半径3,设Q (x ,y ),则圆心(0,1)到椭圆上点的距离为d =x 2+(y -1)2=-3y 2-2y +5=-3⎝ ⎛⎭⎪⎫y +132+163,∵-1≤y ≤1,∴当y =-13时,d 取最大值433,所以P ,Q 两点间的最大距离为d max +3=733.12.(2018·广州二测)已知中心在坐标原点的椭圆C 的右焦点为F (1,0),点F 关于直线y =12x 的对称点在椭圆C 上,则椭圆C 的方程为________.答案 5x 29+5y 24=1解析 设F (1,0)关于直线y =12x 的对称点为(x ,y ),则⎩⎨⎧0+y 2=12×1+x 2,y -0x -1×12=-1,解得⎩⎪⎨⎪⎧x =35,y =45,由于椭圆的两个焦点为(-1,0),(1,0),所以2a =⎝ ⎛⎭⎪⎫35-12+⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫35+12+⎝ ⎛⎭⎪⎫452=655,a =355,又c =1,所以b 2=a 2-c 2=95-1=45,所以椭圆C 的方程为x 295+y 245=1,即5x 29+5y 24=1.13.(2018·江西五市联考)已知椭圆x 2a 2+y 2b 2=1(a >b >0),A ,B 为椭圆上的两点,线段AB 的垂直平分线交x 轴于点M ⎝ ⎛⎭⎪⎫a 5,0,则椭圆的离心率e 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫55,1 解析 设A (x 1,y 1),B (x 2,y 2),x 1≠x 2,则⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫x 1-a 52+y 21=⎝ ⎛⎭⎪⎫x 2-a 52+y 22,x 21a 2+y21b 2=1,x 22a 2+y 22b2=1,即⎩⎪⎨⎪⎧2a 5(x 1-x 2)=x 21-x 22+y 21-y 22,y 21=b 2-b2a 2x 21,y 22=b 2-b 2a2x 22,所以2a 5(x 1-x 2)=a 2-b 2a 2(x 21-x 22),所以2a 35(a 2-b 2)=x 1+x 2.又-a ≤x 1≤a ,-a ≤x 2≤a ,x 1≠x 2,所以-2a <x 1+x 2<2a ,则2a 35(a 2-b 2)<2a ,即b 2a 2<45,所以e 2>15.又0<e <1,所以55<e <1. 14.(2016·江苏高考)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.答案 63解析 由已知条件易得B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,F (c,0),∴BF →=⎝ ⎛⎭⎪⎫c +32a ,-b 2,CF →=⎝⎛⎭⎪⎫c -32a ,-b 2,由∠BFC =90°,可得BF →·CF→=0, 所以⎝⎛⎭⎪⎫c -32a ⎝ ⎛⎭⎪⎫c +32a +⎝ ⎛⎭⎪⎫-b 22=0,c 2-34a 2+14b 2=0,即4c 2-3a 2+(a 2-c 2)=0,亦即3c 2=2a 2, 所以c 2a 2=23,则e =c a =63.B 级三、解答题15.(2018·安徽合肥三校联考)已知椭圆的中心在原点,焦点在x 轴上,离心率为22,且椭圆经过圆C :x 2+y 2-4x +22y =0的圆心C .(1)求椭圆的方程;(2)设直线l 过椭圆的焦点且与圆C 相切,求直线l 的方程. 解 (1)圆C 方程化为(x -2)2+(y +2)2=6, 圆心C (2,-2),半径r = 6. 设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),则⎩⎨⎧4a 2+2b 2=1,1-⎝ ⎛⎭⎪⎫b a 2=⎝ ⎛⎭⎪⎫222,所以⎩⎪⎨⎪⎧a 2=8,b 2=4.所以所求的椭圆方程是x 28+y 24=1.(2)由(1)得椭圆的左、右焦点分别是F 1(-2,0),F 2 (2,0), |F 2C |=(2-2)2+(0+2)2=2<r = 6.F 2在圆C 内,故过F 2没有圆C 的切线,所以直线l 过焦点F 1. 设l 的方程为y =k (x +2),即kx -y +2k =0, 点C (2,-2)到直线l 的距离为d =|2k +2+2k |1+k 2, 由d =6,得|2k +2+2k |1+k2= 6. 化简,得5k 2+42k -2=0,解得k =25或k =- 2.故l 的方程为2x -5y +22=0或2x +y +22=0.16.(2018·陕西咸阳模拟)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点P (2,1),且离心率e =32.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点.求△P AB 面积的最大值.解 (1)∵e 2=c 2a 2=a 2-b 2a 2=34,∴a 2=4b 2.又椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点P (2,1), ∴4a 2+1b 2=1.∴a 2=8,b 2=2. 故所求椭圆方程为x 28+y 22=1.(2)设l 的方程为y =12x +m ,点A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =12x +m ,x 28+y 22=1,整理得x 2+2mx +2m 2-4=0.∵Δ=4m 2-8m 2+16>0,解得|m |<2. ∴x 1+x 2=-2m ,x 1x 2=2m 2-4. 则|AB |=1+14×(x 1+x 2)2-4x 1x 2=5(4-m 2).点P 到直线l 的距离d =|m |1+14=2|m |5. ∴S△P AB=12d |AB |=12×2|m |5×5(4-m 2)=m 2(4-m 2)≤m 2+4-m 22=2.而且仅当m 2=2,即m =±2时取得最大值. ∴△P AB 面积的最大值为2.17.(2018·兰州模拟)已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶点为A ,左焦点为F 1(-2,0),点B (2,2)在椭圆C 上,直线y =kx (k ≠0)与椭圆C 交于P ,Q 两点,直线AP ,AQ 分别与y 轴交于点M ,N .(1)求椭圆C 的方程;(2)以MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.解 (1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0), ∵椭圆的左焦点为F 1(-2,0),∴a 2-b 2=4. ∵点B (2,2)在椭圆C 上,∴4a 2+2b 2=1, 解得a 2=8,b 2=4, ∴椭圆C 的方程为x 28+y 24=1.(2)依题意点A 的坐标为(-22,0),设P (x 0,y 0)(不妨设x 0>0),则Q (-x 0,-y 0),由⎩⎨⎧y =kx ,x 28+y 24=1,得x 0=221+2k 2,y 0=22k1+2k2, ∴直线AP 的方程为y =k1+1+2k 2(x +22), 直线AQ 的方程为y =k1-1+2k2(x +22), ∴M ⎝ ⎛⎭⎪⎪⎫0,22k 1+1+2k 2,N ⎝ ⎛⎭⎪⎪⎫0,22k 1-1+2k 2, ∴|MN |=⎪⎪⎪⎪⎪⎪⎪⎪22k 1+1+2k2-22k 1-1+2k 2=22(1+2k 2)|k |. 设MN 的中点为E ,则点E 的坐标为⎝⎛⎭⎪⎫0,-2k , 则以MN 为直径的圆的方程为x 2+⎝⎛⎭⎪⎫y +2k 2=2(1+2k 2)k 2,即x 2+y 2+22k y =4, 令y =0得x =2或x =-2,即以MN 为直径的圆经过两定点P 1(-2,0),P 2(2,0).18.(2018·湖南十校联考)如图,设点A ,B 的坐标分别为(-3,0),(3,0),直线AP ,BP 相交于点P ,且它们的斜率之积为-23.(1)求点P 的轨迹方程;(2)设点P 的轨迹为C ,点M ,N 是轨迹C 上不同于A ,B 的两点,且满足AP ∥OM ,BP ∥ON ,求证:△MON 的面积为定值.解 (1)设点P 的坐标为(x ,y ),由题意得,k AP ·k BP =y x +3·y x -3=-23(x ≠±3), 化简得,点P 的轨迹方程为x 23+y 22=1(x ≠±3).(2)证明:由题意知,M ,N 是椭圆C 上不同于A ,B 的两点,且AP ∥OM ,BP ∥ON ,则直线AP ,BP 的斜率必存在且不为0.因为AP ∥OM ,BP ∥ON ,所以k OM ·k ON =k AP ·k BP =-23.设直线MN 的方程为x =my +t ,代入椭圆方程x 23+y 22=1,得(3+2m 2)y 2+4mty +2t 2-6=0,①设M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1,y 2是方程①的两根,所以y 1+y 2=-4mt 3+2m 2,y 2y 2=2t 2-63+2m 2. 又k OM ·k ON =y 1y 2x 1x 2=y 1y 2m 2y 1y 2+mt (y 1+y 2)+t 2=2t 2-63t 2-6m 2, 所以2t 2-63t 2-6m 2=-23,即2t 2=2m 2+3. 又S △MON =12|t ||y 1-y 2|=12·|t |-24t 2+48m 2+723+2m 2, 所以S △MON =26t 24t 2=62,即△MON 的面积为定值62.。
椭圆的焦点与相切直线距离的关系
椭圆的焦点与相切直线距离的关系首先,让我们来回顾一下椭圆的定义。
椭圆是平面上到两个给定点(焦点)的距离之和等于常数的点的集合。
这个常数称为椭圆的长轴长度。
椭圆还有一个重要的性质是,从椭圆上的任意一点到两个焦点的距离之和是一个常数。
这个性质决定了椭圆的形状和特点。
现在让我们来考虑椭圆上的一条切线。
我们知道,椭圆上的切线与椭圆的长轴和短轴之间的夹角成直角。
这意味着,椭圆上的切线与长轴和短轴的交点处的切线斜率的乘积等于-1。
这是切线的一个重要性质。
接下来,我们来研究椭圆的焦点与相切直线的距离。
假设椭圆的焦点为F1和F2,相切直线为l。
我们可以证明,椭圆的焦点与相切直线的距离等于焦点到切点的距离。
这是一个非常有趣的结论,它揭示了椭圆的几何特性和焦点的重要作用。
为了证明这个结论,我们可以利用椭圆的性质和切线的性质。
首先,我们知道椭圆上的切线与椭圆的长轴和短轴之间的夹角成直角。
这意味着,切线的斜率可以表示为长轴和短轴的比值。
然后,我们可以利用椭圆的焦点与切线斜率的乘积等于-1的性质,求出切线的斜率。
接下来,我们可以利用切线的斜率和椭圆的焦点坐标,求出切线的方程。
最后,我们可以利用点到直线的距离公式,求出焦点到切线的距离。
通过以上的推导,我们可以得出结论,椭圆的焦点与相切直线的距离等于焦点到切点的距离。
这个结论揭示了椭圆的几何特性和焦点的重要作用,它为我们理解椭圆的性质和特点提供了重要的线索。
总之,椭圆的焦点与相切直线的距离的关系是一个非常有趣和重要的问题。
通过对椭圆的性质和切线的性质进行分析和推导,我们可以得出结论,椭圆的焦点与相切直线的距离等于焦点到切点的距离。
这个结论揭示了椭圆的几何特性和焦点的重要作用,为我们理解椭圆提供了重要的线索。
在实际应用中,这个结论也具有重要的意义,可以帮助我们解决许多与椭圆相关的问题。
因此,椭圆的焦点与相切直线的距离的关系是一个值得深入研究和探讨的问题。
圆锥曲线常用知识归类
圆锥曲线常用知识归类1.圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。
若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。
圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。
2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+by a x (0a b >>)⇔{cos sin x a y b ϕϕ==(参数方程,其中ϕ为参数),焦点在y 轴上时2222bx a y +=1(0a b >>)。
方程22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。
(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222bx a y -=1(0,0a b >>)。
方程22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。
(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。
直线和椭圆相切的充要条件
直线和椭圆相切的充要条件是直线与椭圆的标准方程相等,即直线上的任意一点都在椭圆上。
对于标准椭圆的标准方程为:
a2x2+b2y2=1
对于直线的标准方程为:y=k x+b*
当直线与椭圆相切,即直线上的任意一点都在椭圆上,就需要满足以下充要条件:
将直线的标准方程带入椭圆的标准方程中,得到$\frac{x^2}{a^2}+\frac{(kx+b)^2}
{b^2}=1$,即$\frac{x^2}{a^2}+\frac{k^2x^2+2kbx+b^2}{b^2}=1$,这就是直线和椭
圆相切的充要条件。
另外还可以看出直线的斜率 k 与椭圆的长轴与短轴比值 a/b 是相等的。
需要注意的是,如果椭圆不是标准椭圆,这个充要条件就需要对椭圆进行齐次变换,将其变为标准椭圆,再按照上述方法求解。