两级蒸汽压缩式制冷循环
两级压缩与复叠式制冷方式的比较
0. 6355
- 13
- 18
- 24
- 65 低温 高温
0. 0407 0. 0379
0. 4478 0. 0909
21. 098 18. 913
62. 894 32. 301
0. 7253 0. 7498
0. 4431 0. 6133
0. 5817 0. 7325
0. 4399 0. 6396
4. 33
第 3 期 程有凯等 :两级压缩与复叠式制冷方式的比较 · 6 9 ·
4. 08
0. 853
1. 2497
0. 5252
- 15
- 20
- 27
- 70 低温 高温
0. 0576 0. 0612
1. 2283 0. 1213
25. 422 23. 968
108. 299 43. 836
0. 6614 0. 6925
0. 2212 0. 5529
0. 5620 0. 6746
0
- 28
- 33
- 36
- 80 低温 高温
0. 1685 0. 1126
0
0
37. 980 34. 284
0
0
0. 4621 0. 5298
0
0
0. 4675 0. 5979
0
0
2. 93 2. 81
0
0. 6919
Байду номын сангаас
0
- 32
- 37
- 40
© 1994-2009 China Academic Journal Electronic Publishing House. All rights reserved.
双级压缩制冷循环原理
双级压缩制冷循环原理引言:双级压缩制冷循环是一种高效的制冷循环系统,通过将压缩机分为两级,可以提高制冷系统的性能和效率。
本文将详细介绍双级压缩制冷循环的原理、工作过程以及优点。
一、双级压缩制冷循环的原理双级压缩制冷循环是基于传统的压缩制冷循环的改进。
传统的压缩制冷循环由压缩机、冷凝器、膨胀阀和蒸发器四个主要组件组成。
而双级压缩制冷循环则在传统循环的基础上增加了一个中间冷却器。
双级压缩制冷循环的工作原理如下:1. 第一级压缩:制冷剂从蒸发器进入第一级压缩机,被压缩为高温高压气体。
2. 中间冷却:高温高压气体进入中间冷却器,在此过程中,部分热量被冷却掉,使制冷剂降温。
3. 第二级压缩:冷却后的制冷剂进入第二级压缩机,再次被压缩为更高温高压气体。
4. 冷凝:高温高压气体进入冷凝器,通过散热的方式释放热量,变为高压液体。
5. 膨胀:高压液体通过膨胀阀进入蒸发器,压力迅速降低,使制冷剂蒸发为低温低压的气体。
6. 蒸发:低温低压气体吸收周围热量,实现制冷效果,并再次进入第一级压缩机,循环往复。
二、双级压缩制冷循环的工作过程双级压缩制冷循环的工作过程可以分为两个阶段:高温阶段和低温阶段。
1. 高温阶段:在高温阶段,制冷剂在第一级压缩机中被压缩,变为高温高压气体。
然后,通过中间冷却器的冷却作用,一部分热量被排出。
之后,制冷剂再次进入第二级压缩机,被再次压缩为更高温高压气体。
最后,高温高压气体进入冷凝器,通过散热的方式释放热量,变为高压液体。
2. 低温阶段:在低温阶段,高压液体通过膨胀阀进入蒸发器,压力迅速降低,使制冷剂蒸发为低温低压的气体。
低温低压气体吸收周围热量,实现制冷效果。
然后,制冷剂再次进入第一级压缩机,循环往复。
三、双级压缩制冷循环的优点双级压缩制冷循环相比传统的压缩制冷循环具有以下优点:1. 高效能:通过增加中间冷却器,可以减少制冷机组的功耗,提高制冷系统的效率。
2. 节能:利用中间冷却器的冷却作用,可以减少能量的损失,从而达到节能的目的。
04.两级压缩和复叠式制冷循环讲解
(1)按几何比例中项确定中间压力:
根据确定的冷凝压力Pk、和蒸发压力Po,按下式确定:
(2)按拉塞(A.Rasl)公式确定中间温度:
根据确定的冷凝温度Tk、和蒸发温度To,按下式确定:
(3)按诺模图确定中间温度: 诺模根据拉塞公式制作了 诺模图,可以很方便地查找中 间温度。 值得注意的是:诺模图和 拉塞公式一般只适用于氨为制 冷剂的系统。实际循环的制源自系数为实际循环的制冷系数为:
冷凝器热负荷:
根据计算出来的qvhG、qvhD选配合适的压缩机,并据Qo和Qk选配蒸发器 和冷凝器—称之为设计性计算; 对于已有的两级制冷机可根据它的qvhG、qvhD数值,计算出它的实际制 冷量Qo
两级压缩氨制冷机在冷库制冷装置中的实际系统图
4. 2.2 一级节流、中间不完全冷却的两级压缩循环
高压压缩机的吸气状态参数点4 的比焓可由两部分蒸气混合 过程的热平衡关系式求得。
两级压缩SD2-4F10A氟里昂制冷机在制冷装置中 实际系统图
4.3 两级压缩制冷机的热力计算 和温度变动时的特性
4. 3. 1两级压缩制冷机的热力计算
*两级压缩制冷机应使用R717、R22、R290等中温制冷剂,为的是 低温下系统中蒸发压力不会太低、常温下冷凝压力又不会且易于液化。 *对采用回热有利的制冷剂—R22、R290等应选用一级节流中间不完 全冷却循环方式; *对采用回热不利的制冷剂—R717等应选用一级节流中间完全冷却 循环方式。 *两级压缩制冷的热力计算方法与单级压缩制冷的热力计算方法基 本一样。
4. 3. 2 两级压缩制冷机中间压力的确定
1.校核计算:
高、低压级压缩机已定,通过热力计算去确定中间压力。 按一定间隔选择若干个中间温度,按所选温度分别进行循环的 热力计算,求出不同中间温度下的理论输气量的比值,与给定的高、 低压压缩机的理论输气量比值进行比较,用试凑法来确定中间压力。
制冷原理与设备(第4章两级压缩制冷循环)
qmg
(h2
h3) (h5 h3
h7 ) (h3 h6
h6 )
qmd
h2 h3
h7 h6
qmd
中冷器热平衡方程
因为 h5=h6 h7=h8
制冷原理及设备
4 双级压缩和复叠式制冷循环
高压级吸入的质量流量:
qmg
(h3
h2 h7 h6 )(h1
h7 )
Q0
3)系统的总耗功率
Pth = Pthd
4.2.1一级节流、中间完全冷却的双级压缩制冷循环
1、流程和特点 (多了压缩机,节流阀和中间冷却器)
1)由冷凝器流出的液体分为两路:
a.经膨胀阀1节流至Pm进入中冷器, 利用它的吸热来冷却低压级排气 和盘管中高压液体。蒸发了的蒸 汽同低压压缩机排气一起进入高 压级;
b.液体在中冷器盘管中被冷 却后,经膨胀阀2节流到P0, 在蒸发器中蒸发制冷。
2).制冷剂To↓Po↓,如R12 to=-67℃, Po=0.149bar 空气易渗入 系统,破坏循环正常运行。
3)Po↓V1↑qv↓,势必要求压缩机体积流量很大。
2、.使用条件
4)对制冷循环压力比的限制 5)受活塞式压缩机阀门结构特性的 限制
-60~-80℃ -80~-100℃ -100~-130℃
度和蒸发温度,单位均为℃。
– 上式不只适用于氨,在-40~40℃温度范围 内,对于R12也能得到满意的结果。
制冷原理及设备
4 双级压缩和复叠式制冷循环
• 4.3.3 温度变动时制冷机特性
• 双级蒸气压缩式制冷循环的比较分析
– (1)中间不完全冷却循环的制冷系数要比中间完全冷却循环 的制冷系数小
– (2)在相同的冷却条件下,一级节流循环要比二级节流循环 的制冷系数小 • 1)一级节流可依靠高压制冷剂本身的压力供液到较远的 用冷场所,适用于大型制冷装置。 • 2)盘管中的高压制冷剂液体不与中间冷却器中的制冷剂 相接触,减少了润滑油进入蒸发器的机会,可提高热交换 设备的换热效果。 • 3)蒸发器和中间冷却器分别供液,便于操作控制,有利 于制冷系统的安全运行
双级压缩式制冷循环
02:08
weisean
13
实际复叠机
力一般均高于15Kpa。例如乙烷,当蒸发温度为 -100℃时,其相应的蒸发压力为52Kpa;但其冷 凝压力太高,当 tk=25 ℃时,其冷凝压力就高达 4.18Mpa,使机器显得十分笨重;而且当冷凝温 度 35 ℃时就已超过了它的临界温度(℃),使乙 烷蒸气无法液化,循环的经济性大大恶化。
到目前为止,还难以找到一种制冷剂,它既满 足冷凝压力不太高、又满足蒸发压力不太低的要 求。
02:08Leabharlann weisean18
复叠式制冷循环中中间温度的确定应根
02:08
weisean
6
制冷剂蒸发温度过低: 1、易导致压缩机和系统低压部分在高真空下
运行,增加空气渗入的可能性。 2、将导致压缩机吸气比容增大,输气系数减
小,需要采用更大尺寸的压缩机。
如 R13 的凝固温度为 -181 ℃,且在低 温条件下,饱和蒸汽压力仍然较高。但临 界温度低,为 28.8 ℃,不能用环境介质 (水、空气)来完成冷凝过程
例:
当蒸发温度为-80℃时,若采用氨作为制冷剂,它在 -77.7℃时就已凝固,使循环遭到完全破坏。如果采用 R22作为制冷剂,此时它虽未凝固,但蒸发压力已低达 10Kpa,一方面增加了空气漏入系统的可能性,另一方 面导致压缩机吸气比容增大(此时蒸气比容为 1.76m3/kg)和输气系数的降低,从而使压缩机的气缸 尺寸增大,运行经济性下降。
第4章 两级压缩和复叠式制冷循环
qvhD=qvsD/λD=Φ0v1/(h1–h7)λD
高压级压缩机的理论比功:ω0G = h4 -–h3 中间冷却器的热平衡关系:
qmDh2+qmD(h5-h7)+(qmG-qmD)h5=qmGh3 高压级压缩机的制冷剂流量:
热力计算
冷凝器热负荷:
Φk=qmG(h4s-h5) 制冷量:
h4s=h3–(h4–h3)ηiG
Φ0=qvhDλD(h1-h7)/v1
一级节流,中间不完全冷却两 级压缩制冷循环
一级节流,中间不完全冷却两级压缩制冷循环
循环过程
工作过程: 从蒸发器出来的蒸汽经回热器后被低压压缩机
吸入,压缩到中间压力并与中冷器出来的干饱和蒸 汽在管路中进行混合,使从低压机排出的过热蒸汽 被冷却后再进入高压压缩机,经压缩到冷凝压力并 进入冷凝器,冷凝后的高压制冷剂液体进入了中冷 器的蛇形盘管进行再冷却,然后进入回热器与从蒸 发器出来的低温低压蒸汽进行热交换,使从中冷器 蛇形盘管中出来的过冷液体再一次得到冷却,最后 经膨胀阀进入蒸发器吸热蒸发。
热力计算
高压级压缩机的实际输气量: qvsG =qmGv3=Φ0(h2-h7)v3/(h1-h7)(h3-h5)
高压级压缩机的理论输气量: qvhG=qvsG/λG=Φ0(h2-h7)v3/(h1-h7)(h3-h5)λG
理论循环性能系数: COP0=Φ0/(qmDω0D+qmGω0G)
实际循环性能系数: COP0=Φ0/(qmDω0D/ηkD+qmGω0G/ηkG)
压焓图分析
图中1—2:低压压缩机的压 缩过程;
2—3:低压级排气在中间 冷却器中的冷却过程;
双级压缩制冷循环原理图文稿
双级压缩制冷循环原理集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)双级压缩制冷循环原理一、萨震两级压缩采用的原因制冷系统的冷凝温度(或冷凝压力)决定于冷却剂(或环境)的温度,而蒸发温度(或蒸发压力)取决于制冷要求。
由于生产的发展,对制冷温度的要求越来越低,因此,在很多制冷实际应用中,要在高压端压力(冷凝压力)对低压端压力(蒸发压力)的比值(即压缩比)很高的条件下进行工作。
由理想气体的状态方程Pv/T≡C可知,此时若采用单级压缩制冷循环,则压缩终了过热蒸气的温度必然会很高(V一定,P↑→T↑),于是就会产生以下许多问题。
1.压缩机的输气系数λ大大降低,且当压缩比≥20时,λ=0 。
2.压缩机的单位制冷量和单位容积制冷量都大为降低。
3.压缩机的功耗增加,制冷系数下降。
4.必须采用高着火点的润滑油,因为润滑油的粘度随温度升高而降低。
5.被高温过热蒸气带出的润滑油增多,增加了分油器的负荷,且降低了的传热性能。
总上所述,当压缩比过高时,采用单级压缩循环,不仅是不经济的,而且甚至是不可能的。
为了解决上述问题,满足生产要求,实际中常采用带有中间冷却器的制冷循环。
但是,双级压缩制冷循环所需的设备投资较单级压缩大的多,且操作也较复杂。
因此,采用双级压缩制冷循环并非在任何情况下都是有利的,一般当压缩比≥8时,采用双级压缩较为经济合理。
二、双级压缩制冷循环的组成及常见形式两级压缩制冷循环,是指来自的蒸气要经过低压与高压压缩机两次压缩后,才进入冷凝器。
并在两次压缩中间设置中间冷却器。
两级压缩制冷循环系统可以是由两台压缩机组成的双机(其中一台为低压级压缩机,另一台为高压级压缩机)两级系统,也可以是由一台压缩机组成的单机两级系统,其中一个或两个汽缸作为高压缸,其余几个汽缸作为低压缸,其高、低压汽缸数量比一般为1:3或1:2 。
两级压缩制冷循环由于节流方式和中间冷却程度不同而有不同的循环方式,通常分为:两次节流中间完全冷却、两次节流中间不完全冷却、一次节流中间完全冷却和一次节流中间不完全冷却四种两级压缩制冷循环方式。
两级压缩制冷循环工作过程
两级压缩制冷循环工作过程两级压缩制冷循环工作过程是一种将制冷剂在压缩机内压缩和放松来制造低温的方法。
此制冷循环的基本原理类似于标准制冷循环,但两者的主要区别在于同时使用两个压缩机将制冷剂压缩到不同的压力级别中。
以下是两级压缩制冷循环的工作过程:1.制冷剂进入蒸发器:制冷剂从蒸发器向压缩机的第一级压缩机移动。
在这个步骤中,制冷剂处于低温低压状态,并从蒸发器中吸收热量。
吸收的热量通过环境空气来自空调室内单位或从其他来源。
2.第一级压缩机:制冷剂通过一次压缩来提高压力和温度。
第一级压缩器将低温低压制冷剂压缩成高温低压制冷剂。
这个高温低压的制冷剂接着会在第一级冷凝器中冷却,这将使制冷剂从气态转变为液态。
3.第二级压缩机:高温低压的制冷剂离开第一级压缩机并进入第二级压缩机。
这里,制冷剂接受了第二个压缩工程,在压缩器中被提升到更高的压力和温度。
第二级压缩机输出的高温高压制冷剂通过第二级冷凝器进行冷却。
这一步骤会使制冷剂进一步从气态转变为液态。
4.节流阀:高压液态制冷剂进入节流阀。
节流阀允许压缩机产生的压力被释放,以使制冷剂的压力降低到较低水平。
这个压力差产生了冷却效应,在这里制冷剂发生膨胀,从而在温度上有所降低。
节流阀后面是蒸发器,制冷剂从节流阀蒸发,并在过程中从空气中吸收热量,这样就形成了一个闭合回路。
5.回到蒸发器:制冷剂从节流阀返回蒸发器。
再次进入冷却循环后,制冷剂从低温低压状态开始。
在蒸发器中,制冷剂从空气中吸收热量并再次从气态转换为液态,从而形成制冷循环的下一个完整循环。
总的来说,两级压缩制冷循环机的基本工作过程可以分为五个步骤:制冷剂进入蒸发器;第一级压缩机;第二级压缩机;节流阀;回到蒸发器。
这些步骤重复进行,使空调过程持续进行,从而实现制冷效果。
两级压缩和复叠式制冷循环
2. 第二种情况——压气机未定
遵循制冷系数最大化原则来确 定中间压力pm。
(1)根据已确定的pk和P0,按照
求得一个近似值;
6
C
5
3 qmG - qmD 4 q m G
7
qmD
8
2
9
E
1
4.3 两级压缩制冷机的热力计算和温度变动时的特性
2. 第二种情况——压气机未定 遵循制冷系数最大化原则来确 定中间压力pm。 (1)根据已确定的pk和P0,按照
℃,
℃,
为蒸发温度极限值。
当蒸发温度达到此温度时, 制冷机压缩机照常运行;
但无法得到任何的制冷效果, 且空耗部分电能。
解决问题的方法: 变单级压缩为多级压缩。
4.1 概述
二.复叠式制冷
压缩机气缸尺寸过大,运
为获得更低的制冷温度,则要 行经济性下降。
求制冷剂必须工作在更低的蒸发温 ④吸气阀开启困难。
4.2 两级压缩制冷循环
qmG qmD h3 h8 h3 h6
(2)h4的计算 4点为过热蒸汽:
3 qmG - qmD
4 qmG
6
C
5
3 qmG - qmD 4 q m G
7
qmD
8
2
9
E
1
qmD
2
h4
q m Gh 3
qmD qmG
h2
h3
h4
h3
h3 h3
h6 - h8
h 2
h4 - h3 h2 h7 h3 h5
h 2 - h1'
4.4 复叠式制冷机循环
一.复叠式制冷机循环系统
复叠式制冷机通常由高温级和 低温级两部分制冷系统组成。
第四章双级压缩
0.5两种。
4.3 双级蒸气压缩式制冷循环的热 力计算及运行特性分析
2.中间压力与中间温度的确定 • (1)选配压缩机时中间压力的确定
– 选配压缩机时,中间压力pm的选择,可以根据制 冷系数最大这一原则去选取,这一中间压力pm又 称最佳中间压力。确定最佳中间压力pm常用的方 法有公式法和图解法。
• 两级压缩制冷机的工况变动时的一些特性:
– ① 随着t0的升高,压力pc和pm都有不断升高,但 pm升高得快;
– ② 随着t0的升高,压力比σH和σL都不断下降, 但σH下降快;
– ③ 随着t0的升高,压力差(pc-pm)减小,(pm-pe) 先逐渐增大而后逐渐减小。
• 4.4 复叠式制冷循环
–
高压级制冷剂的质量流量为
高压级压缩机的理论功率为
qm g
qmd
h2 - h7 h3 - h5
P0g
qm gw0g
Q0
h2 - h7 h4 - h3 h3 - h5 h1 - h8
4.3 双级蒸气压缩式制冷循环的热 力计算及运行特性分析
• 4.3.4 制冷循环的热力计算
– 理论循环制冷系数为
0
4.2.1 双级蒸气压缩式制冷循环基本类型
1.一级节流、中间完全冷却的两级压缩制冷循环 2.一级节流、中间不完全冷却的两级压缩制冷循环
3.两级节流、中间完全冷却的两级压缩制冷循环
4.两级节流、中间不完全冷却的两级压缩制冷循环
5.两级节流、具有中温蒸发器的中间完全冷却两级压缩制冷循环
第4章 双级蒸气压缩式和复叠式制冷循环
–定义
• 由两个(或数个)不同制冷 剂工作的单级(也可以是多 级)制冷系统组合而成。
两级压缩制冷循环工作过程
两级压缩制冷循环工作过程
压缩制冷循环是一种常见的制冷方式,通过不断压缩、冷却、膨胀和加热气体,来实现制冷的目的。
其中,两级压缩制冷循环是一种比较高效的制冷系统,下面我们将详细介绍它的工作过程。
第一阶段:压缩
在两级压缩制冷循环中,首先需要进行第一阶段的压缩。
在这个阶段,制冷剂被压缩成高压气体,这样就可以提高其温度。
通常,压缩是通过压缩机完成的,压缩机会不断将气体压缩,使其温度和压力都随之升高。
第二阶段:冷却
经过第一阶段的压缩后,高温高压的气体需要进行冷却。
这个阶段通常通过冷凝器完成,冷凝器会将气体中的热量散发出去,从而使气体冷却下来。
在这个过程中,气体会逐渐凝结成液体,并释放出热量。
第三阶段:膨胀
经过冷却后的液体制冷剂会进入膨胀阀,通过膨胀阀的作用,液体会迅速膨胀成为低温低压的气体。
这个过程会使气体吸收周围的热量,从而使周围环境变得更加凉爽。
第四阶段:加热
最后一个阶段是加热阶段,气体会通过蒸发器吸收热量,从而再次
升温。
这样就形成了一个循环,气体不断被压缩、冷却、膨胀和加热,从而实现了制冷的目的。
总结
两级压缩制冷循环通过不断的压缩、冷却、膨胀和加热气体的过程,实现了制冷的效果。
这种制冷方式在工业和家用领域都有广泛的应用,可以实现高效的制冷效果。
通过了解其工作原理,我们可以更好地理解制冷系统的运行机理,从而更好地利用和维护制冷设备。
希望通过本文的介绍,读者对两级压缩制冷循环有了更深入的了解。
第四章双级压缩
1)单位质量制冷量: q0=h1-h8 kJ/kg )单位质量制冷量: 2)单位容积制冷量: qv=q0 / v1 kJ/ m4 )单位容积制冷量: 3)单位冷凝热负荷: qk=h4-h5 kJ/kg )单位冷凝热负荷: 4)低压级单位理论压缩功: w0d=h2-h1 kJ/kg )低压级单位理论压缩功: 5)高压级单位理论压缩功: w0g=h4-h4 kJ/kg )高压级单位理论压缩功: 6)低压级制冷剂的质量流量: MRd=Q0 / q0 kg/s )低压级制冷剂的质量流量: h −h M =M 7)高压级制冷剂的质量流量: ⋅ (h − h ) )高压级制冷剂的质量流量: h −h Q M ε = = P +P M (h − h ) + M (h − h ) 8)制冷系数: )制冷系数:
4.3 双级蒸气压缩式制冷循环的热 力计算及运行特性分析
2.中间压力与中间温度的确定 • (1)选配压缩机时中间压力的确定 – 选配压缩机时,中间压力pm的选择,可以根据制 冷系数最大这一原则去选取,这一中间压力pm又 称最佳中间压力。确定最佳中间压力pm常用的方 法有公式法和图解法。 – 1)公式法
• 4 m1=m6=m5-m3’-m3’’
• 5 m3=m1+m3’+m3’’ • =m1(h2-h6)/(h3-h5)
4.2.5.4热力计算
• • • • • • • • (1) 单位质量制冷量q0=h1-h0 (2) 低压压缩机流量m1=Q0/q0 (3) 高压压缩机流量m3= m1(h2-h6) (h3-h5) (4) 单位质量低压比功W0L=h2-h1 (5) 低压压缩机耗比功N0L=m1*(h2-h1) (6) 单位质量高压比功W0H=h4-h3 (7) 高压压缩机耗功N0H=m3*W0H
两级压缩制冷循环工作过程
两级压缩制冷循环工作过程
制冷循环是一种常见的制冷技术,而两级压缩制冷循环是其中一种常用的制冷系统。
它通过两个不同的压缩级别来提高制冷效率,使制冷系统更加节能和高效。
下面我们来详细了解一下两级压缩制冷循环的工作过程。
让我们了解一下两级压缩制冷循环的基本组成。
该系统主要由两个压缩机、冷凝器、膨胀阀和蒸发器组成。
其中,第一级压缩机和冷凝器组成第一级压缩,第二级压缩机和蒸发器组成第二级压缩。
整个系统通过膨胀阀将高压制冷剂膨胀为低压制冷剂,以实现制冷效果。
在工作过程中,制冷剂首先被第一级压缩机压缩成高温高压气体,然后通过冷凝器散热冷却成为高温高压液体。
接着,高温高压液体通过膨胀阀膨胀为低温低压液体,然后进入蒸发器。
在蒸发器内,制冷剂吸收外界热量蒸发成为低温低压蒸汽,从而起到制冷作用。
而第二级压缩则是在第一级压缩的基础上进一步提高制冷效果。
低温低压蒸汽再次被第二级压缩机压缩成高温高压气体,然后通过蒸发器吸收热量蒸发,完成制冷循环。
两级压缩制冷循环的工作过程中,第一级和第二级压缩机相互配合,使得制冷效果更加显著。
通过两级压缩,制冷系统可以更加高效地实现制冷效果,同时也提高了系统的稳定性和可靠性。
总的来说,两级压缩制冷循环是一种高效节能的制冷系统,通过两个压缩级别的协同作用,实现了制冷效果的提升。
该系统在工业和商业领域得到了广泛应用,为人们的生活和生产提供了便利。
希望通过本文的介绍,能让大家对两级压缩制冷循环有更深入的了解,进一步推动制冷技术的发展和应用。
2.4双级压缩和复叠式制冷解析
5.临界温度限制。如果使用低温制冷剂,则上述问题可以解 决,但是低温制冷剂临界温度太低,无法在常温下液化。
六、复叠式制冷循环原理
复叠式制冷一般使用两个制冷系统,在高 温系统里使用沸点温度高的制冷剂,在低 温系统里使用沸点温度低的制冷剂,高温 系统中制冷剂的蒸发是为了吸收低温系统 中制冷剂冷凝放出的热量,只有低温系统 中制冷剂蒸发向被冷却对象吸热。这种系 统叫做复叠式制冷系统,它既可以获得较 低的蒸发温度和合适的蒸发压力,又可以 向环境放热。
⑶压力比的增大将导致压缩机排气温度升高, 汽缸壁的温度随之升高。这一方面会使吸 入的制冷剂蒸气温度升高,比体积增大, 减少了压缩机吸气量;另一方面排气温度 和汽缸温度过高,会使得润滑油变稀甚至 部分碳化,导致压缩机润滑状况恶化,严 重影响压缩机正常运行。
由于以上原因,单级压缩机压缩比不宜过大。 一般使用氨作为制冷剂的活塞式压缩机压缩 比最大为8,使用氟利昂作为制冷剂的螺杆 式压缩机压缩比最大不能超过10,而使用离 心式压缩机时,压缩比最大不能超过4。这 样的话,在冷凝温度跟环境温度差不多的情 况下,单级压缩机可以达到的蒸发温度通常 为-20℃~-30℃,最多不超过-40℃.主要的原 因是考虑多方面因素,其中最关键的因素是 系统压缩过程不是绝热过程,当压缩比过大 的情况下,势必出现压力值变大现象,而这 个时候温度也会突生,在温度高的状态下, 对压缩机的冷冻油以及冷媒有分解,炭化的 问题,所以为了保证系统安全与可靠,系统 运行过程中的压缩比不能超过10.
4)采用多级压缩制冷循环,可提高制冷循环 中的节流效应,减少节流损失,提高制冷效 率。
两级蒸汽压缩式制冷循环
两级蒸汽压缩式制冷循环
两级蒸汽压缩式制冷循环的实质是将压缩过程分为两个阶段进行,蒸发压力先经过中间压力,再到冷凝压力。
这种制冷循环主要分为单级双级和双机双级两种形式。
在单级双级制冷循环中,使用一台压缩机,气缸一部分为高压级,一部分为低压级。
在双机双级制冷循环中,则使用两台压缩机,分别为高压级和低压级。
在两级蒸汽压缩式制冷循环中,制冷剂的节流级数和中间冷却方式可以根据需要进行选择。
一级节流是指供液的制冷剂液体直接由冷凝压力节流至蒸发压力;二级节流则是经一个阀节流至中间压力,再经另一个节流至蒸发压力。
中间冷却方式有两种,分别是中间完全冷却和中间不完全冷却。
中间完全冷却将低压级的排气冷却到中间压力下的饱和蒸汽;中间不完全冷却则未将排气冷却到中间压力下的饱和蒸汽。
两级蒸汽压缩式制冷循环常用于中小型制冷系统,可以实现更低的蒸发温度,同时保证制冷循环效率不下降。
在实际应用中,选择哪种中间冷却方式通常由选用的制冷剂种类来决定,氨制冷系统通常采用中间完全冷却,而氟利昂制冷系统则常采用中间不完全冷却。
两级压缩制冷循环
的热平衡关系计算出来。由图2可知:
qmdh2+qmd(h5-h7)+ (qmG + qmd)h5= qmG h3 • 从而可求出
• qmG =qmd(h2-h7)/(h3-h5)
• = (h2-h7)/(h3-h5) * Q0 /(h1-h7) kg/s
(8)
•
• 因此高压压缩机所需要的轴功率是 Peg= qmg* w0g/ ŋkg
• 式中λd ----- 低压压缩机的输气系数,其 数值可以按相同压缩比时单级压缩机的 输气系数的90%考虑。
• 为了在低温下制得冷量Q0,除了低压压缩机消
耗能量外,高压压缩机也要消耗一定的能量。
高压压缩机消耗的单位理论功是
w0g=h4-h3
(7)
高压压缩机的制冷剂流量qmg 大于低压压缩
机的制冷剂流量qmd ,它可以根据中间冷却器
• 单级压缩的最低蒸发温度不仅受到容积系数为零的 限制,随着压力比的增大,除了引起制冷量下降,功耗 增加、制冷系数下降、经济性降低外,排气温度的限制 也是选择压缩机级数的另一个重要原因。
• 排气温度过高,它将使润滑油变稀,润滑条件恶化,甚 至会引起润滑油的碳化和出现拉缸等现象。当冷凝温度 为40℃,蒸发温度为-30℃时,单级氨压缩机即使在等 熵压缩的情况下,排气温度已高达160℃,显然它已超 过了规的最高排气温度为150℃的限制。
• q0=h1-h8=h1-h7 kj/kg
(1)
低压压缩机每压缩1kg蒸气所消耗的理论 功是
w0d =h2-h1 k0kw ,则低压压缩机
的流量是
qmd =Q0/q=Q0/(h1-h8)= Q0/(h1-h7) kg/s (3) 从而可算出低压压缩机所需的功率
喷射式两级蒸发蒸汽压缩式制冷循环用分析
喷射式两级蒸发蒸汽压缩式制冷循环的------火用分析前言:由于能量不光有“量”的大小还有质的高低。
在能量转换时具有能量的守恒性和质的差异性这两个重要性质。
所以我们进行循环性能分析时,不能简单地只考虑到能效率也要注重火用效率。
因为在某种意义上火用效率比能效率更重要。
分析:我们通过对比普通制冷循环和新型制冷循环的能效率和火用效率来验证新型循环的优势。
普通制冷循环图:1. 压缩机2.冷凝器3.节流阀4.蒸发器图1 采用膨胀阀的制冷系统新型制冷循环图1.压缩机2.冷凝器3.电动调节阀4.射流泵5.蒸发器6.二次节流装置7.汽-液分离器8.温度传感器图5本实用新型流程图冷循环的火用平衡式:进入装置的各种火用之和应等于离开装置的各种火用与内部火用损失之总和,即:01234q q w e e ππππ=+++++w —压缩机输入功,代价火用0q e —冷量火用q e —在冷凝温度k T 下冷凝器传给冷却水的热量火用1π—压缩机内部的火用损失2π—冷凝器内部的火用损失 3π—节流阀内部的火用损失 4π—蒸发器内部的火用损失蒸汽压缩制冷装置的火用效率: 02q e wη=01q ie wwπ=--∑1. 压缩机内部火用损失1π:121e w e π+=+1e —单位质量工质进入压缩机的火用2e —单位质量工质离开压缩机的火用得,112e e w π=-+根据热力学第一定律,压缩机绝热压缩, 21w h h =-,而且按照稳定流动工质焓火用的计算式()000e h h T s s =---则 ()1021T s s π=- 2.冷凝器的内部火用损失:232q e e e π=++3e —单位质量工质离开冷凝器的火用得, ()223q e e e π=--代入焓火用计算式: ()000e h h T s s =---与热量火用计算式01q k T e q T ⎛⎫=- ⎪⎝⎭,23q h h =-得, ()020231K T q T s s q T π⎛⎫=----⎡⎤ ⎪⎣⎦⎝⎭=()0023kT qT s s T -- 冷凝器的外部火用损失为: q e可得冷凝器总的火用损失为, ()2023q e q T s s π+=-- 3. 节流阀的火用损失:334e e π=- 4e —单位质量工质离开节流阀的火用因为节流过程为等焓过程可得, ()3043T s s π=-4.蒸发器火用损失:4104q e e e π=++得, ()4410q e e e π=--0001q T e q T ⎛⎫=- ⎪⎝⎭,而工质吸热014q h h =-,又因为()()()4141041e e h h T s s -=---所以, ()()()0441041014T h h T s s q h h T π⎛⎫=----+- ⎪⎝⎭即, ()040140T T s s q T π⎛⎫=-- ⎪⎝⎭实际参数如下:制冷剂使用R22,蒸发温度e T =275k,冷凝温度k T =311k,冷却空间温度T =283k,环境温度0T =303k差表查图可得:00431.58, 1.750h s ==;44406.09, 1.749h s ==22246.92, 1.158h s ==;33247.11, 1.171h s ==0425.49w h h =-=043158.98q h h =-=, 02184.66q h h =-=0002733011*158.9811.2327310q T e q T +⎛⎫⎛⎫=-=-=⎪ ⎪+⎝⎭⎝⎭011.230.4425.49q e wη=== 0158.98 6.2425.49q cop w === 1)压缩机内部火用损失()1004T s s π=-()303 1.75 1.7490.3=⨯-=2)冷凝器的损失 ()02002kT qT s s T π=--()303184.66303 1.75 1.1583110.53=⨯-⨯-= 01q k T e q T ⎛⎫=-⨯ ⎪⎝⎭3031184.663114.75⎛⎫=-⨯ ⎪⎝⎭= 2 4.750.53 5.28q e π+=+= 3)节流损失:()3032T s s π=- ()303 1.171 1.1583.94=⨯-=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两级蒸汽压缩式制冷循环
两级蒸汽压缩式制冷循环是一种常用的制冷循环方式,广泛应用于家用空调、商用制冷设备等领域。
它通过两级压缩来提高制冷效果,实现更高的制冷效率和更低的能耗。
两级蒸汽压缩式制冷循环的工作原理是:首先,制冷剂在低温低压状态下经过蒸发器,吸收外界的热量并蒸发为低温低压蒸汽;然后,低温低压蒸汽被压缩机1压缩,提高其温度和压力;接着,高温高压蒸汽通过冷凝器,释放热量并冷凝为高温高压液体;最后,高温高压液体经过膨胀阀节流,降低其温度和压力,进入蒸发器进行下一轮的制冷循环。
两级蒸汽压缩式制冷循环相比单级蒸汽压缩式制冷循环具有以下优点:
1. 提高制冷效果:通过两级压缩,制冷剂在第一级压缩机的压缩过程中,温度和压力得到了显著提高,使得制冷剂能够更好地吸收热量。
然后,经过第二级压缩机进一步提高温度和压力,使制冷剂在冷凝器中释放更多的热量。
这样,两级蒸汽压缩式制冷循环的制冷效果比单级蒸汽压缩式制冷循环更好。
2. 提高制冷效率:由于两级蒸汽压缩式制冷循环在两个压缩机之间增加了一个冷凝器,使得制冷剂在压缩过程中能够充分释放热量,提高制冷效率。
同时,两级蒸汽压缩式制冷循环还能够减少制冷剂
的凝结温度,使得制冷剂在蒸发器中的蒸发速度更快,提高制冷效率。
3. 减少能耗:两级蒸汽压缩式制冷循环通过提高制冷剂的温度和压力,减少了制冷剂在蒸发器和冷凝器中的温度差,从而降低了能耗。
此外,两级蒸汽压缩式制冷循环还能够通过优化制冷剂的回热过程,减少回热损失,进一步降低能耗。
4. 提高制冷控制性能:两级蒸汽压缩式制冷循环通过两个压缩机的控制,能够更灵活地调节制冷剂的压力和流量,提高制冷控制性能。
这使得两级蒸汽压缩式制冷循环能够根据实际需要进行制冷功率的调节,提高制冷系统的稳定性和可靠性。
两级蒸汽压缩式制冷循环是一种高效、节能的制冷循环方式。
通过两级压缩,它能够提高制冷效果和制冷效率,降低能耗,并且具有较好的制冷控制性能。
在未来的发展中,随着科技的进步和制冷技术的不断创新,两级蒸汽压缩式制冷循环有望进一步提高制冷效率,减少能耗,为人们提供更加舒适和环保的制冷服务。