第3章 土的抗剪强度与地基承载力

合集下载

土的抗剪强度和地基承载力

土的抗剪强度和地基承载力

抗剪强度进行比较: 通过土体中一点有无数的截面,当所有截面上都满
足τ< ,f 该点就处于稳定状态;当所有截面之中有且只有一个截面上
的τ =
时,该点处于极限平衡状态。
f
根据莫尔应力圆与抗剪强度曲线的关系可以判断土中某点M是否处于
极限平衡状态
从理论上讲该点 早已破坏,因而 这种应力状态是
不会存在
不会发生剪 切破坏
③上下盒的错动,剪切过程中试样剪切面积逐渐减小, 剪切面上的剪应力分布不均匀。
4.2.2 三轴剪切试验
三轴试验是根据摩尔库仑破坏准则测定土的黏聚力c 和 内摩擦
角。常规的三轴试验是取三个性质相同的圆柱体试件,分别先在
其四周施加不同的围压(即小主应力),随后逐渐增大大主应力直 到破坏为止
三轴压缩试验原理是根据莫尔――库伦强度理论 得出的。
c
O
3
1 1f 1
三、摩尔-库仑强度理论
3. 破坏判断方法
判别对象:土体微小单元(一点)
1= 常数:
1,3
x
z 2
x
z 2
2
4
2 xz
根据应力状态计算出 大小主应力σ1、σ3
判断破坏可能性
σ3>σ3f 弹性平衡状态
由σ1计算σ3f 比较σ3与σ3f
σ3=σ3f 极限平衡状态 σ3<σ3f 破坏状态
莫尔应力圆描 述土中某点的
尔应力圆描述
2
O 3 1/2(1 +3 ) 1
3
1
莫尔圆可以表示土体中一点的应力状态, 莫尔圆圆周上各点的坐标就表示该点在相 应平面上的正应力和剪应力。
4.1.3 土的极限平衡条件
土体受荷后,任意截面mn上将同时产生法向应力与剪应力,对 与

土的抗剪强度和地基承载力

土的抗剪强度和地基承载力

3
6 土的抗剪强度和地基承载力
试验结果
f : 土的抗剪强度 tg:摩擦强度-正比于压力
c: 粘聚强度
c O


库仑公式
f c tan
抗剪强度指标
无粘性土 c = 0
c: 粘聚力 :内摩擦角
4
6 土的抗剪强度和地基承载力
2. 应力状态与莫尔圆(平面问题)
平衡方程:
第 六 章
土的抗剪强度和地基承载力
§6 土的抗剪强度和地基承载力
§6.1 土的抗剪强度和极限平衡条件
§6.2 抗剪强度指标的确定
§6.3 无粘性土的抗剪强度
§6.4 土的抗剪强度的影响因素
§6.5 地基的临塑荷载与塑性荷载
Байду номын сангаас
§6.6 地基的极限荷载
2
6 土的抗剪强度和地基承载力
1、直剪试验
试验方法 施加 σ(=P/A) 施加 S 量测 (=T/A)
(2) 固结快剪
施加正应力-充分固结
在3-5分钟内剪切破坏
通过控制剪切速率 来近似模拟排水条 件
(3) 快剪
施加正应力后
立即剪切3-5分钟内剪切破坏
12
6 土的抗剪强度和地基承载力
一、直剪试验
☺优点
设备简单,操作方便 结果便于整理
☹缺点
试样应力状态复杂 应变不均匀 不易控制排水条件 剪切面固定

5
6 土的抗剪强度和地基承载力
2. 应力状态与莫尔圆(平面问题)
α为截面与σ1作用面的夹角,在莫尔 圆上按逆时针方向旋转2倍α
1 ( ), 0 3 圆心: 2 1 1 半径: r ( 1 3 ) 2

土力学地基承载力

土力学地基承载力
pcr
(d c ctg ) d ctg 2
塑性区开展深度在 某一范围内所对应 的荷载为界限荷载
(c ctg d b / 4) p1 / 4 d 中心荷载 ctg / 2
p1/ 3
(c ctg d b / 3) d ctg / 2
b.计算内摩擦角和粘聚力的 统计修正系数ψφ 、ψc
1.704 4.678 1 2 n n 1.704 4.678 c 1 2 c n n
c.计算内摩擦角和粘聚力的 标准值
k ck c c
说明:《规范》规定地基承载力特征值还可以由载荷试验
或其它原位测试、并结合工程经验等方法综合确定
2.确定地基承载力特征值
当e≤0.033b,根据土的抗剪 强度指标确定地基承载力
f a M bb M d m d M c ck
fa ——土的抗剪强度指标确定的地基承载力特征值 Mb、Md、Mc ——承载力系数(可根据k查表得到)
——地基土的重度,地下水位以下取浮重度
d——基础埋置深度(m),从室外地面标高计算 m——基础底面以上土的加权重度,地下水位以下取浮重度 b ——基础地面宽度,大于6m时,按6m取值,对于砂土小于 3m时按3m取值 ck ——基底下一倍短边宽深度内土的粘聚力标准值
建筑物的基底压力,应该在地基所允许的承载 能力之内
地基承载力:地基所能承受荷载的能力

二、地基变形的三个阶段
pcr a
0
s
pu p a.线性变形阶段 oa段,荷载小,主要产生压缩变形,荷 载与沉降关系接近于直线,土中τ<τf, 地基处于弹性平衡状态 b b.弹塑性变形阶段 ab段,荷载增加,荷载与沉降关系呈曲 线,地基中局部产生剪切破坏,出现塑 性变形区 c c.破坏阶段 bc段,塑性区扩大,发展成连续滑动面, 荷载增加,沉降急剧变化 塑性变 p <p<p cr u 形区

土的抗剪强度与地基承载力

土的抗剪强度与地基承载力

通过控制剪切速率来 近似模拟排水条件
1. 慢剪:竖向应力施加后,允许试样排水 固结。待固结完成后,施加水平剪应力, 剪切速率放慢,使试样在剪切过程中有充 分的时间产生体积变形和排水。
2.固结快剪 施加正应力-充分固结在3-5 分钟内剪切破坏
3. 快剪 施加正应力后立即剪切3-5 分钟内剪切破坏
• 抗剪强度指标的选用
粒级配、土粒形状以及表面粗糙程度 粘聚力:土中矿物成分、粘粒含量、含水量以及土的
结构
4.1.2库仑定律
f c tan
c 粘聚力 内摩擦角
f : 土的抗剪强度 tg:摩擦强度-正比于压力
c:粘聚强度-与所受压力无关,对于无粘性土c=0
: 土的内摩擦角
砂土: f tan

85 0.866

73.61kPa
t tan 30 0.577 76.4525 73.61 安全
(2)
1

z
y
2


(
z

2
y
)2


2 zy
=175+96.05=271.05kPa
3

z
y
2


(
z

2
y
)2


2 zy
=175-96.05=78.95kPa

1 2
1
3 2

A(, )
圆心坐标[1/2(1 +3 ),0]
O 3
2 1/2(1 +3 )
应力圆半径r=1/2(1-3 )
1
土中某点的应 力状态可用莫
尔应力圆描述

地基承载力

地基承载力

地基勘探
锥状探头
穿心锤 锤垫 触探杆
尖锤头
轻型动力触探 10kg 中型动力触探 28kg 重型动力触探 63.5kg
地基勘探
(2) 静力触探Static Cone Penetration
• 单桥探头 端部Ps=Q/A 比贯入阻力 双桥探头 端部和侧壁 • 土的密实度 • 压缩性 电缆 传感器 • 强度 传感器 传感器 • 桩和地基的承载力
四、确定地基容许承载力的方法
确定地基容许承载力的方法,一般有以下三种: 1. 根据载荷试验的p-s曲线来确定地基容许承载力; 2. 根据设计规范确定(新规范已取消); 3. 根据地基承载力理论公式确定地基容许承载力。
主要内容 -本课程重点
地基勘探 Site investigation 地基承载力
Bearing Capacity of Foundation Soil
局部剪切破坏p-s曲线转折点不明显,没有明显的直线 段,其破坏的特征为: 随着荷载的增加,基础下也产生压密区I及塑性区II,但 塑性区仅仅发展到地基某一范围内,土中滑动面并不延伸 到地面,基础两侧地面微微隆起,没有出现明显的裂缝。 其p-s曲线如图中曲线b所示。 p-s曲线在转折点后, 其沉降量增长率虽较前一 阶段为大,但不象整体剪 切破坏那样急剧增加,在 转折点之后,p-s曲线还是 呈线性关系。 局部剪切破坏常发生 于中等密实砂土中。 于中等密实砂土中。
地基承载力: 地基承载力:地基土单位面积上所能承受荷载的能力。 极限承载力(p 极限承载力 u): 地基不致失稳时单位面积能承受的最大荷载。 地基容许承载力(p 地基容许承载力 a): 考虑一定安全储备后的地基承载力。
二、地基变形的三个阶段
0 pcr a
s

地基基础-- 土的抗剪强度与地基承载力

地基基础-- 土的抗剪强度与地基承载力
.
4.2 土的抗剪强度试验方法
剪切试验:确定土的抗剪强度的试验。 室内剪切试验:直接剪切试验、三轴剪切 试验、无侧限抗压强度试验。 现场原位测试:十字板剪切试验。
.
直接剪切试验
.
应变软化与应变硬化
.
抗剪强度指标的确定
.
直剪仪的优缺点:
优点:构造简单,操作方便,工程应用广。
缺点: (1)不能严格控制排水条件,不能量测试
.
地基的破坏模式
整体剪切破坏 局部剪切破坏
冲剪破坏
(1)密实的砂土和硬粘土较可能发生整体剪切破坏; (2)中等密实砂土、松砂和软粘土可能发生局部剪切破坏; (3)压缩性较大的松砂和软土地基可能发生冲剪破坏; (4)影响地基破坏模式的其它因素:基础埋深、加荷速率等。
.
确定地基极限承载力的途径
数学模型法:采用严密的数学方法求解 土中某点达到极限平衡时的静力平衡方 程组,以得出地基极限承载力。
.
习题
习题1 习题4 习题6
.
K=2.0~3.0
.
魏锡克(Vesic)地基极限承载力
.
魏锡克(Vesic)公式
1
p u cc s N c d c ic qq s N q d q iq 2bs N d i
特点:考虑了基础形状、荷载倾斜及基 础埋深对极限承载力的影响。 K=2.0~4.0
.
斯肯普顿(Skempton)地基极限承载力
.
说明:
(1)土的抗剪强度指标有两个,即粘聚力和内摩擦角。 (2)土的抗剪强度是剪切面上法向总应力的函数。 (3)无粘性土的强度仅由粒间摩擦力引起;粘性土的强 度由粘聚力和摩擦力两部分组成。
影响抗剪强度的主要因素:
影响粘聚力的因素:土中粘粒含量、矿 物成分、含水量、土的结构等。

土的强度与地基土承载力的确定

土的强度与地基土承载力的确定

引起的,如图8-2(a)所示。相应于A点的荷载称为比例界限荷载(临塑荷载),
以 表示。 (2)剪切阶段(或称弹塑性变形阶段) 这一阶段p-s曲线已不再保持线性关系(图8-1曲线a的AB段),沉降的增长速率随 荷载的增加而增大。地基土中局部范围内(首先在基础边缘处)的剪应力达到土的 抗剪强度,土体发生剪切破坏,这些区域也称塑性区。随着荷载的继续增加,土中 塑性区的范围也逐步扩大,直到土中形成连续的滑动面,如图8-2(b)所示。B点 无忧PPT整理发布 对应的荷载称为极限荷载,以pu 表示。
8.2按理论公式计算地基承载力容许值 8.2.1临塑荷载
临塑荷载是指在外荷载作用下,地基土中将要出现但尚未出现塑性变形区时的 基底压力,其计算公式可根据土中应力计算的弹性理论和土体极限平衡条件导出。 设地表面作用一均布条形荷载 ,如图8-3(a)所示,它在地表下任一点M处产生的 大、小主应力可按下式计算:
土的强度与地基土承载力的确定
8.3.1、地基承载力基本容许值[fa0]
(1)一般岩石地基可根据强度等级、节理按表8-5确定承载力基本容许值[fa0]。
对于复杂的岩层(如溶洞、断层、软弱夹层、易溶岩石、软化岩石等)应按各项因素 综合确定。
无忧PPT整理发布
土的强度与地基土承载力的确定
土的强度与地基土承载力的确定
整体剪切破坏的荷载与沉降关系曲线即p-s曲线如图8-1中曲线a所示,随着荷
载的增大并达到某一数值时,首先在基础边缘开始出现剪切破坏;随着荷载的进一
步增大,剪切破坏区也相应地扩大;当荷载达到最大值时,基础急剧下沉,并突然 向一侧倾倒而破坏。此时除了出现明显的连续滑动面以外,基础四周地面将向上隆 起。 冲剪破坏一般发生在基础刚度较大且地基土十分软弱的情况下,如图8-1中曲 线c所示。随着荷载的增加,基础下土层发生压缩变形,基础随之下沉;当荷载继续 增加,基础四周的土体发生竖向剪切破坏,基础刺入土中。破坏时,地基中没有出 现明显的连续滑动面,基础四周地面不隆起,而是随基础的刺入而微微下沉,沉降 随荷载增加而增大,p-s 曲线无明显拐点。 无忧PPT整理发布

地基承载力

地基承载力

地基承载力地基在变形容许和维系稳定的前提下,单位面积所能承受荷载的能力。

通俗点说,就是地基所能承受的安全荷载。

(1)地基承载力:地基所能承受荷载的能力。

(2)地基容许承载力:保证满足地基稳定性的要求与地基变形不超过允许值,地基单位面积上所能承受的荷载。

(3)地基承载力基本值:按标准方法试验,未经数理统计处理的数据。

可由土的物理性质指标查规范得出的承载力。

(4)地基承载力标准值:在正常情况下,可能出现承载力最小值,系按标准方法试验,并经数理统计处理得出的数据。

可由野外鉴别结果和动力触探试验的锤击数直接查规范承载力表确定,也可根据承载力基本值乘以回归修正系数即得。

(5)地基承载力设计值:地基在保证稳定性的条件下,满足建筑物基础沉降要求的所能承受荷载的能力。

可由塑性荷载直接,也可由极限荷载除以安全系数得到,或由地基承载力标准值经过基础宽度和埋深修正后确定。

(6)地基承载力的特征值:正常使用极限状态计算时的地基承载力。

即在发挥正常使用功能时地基所允许采用抗力的设计值。

它是以概率理论为基础,也是在保证地基稳定的条件下,使建筑物基础沉降计算值不超过允许值的地基承载力。

在设计建筑物基础时,各行业使用《规范》不同,地基容许承载力、地基承载力设计值与特征值在概念上有所不同,但在使用含义上相当地基容许承载力简介各种土木工程在整个使用年限内都要求地基稳定,要求地基不致因承载力不足、渗流破坏而失去稳定性,也不致因变形过大而影响正常使用。

地基承载力是指地基承担荷载的能力。

在荷载作用下,地基要产生变形。

随着荷载的增大,地基变形逐渐增大,初始阶段地基尚处在弹性平衡状态,具有安全承载能力。

当荷载增大到地基中开始出现某点,或小区域内各点某一截面上的剪应力达到土的抗剪强度时,该点或小区域内各点就剪切破坏而处在极限平衡状态,土中应力将发生重分布。

这种小范围的剪切破坏区,称为塑性区。

地基小范围的极限平衡状态大都可以恢复到弹性平衡状态,地基尚能趋于稳定,仍具有安全的承载能力。

《土力学与地基基础》课后题解

《土力学与地基基础》课后题解

《土力学与地基基础》习题解答学习项目1 土中应力计算任务1.1 土中自重应力的计算学习评价(1)土中自重应力计算的假定是什么?【答】计算土中自重应力时,假定土体为半无限体,即土体的表面尺寸和深度都是无限大,土体自重应力作用下的地基为均质的线性变形的半无限体,即任何一个竖直平面均可视为半无限体对称面。

这样,在任意竖直平面上,土的自重都不会产生剪应力,只有正应力存在。

因此,在均匀土体中,土中某点的自重应力将只与该点的深度有关。

(2)地基中自重应力的分布有什么特点?【答】自重应力在等重度的土中随深度呈直线分布,自重应力分布线的斜率是土的重度;自重应力在不同重度的成层土中呈折线分布,折点在土层分界线和地下水位线处;自重应力随深度的增加而增大。

(3)图1-7所示为某地基剖面图各土层的重度及地下水位,计算土中的自重应力并绘制自重应力分布图。

γ = 18.5 kN/m 黏土γ = 18 kN/m γ = 20 kN/m sat 细砂γ = 19 kN/m sat 黏土(按透水考虑)γ = 195 kN/m sat 砂砾2m 1m 1m 3m 2m 地下水位33333图1-7 某地基剖面图各土层的重度及地下水位【解】 第二层为细砂,地下水位以上的细砂不受浮力作用,而地下水位以下的受到浮力作用,其有效重度为333w sat 1m /kN 19.10kN/m 81.9kN/m 20=-=-='γγγ 第三层黏土按透水考虑,故认为黏土层受到水的浮力作用,其有效重度为333w sat 2m /kN 19.9kN/m 81.9kN/m 19=-=-='γγγ 第四层为砂砾,受到浮力作用,其有效重度为333w sat 3m /kN 69.9kN/m 81.9kN/m 5.19=-=-='γγγ 土中各点的自重应力计算如下:a 点:00c ===z z z γσ,b 点:,m 2=z kPa 37m 2kN/m 5.183c =⨯==z z γσc 点:,m 3=z kPa 55m 1kN/m 18kPa 3731c =⨯+==∑=n i i i z h γσd 点:,m 4=z kPa19.65m 1kN/m 19.10kPa 5531c =⨯+==∑=n i i i z h γσe 点:,m 7=z kPa76.92m 3kN/m 19.9kPa 19.6531c =⨯+==∑=n i i i z h γσf 点:,m 9=z kPa14.112m 2kN/m 69.9kPa 76.9231c =⨯+==∑=n i i i z h γσ该土层的自重应力分布如下图所示。

土的抗剪强度与地基 承载力

土的抗剪强度与地基 承载力
• 一、直接剪切试验 • 直接剪切试验是室内测定土的抗剪强度常用的简便方法.所用的仪器
是直剪仪,直剪仪的特点是构造简单,试样的制备和安装方便,操作容易 掌握,至今仍被工程单位广泛采用.直剪仪可分为应变控制式(图4-5) 和应力控制式两种.
下一页 返回
第三节 土的抗剪强度指标
• (一)试验原理 • 试验时,由杠杆系统通过加压活塞和透水石对试件施加某一垂直压力σ,
• 二、三轴压缩试验 • 三轴压缩试验是测定土抗剪强度的一种较为完善的方法.三轴压缩仪
由压力室、轴向加荷系统、施加周围压力系统、孔隙水压力量测系统 等组成,如图4-7所示.
上一页 下一页 返回
第三节 土的抗剪强度指标
• (一)试验原理 • 常规试验方法的主要步骤如下:将土切成圆柱体套在橡胶膜内,放在密
上一页 下一页 返回
第三节 土的抗剪强度指标
• 如图4-8(c)中的圆Ⅰ,用同一种土样的若干个试件(三个以上)按以上 所述方法分别进行试验,每个试件施加不同的周围压力σ3,可分别得出 剪切破坏时的最大主应力σ1,将这些结果绘成一组极限应力圆,如图4 -8(c)中的圆Ⅰ、Ⅱ和Ⅲ.
• 由于这些试件都剪切至破坏,根据莫尔-库仑强度理论,绘制出一组极限 应力圆的公切线,即土的抗剪强度包线.其通常可近似取为一条直线,该 直线与横坐标的夹角即土的内摩擦角φ,直线与纵坐标的截距即土的黏 聚力c,如图4-8(c)所示.
• 土的强度破坏通常是指剪切破坏.土的极限平衡条件是指土体处于极 限平衡状态时土的应力状态和土的抗剪强度指标之间的关系式.
• 一、土体中任一点的应力状态 • 在自重与外荷作用下土体(如地基)中任意一点的应力状态,对于平面应
力问题,只要知道应力分量即σx、σz 和τxz,即可确定一点的应力状态. 对于土中任意一点,所受的应力又随所取平面的方向不同而发生变化. 但可以证明,在所有的平面中必有一组平面的剪应力为零,该平面称为 主应力面.其作用于主应力面的法向应力称为主应力.那么,对于平面应 力问题,土中一点的应力可用主应力σ1 和σ3 表示.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

或:
2020/5/23
31ta 2 4 no5 2 2 cta 4 n o5 2
土体处于极限平衡状态时,破坏面与大主应力作用面的夹角为
A
max
c f 2 f
3
1
cctg 1/2(1 +3 )
f 3
1
f
45
2
据内外角关系:
f 1 290452
max 45
说明:剪切破坏面并不产生于最大剪应力面,而与最大
2020/5/23
弹性平衡状态 极限平衡状态 剪切破坏
二.土的极限平衡条件
土中某点处于极限平衡状态时,剪切破坏面的应力 、与抗剪强度指
标c、之间的关系
土的极限平衡条件
A
B c f 2 f
3 O
1
1
cctg
1 3
2

sin
121 3
ccot 121 3
土的极限平衡条件为:
1 3ta 2 4 no5 2 2 cta 4 n o5 2
2
❖ 土中某点达到极限平衡状态时,该点的摩尔应力圆(极 限应力圆)与抗剪强度线相切,一组极限应力圆的包线 就是强度包线。
2020/5/23
第三节 抗剪强度指标的测定方 法
强度指标:c、φ
试验方法
室内试验 原位测试
直剪试验 三轴试验 无侧限抗压试验
十字板剪切试验
2020/5/23
一.直接剪切试验
1.试验装置:直剪仪(应变控制式,应力控制式)
一般应力,强度 超固结土强度大于正常与欠固结土
第二节 土的极限平衡条件
一.土中一点的应力状态
1
以平面问题为例,在土 中任取微元体,该微元 体内大小主应力分别为
1、 3
3
m
1
n
3
斜面上的n应力
3
m
1
在微元体内,与大主应力平面成任意角的mn平面上作用的正应力与剪应
力可根据材料力学公式得:
1 2131 213co 2s
1213sin2
2020/5/23
1 2131 213co 2s
1 213sin2
1 23 22 1 23 2
该方程为摩尔
A(, )
应力圆方程
2
O 3
1 3
2
C 1
3
1
摩尔圆可以表示土体中一点的应力状态,摩尔圆圆周上不同点 的坐标就代表了与大主应力平面成不同夹角的平面上的正应力 和剪应力的大小。
2020/5/23
剪切容器
量力环---量测土 样中的剪应力
剪切容器与量力环
2020/5/23
手轮---对试件 施加水平力
2020/5/23
2020/5/23
加压杠杆---- A
• 剪切变形S
• 剪应力: T A
上盒
下盒 S
P
面积A
土样 T
2020/5/23
滑动摩擦 咬合摩擦
AC B
AC B
2020/5/23
2. 抗剪强度的影响因素
土的密实度,C、 ⑴ 土的矿物成分、形状、颗粒级配
粘粒含量,C 尖角多,
⑵ 含水量
含水量,C 、
⑶ 土的密度
密度,C 、
⑷ 粘性土结构扰动
扰动后,τ ,静置后τ部分
⑸ 有效法向应力
⑹ 应力历史
2020/5/23
第三章 土的抗剪强度与地基承载力
2020/5/23
主要内容
1. 土的抗剪强度 2. 土的极限平衡条件 3. 土的抗剪强度指标的测定方法 4. 按地基土塑性区范围确定地基承载力 5. 地基土的极限承载力
2020/5/23
第一节 土的抗剪强度
一、概述
土的抗剪强度 f :土体抵抗剪切破坏的极限能力
荷载加大
2020/5/23
剪切破坏范 围逐渐扩大
f ,该点处于弹性平衡状态
f ,该点处于极限平衡状态
f ,该点发生剪切破坏
出现连续滑动面
地基发生整 体剪切破坏
工程实践中与土的抗剪强度有关的工程问题主要有以下三类 :
各种类型的滑坡
地基的破坏
2020/5/23
挡土和支护结构的破坏
2019年10月30日上午,京九线南康段K1886+400处因山 体滑坡致使铁轨路基塌陷,17根枕木空悬
抗剪强度的库仑定律 1776年,库仑根据砂土剪切试验得出
库仑定律:土的抗剪强
度是剪切面上的法向总应
f
力 的线性函数
砂土
f tan
后来,根据粘性土剪切试验得出
f
c 2020/5/23
粘土
f tanc
三.土的抗剪强度的构成及影响因素
1. 土的抗剪强度的构成
粘聚力
摩擦力
静电引力(库仑力) 范德华力(分子间联结力) 颗粒间胶结 假粘聚力(毛细力等)
东端上抬1.52m • 上部钢混筒仓完好无损
原因:地基承载力不够,超载引发强度破坏而产生滑动。
2020/5/23
加拿大特朗斯康谷仓
二. 土的抗剪强度库仑定律
库仑
(C. A. Coulomb) (1736-1806)
2020/5/23
法国军事工程师,在摩擦、 电磁方面做出了奠基性的 贡献。1773年发表了关于 土压力方面论文,成为土 压力的经典理论,1776年 提出抗剪强度定律
试验成果
上盒
下盒 S
P
面积A
土样 T
2020/5/23
f3 f2 f1
3
2 1
S
f3 f2 f f1
c
O 1 2 3
2020/5/23
❖ 2019年9月27日,洛阳-三门峡高速公路K104+940K105+100段坡间挡土墙,突然随坡体下滑,塌方量达12万 m3以上,半幅路基平均下陷深度为5m,致使原定通车时间 滞2后020/35/个23 多月。
2020/5/23
垮塌的重力式挡墙
2020/5/23
事故:
1913年9月开始装谷物, 至10月17日共装入3万多 吨谷物,但此时发生破坏: • 1小时竖向沉降达 30.5cm • 24小时倾斜26°53ˊ • 西端下沉7.32m
剪应力面成 / 2的夹角。因此,土的剪切破坏并不是由最
大剪应力τmax所控制。
2020/5/23
土的强度理论
❖ 土的强度破坏是由于土中某点剪切面上的剪应力达到 或超过土的抗剪强度所致。
❖ 任意一平面上的抗剪强度是该平面上法向应力的函数, 随剪切面上法向应力大小而改变
❖ 剪切破坏不发生在剪应力最大的倾斜面上,而发生在 与大主应力平面成 45 角 度的斜面上
2020/5/23
二.土的极限平衡条件
将抗剪强度包线与摩尔应力图画在同一张坐标图上,由应力圆与抗剪强度 包线之间的位置关系可判断土中某点所处的状态
强度包线
极限应 力圆
应力圆与强度线相离: 过该点的任意平面上τ<τf 应力圆与强度线相切: 切点所代表的平面上τ=τf
应力圆与强度线相割: 该点某些平面上τ>τf
相关文档
最新文档