常微分方程学习辅导与习题解答pdf
(完整版)常微分方程基本概念习题及解答
(完整版)常微分方程基本概念习题及解答§1.2 常微分方程基本概念习题及解答1.dxdy =2xy,并满足初始条件:x=0,y=1的特解。
解:ydy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。
解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解x=0,y=1时 c=e特解:y=|)1(|ln 1+x c 3.dx dy =yx xy y 321++ 解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0解:原方程为: y y -1dy=-xx 1+dx 两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。
5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +- 令xy =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u2+1)x 2=c-2arctgu即 ln(y 2+x 2)=c-2arctg2x y . 6. x dxdy -y+22y x -=0 解:原方程为:dx dy =x y +x x ||-2)(1x y - 则令x y =u dx dy =u+ x dx du 211u - du=sgnx x1dx arcsin xy =sgnx ln|x|+c 7. tgydx-ctgxdy=0解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xc cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +ye xy 32+=0 解:原方程为:dx dy =y e y 2e x 32 e x 3-3e 2y -=c.9.x(lnx-lny)dy-ydx=0解:原方程为:dx dy =x y ln xy 令xy =u ,则dx dy =u+ x dx du u+ x dxdu =ulnu ln(lnu-1)=-ln|cx| 1+lnx y =cy. 10. dxdy =e y x - 解:原方程为:dx dy =e x e y - e y =ce x 11 dxdy =(x+y)2 解:令x+y=u,则dx dy =dx du -1 dxdu -1=u 2 211u +du=dx arctgu=x+carctg(x+y)=x+c 12. dx dy =2)(1y x + 解:令x+y=u,则dx dy =dx du -1 dx du -1=21uu-arctgu=x+cy-arctg(x+y)=c. 13. dx dy =1212+-+-y x y x解: 原方程为:(x-2y+1)dy=(2x-y+1)dxxdy+ydx-(2y-1)dy-(2x+1)dx=0dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c 14: dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dxxdy+ydx-(y+2)dy-(x+5)dx=0dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c. 15:dxdy =(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy =(x+4y )2+3 令x+4y=u 则dx dy =41dx du -41 41dx du -41=u 2+3 dxdu =4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1). 16:证明方程y x dxdy =f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程:1)y(1+x 2y 2)dx=xdy2)y x dx dy =2222x -2 y x 2y+ 证明:令xy=u,则xdx dy +y=dxdu 则dx dy =x 1dx du -2x u ,有: u x dx du =f(u)+1)1)((1+u f u du=x1dx 所以原方程可化为变量分离方程。
《常微分方程》东师大第二版习题答案
(4) y′ = 2( y − 2 )2 x + y −1
解:令 u = x + 1, v = y − 2 则原方程变为 dv = 2( v )2 du u + v
再令 z = v ,则方程化为 z + u dz = 2( z )2
u
du 1 + z
分离变量 (1 + z)2 dz = − du (z ≠ 0)
ζ
dζ 1 + u
整理为
u + 1 du = − dζ (u ≠ 1,2)
(u −1)(u − 2)
ζ
积分,得 (u − 2)(u − 2)2 ζ = c u −1
5
代回变量,得通解 ( y − 2x)3 = c( y − x −1)2 , y = x + 1也是方程的解
(2) (2x + y + 1)dx − (4x + 2 y − 3)dy = 0
积分,得 ln ln y = x + c1, ln y = ±ec1 e x = ce x c ≠ 0 ,即 y = ecex (3) dy = e x−y
dx 解: 变形得 e y dy = e x dx 积分,得 e y − e x = c
(4) tan ydx − cot xdy = 0
解:变形得 dy = tan y , y = 0 为特解,当 y ≠ 0 时, cos y dy = sin x dx .
dy 2x + y + 1
解:方程改写为
=
dx 4x + 2y − 3
令
u = 2x + y ,有
du 5u − 5 =
dx 2u − 3
《常微分方程》答案_习题4.2
习题4.21. 解下列方程(1)045)4(=+''-x x x 解:特征方程1122045432124-==-===+-λλλλλλ,,,有根故通解为x=tt t t e c e c e c e c --+++432221 (2)03332=-'+''-'''x a x a x a x 解:特征方程0333223=-+-a a a λλλ有三重根a =λ故通解为x=at at at e t c te c e c 2321++ (3)04)5(=''-x x解:特征方程0435=-λλ有三重根0=λ,=4λ2,=5λ-2 故通解为54232221c t c t c e c e c x t t ++++=-(4)0102=+'+''x x x解:特征方程01022=++λλ有复数根=1λ-1+3i,=2λ-1-3i故通解为t e c t e c x t t 3sin 3cos 21--+= (5) 0=+'+'x x x解:特征方程012=++λλ有复数根=1λ,231i +-=2λ,231i-- 故通解为t ec t ec x t t 23sin 23cos 212211--+=(6) 12+=-''t s a s 解:特征方程022=-a λ有根=1λa,=2λ-a当0≠a 时,齐线性方程的通解为s=at at e c e c -+21Bt A s +=~代入原方程解得21aB A -== 故通解为s=at at e c e c -+21-)1(12-t a当a=0时,)(~212γγ+=t t s 代入原方程解得21,6121==γγ 故通解为s=t c c 21+-)3(612+t t(7) 32254+=-'+''-'''t x x x x解:特征方程025423=-+-λλλ有根=1λ2,两重根=λ 1 齐线性方程的通解为x=t t t te c e c e c 3221++又因为=λ0不是特征根,故可以取特解行如Bt A x +=~代入原方程解得A=-4,B=-1故通解为x=t t t te c e c e c 3221++-4-t (8) 322)4(-=+''-t x x x解:特征方程121201224-===+-λλλλ重根,重根有 故齐线性方程的通解为x=t t t t te c e c te c e c --+++4321取特解行如c Bt At x ++=2~代入原方程解得A=1,B=0,C=1 故通解为x=t t t t te c e c te c e c --+++4321+12+t (9)t x x cos =-'''解:特征方程013=-λ有复数根=1λ,231i +-=2λ,231i--13=λ 故齐线性方程的通解为t t t e c t e c t ec x 321221123sin 23cos ++=--取特解行如t B t A x sin cos ~+=代入原方程解得A=21,21-=B 故通解为t t t e c t e c t ec x 321221123sin 23cos ++=--)sin (cos 21t t +-(10) t x x x 2sin 82=-'+''解:特征方程022=-+λλ有根=1λ-2,=2λ 1 故齐线性方程的通解为x=t t e c e c 221-+ 因为+-2i 不是特征根取特解行如t B t A x 2sin 2cos ~+=代入原方程解得A=56,52-=-B 故通解为x=t t e c e c 221-+t t 2sin 562cos 52-- (11)t e x x =-'''解:特征方程013=-λ有复数根=1λ,231i +-=2λ,231i--13=λ 故齐线性方程的通解为t t t e c t e c t ec x 321221123sin 23cos ++=-- =λ1是特征方程的根,故t Ate x =~代入原方程解得A=31故通解为t t t e c t e c t ec x 321221123sin 23cos ++=--+t te 31(12)t e s a s a s =+'+''22解:特征方程0222=++a a λλ有2重根=λ-a 当a=-1时,齐线性方程的通解为s=t tte c e c 21+,=λ1是特征方程的2重根,故t e At x 2~=代入原方程解得A=21通解为s=22121t te c e c t t ++,当a ≠-1时,齐线性方程的通解为s=at atte c e c --+21,=λ1不是特征方程的根,故t Ae x =~代入原方程解得A=2)1(1+a故通解为s=at at te c e c --+21+te a 2)1(1+ (13)t e x x x 256=+'+''解:特征方程0562=++λλ有根=1λ-1,=2λ-5 故齐线性方程的通解为x=tte c e c 521--+=λ2不是特征方程的根,故t Ae x 2~=代入原方程解得A=211 故通解为x=t t e c e c 521--++t e 2211 (14)t e x x x t cos 32-=+'-''解:特征方程0322=+-λλ有根=1λ-1+2i,=2λ-1-2i故齐线性方程的通解为t e c t e c x t t 2sin 2cos21+=i ±-1不是特征方程的根, 取特解行如t e t B t A x -+=)sin cos (~代入原方程解得A=414,415-=B 故通解为t e c t e c x t t 2sin 2cos21+=+t e t t --)sin 414cos 415((15) t t x x 2cos sin -=+''解:特征方程012=+λ有根=1λi,=2λ- i 故齐线性方程的通解为t c t c x sin cos 21+=t x x sin =+'',=1λi,是方程的解 )sin cos (~t B t A t x +=代入原方程解得 A=21- B=0 故t t x cos 21~-=t x x 2cos -=+'' t B t A x 2sin 2cos ~+=代入原方程解得 A=31B=0 故t x 2cos 31~= 故通解为t c t c x sin cos 21+=t t cos 21-t 2cos 31+习 题 6-11. 求出齐次线性微分方程组y t A dtdy)(=的通解,其中A (t )分别为:(1)⎪⎪⎭⎫ ⎝⎛=1011)(t A ;(2)⎪⎪⎭⎫⎝⎛-=0110)(t A ;(3)⎪⎪⎪⎭⎫ ⎝⎛=000010100)(t A 。
常微分习题解答1
dy = − y / x ln y + ln x = c ; xy = C , C = 2 dx
7.人工繁殖细菌,其增长速度和当时的细菌数成正比。 1)如果过 4 小时的细菌数既为原细菌数的 2 倍,那么经过 12 小时应有多少? 2)如在 3 小时的时候,有细菌 104 个,那么在开始时有多少个 细菌? 解:1)
第一章 初等积分法
1.1 微分方程和解
1、指出下列微分方程的阶数: (1)
dy = y 2 + x 3 ;一阶二次 dx
d2 y d3 = x + 3 arcsin x ;二阶一次; dx 2 dx
3
(2)
(3) y
d2 y + 1 = 0 ;二阶四次; dx 2
1
⎛ dx ⎞ (4) ⎜ ⎟ = 4 ;一阶二次; ⎝ dy ⎠
2 2
10
( x −2 + x −1 )dx − ( y −2 + y −1 )dy = 0 ln | x | − x −1 − ln | y | + y −1 = C 得 C = −2
3、利用变量替换法把下列方程化为变量可分离方程: (1)
dy = f (ax + by + c) ; dx
解: u = ax + by + c , u ' = a + by ' = a + bf (u ) (2)
2) ( y − 2 xy )dx + x dy = 0
2 2
解: x = 0 或 y ′ = 2 y / x + ( y / x) ;
2
z + xz ′ = 2 z − z 2 ⇒ xz ′ = z (1 − z )
《常微分方程》东师大第二版习题答案
1 解下列方程.
(1) dy + 2xy = 4x dx
解:原方程对应的齐次方程 dy + 2xy = 0 的通解为 ỹ = Ce−x2 . dx
由常数变易法得原方程的一个特解为 y = 2 .
则原方程的通解为$y=Ce^{-x^2}+2$.
(2) y '− 1 y = 2(x − 2)2 x−2
=
11 −
−e−2e x y
为所求的解。
y
4.求解方程 x 1 − y 2 dx + y 1 − x 2 dy = 0
解: x = ±1 (−1 ≤ y ≤ 1), y = ±1(−1 ≤ x ≤ 1) 为特解,
当 x ≠ ±1, y ≠ ±1时, x dx + y dy = 0
1− x2
1− y2
ln 4 3
= q0e 2
= 8q0
= 104
得 q0 = 1.25 ×103
习 题 1.3
1 解下列方程:
(2) ( y 2 − 2xy)dx + x 2dy = 0
解:方程改写为 dy = 2( y ) − ( y )2 dx x x
令
u=
y
,有
u + x du
= 2u − u 2
x
dx
1 整理为 ( −
当 z ≠ 0 时,有 dz = 6xdx ,得 z = Ce3x2 . z
令 z = C(x)e3x2 为方程 dz − 6xz = 3x 的一个解, 则有 C '(x) = 3xe−3x2 . dx
两边积分得 C(x)
=
1 2
e −3 x2
常微分方程pdf
常微分方程常微分方程是指只涉及一元函数和它的导数的方程,通常用来描述自然界中的各种现象。
例如,物理学中的牛顿第二定律、生物学中的人口增长模型等等。
常微分方程在各个学科都有着广泛的应用,因此掌握常微分方程的解法和相关理论非常重要。
一阶常微分方程我们先来看一阶常微分方程,形式一般如下:$$\frac{dy}{dx}=f(x,y)$$其中$y=y(x)$,$f(x,y)$是已知的函数,我们需要求出$y=y(x)$的解。
这种形式的常微分方程也称为首次积分方程,因为我们需要对$f(x,y)$进行积分才能得到$y(x)$。
通常我们使用分离变量法。
具体步骤如下:1.把方程两边关于$x$和$y$分离,得到$\frac{dy}{f(x,y)}=dx$。
2.对两边同时积分,得到$\int\frac{dy}{f(x,y)}=\intdx+C$,其中$C$是常数。
3.解方程得到$y=y(x)$。
二阶常微分方程二阶常微分方程的一般形式为:$$y''+p(x)y'+q(x)y=f(x)$$其中$y=x(t)$,$p(x),q(x),f(x)$的表达式已知,我们需要求解$y=x(t)$的解析表达式。
二阶常微分方程比一阶常微分方程更广泛,它可以用来描述许多自然现象,例如弹簧振动、震荡现象等等。
我们可以采用以下几种方法求解二阶常微分方程:1.常系数线性齐次方程的解法,对于形如$y''+ay'+by=0$的方程,我们可以假设$y=e^{mx}$作为解,代入方程得到特征方程$m^2+am+b=0$,然后求出$m$的值,进一步得到方程的通解。
2.变系数线性齐次方程的解法,对于形如$y''+p(x)y'+q(x)y=0$的方程,通常采用欧拉-柯西方程的方法来求解,这个方法可以将一个二阶常微分方程转化为一个一阶常微分方程。
3.非齐次方程的解法,对于形如$y''+p(x)y'+q(x)y=f(x)$的方程,我们可以采用常数变易法或者伯努利方程的方法来求解,从而得到方程的通解。
常微分方程课后习题答案
常微分方程课后习题答案常微分方程课后习题答案在学习常微分方程的过程中,课后习题是巩固知识和提高能力的重要环节。
通过解答习题,我们可以更好地理解和应用所学的概念和方法。
下面是一些常见的常微分方程习题及其答案,供大家参考。
一、一阶常微分方程1. 求解方程:dy/dx = 2x。
解:对方程两边同时积分,得到y = x^2 + C,其中C为常数。
2. 求解方程:dy/dx = x^2 - 1。
解:对方程两边同时积分,得到y = (1/3)x^3 - x + C,其中C为常数。
3. 求解方程:dy/dx = 3x^2 + 2。
解:对方程两边同时积分,得到y = x^3 + 2x + C,其中C为常数。
二、二阶常微分方程1. 求解方程:d^2y/dx^2 + 4dy/dx + 4y = 0。
解:首先求解特征方程:r^2 + 4r + 4 = 0,解得r = -2。
因此,方程的通解为y = (C1 + C2x)e^(-2x),其中C1和C2为常数。
2. 求解方程:d^2y/dx^2 + 2dy/dx + y = x^2。
解:首先求解特征方程:r^2 + 2r + 1 = 0,解得r = -1。
因此,方程的通解为y = (C1 + C2x)e^(-x) + (1/6)x^2 - (1/2)x + (1/2),其中C1和C2为常数。
3. 求解方程:d^2y/dx^2 + 3dy/dx + 2y = e^(-x)。
解:首先求解特征方程:r^2 + 3r + 2 = 0,解得r = -1和r = -2。
因此,方程的通解为y = (C1e^(-x) + C2e^(-2x)) + (1/3)e^(-x),其中C1和C2为常数。
三、应用题1. 一个物体在空气中的速度满足以下方程:dv/dt = -9.8 - 0.1v,其中v为速度,t为时间。
求物体的速度随时间的变化情况。
解:这是一个一阶线性常微分方程。
将方程改写为dv/(9.8 + 0.1v) = -dt,再两边同时积分,得到ln|9.8 + 0.1v| = -t + C,其中C为常数。
(完整版)常微分方程习题及解答
常微分方程习题及解答一、问答题:1.常微分方程和偏微分方程有什么区别?微分方程的通解是什么含义?答:微分方程就是联系着自变量,未知函数及其导数的关系式。
常微分方程,自变量的个数只有一个。
偏微分方程,自变量的个数为两个或两个以上。
常微分方程解的表达式中,可能包含一个或几个任意常数,若其所包含的独立的任意常数的个数恰好与该方程的阶数相同,这样的解为该微分方程的通解。
2.举例阐述常数变易法的基本思想。
答:常数变易法用来求线性非齐次方程的通解,是将线性齐次方程通解中的任意常数变易为待定函数来求线性非齐次方程的通解。
例:求()()dyP x y Q x dx=+的通解。
首先利用变量分离法可求得其对应的线性齐次方程的通解为()P x dxy c ⎰=l ,然后将常数c 变易为x 的待定函数()c x ,令()()P x dxy c x ⎰=l ,微分之,得到()()()()()P x dxP x dx dy dc x c x P x dx dx⎰⎰=+l l ,将上述两式代入方程中,得到 ()()()()()()()()()P x dxP x dx P x dxdc x c x P x dx c x P x Q x ⎰⎰+⎰=+l l l即()()()P x dx dc x Q x dx-⎰=l 积分后得到()()()P x dxc x Q x dx c -⎰=+⎰%l 进而得到方程的通解()()(())P x dxP x dxy Q x dx c -⎰⎰=+⎰%l l3.高阶线性微分方程和线性方程组之间的联系如何?答:n 阶线性微分方程的初值问题()(1)11(1)01020()...()()()(),(),....()n n n n n nx a t xa t x a t x f t x t x t x t ηηη---'⎧++++=⎪⎨'===⎪⎩ 其中12()(),...(),()n a t a t a t f t ,是区间a tb ≤≤上的已知连续函数,[]0,t a b ∈,12,,...,n ηηη是已知常数。
常微分方程习题答案(第五章定性与稳定性理论简介)
常微分方程习题答案第五章定性与稳定性理论简介教材习题同步解答习题5.21. 对于方程组41114221,,xx x x x x ⎧=-⎨=⎩ 试说明 441212(,)V x x x x =+是正定的,而dVdt是常负的。
证:易知(0,0)0V =,当22120x x +≠时,12(,)0V x x > 正定。
34344444121122211212124()4()440dV V V x x x x x x x x x x x x dt x x ∂∂=+=-+-=-+=∂∂ ,故dV dt是常负。
(0,0)0V =。
2. 讨论方程组312132124,3,xx x x x x ⎧=--⎨=-⎩ 零解的稳定性。
证:取 221212(,)V x x x x =+, 易知(0,0)0V =,当22120x x +≠时, 12(,)0V x x >即正定。
334411221212121212222(4)2(3)22()0dV x x x x x x x x x x x x x x dt=+=--+-=---< ,故方程的零解是渐进稳定的。
3. 讨论自治系统2111222212,,x Ax x x x Ax x x ⎧=-⎨=-⎩ 零解的稳定性。
证:证:取 221212(,)V x x x x =+, 易知(0,0)0V =,当22120x x +≠时,12(,)0V x x >即正定。
222211221112221212222()2()2()dV x x x x x Ax x x x Ax x x A x x dt=+=-+-=+ ,故方程的0A >,则零解是不稳定的;若0A <,则零解是渐进稳定的。
习题5.3通过求解,确定下列各方程的奇点类型,画出相图,并确定奇点的稳定性:(1)2,3;dx x dt dy y dt ⎧=-⎪⎪⎨⎪=-⎪⎩(2)3,3;dx x dt dy x y dt⎧=⎪⎪⎨⎪=+⎪⎩(3),;dx y dt dy x dt ⎧=⎪⎪⎨⎪=-⎪⎩(4)23,3;dxx y dtdy x y dt ⎧=+⎪⎪⎨⎪=+⎪⎩解:(1)方程的奇点为(0,0)O ,方程所对应的系数矩阵为2003A -⎡⎤=⎢⎥-⎣⎦,系数矩阵所对应的特征方程为20003λλ--=-- 或2560λλ++= ,特征根为 1220,30,λλ=-<=-<奇点(0,0)O 为稳定结点。
《常微分方程》习题解答
《常微分方程》习题解答习题1.21求下列可分离变量微分方程的通解:(1)ydy某d某解:积分,得(2) 1212y某c1即某2y2c22dyylnyd某解:y0,y1为特解,当y0,y1时,dyd某,ylny积分,得lnlny某c1,(3)lnyec1e某ce某c0,即yece某dye某yd某y某解:变形得eydye某d某积分,得eec(4)tanyd某cot某dy0解:变形得dytanycoyin某dyd某.,y0为特解,当y0时,d某cot某inyco某积分,得lninylnco某c1,即inyco某e1c,clninyco某c1,c02.求下列方程满足给定初值条件的解:(1)dyy(y1),y(0)1d某解:y0,y1为特解,当y0,y1时,(11)dyd某,y1y积分,得lny1某c1,yy1ec1e某ce某,c0y将y(0)1代入,得c0,即y1为所求的解。
(2)(某1)y2某y0,y(0)122dy2某y22,解:d某某1积分,得y0为特解,当y0时,dy2某d某,22y某11ln某21cy1ln某112将y(0)1代入,得c1,即y为所求的解。
2(3)y33y,y(2)0解:y0为特解,当y0时,dy3y23d某,积分,得y某c,13y(某c)3将y(2)0代入,得c2,即y(某2)3和y0均为所求的解。
(4)(y2某y2)d某(某2y某2)dy0,y(1)1解:某0,y0为特解,当某0,y0时,1某1yd某dy0,22某y某c1某y某yeece,c0y111111积分,得ln某lnyc1,某y某22某y将y(1)1代入,得ce,即ee为所求的解。
y11224.求解方程某1yd某y1某dy0解:某1(1y1),y1(1某1)为特解,当某1,y1时,某1某2d某y1y2dy0积分,得1某21y2c(c0)6.求一曲线,使其具有以下性质:曲线上各点处的切线与切点到原点的向径及某轴可围成一个等腰三角形(以某轴为底),且通过点(1,2).解:设所求曲线为yy(某)对其上任一点(某,y)的切线方程:Yyy'(某某)于某轴上的截距为a某yy'由题意建立方程:某y某某0y'即y'y,某y(1)2再由2ec得c=ln2,得所求曲线为求得方程的通解为某yec,为某y2c07.人工繁殖细菌,其增长速度和当时的细菌数成正比(1)如果4小时的细菌数为原细菌数的2倍,那么经过12小时应有多少?(2)如果在3小时时的细菌数为得10个,在5小时时的细菌数为得410个,那么在开始时有多少个细菌?解:设t时刻的细菌数为q(t),由题意建立微分方程kt44dqkqdtk0求解方程得qce再设t=0时,细菌数为q0,求得方程的解为qq0ekt (1)由q(4)2q0即q0e4k2q0得kln24q(12)q0e12kq0e12ln248q0(2)由条件q(3)q0e3k104,q(5)q0e5k4104ln423ln4比较两式得k,再由q(3)q0e3kq0e28q0104得q01.25103习题1.31解下列方程:(2)(y2某y)d某某dy0解:方程改写为22dyyy2()()2d某某某ydu11d某2uu2整理为()du令u,有u某d某uu1某某积分,得ln(u0,1)ulnc1某u1即uc1某c1某1代回变量,得通解某(y某)cy,(4)某yy某tany0也是方程的解y某dyyytan解:方程改写为d某某某yduinud某tanu令u,有某即cotudu(inu0)某d某cou某积分,得inuc某代回变量,得通解iny某c某(5)某yy(某y)ln某y某解:方程改写为dyd某y某(1y某)ln某y某令uydu某,有某d某(1u)ln(1u)当u0,u1时dud某(1u)ln(1u)某积分,得ln(1u)c某代回变量,得通解ln(1y某)c某(6)某y某2y2y 解:方程改写为dyd某1(y某)2y某令uydu某,有某d某1u2分离变量du1u2d某某积分,得arcinulnc某代回变量,得通解arciny某lnc某,y某也是方程的解2解下列方程:(1)(2某4y6)d某(某y3)dy0解:方程改写为dyd某4y2某6某y3令24030,解得1,2(1u1)作变换某1,y2有d42d再令udu4u2上方程可化为ud1uu1ddu(u1)(u2)u22)cu1整理为(u1,2)积分,得(u2)(代回变量,得通解(y2某)3c(y某1)2,(2)(2某y1)d 某(4某2y3)dy0y某1也是方程的解解:方程改写为dy2某y1d某4某2y3du5u52u3du5d某(u1)分离变量d某2u3u1令u2某y,有积分,得2ulnu15某c1代回变量,得通解2某y1ce2y某(4)y2(y22)某y1vy2则原方程变为解:令u某1,dvv22()duuvvdzz22()再令z,则方程化为zuudu1z(1z)2du分离变量dz(z0)uz(1z2)积分,得lnzu2arctanzlnc代回变量,得通解y2ce3解方程(2某3y7)某d某(3某2y8)ydy022222arctany2某12ydy2某23y27dy22某23y27解:方程改写为即222222某d某3某2y8d 某3某2y8。
常微分方程2.2习题参考解答
习题2.2求下列方程的解1.dxdy =x y sin +解:y=e ⎰dx (⎰x sin e ⎰-dx c dx +)=e x [-21e x -(x x cos sin +)+c]=c e x -21(x x cos sin +)是原方程的解。
2.dt dx +3x=e t2解:原方程可化为:dt dx =-3x+e t 2所以:x=e ⎰-dt 3(⎰e t 2e -⎰-dt 3c dt +)=e t 3-(51e t 5+c)=c e t 3-+51e t 2是原方程的解。
3.dt ds =-s t cos +21t 2sin 解:s=e ⎰-tdt cos (t 2sin 21⎰e dt dt ⎰3c +)=e t sin -(⎰+c dt te t t sin cos sin )=e t sin -(c e te t t +-sin sin sin )=1sin sin -+-t ce t 是原方程的解。
4.dx dy nx x e y n x =-,n 为常数.解:原方程可化为:dx dy nx x e y nx +=)(c dx e x e e y dx x n n x x n +⎰⎰=⎰-)(c e x x n +=是原方程的解.5.dx dy +1212--y x x =0解:原方程可化为:dx dy =-1212+-y x x ⎰=-dx x x e y 212(c dx e x x+⎰-221))21(ln 2+=x e )(1ln 2⎰+--c dx ex x =)1(12x ce x +是原方程的解.6.dx dy 234xy x x +=解:dx dy 234xy x x +==23y x +x y 令x y u =则uxy =dx dy =u dx du x +因此:dx du x u +=2u x 21udx du =dxdu u =2c x u +=331c x x u +=-33(*)将x y u =带入(*)中得:3433cx x y =-是原方程的解.3332()21()227.(1)12(1)12(),()(1)1(1)(())1(1)dx P x dx x P x dx dy y x dx x dy y x dx x P x Q x x x e e x e Q x dx c x +--=++=+++==++⎰⎰==+⎰⎰++⎰⎰P(x)dx 232解:方程的通解为: y=e =(x+1)(*(x+1)dx+c) =(x+1)((x+23221(1)()211,()(())dy y x c dy y dx x y dx x y dy y yQ y y ye yQ y dy c -+++==+=⎰⎰==⎰⎰+⎰⎰2243P(y)dy P(y)dy P(y)dy 1)dx+c)=(x+1) 即:2y=c(x+1)+(x+1)为方程的通解。
常微分方程课后练习题含答案
常微分方程课后练习题含答案练习1:考虑动力学方程组:$$ \\begin{align} \\frac{dx}{dt}&=x(1-y)\\\\ \\frac{dy}{dt}&=y(1-x)\\end{align} $$a)画出相图b)确定方程组的固定点及其稳定性c)求出轨道在极限$\\lim\\limits_{t\\to\\infty}$时的行为答案1:a)相图如下所示:image-1b)如果(x,y)是方程组的一个固定点,则:$$ \\begin{aligned} \\frac{dx}{dt}&=0 \\\\ \\frac{dy}{dt}&=0\\end{aligned} $$由$\\frac{dx}{dt}=x(1-y)$得,固定点必须是x=0或y=1•当x=0时,$\\frac{dy}{dt}=y$,因此固定点为(0,0),是不稳定的。
•当y=1时,$\\frac{dx}{dt}=0$,因此固定点为(1,1),是稳定的。
综上,方程组的固定点为(0,0)和(1,1),其中(1,1)是稳定的。
c)当$t\\to\\infty$时,我们需要检查轨道的极限行为。
假设(x(t),y(t))是由方程组确定的轨迹,x0=x(0)和y0=y(0)是轨迹的起点。
轨迹的限制曲线由y(1−x)=x(1−y)确定,展开可得y=x或xy=0.5。
将方程组改写为$$ \\frac{dy}{dx}=\\frac{y(1-x)}{x(1-y)} $$则在y=x处,$$ \\frac{dy}{dx}=1 $$这意味着沿着这个轨道移动的速度是恒定的,因此轨迹沿着一条直线移动。
由$\\frac{dy}{dx}=\\frac{y(1-x)}{x(1-y)}$可知,在非负轴上,当y>1−x时$\\frac{dy}{dx}>0$,当y<1−x时$\\frac{dy}{dx}<0$。
常微分习题解答1
u
'
=
−
2y x3
+
y' x2
=
f (u) − 2u 。 x
(4) f (xy) y + g(xy)xy ' = 0 , f (u) ≠ g(u) , f , g 连续。
解: u
=
xy
,u'
=
y
+
xy
'
,
f
(u)
u x
+
g (u )
⎛ ⎜⎝
u
'−
u x
⎞ ⎟⎠
=
0,
( f (u) − g(u)) u + g(u)u ' = 0 。
7.人工繁殖细菌,其增长速度和当时的细菌数成正比。 1)如果过 4 小时的细菌数既为原细菌数的 2 倍,那么经过 12
小时应有多少?
2)如在 3 小时的时候,有细菌 104 个,那么在开始时有多少个
细菌?
解:1)
dy dx
=
kx
,
y
=
y0ekx
y(4) = 2 y0 ⇔ e4k = 2 ⇒ y(12) = y0e12k = 8 y0
2xy = c2 − x2 , 2xdy + 2 ydx = −2xdx ,是。 (4) y′′ = x2 + y2 , y = 1 。否。
x
3
1.2 变量可分离方程 方程 dy = f (x)g( y) 有特解和通解:
dx A) g( y) = 0 ;
B)
g( y)
≠
0 时, ∫
dy g( y)
解 dy = 2x, y(3) = 4 , y = x2 − 5 dx
常微分方程课后答案
d2 y dx2
−
1 1−x2
y
=
1
+
x,
y(0) = 1;
(3) y = ex +
x 0
y(t)
dt;
(4)
dy dx
=
; x4 +y 3
xy2
(5) 2xydy − (2y2 − x)dx = 0;
(6) (y ln x − 2)ydx = xdy;
(7)
3xy2
dy dx
+
y3
+
x3
=
0;
(8)
y
=
0(其中c是任意常数);
(5)
y = ecx,
(
dy dx
)2
−
y
d2 y dx2
= 0(其中c是任意常数);
2
−
(x−C1 4
)2
,
−∞ < x < C1;
(6)
y =
0, C1 < x < C2,
(x−C1 4
)2
,
C2 < x < +∞,
dy dx
=
|y|.
答:将解代入验证就可得知是否为微分方程的解:
dy dx
=
y x+y
3
.
3
解: (1)方程两边同时乘以因子e−x,由此得到方程的通解为
y
=
C ex
−
sin
x
+ 2
cos x
其中C为任意常数;
R
(2)方程两边同时乘以因子e−
1 1−x2
dx,由此得到方程的通解为
常微分方程课后习题部分答案 (2)
18. 设),(y x f 及连续,试证方程0),(=-dx y x f dy 为线性方程的充要条件是它有仅依赖于x 的积分因子.证:必要性 若该方程为线性方程,则有)()(x Q y x P dx dy += , 此方程有积分因子⎰=-dx x P e x )()(μ,)(x μ只与x 有关 .充分性 若该方程有只与x 有关的积分因子)(x μ .则0),()()(=-dx y x f x dy x μμ为恰当方程 , 从而dxx d y y x f x )()),()((μμ=∂-∂ ,)()(x x y f μμ'-=∂∂ , )()()()()()()()(x Q y x P x Q y x x x Q dy x x f +=+'-=+'-=⎰μμμμ . 其中)()()(x x x P μμ'-= .于是方程可化为0))()((=+-dx x Q y x P dy 即方程为一阶线性方程.20.设函数f(u),g(u)连续、可微且f(u)≠g(u),\,试证方程yf(xy)dx+xg(xy)dy=0 有积分因子u=(xy[f(xy)-g(xy)])1-证:在方程yf(xy)dx+xg(xy)dy=0两边同乘以u 得:uyf(xy)dx+uxg(xy)dy=0 则y uyf ∂∂=uf+uy y f ∂∂+yf y u ∂∂=)(g f xy f -+)(g f xy y f y-∂∂-yf 222)()(g f y x y g xy y f xy g f x -∂∂+∂∂+- =2)(g f xy y f gy y g yf-∂∂-∂∂=2)(g f x y xy xy f g y xy xy g f -∂∂∂∂-∂∂∂∂ =2)(g f xy f g xy g f-∂∂-∂∂ 而x uxg ∂∂=ug+ux x g ∂∂+xg x u ∂∂=)(g f xy g -+)(g f xy x g x -∂∂- xg 222)()(g f y x x g xy x f xy g f y -∂∂-∂∂+-=2)(g f xy x xy xy f xg x xy xy g xf-∂∂∂∂-∂∂∂∂=2)(g f xy f g xy g f -∂∂-∂∂ 故y uyf ∂∂=xuxg ∂∂,所以u 是方程得一个积分因子 21.假设方程(2.43)中得函数M (x,y )N(x,y)满足关系xN y M ∂∂-∂∂= Nf(x)-Mg(y),其中f(x),g(y)分别为x 和y 得连续函数,试证方程(2.43)有积分因子u=exp(⎰dx x f )(+⎰dy y g )()证明:M(x,y)dx+N(x,y)dy=0 即证x uN y uM ∂∂=∂∂)()(⇔u y M ∂∂+M y u ∂∂=u xN ∂∂+N x u ∂∂⇔ u(y M ∂∂-x N ∂∂)=N xu ∂∂- M y u ∂∂⇔u(y M ∂∂-x N ∂∂)=Ne ⎰⎰+dy y g dx x f )()(f(x) -M e ⎰⎰+dy y g dx x f )()(g(y)⇔u(y M ∂∂-x N ∂∂)=e ⎰⎰+dy y g dx x f )()((Nf(x)-Mg(y)) 由已知条件上式恒成立,故原命题得证。
常微分方程(含解答)
第八章 常微分方程【教学要求】一、了解微分方程的基本概念:微分方程,微分方程的阶、解、特解、通解、初始条件和初值问题,线性微分方程。
二、熟练掌握一阶可分离变量微分方程的解法。
三、熟练掌握一阶线性非齐次微分方程)()(x q y x p y =+'的解法——常数变易法和公式法。
四、理解线性微分方程解的性质和解的结构。
五、熟练掌握二阶线性常系数齐次微分方程0=+'+''qy y p y 的解法——特征根法。
会根据特征根的三种情况,熟练地写出方程的通解,并根据定解的条件写出方程特解。
六、熟练掌握二阶线性常系数非齐次微分方程qy y p y +'+'')(x f =,当自由项f (x )为某些特殊情况时的解法——待定系数法。
所谓f (x )为某些特殊情况是指f (x )为多项式函数,指数函数或它们的和或乘积形式、三角函数x x x ββαsin cos ,e 。
关键是依据f (x )的形式及特征根的情况,设出特解y *,代入原方程,定出y *的系数。
【教学重点】 一阶可分离变量微分方程、一阶线性微分方程、二阶线性常系数微分方程的解法。
【典型例题】。
的阶数是微分方程例)(e )(12x y y y =-'+''2.1.B A 4.3.D C 解:B。
的特解形式是微分方程例)(e 232x x y y y +=+'-'' x x x b ax B b ax A e )(.e ).(++x x c b ax D cx b ax C e ).(e ).(++++解:C是一阶线性微分方程。
下列方程中例)(,3 x x y y x B y A yx cos sin 1.e .2=+'='+ y x y D y y x y C ='=+'+''.0.解:B ⎩⎨⎧=='++1)1(0)1(4y y x y y 求解初值问题例⎰⎰-=+x x y y y d )1(d 解:由变量可分离法得c x y y ln ln 1ln+-=+∴代入上式得通解为由21ln ln 1)1(=⇒=c yx y y 211=+ 的特解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常微分方程学习辅导与习题解答
pdf
《常微分方程学习辅导与习题解答》是常微分方程的教学参考书,为学习或讲授《常微分方程(第三版)》的师生补充教材以外的参考资料,并提供众多常微分方程模型,供常微分方程应用者和准备参加数学建模竞赛者参考。
该书除了传统的内容总结、学习指导、疑难解答、例题补充和解题外,考虑到常微分方程的广泛应用及其在学科发展中的承上启下作用,增加了常微分方程、历史与图形、考研试题等应用例题。
同时,考虑到学生学习和教师备课的差异,除了内容总结、习题和习题答案外,还分别设置了学习指导和补充提高两项内容。
前者方便初学者自学,后者适合师生进一步探索。
全书按原教材内容顺序依章分为“内容提要”、“学习辅导”、“补充提高”和“习题与习题解答”四个部分。
“内容提要”列出定理、公式等基本内容;“学习辅导”含学习要点或解题指导、例题选讲、测试练习;“补充提高”含补充习题、排疑解惑、应用实例、历史与人物;“习题与习题解答”含《常微分方程学习辅导与习题解答》中的测试练习和补充习题的解答以及《常微分方程(第三版)》中全部习题的解答或提示,为方便读者,与教材同步的习题在解答时同时列出题目。
书中还专章给出“期中、期末及硕士研究生入学试题”(包括套题、半套题及散题)和“数学软件在常微分方程中的应用”。
附录中则列出科学计算自由软件SCILAB的使用和绘制轨线图貌的改进及解题常用的部分函数、微分、积分公式,并有各章排疑解惑、应用例题和历史与人物的细目索引。