去除氨氮方法
氨氮化学去除方法
氨氮化学去除方法氨氮在水里可有点讨厌呢,不过咱有办法用化学的法子把它去除掉。
一种常见的就是折点加氯法。
简单说呢,就是往有氨氮的水里加氯。
氯和氨氮会发生一系列反应,就像两个小伙伴在水里打打闹闹,最后把氨氮变成氮气跑掉啦。
这个方法效果还不错呢,能把氨氮的浓度降得比较低。
但是呢,加氯可得小心点哦,要是氯加多了,就像调料放多了一样,可能会有残留的氯在水里,这对水的后续使用可能会有点小麻烦。
还有吹脱法也挺有趣的。
这种方法就是利用氨氮在碱性环境下容易变成氨气的特性。
先把水的pH值调高,让氨氮变成氨气,然后像吹泡泡一样,把氨气吹出来。
就像把调皮的氨氮小朋友从水里赶出去。
不过呢,这个方法也有点小问题,吹出来的氨气要是不处理好,那可会有味道,还可能污染空气呢。
化学沉淀法也能去除氨氮哦。
向水里加入一些镁离子和磷酸根离子,它们就会和氨氮一起形成一种沉淀。
这就好比给氨氮找了个小房子,把它关在里面,然后沉淀到水底,这样水里面的氨氮就少啦。
但是呢,这种方法会产生沉淀,要处理这些沉淀也是个小工程呢。
离子交换法也可以来凑凑热闹。
有一种特殊的离子交换树脂,就像一个个小陷阱,氨氮离子会被树脂吸附住,这样就从水里分离出来了。
不过树脂用一段时间就会饱和,就像小陷阱满了一样,得再生或者更换,这也有点小麻烦。
虽然这些化学方法都能去除氨氮,但每种方法都有自己的优缺点。
在实际处理氨氮的时候,得根据具体的情况,像水质怎么样呀,要达到什么处理效果呀,还有成本的考虑之类的,来选择最合适的方法。
就像给不同的小问题找最适合的小妙招一样,这样才能把氨氮这个小麻烦处理得妥妥当当的。
氨氮去除方法
氨氮去除方法氨氮是指水中存在的游离氨和氨离子的总和,它是水体中的一种重要污染物。
氨氮的存在会对水体生态系统造成严重的危害,因此需要采取有效的方法去除水中的氨氮。
下面将介绍几种常见的氨氮去除方法。
一、生物法去除氨氮。
生物法去除氨氮是利用微生物的代谢作用将水中的氨氮转化为无害的物质。
常见的生物法去除氨氮的方法包括生物滤池法、生物接触氧化法和植物净化法等。
其中,生物滤池法是通过将含氨氮的水体通过填充了生物膜的滤材进行过滤,利用滤材上的微生物将氨氮转化为硝态氮和氮气,从而达到去除氨氮的目的。
生物接触氧化法则是将水体与生物膜接触,利用生物膜上的微生物将氨氮氧化为硝态氮。
植物净化法则是利用水生植物吸收水中的氨氮,通过植物的生长代谢将氨氮转化为植物组织中的蛋白质,从而去除水中的氨氮。
二、化学法去除氨氮。
化学法去除氨氮是利用化学药剂将水中的氨氮转化为无害的物质。
常见的化学法去除氨氮的方法包括氧化法和还原法。
氧化法是利用氧化剂将水中的氨氮氧化为硝态氮,常用的氧化剂包括高锰酸钾、臭氧等。
还原法则是利用还原剂将水中的氨氮还原为氮气,常用的还原剂包括亚硫酸氢钠、亚硝酸盐等。
这些化学法可以在一定程度上去除水中的氨氮,但在实际应用中需要考虑到化学药剂的成本和对环境的影响。
三、物理法去除氨氮。
物理法去除氨氮是利用物理手段将水中的氨氮去除。
常见的物理法去除氨氮的方法包括气体吹送法和膜分离法。
气体吹送法是通过向水体中通入气体,利用气体与水中的氨氮发生气-液相传质作用,将氨氮从水中去除。
膜分离法则是利用特定的膜将水中的氨氮分离出来,从而达到去除氨氮的目的。
这些物理法虽然可以去除水中的氨氮,但需要消耗一定的能源和设备投入。
综上所述,生物法、化学法和物理法是目前常见的氨氮去除方法。
在实际应用中,可以根据水体的特性和氨氮浓度选择合适的去除方法,以达到经济、高效、环保的目的。
同时,氨氮去除过程中需要注意对水体生态系统的影响,避免对环境造成二次污染。
氨氮的消解过程
氨氮的消解过程
氨氮的消解过程通常涉及到将其转化为氮气的反应,可以通过折点加氯氧化法或微生物硝化和反硝化作用来实现。
折点加氯氧化法是一种常用的氨氮去除方法,通过加入次氯酸钠或漂白粉进行氧化,将氨氮转化为氮气释放。
其反应方程式为:2NH2Cl+HClO→N2↑+3H++3Cl-+H2O。
该方法的反应原理是将氨氮转化为氮气,达到脱氮的目的。
另一种方法是利用微生物硝化和反硝化作用去除废水中的氨氮。
硝化作用是由硝化细菌和亚硝化细菌将氨氮转化为亚硝酸盐和硝酸盐的过程,反硝化作用则是将硝酸盐转化为氮气。
这个过程需要在好氧条件下进行,同时需要提供足够的溶解氧。
在缺氧条件下,反硝化细菌能够将硝酸还原为氮气,这种过程称为脱氮作用。
此外,除氨氮树脂也是一种常用的去除方法。
这种树脂含有磺酸基(—SO3H)的酸性基团,在水中易电离出H+离子,而溶液中的NH4+离子与除氨氮树脂电离出的H+进行离子交换,使得溶液中的阳离子NH4+被转移到树脂上,而树脂上的H+交换到水中。
这个过程是一种物理化学过程,可以将氨氮从水中去除。
总之,氨氮的消解过程可以通过多种方法实现,如折点加氯氧化法、微生物硝化和反硝化作用以及除氨氮树脂等。
这些方法通过不同的化学和生物反应将氨氮转化为氮气,从而达到去除的目的。
如何有效去除污水中的氨氮?
如何有效去除污水中的氨氮?
1.折点氯化法
缺氧情况下,通过脱氮菌将亚硝酸盐和硝酸盐还原成氮气,该反应过程中,反硝化菌利用有机碳源作为电子供体,利用硝酸根中的氧进行缺氧呼吸。
折点加氯法控制的准确时,可以完全去除掉氨氮,但因为加氯量太大,造成成本过高,还有就是产酸时增大了总溶解固体,所以现在这种方法通常是用作氨氮废水的后段处理、给水处理和饮用水处理。
2.生物脱氮法
生物法除氮的工艺很多,通常有AO、AAO、UCT工艺以及生物膜、生物滤池跟氧化沟,每种工艺都包括有厌氧段和好氧段。
AAO工艺主要是通过厌氧、缺氧、好氧交替运行来达到脱氮的效果,因为丝状菌不能大量增殖,所以一般不会发生污泥膨胀的现象,SVI值一般小于100。
在运行中勿需投药,但要在厌氧缺氧段需要不断搅拌以增加溶解氧,减少停留时间,防止出现污泥大量释磷。
具有运行费用低的特点,但是脱氮效果也很难再进一步提高。
3.膜处理法
随着膜处理技术逐渐成熟,利用膜吸收法、液膜法、电渗析法和聚丙烯中空纤维膜法处理高浓度氨氮无机废水能取得很好的效果,去除率高,但是膜处理法有个严重的问题,膜的污染和稳定性,跟其他方法比较时,它的运行成本和费用都比较高,所以现在只是小规模的运用。
4.氨氮去除剂
投加氨氮去除剂,无需改变原有工艺流程,可直接投加,操作简单方便,药剂主要是通过跟游离氨和铵离子形成氮气来达到去除的效果,氨氮去除剂具有投加量少,对氨氮的去除率髙,处理结果稳定,不会产生二次污染。
同时还有脱色、降低COD等辅助功能,具体投加量可以根据实际情况来调整,成本可控。
除氨氮
1.气提法:这是大多数化肥厂采用的方法,实用。
一次性投资费用中等,处理费用合理。
2.吹脱法:将PH值调整到10.5-11左右,将氨从液相转移到气相,必须进行吸收,否则污染空气且污染物转移是不行的。
一次性投资高,操作工艺流程复杂,处理成本较高,能耗高。
3.蒸氨塔蒸发法;原理同气提法,投资费用较高,但处理效率更高,用于焦化废水处理较好。
4.MAP法:即是用磷酸根、镁盐与氨反应生成鸟粪石沉淀的化学反应,生成的鸟粪石可作为肥料,尤其用作花肥较好。
处理效果好,一次投资低,但处理成本较高。
5.折点加氯法:即氧化法,一次性投资费用较高,处理效果好,但处理成本高。
0氨氮(NH3-N)是水环境中氮的主要形态,可使水体富营养化,生成的亚硝胺则直接威胁着人类的健康,而且随着经济的发展和生活水平的提高,氨氮现己成为环境的主要污染指标之一。
因此,有效地控制氨氮己成为治理废水污染所而临的重大课题。
物理化学方法是废水中氨氮去除的主要方法之一。
它主要包括折点氯化法、化学沉淀法、离子交换法、空气吹脱与水蒸气气提法、液膜法、电化学法以及湿式催化氧化法等。
(1)折点氯化法。
折点氯化法是将氯气通人废水中,到达一定状态时水中游离氯含量最低,而氨的浓度降为零,该状态下的氯化称为折点氯化。
处理后的出水须除去水中残氯。
氧化1mg 氨氮约需要9~10mg氯气,影响因素是温度、pH 值及氨氮浓度。
折点氯化法适于处理低浓度氨氮废水,液氯的使用和贮存要求高,处理成本高。
(2)化学沉淀法。
化学沉淀法是将氨与化学沉淀剂(H3PO4 + MgO)反应生成沉淀物以去除废水中的氨氮。
向废水中投加MgCI2+6H2O和Na2HPO4+12H2O以去除氨氮。
结果表明,在pH值为 8.91,Mg2+∶NH4+PO43-的物质的量的比为1.25∶1∶1,反应温度为25℃,反应时间为20 min,沉淀时间为20 min的条件下,氨氮浓度由9500mg/L降到460mg/L,去除率达95%以上。
污水去除氨氮的方法
污水去除氨氮的方法物化法1.吹脱法在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与温度、PH、气液比有关。
2.沸石脱氨法利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。
应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。
采用焚烧法时,产生的氨气必须进行处理,此法适合于低浓度的氨氮废水处理,氨氮的含量应在10-20mg∕1.o3.膜分离技术利用膜的选择透过性进行氨氮脱除的一种方法。
这种方法操作方便,氨氮回收率高,无二次污染。
例如:气水分离膜脱除氨氮。
氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。
根据化学平衡移动的原理即吕.查德里(A.1..1.EChatelier)原理。
在自然界中一切平衡都是相对的和暂时的。
化学平衡只是在一定条件下才能保持"假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。
”遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。
当左侧温度Tl>20o C,PHl>9,Pl>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铁盐。
4.MAP沉淀法主要是利用以下化学反应:Mg2++NH4++P043-=MgNH4P04理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,⅛[Mg2+][NH4+][P043-]>2.5×10-13时可生成磷酸铁镁(MAP),除去废水中的氨氮。
5.化学氧化法利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。
折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。
废水中氨氮的去除方法
废水中氨氮的去除方法
一、离子交换法
离子交换是指在固体颗粒和液体的界面上发生的离子交换过程。
离子交换法选用对NH4+离子
有很强选择性的沸石作为交换树脂,从而达到去除氨氮的目的。
二、生物法
生物法去除氨氮是在指废水中的氨氮在各种微生物的作用下,通过硝化和反硝化等一系列反应,最终形成氮气,从而达到去除氨氮的目的。
三、氨氮去除剂投加
利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。
对于工艺降不下来的低浓度氨氮有
很好的去除作用。
投加氨氮去除剂的优势有:
1、反应时间快速,只需5~6分钟;
2、投加具有强烈的灵活性,可以根据实际情况调整投加量,成本可控;
3、环保无二次污染且去除率高达96%。
氨氮的处理
物化法1. 吹脱法在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与温度、PH、气液比有关。
2. 沸石脱氨法利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。
应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。
采用焚烧法时,产生的氨气必须进行处理。
3.膜分离技术利用膜的选择透过性进行氨氮脱除的一种方法。
这种方法操作方便,氨氮回收率高,无二次污染。
例如:气水分离膜脱除氨氮。
氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。
根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理。
在自然界中一切平衡都是相对的和暂时的。
化学平衡只是在一定条件下才能保持―假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。
‖遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。
当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。
4.MAP沉淀法主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2+ ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。
5.化学氧化法利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。
折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。
二、生物脱氮法传统和新开发的脱氮工艺有A/O,两段活性污泥法、强氧化好氧生物处理、短程硝化反硝化、超声吹脱处理氨氮法方法等。
氨氮去除方法
根据废水中氨氮浓度的不同,可将废水分为3类:高浓度氨氮废水(NH3-N>500mg/l),中等浓度氨氮废水(NH3-N:50-500mg/l),低浓度氨氮废水(NH3-N<50mg/l)。
然而高浓度的氨氮废水对微生物的活性有抑制作用,制约了生化法对其的处理应用和效果,同时会降低生化系统对有机污染物的降解效率,从而导致处理出水难以达到要求。
故本工程的关键之一在于氨氮的去除,去除氨氮的主要方法有:物理法、化学法、生物法。
物理法含反渗透、蒸馏、土壤灌溉等处理技术;化学法含离子交换、氨吹脱、折点加氯、焚烧、化学沉淀、催化裂解、电渗析、电化学等处理技术;生物法含藻类养殖、生物硝化、固定化生物技术等处理技术目前比较实用的方法有:折点加氯法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法。
1.折点氯化法去除氨氮折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N氧化成N2的化学脱氮工艺。
当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。
当氯气通入量超过该点时,水中的游离氯就会增多。
因此该点称为折点,该状态下的氯化称为折点氯化。
处理氨氮废水所需的实际氯气量取决于温度、pH值及氨氮浓度。
氧化每克氨氮需要9~10mg氯气。
pH值在6~7时为最佳反应区间,接触时间为0.5~2小时。
折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。
1mg残留氯大约需要0.9~1.0mg的二氧化硫。
在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右(以CaCO3计)。
折点氯化法除氨机理如下:Cl2+H2O→HOCl+H++Cl-NH4++HOCl→NH2Cl+H++H2ONHCl2+H2O→NOH+2H++2Cl-NHCl2+NaOH→N2+HOCl+H++Cl-折点氯化法最突出的优点是可通过正确控制加氯量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。
去除氨氮的最好方法
去除氨氮的最好方法
去除氨氮的方法有很多种,以下是其中一些常用的方法:
1. 曝气法:通过搅拌或喷泡等方式将氨氮暴露在空气中,利用氨气挥发为氮气从水中去除。
2. 生物法:利用硝化作用和硝化细菌将氨氮转化为硝酸盐氮和亚硝酸盐氮,进而通过反硝化细菌将硝酸盐氮还原为氮气从水中去除。
3. 化学法:使用化学试剂如硫酸铵、硫酸钙等与氨氮发生反应,将氨氮转化为不溶于水的铵盐或固体沉淀,然后通过过滤或沉淀去除。
4. 吸附法:利用各种吸附剂如活性炭、交换树脂等将氨氮吸附在表面,然后将吸附剂与氨氮一起从水中分离除去。
5. 电化学法:利用电解池对水体进行电解,通过阳极氧化还原反应将氨氮氧化为氨气,然后从水中升华出去。
不同的方法适用于不同的水体,具体选择哪种方法应根据水体的特点和具体需求来确定。
氨氮去除方法
氨氮去除方法氨氮是指水中存在的游离氨和氨盐,是水体中一种常见的污染物。
氨氮的存在会对水生生物和人类健康造成危害,因此需要采取相应的方法去除水中的氨氮。
下面将介绍几种常见的氨氮去除方法。
第一种方法是生物法去除氨氮。
生物法是指利用微生物对水中的氨氮进行降解和转化的方法。
通常采用生物滤池、活性污泥法、生物接触氧化法等生物处理设备,利用其中的微生物对水中的氨氮进行降解,将其转化为无害的物质。
生物法去除氨氮的优点是操作简单、成本较低,但是需要一定的时间和条件来维持微生物的生长和活性。
第二种方法是化学法去除氨氮。
化学法是指利用化学药剂对水中的氨氮进行氧化或沉淀的方法。
常用的化学药剂包括氯化铁、硫酸亚铁、过氧化氢等。
这些化学药剂可以与水中的氨氮发生化学反应,将其氧化成氮气或氮氧化物,或者将其沉淀成固体颗粒,从而达到去除氨氮的目的。
化学法去除氨氮的优点是去除效果好、速度快,但是需要注意药剂的选择和投加量,避免对水体造成二次污染。
第三种方法是物理法去除氨氮。
物理法是指利用物理手段将水中的氨氮进行分离和去除的方法。
常用的物理方法包括吸附法、膜分离法、电解法等。
这些物理方法可以通过吸附剂或膜分离设备将水中的氨氮分离出来,或者利用电解设备将水中的氨氮转化成氮气。
物理法去除氨氮的优点是操作简便、无化学药剂投加,但是设备成本较高,维护和运行成本也较高。
综上所述,生物法、化学法和物理法是目前常见的氨氮去除方法。
在实际应用中,可以根据水质特点、处理要求和经济条件选择合适的方法进行氨氮去除。
同时,需要注意不同方法的适用范围和操作要点,确保氨氮去除效果达到预期,保护水体环境和人类健康。
希望本文的介绍对大家有所帮助,谢谢阅读。
水中氨氮的去除方法
水中氨氮的去除方法随着人口的增加和工业的发展,水污染成为了一个日益严重的问题。
其中,氨氮是一种常见的水污染物。
氨氮的存在会对水的生态环境和人类生活产生巨大的影响,因此需要采取适当的措施进行去除。
本文将就水中氨氮的去除方法进行介绍。
一、物理法物理法主要是通过物理吸附或膜过滤将水中的氨氮去除。
因为氨氮的分子较小,可以通过孔径较小的膜过滤器过滤。
而吸附法则是利用固体吸附剂对氨氮分子的亲密作用使其停留或嵌入其表面或体内,从而达到去除的目的。
二、化学法化学法主要是通过还原、氧化、沉淀等方法将水中的氨氮去除。
其中,还原法主要是利用还原剂将氨氮还原成氮气的方法。
氧化法主要是利用氧化剂将氨氮氧化成亚硝酸、硝酸等形式。
沉淀法主要是利用盐酸、氢氧化钠等化学试剂将氨氮沉淀下来。
这些方法适用于大规模的水处理厂。
三、生物法生物法主要是通过微生物的作用将氨氮去除。
这种方法是目前应用最广泛的方法。
微生物可以将氨氮转化为亚硝酸盐、硝酸盐,然后通过微生物的同化过程将它们还原为氮气。
常见的生物处理方法包括曝气法、厌氧氧化法、好氧氧化法等。
四、物化联合法物化联合法主要是通过多个物化方法的组合,达到更好的氨氮去除效果。
例如,利用膜过滤器可以将水中的颗粒物和微生物去除;然后再采用生物法将氨氮转化为硝酸盐;最后采用盐酸、氢氧化钠将硝酸盐沉淀下来。
这种方法能够充分发挥各个方法所具有的优点,达到更好的去除效果。
针对不同的水源和污染程度,不同的氨氮去除方法对应不同的适用范围。
需要选取合适的去除方法,以达到高效、经济的去除效果。
总之,氨氮的去除是一个较为复杂的问题。
需要采取多种方法综合抑制和消除污染物。
未来,随着科技的进步和环保意识的增强,氨氮污染治理的技术也将得到不断的完善和创新。
去除氨氮的最好方法
去除氨氮的最好方法氨氮是水体中的一种重要污染物,它来自于农业、工业、生活污水等多种渠道。
过高的氨氮含量会对水质造成严重影响,不仅影响水生生物的生存,还会对人类健康和环境造成危害。
因此,去除水体中的氨氮是十分重要的。
那么,如何去除水体中的氨氮呢?下面将介绍一些最好的方法:1. 植物吸收法。
植物吸收法是一种生物修复水体的方法,通过植物的吸收作用,可以有效去除水体中的氨氮。
选择适合吸收氨氮的水生植物,如莲藕、菰、藕等,将其种植在水体中,让植物吸收水中的氨氮,起到净化水体的作用。
这种方法不仅可以去除氨氮,还可以美化水域环境,是一种比较环保的方法。
2. 生物滤池法。
生物滤池是一种利用微生物降解氨氮的方法。
将水体通过生物滤池,滤过滤材和填料层,让其中的微生物降解水中的氨氮,从而达到去除氨氮的目的。
这种方法操作简单,成本较低,可以长期稳定地去除水体中的氨氮。
3. 化学氧化法。
化学氧化法是一种利用化学药剂氧化氨氮的方法。
常用的氧化剂有臭氧、氯气、次氯酸钠等。
将这些氧化剂加入水体中,可以将氨氮氧化成无害的物质,从而去除水体中的氨氮。
这种方法去除效果较好,但需要注意药剂的使用量和排放物的处理。
4. 生物膜法。
生物膜法是一种利用生物膜降解氨氮的方法。
在水体中设置生物膜反应器,通过生物膜上的微生物降解氨氮,达到去除氨氮的目的。
这种方法去除效果稳定,操作简单,适用于不同类型的水体。
5. 聚合物吸附法。
聚合物吸附法是一种利用聚合物吸附氨氮的方法。
将具有亲和力的聚合物加入水体中,可以吸附水中的氨氮,从而去除氨氮。
这种方法操作简单,效果较好,但需要注意聚合物的再生和回收利用。
综上所述,去除水体中的氨氮有多种方法,每种方法都有其适用的场景和特点。
在实际应用中,可以根据水体的特点和氨氮的含量选择合适的方法进行去除,以保障水体的水质和生态环境的健康。
希望以上方法对您有所帮助,谢谢阅读!。
氨氮去除方法
氨氮去除方法氨氮污染来源广泛,在工业、农业、生活生产等行业中都存在着。
氨氮对环境的危害性比较大,直接和间接的污染作用都无法忽视。
因此,氨氮的去除是人们普遍关注的问题。
目前,氨氮去除方法主要包括化学法、物理法、生物法等多种方法,各种方法各有优缺点,本文将从多个角度介绍其中的几种代表性的氨氮去除方法。
一、化学法氨氮化学法是利用化学剂将氨氮转化成不挥发、难溶于溶液中的化合物进行除污。
常用化学剂有氧化剂(如高锰酸钾、过硫酸钾等)、还原剂(如二氧化硫、亚硫酸盐等)、沉淀剂(如氢氧化铁、氧化铝等)等。
由于化学法处理氨氮具有反应时间短、处理效果容易掌控等特点,所以在部分工业废水中处理氨氮方面得到应用。
二、物理法物理法处理氨氮主要是利用分离和分解机理进行处理。
其中的代表方法有膜分离法和气浮法,两种方法分别具有自己的特点。
1、膜分离法膜分离法是一种在高压下用膜分离器将溶液中无机与有机物质分离的方法。
它的工作原理是:将氨氮废水通过膜过滤装置,利用高压将废水分离出来的有机物、微生物以及其他固体颗粒粘附到膜上,可达到高净化度的目的。
2、气浮法气浮法是利用气液接触和微小气泡的作用使水中的物质悬浮在水表面上,后由浮集器进行回收或排放。
是一种确保水体水质清洁的技术方法。
气浮法处理氨氮的废水具有净化度高、操作简便等特点,已经广泛应用于生活污水、印染废水、染料废水、造纸废水等多种废水的处理。
三、生物法生物法是指利用微生物代谢异化而降低或去除污染物质的技术。
其中最主要的方法是活性污泥法。
1、活性污泥法活性污泥法是一种采用微生物的合成培养体即活性污泥,降解有机物和氨氮废水的方法。
通过污水在接触生物群体的同时进行反应,利用微生物在生命活动中对废弃物质的吸收、代谢、分解等作用实现废水净化。
该方法具有工艺流程简单、出水质量稳定、适应性广等特点,在实践应用中表现出较为可行的替代性和优越性。
综上所述,各种氨氮去除方法各有特点,可以根据污染源的实际情况进行选择。
氨氮的去除
氨氮的去除根据废水中氨氮浓度的不同,可将废水分为3类:高浓度氨氮废水(NH3-N>500mg/l),中等浓度氨氮废水(NH3-N:50-500mg/l),低浓度氨氮废水(NH3-N<50mg/l)。
然而高浓度的氨氮废水对微生物的活性有抑制作用,制约了生化法对其的处理应用和效果,同时会降低生化系统对有机污染物的降解效率,从而导致处理出水难以达到要求。
去除氨氮的主要方法有:物理法、化学法、生物法。
物理法有反渗透、蒸馏、土壤灌溉等处理技术;化学法有离子交换、氨吹脱、折点加氯、焚烧、化学沉淀、催化裂解、电渗析、电化学等处理技术;生物法有藻类养殖、生物硝化、固定化生物技术等处理技术。
目前比较实用的方法有:折点加氯法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法。
1.折点氯化法除氨氮折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N氧化成N2的化学脱氮工艺。
当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。
当氯气通入量超过该点时,水中的游离氯就会增多。
因此该点称为折点,该状态下的氯化称为折点氯化。
处理氨氮废水所需的实际氯气量取决于温度、pH值及氨氮浓度。
氧化每克氨氮需要9~10mg氯气。
pH值在6~7时为最佳反应区间,接触时间为0.5~2小时。
折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。
1mg残留氯大约需要0.9~1.0mg的二氧化硫。
在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右(以CaCO3计)。
折点氯化法除氨机理如下:Cl2+H2O→HOCl+H++Cl-NH4++HOCl→NH2Cl+H++H2ONHCl2+H2O→NOH+2H++2Cl-NHCl2+NaOH→N2+HOCl+H++Cl-折点氯化法最突出的优点是可通过正确控制加氯量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。
去除氨氮的最好方法
去除氨氮的最好方法
1、折点氯化法:该方法是将氯气或次氯酸钠通入废水中的NH3-N氧化成N2的化学脱氮工艺。
在处理氨氮废水过程中,所需的氯气量取决于温度、PH值和氨氮的浓度。
氧化每克氨氮需要9~10mg氯气,PH值在6~7时为较佳反应区间,接触时间为0.5~2小时。
特点:氯化法处理率高,效果稳定,不受温度影响。
不过虽然投资较少,氮运行费用较高,只适用于处理低浓度氨氮废水。
2、MAP沉淀法:在氨氮废水中投加磷盐和镁盐使废水中污染物生成溶解度很小的沉淀物或聚合物,达到去除氨氮的效果。
特点:废水中氨氮能作为肥料得以回收,若废水中磷酸根较高,只需投加镁盐,少量投加或不投加磷盐,即可达到脱氮除磷作用,但三者之间的比例需要控制得当。
3、选择性离子交换法:指在固体颗粒和液体的界面上发生的离子交换过程。
离子交换法选用对NH4+离子有很强选择性的沸石作为交换树脂,可以很好地去除氨氮。
特点:沸石使用成本低,对NH4+有很强的选择性。
该工艺简单、投资省,具有较高的去除率和稳定性。
适用于中低浓度的氨氮废水,对于高浓度的氨氮废水会因树脂再生频繁而造成操作困难。
4、生物法:指废水中的氨氮在微生物的作用下,通过硝化和反硝化等反应,最终形成氮气,从而达到去除氨氮的效果。
特点:生物脱氮法可去除多种含氮化合物,二次污染小且比较经济,因此在国内外运用较多。
不足是占地面积大,低温时去除效率低。
5、膜分离技术:该工艺是利用膜的选择性,达到去除氨氮的效果。
特点:该方法氨氮回收率高、无二次污染。
该工艺流程简单、不消耗药剂、运行过程中消耗的电量与废水中氨氮的浓度成正比。
氨氮超标的处理方法快速去除氨氮
氨氮超标的处理方法快速去除氨氮
氨氮超标的处理方法主要包括以下几种:
1. 曝气处理:通过增加曝气时间和氧气供应量,促进氨氮的氧化分解,将其转化为无害的氮气释放到大气中。
曝气处理可以通过增加曝气池的曝气设备或者增加曝气池的容积来实现。
2. 生物处理:利用生物活性污泥中的细菌和微生物,将氨氮转化为硝酸盐。
这一过程称为硝化作用。
硝酸盐又可以被另一类细菌转化为氮气,这一过程称为反硝化作用。
通过生物处理,氨氮可以被有效地去除。
3. 化学处理:使用化学药剂来与氨氮发生反应,形成沉淀物或者生成无害物质,从而去除氨氮。
常用的化学药剂包括含铁、铝、钙等金属离子的盐类。
化学处理需要根据具体情况选择合适的药剂和反应条件。
4. 吸附处理:利用吸附剂吸附氨氮,将其从废水中分离出来。
常用的吸附剂有活性炭、天然土壤、陶瓷颗粒等。
吸附处理需要注意选择合适的吸附剂和控制吸附过程中的pH值、温度等
条件。
5. 膜分离技术:利用特殊的膜过滤装置,将废水中的氨氮通过膜的选择性分离,从而去除氨氮。
常用的膜分离技术包括微滤、超滤、反渗透等。
膜分离技术具有分离效果好、操作简便等优点。
以上是一些常见的氨氮超标处理方法,具体选择何种方法需要根据废水的特性、处理要求和经济成本等因素综合考虑。
氨氮的处理
氨氮的处理物化法1. 吹脱法在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与温度、PH、气液比有关。
2. 沸石脱氨法利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。
应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。
采用焚烧法时,产生的氨气必须进行处理。
3.膜分离技术利用膜的选择透过性进行氨氮脱除的一种方法。
这种方法操作方便,氨氮回收率高,无二次污染。
例如:气水分离膜脱除氨氮。
氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。
根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理。
在自然界中一切平衡都是相对的和暂时的。
化学平衡只是在一定条件下才能保持―假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。
‖遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。
当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。
4.MAP沉淀法主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2+ ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。
5.化学氧化法利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。
折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。
二、生物脱氮法传统和新开发的脱氮工艺有A/O,两段活性污泥法、强氧化好氧生物处理、短程硝化反硝化、超声吹脱处理氨氮法方法等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.化学沉淀(MAP) 法
在一定的pH条件下,水中的Mg2+ 、HPO43- 和NH4+可以生成磷酸铵镁沉淀,而使铵离子从水中分离出来。
影响沉淀效果的因素有沉淀剂种类及配比、pH值、废水中的初始氨的浓度、干扰组分等。
有研究表明沉淀法去除废水中氨氮的pH值为10.0 ,物质的量之比Mg∶N= 1.2、P:N = 1. 02 时沉淀效果最好,氨氮去除率达到90 %。
赵庆良等[ ]研究表明,MgCl2 ?6H2O 和Na2HPO4?12H2O 组合沉淀剂优于MgO 和H3PO4 组合,垃圾渗滤液中的氨氮质量浓度可由5618 mg/ L 降低到65 mg/ L。
李芙蓉等采用氧化镁和磷酸作为沉淀剂去除煤气洗涤循环水中高浓度的氨氮,效果良好。
李才辉等对MAP法处理氨氮废水的工艺进行优化,研究表明氨氮的去除率随着反应时间的增加而增加,随着Mg∶N 比值的增加而增加。
刘小澜探讨了不同操作条件对氨氮去除率的影响,在pH值为8.5-9. 5 的条件下,投加的药剂Mg2+:NH4+ ∶PO43- (摩尔比)为1. 4∶1∶0. 8 时,废水氨氮的去除率达99 %以上,出水氨氮的质量浓度由2 g/ L 降至15 mg/ L。
国外对用化学沉淀法去除废水中的氨氮也有较多研究。
Stratful等详细研究了影响磷酸铵镁沉淀及晶体生长的因素,得出
4点结论:
(1)过量的铵离子对形成磷酸铵镁沉淀有利;
(2)镁离子可能是形成磷酸铵镁沉淀的限制因素;
(3)如果要想从废水中回收磷酸铵镁,需要得到比较大的晶体颗粒,则至少需要3 h 的结晶时间;
(4)沉淀的pH 值应大于8. 5。
Battistoni 等进行了用化学沉淀法从废水厌氧消化后的上清液中同时回收氮和磷的研究。
废水厌氧消化过程中,有机物中的氮和磷被微生物分解为无机的磷酸盐和氨氮,添加MgO 可以生成磷酸铵镁沉淀可回收磷和氮。
Lind 等则进行了用磷酸铵镁沉淀法从人的尿液中回收营养物质的研究,可以回收65. 0 % -80. 0 %的氮。
化学沉淀法的最大优点是可以回收废水中的氨,所生成的沉淀可以作为复合肥而利用。
存在的主要问题是沉淀剂的用量较大,需要对废水的pH 进行调整,另外有时生成的沉淀颗粒细小或是絮状体,工业中固液分离有一定困难。
(二) 生物脱氮法
1. 传统硝化反硝化
传统硝化反硝化工艺脱氮处理过程包括硝化和反硝化两个阶段。
在将有机氮转化为氨氮的基础上,硝化阶段是将污水中的氨氮氧化为亚硝酸盐氮或硝酸盐氮的过程;反硝化阶段是将硝化过程中产生的硝酸盐或亚硝酸盐还原成氮气的过程。
只有当废水中的氮以亚硝酸盐氮
和硝酸盐氮的形态存在时,仅需反硝化一个阶段。
尽管传统硝化反硝化工艺脱氮在废水脱氮方面起到了一定的作用,但仍存在以下问题:
(1)硝化菌群增殖速度慢且难以维持较高生物浓度,特别是在低温冬季。
因此造成系统总水力停留时间(HRT) 长,有机负荷较低,增加了基建投资和运行费用;
(2)硝化过程是在有氧条件下完成的,需要大量的能耗;
(3)反硝化过程需要一定的有机物,废水中的COD 经过曝气有一大部分被去除,因此反硝化时往往要另外加入碳源(例如甲醇) ;
(4)系统为维持较高生物浓度及获得良好的脱氮效果,必须同时进行污泥回流和硝化液回流,增加了动力消耗及运行费用;
(5)抗冲击能力弱,高浓度氨氮和亚硝酸盐进水会抑制硝化菌的生长;
(6)为中和硝化过程产生的酸度,需要加碱中和,增加了处理费用。
由于传统硝化反硝化具有一些弊端,国内外一些学者研究的热点集中在如何改进传统的硝化反硝化工艺。
近年来研究成果主要有短程硝化反硝化、厌氧氨氧化、同时硝化反硝化、反硝化除磷等。
2. 短程硝化反硝化
短程硝化反硝化又称亚硝化反硝化,把硝化反应过程控制在氨氧化产生NO2-的阶段, 阻止NO2-进一步氧化, 直接以NO2-作为菌体呼吸链氢受体进行反硝化。
此过程减少了亚硝酸盐氧化成硝
酸盐,然后硝酸盐再还原成亚硝酸盐两个反应的发生,降低了需氧量、反硝化过程中有机碳的投入量,降低了能耗和运行费用。
短程硝化反硝化与传统的生物脱氮相比具有以下优点:
(1)于活性污泥法,可以节省25 %的供养量, 降低能耗;
(2)节省反硝化所需碳源40% ,在C/ N一定的情况下可提高总氮的去除率;
(3)减少污泥量可达50 %;
(4)减少碱耗;
(5)提高反应速率,缩短反应时间,减少反应器容积。
实现短程硝化与反硝化的关键是抑制硝化菌的活性而使NO2-得到累积。
影响硝化菌活性及NO2-累积的因素有自由氨、pH、DO、温度等。