机房空调热负荷计算方法整理
机房空调的负荷计算
负荷的估算
负荷的科学计算法
机柜安装设备数量及耗电限值
2005年颁布的《中国电信数据中心机房电源、空调环境设计规范(暂行)》和《中
国电信数据中心机房电源、空调环境验收规范(暂行)》2个规范中规定,客户提供
的机架原则上要符合电信的标准规格。49U (1U=4.45cm) (含)以下机架承放
设备不准超过15 台;49U ~58U的机架承放设备数量不准超过18 台;禁止设备叠
≤14台/柜
负荷的科学计算法
围护结构热
热有3种传递方式,传导、对流和辐射。通过机 房屋顶、墙壁、隔断等围护结构进入机房的传导 热是一个与季节、时间、地理位置和太阳的照射 角度等有关的量。因此,要准确地求出这样的量 是很复杂的问题。当室内外空气温度保持一定的 稳定状态时,由平面形状墙壁传入机房的热量可 按下式计算: Q=KF(tzp-tn) kcal/h K:围护结构的导热系数(kcal/m2h℃);常用 材料导热系数如表2-4所示: F:围护结构面积(m2); tn:机房内温度(℃); tzp:机房外的计算温度(℃)。
( )m2×13W
( )m2 ×16W
( )m2×43W ( )m2×8W
( )m2 ×13W
( )m2×40W ( )m2×6.5W
室温要求28℃
( )m2 ×20W
( )m2 × 360W ( )m2 ×240w ( )m2 × 160W
( )m2 ×30W ( )m2 × 18W ( )m2×10W ( )m2 ×10W ( )m2×37W ( )m2×5W
≤18A/柜 ≤4.0kVA/柜 ≤18台/柜
2 中负荷机房(列间距≥1000mm) ≤1.5kVA/m2 ≤14A/柜 ≤3.1kVA/柜 ≤16台/柜
机房、空调、配电、消防计算方法
保准检测室、校准中心(250-300W/㎡) UPS和电池室、动力机房(300-500W/㎡)
医院和检测室、生活培养室、洁净室、实验室(200-250W/㎡)
数据中心(600-800W/㎡)
计算机房、计费中心、控制中心、培训中心(350-450W/㎡) 电子产品及仪表车间、精密加工车间(300-350W/㎡) 精密空调场所冷负荷估算指标: 电信交换机、移动基站(350-450W/㎡) 金融机房(500-600W/㎡) Qt:总制冷量(KW) S:机房面积(㎡) P:冷量估算指标
其中Q2建筑热负荷系数,北方地区取值0.12 kW/m2,中部地区0.15 kW/m2,南部地区0.18 kW/m2
方法二: 面积法(当只知道面积时)三、机房 Qt=S*P
Qt:总制冷量(KW)
(二)防 Q1:室内设备负荷(=设备功率*0.8)
W=K*V*C/
(设备同时利用率,当提供的设备功率为可能出现的峰值功率时,取值为1)
Q2:环境热负荷(=0.12-0.18KW/㎡*机房面积)
一、空调制冷量计算如下:
二、机房 方法一: 根据经验采用“功率及面积法”计算机房冷负荷。
(一)七 Qt=Q1+Q2
S=K1+K2*
仓储室(博物馆、图书馆、档案馆、烟草、食品)(150-200W/㎡)
、机房消防装置配置(七氟丙烷)
一)七氟丙烷25℃时过热蒸汽比容,按下式计算:
1+K2*T=0.1269+0.000513*25=0.140m³/Kg
二)防护区灭火设计用量或惰化设计用量按下式计算:*V*C/【S*(100-C)】
、机房配电负荷。
机房空调热负荷计算方法整理
机房空调热负荷计算方法整理1.传热负荷计算方法:传热负荷是机房空调热负荷计算的核心内容,它包括传导、对流和辐射三种途径的热量传递。
传热负荷可采用以下公式计算:Q=U*A*ΔT其中,Q为传热负荷(单位为瓦特W),U为传热系数(单位为瓦特/平方米/摄氏度W/m²·℃),A为传热面积(单位为平方米m²),ΔT为温度差(单位为摄氏度℃)。
2.人体热负荷计算方法:机房内工作人员也会产生一定的热量。
每个人体的热负荷不同,一般可以采用下面的公式计算:Q=60*P其中,Q为人体热负荷(单位为瓦特W),P为人的数量。
3.设备热负荷计算方法:机房内的设备也会产生热量。
每个设备的热负荷不同,可以通过以下公式计算:Q=(P+PL)*CF其中,Q为设备热负荷(单位为瓦特W),P为设备功率(单位为瓦特W),PL为设备功率余量(单位为瓦特W),CF为修正系数,考虑设备的运行时间和负荷特点。
4.日照热负荷计算方法:机房内的日照热负荷主要来自于阳光直射,可以通过以下公式计算:Q=AC*(N*AF+D*AT)其中,Q为日照热负荷(单位为瓦特W),AC为透光面积(单位为平方米m²),N为正常白天的太阳辐射量(单位为W/m²),AF为透射系数,D为日照时间(单位为小时h),AT为修正系数,考虑日照的角度、方向等因素。
5.其他热负荷计算方法:还可以考虑机房内其他因素产生的热负荷,如墙体导热负荷、天花板导热负荷、地板导热负荷等。
这些热负荷可以通过测量或计算得到。
综上所述,机房空调热负荷计算方法包括传热负荷、人体热负荷、设备热负荷、日照热负荷和其他热负荷等几个方面。
在计算时需要考虑各项因素,并结合实际情况进行调整。
通过正确计算机房空调热负荷,可以为机房提供合适的温度和湿度,提高机房的工作效率和设备的使用寿命。
同时,还可以降低能源消耗,减少对环境的影响。
机房总热负荷的计算及空调配置选型
机房总热负荷的计算及空调配置选型机房主要的热负荷来源于设备的发热量及环境维护结构的热负荷。
因此,我们要了解主设备的数量及用电情况以确定精密空调的容量及配置。
根据以往经验,除主要的设备热负荷之外的其他负荷,如机房照明负荷、建筑维护结构负荷、补充的新风负荷、人员的散热负荷等,如不具备精确计算的条件,也可根据机房的面积进行测算。
1、已知UPS容量,计算机房精密空调配置:例:UPS容量为100KVA,机房面积80m2,则机房设备热负荷Q1为:100kva(UPS容量)×0.8(功率因数)×0.8(带载率)×0.8(热转换)=51.2KW主机房其他热负荷Q2为:80(面积)×0.1=8KW则主机房总热负荷Q=Q1+Q2=51.2+8 = 59.2KW因此,我们推荐2台艾默生品牌PEX系列PEX60的机房空调,形成1主1备冗余工作,可满足主机房制冷需求。
2、已知负载功率,计算机房精密空调配置:例:负载功率为60KW,机房面积80m2,则机房设备热负荷Q1为:60KW(负载功率)×0.8(热转换)=48KW机房其他热负荷Q2为:80(面积)×0.1=8KW则机房总热负荷Q=Q1+Q2=48+8 = 56KW因此,我们推荐2台艾默生品牌PEX系列PEX60的机房空调,形成1主1备冗余工作,可满足机房制冷需求。
3、UPS室机房精密空调配置:例:UPS容量为400KVA,UPS室面积60m2,则UPS室设备热负荷Q1为:400kva(UPS容量)×0.8(功率因数)×0.08(热损耗)=25.6KWUPS室其他热负荷Q2为:60(面积)×0.1=6KW则机房总热负荷Q=Q1+Q2=25.6+6 = 31.6KW因此,我们推荐2台艾默生品牌PWX系列的PEX35机房精密空调,形成1主1备冗余工作,可满足UPS室制冷需求。
4、电池室机房精密空调配置:铅酸免维护蓄电池一般来说其寿命为3~5年,但是电池的使用环境和使用者对电池的日常维护保养,很大程度上影响到电池使用寿命的延长或缩短。
计算机机房热负荷计算
计算机机房热负荷计算计算机机房热负荷计算是指对计算机机房内产生的热量进行测算和评估,以确定机房所需的制冷和空调系统的能力。
这对于确保机房内部的温度和湿度控制是非常重要的,因为高温和湿度可能会对计算机和其他设备的正常运行产生负面影响。
1.确定机房内部设备的热负荷:首先需要确定机房中所有设备(如服务器、交换机、存储设备等)产生的热负荷。
通常这些设备的热负荷数据可以在设备的技术规格书或制造商提供的信息中找到。
2.确定机房的热传导热负荷:除了设备本身产生的热负荷外,机房的墙壁、天花板、地板等也会对机房的热负荷产生影响。
这些是机房内部和外部环境之间热传导的结果。
3.确定机房的室外热负荷:机房的室外热负荷来自于周围环境的热传导、太阳辐射等因素。
这个因素通常是根据机房所在地的气候条件、季节和周围环境确定的。
4.确定人员活动热负荷:机房内的人员活动也会产生热量,并且对机房的热负荷产生影响。
因此,需要考虑机房内的人员数量以及他们的活动级别,如站立、行走等。
5.计算总热负荷:将以上各项热负荷进行综合计算,得出机房总的热负荷数据。
通常以单位时间(例如每小时)的热负荷进行计算。
计算机机房热负荷计算通常使用热负荷计算软件进行,该软件通常基于热平衡原理和传热学等相关原理进行计算,并可以根据实际情况进行各种参数的调整。
在进行计算时,需要准确的输入各项数据,并且通常需要考虑到机房的特定要求,如温度控制范围、湿度要求等。
除了计算机机房的热负荷,还需要根据计算结果来选择合适的制冷和空调设备,并进行适当的安装和维护。
根据机房的规模和需求,可能需要考虑到多个制冷系统以及备用系统。
在计算机机房建设和管理过程中,合理地计算和评估机房的热负荷对于维持机房的稳定运行和保障设备的寿命是非常重要的。
只有在掌握机房热负荷数据的基础上,才能选择合适的制冷系统,确保机房在适当的温度和湿度条件下正常运行。
因此,在计算机机房设计和运营中,对机房热负荷的计算和评估是不可忽视的重要环节之一。
机房负荷计算方法
某电子计算机机房空调热湿负荷计算空调制冷量的估算依据电子计算机机房空调的热湿负荷应包括下列内容:Ø计算机和其它设备的散热;Ø建筑围护结构空调制冷量的估算依据电子计算机机房空调的热湿负荷应包括下列内容:(计算机和其它设备的散热;(建筑围护结构的传热;(太阳辐射热;(人体散热、散湿;(照明装置散热;(新风负荷。
在工程实践中,制冷量的估算方法一般有以下两种方法:1.功率及面积法机房内的冷负荷要考虑机房设备所产生的热量,计算机和其它设备的散热量应按产品的技术数据进行计算。
一般网络设备的发热量为设备功率的70%-80%,有些存储设备甚至接近100%。
机房围护结构(墙壁、窗户等)的传热,灯光、人员、日照等的辐射热以及换新风损失的冷量一般按照机房面积100-150W/M²制冷量考虑。
Qt=Q1+Q2Qt:总制冷量(KW)Q1:室内设备负荷(=设备功率×0.8)Q2:环境热负荷(=0.1KW/m²×机房面积)2.面积法(当设备负荷难以确定,只知道机房面积时)Qt=S×PQt:总制冷量(KW)S:机房面积(m²)P:冷量估算指标(根据不同用途的估算指标选取)下表为各类机房的冷负荷指标估算:机房类型冷负荷估算参数交换机房、移动基站300-400W/m²传输机房250-350W/m²IDC数据中心600-900W/m²计算机房、控制中心400-500W/m²UPS和电池室、动力机房250-350W/m²注:(此表主要目的是粗略估算出用户精密房间的空调总冷负荷;(估算制冷量时,应考虑机房的高度和设备数量。
以后考虑增加设备计算参数可适当选大些。
3.其他考虑因素空调总负荷由显负荷和潜负荷组成,显负荷用来降低温度,而潜负荷用来去除湿量。
显负荷占总负荷之比,即为显热比。
计算机机房有其自有的负荷特点,程控交换设备、传输设备等机器设备散热产生的热负荷极大;而机房内几乎没有湿负荷源,湿负荷极小主要是机房工作人员、机房和外界空气质交换产生的湿负荷);还有就是在冬季时,机房也产生热负荷,空调设备仍需制冷运行。
热负荷计算公式
热负荷计算公式在我们的日常生活和工业生产中,热负荷的计算是一项非常重要的工作。
热负荷指的是在某一特定条件下,为了维持室内或设备的温度,所需供应的热量。
准确计算热负荷对于合理设计供暖、空调、制冷等系统至关重要,它不仅能够保证系统的正常运行,还能有效地节约能源和降低成本。
热负荷的计算涉及到多个因素,包括室内外温度差、建筑物的围护结构特性、室内人员数量、设备的散热量等等。
下面我们就来详细介绍一下常见的热负荷计算公式及其应用。
一、围护结构传热引起的热负荷围护结构包括墙壁、屋顶、窗户、门等,它们的传热会导致热量的散失或增加。
围护结构传热引起的热负荷可以通过以下公式计算:Q1 = K × F ×(tn tw)其中,Q1 表示围护结构的传热热负荷(W);K 表示围护结构的传热系数 W/(m²·℃);F 表示围护结构的面积(m²);tn 表示室内计算温度(℃);tw 表示室外计算温度(℃)。
传热系数 K 取决于围护结构的材料和构造,不同的材料和构造具有不同的传热性能。
例如,砖墙的传热系数比保温材料的传热系数大,意味着热量更容易通过砖墙散失。
在实际计算中,需要分别计算不同朝向的墙壁、屋顶、窗户和门的传热热负荷,然后将它们相加得到总的围护结构传热热负荷。
二、冷风渗透引起的热负荷在建筑物中,由于门窗的缝隙等原因,室外的冷空气会渗入室内,从而带走热量。
冷风渗透引起的热负荷可以通过以下公式计算:Q2 =028 × cp × ρ × L × (tn tw)其中,Q2 表示冷风渗透热负荷(W);cp 表示空气的定压比热容kJ/(kg·℃),约为 101 kJ/(kg·℃);ρ 表示室外空气的密度(kg/m³);L 表示渗透冷空气量(m³/h)。
渗透冷空气量 L 的计算比较复杂,通常可以根据建筑物的类型、门窗的密封性等因素,采用经验公式或查表的方法来确定。
机房空调功率计算
机房空调功率计算机房的空调功率计算是机房设计中非常重要的一项工作。
机房是一个密闭的环境,通常内部有大量的电子设备运行,产生大量的热量。
为了确保机房内的温度和湿度在合适的范围内,需配置适当的空调设备。
首先,我们需要了解机房的热负荷。
机房的热负荷主要包括两部分:一是设备本身的热负荷,即设备运行时产生的热量;二是机房的人员和照明所产生的热负荷。
设备本身的热负荷可以通过以下公式计算:Q1=∑(P×η)其中,Q1为设备本身热负荷(单位:W),P为各设备的额定功率(单位:W),η为设备的功率系数(通常取0.9)。
机房的人员和照明的热负荷可以通过以下公式计算:Q2=n×q其中,Q2为机房的人员和照明的热负荷(单位:W),n为机房内的人数,q为单个人员和照明的热负荷(通常取100-150W/m²)。
得到设备本身的热负荷和机房的人员和照明的热负荷后,两者相加即得到机房的总热负荷:Q=Q1+Q2机房冷却功率的计算公式如下:P=Q/COP其中,P为机房空调的功率(单位:W),COP为机房空调的性能系数(通常取2.5-3.5)。
在实际工程设计中,我们还需要考虑一些额外的因素,如机房的综合能效、冷却系统的效率等。
因此,以上计算只是初步的估算,具体的功率计算还需要结合实际情况进行。
在确定机房空调功率后,我们还需要选择合适的空调设备。
一般来说,机房空调设备应具备以下几个特点:1.能够提供足够的冷却能力,使机房内的温度保持在合适的范围内。
2.具备稳定可靠的性能,能长时间运行并保持稳定的温度。
3.具备高效节能的性能,能够尽可能地降低能耗并减少对环境的影响。
4.具备智能控制的功能,能够根据机房内的热负荷实时调节温度。
在选择空调设备时,我们还需要考虑机房的布局和空调的安装位置,以确保空调设备的冷风能够均匀地分布到机房各个角落。
总结起来,机房空调功率计算是机房设计中非常重要的环节。
通过合理计算机房的热负荷,并选择合适的空调设备,可以确保机房内的温度和湿度在合适的范围内,提供一个良好的工作环境。
空调冷负荷、热负荷和新风负荷计算指南
空调冷负荷、热负荷和新风负荷计算指南1. 背景随着现代人们对舒适生活要求的提高,空调系统在建筑中的应用日益广泛。
为了有效设计和运行空调系统,冷负荷、热负荷和新风负荷的计算变得至关重要。
本指南旨在为设计师、空调工程师以及相关人员提供关于如何计算空调冷负荷、热负荷和新风负荷的基本指导。
2. 冷负荷计算方法空调冷负荷是指建筑所需的制冷功率,用于维持室内环境的舒适温度。
常用的冷负荷计算方法包括:- 空调负荷手算法:基于建筑结构、功率需求、室内供暖设备和风量等因素进行计算。
- 空调负荷计算软件:利用计算机程序进行冷负荷计算,考虑建筑的热传递特性、室内热源的数量和种类等因素。
3. 热负荷计算方法热负荷是指建筑所需的供暖功率,确保室内温度在寒冷的季节保持舒适。
常用的热负荷计算方法包括:- 冷负荷方法:针对新建筑或整体改造的供暖系统进行计算,考虑建筑外墙的热传递、室内的热源和散热等因素。
- U值法:根据建筑外墙、屋顶和地板等部位的U值,计算建筑的传热损失,然后确定所需的供暖功率。
4. 新风负荷计算方法新风负荷是指建筑所需的新鲜空气供应功率,用于保证室内空气质量和舒适度。
常用的新风负荷计算方法包括:- 定风量法:根据建筑的使用人数、活动强度和新风换气次数,计算所需的新风供应功率。
- 能量平衡法:综合考虑建筑的绝对和相对温湿度、人体代谢热、室内设备热和外部换気热等因素,计算所需的新风负荷。
5. 结论准确计算空调冷负荷、热负荷和新风负荷对于设计和运行空调系统至关重要。
在选择适当的计算方法时,需要综合考虑建筑的结构特点、活动强度、人员数量和使用要求等因素。
本指南提供了常用的计算方法作为参考,但具体的计算过程和参数设置需要根据具体情况进行调整。
建议在设计或改造空调系统前,首先进行详细的负荷计算,以确保舒适和能耗的平衡。
欲了解更多关于空调冷负荷、热负荷和新风负荷的计算指南,建议参考相关规范和文献,或咨询专业的空调工程师。
最全暖通空调计算公式
最全暖通空调计算公式暖通空调计算公式是指用于计算建筑物中空调系统设计和运行所需的热负荷、风量、水量、功率等参数的数学公式。
根据不同的场景和需求,有多种不同的计算公式。
下面将介绍一些常见的暖通空调计算公式。
一、热负荷计算公式1.平均负荷法公式:Q=Σ(QiAi)+Qv+Qs+Qw+Qc其中,Q为建筑物的总热负荷,Qi为各房间或部位的传热负荷,Ai 为各房间或部位的面积,Qv为风量传热负荷,Qs为太阳辐射传热负荷,Qw为热桥传热负荷,Qc为建筑内外温差传热负荷。
2.地板面积法公式:Q=A×U×ΔT其中,Q为楼面的热负荷,A为楼面面积,U为楼面的传热系数,ΔT 为楼面的设计温差。
3.等效平均温度差法公式:Q=Σ(Qi)(Ti-Te)/ΔTm其中,Qi为各房间的传热负荷,Ti为各房间的设计温度,Te为环境温度,ΔTm为全年平均温度差。
二、风量计算公式1.空气变风量计算公式:Q=A×V×ΔP/3600其中,Q为空气变风量,A为房间面积,V为空气流速,ΔP为房间静压。
2.空气混合计算公式:Qm=Q1+Q2其中,Qm为混合空气流量,Q1和Q2分别为两种进风空气流量。
三、水量计算公式1.主管道水量计算公式:Q=A×V其中,Q为主管道流量,A为主管道截面积,V为主管道速度。
2.辅助设备水量计算公式:Q=P/(ρ×c×ΔT)其中,Q为辅助设备的冷却水量,P为辅助设备的冷却功率,ρ为水的密度,c为水的比热容,ΔT为水的温度差。
四、功率计算公式1.制热功率计算公式:P=Q/COP其中,P为制热功率,Q为热负荷,COP为制热系数。
2.制冷功率计算公式:P=Q/EER其中,P为制冷功率,Q为冷负荷,EER为能效比系数。
以上是一些常见的暖通空调计算公式,不同的场景和具体要求可能会采用其他不同的公式,因此在实际应用中,需要根据具体情况进行选择。
此外,还需要考虑相关的建筑物传热特性、设备特性、操作条件等因素,以确保计算结果的准确性和可靠性。
空调热负荷的计算方法最新实用版
四、空调热负荷计算
空调房间的热负荷是指空调系统在冬季里,当室外空气温度在 设计温度条件时,为保持室内的温度,系统向房间供应的热量。
一般来说,空调冬季的经济性对空调系统的影响比夏季小。因 此,空调热负荷一般是按稳定传热理论来计算的。其计算方法与供 暖系统热负荷计算方法基本一样。
教学资源库
采用冷负荷系数法,具体计算公式可查阅《民用建筑供暖通风与空气调节设计规范》(GB50736-2012)。 计算时应该注意以下几点: 一般来说,空调冬季的经济性对空调系统的影响比夏季小。
因此,空空调调热负区荷一的般夏是按季稳定冷传热负理论荷来计,算的应。按空调区各项逐时冷负荷的
计算时应该注意以下几点:
空调区冷负荷按各项逐综时合冷负最荷综大合最值大值确确定定。。
五、空调区及空调系统冷负荷的确定 一般来说,空调冬季的经济性对空调系统的影响比夏季小。 《民用建筑供暖通风与空气调节设计规范》(GB50736-2012) 与供暖热负荷计算方法基本相同,但要注意几个不同点。 五、空调区及空调系统冷负荷的确定 根据实际工程采用的空调系统形式不同来确定(综合最大值或累计值)。 计算时应该注意以下几点: (3)室内人员、灯光和设备产生的热量会抵消部分热负荷,设计时如何扣除这部分室内热量要仔细研究。 《民用建筑供暖通风与空气调节设计规范》(GB50736-2012)
根据实际工程采用的空调系统形式不同来确定(综合最大值或累计值)。
教学资源库
ห้องสมุดไป่ตู้
教学资源库
感谢观看
中规定:
教学资源库
小结
一、得热量和冷负荷: 概念不同;同一时刻不相等;冷负荷的峰值小于得热量的峰值。
二、空调冷负荷计算: 采用冷负荷系数法,具体计算公式可查阅《民用建筑供暖通风与空气调节
空调设计_热负荷计算方法
空调设计_热负荷计算方法空调设计是建筑工程设计中的重要内容之一,而热负荷计算则是进行空调设计的基础和前提。
热负荷计算的准确性对于实现建筑节能、舒适的目标至关重要。
本文将介绍几种常见的热负荷计算方法。
1.简化计算法简化计算法是热负荷计算中最常用的方法之一,其基本原理是通过一定的简化假设和经验公式,将建筑内外热交换过程中的各个因素综合考虑,得出建筑物所需要的制冷和供热能力。
该方法的优点是计算简便、快捷,适用于一些特定的场合。
但是该方法忽略了许多细节因素,导致计算结果与实际情况有一定偏差。
2.整体热平衡法整体热平衡法是热负荷计算中常用的一种方法,主要应用于多层住宅、办公楼和商业建筑等。
该方法通过建筑物的整体热平衡方程组,考虑建筑物的外墙、屋顶、地板、窗户等外部条件和人体活动、照明、设备等内部条件,计算建筑物的供热和制冷负荷。
该方法计算结果较为准确,但需要较多的参数和数据,且计算过程较复杂。
3.分区间隔法分区间隔法是将建筑物划分为多个相对独立的控制区域,通过对每个区域的热负荷进行独立计算,最后进行综合计算得到整个建筑物的热负荷。
该方法适用于建筑物内部布局较为复杂的情况,具有较高的计算精度。
但是该方法需要对建筑物进行详细的分区划分,计算比较繁琐。
4.动态热负荷计算法动态热负荷计算法是一种比较精确的计算方法,可以模拟建筑物在不同时间段内的热负荷变化情况。
该方法的基本原理是通过建筑能量平衡方程和传热传质方程,考虑建筑物内部外部的多个因素,如气温、湿度、太阳辐射、人体活动等,计算建筑物内每个时刻的热负荷。
该方法的计算精确度高,但是计算过程较为复杂,需要大量的计算和模拟。
在进行热负荷计算时,需要考虑的因素包括建筑物的朝向、形状、结构、材料、窗户面积和类型、内外墙的热传导系数、负载系数等。
同时还需要考虑建筑物的功能和使用要求,如房间内的人数、人体活动、照明、设备等。
总之,热负荷计算是空调设计中至关重要的一环,不同的计算方法适用于不同的场合和需求。
机房空调热负荷计算方法整理
根据现有资料计算机房空调按如下比较简易有理:所需空调的热负荷为Q;Q=Q1+Q2Q1:设备热负荷,设备热负荷一般为设备总功耗的60%-80%作为发热。
(一般按80%计算)Q2:为环境热负荷,一般取值为120-180W/每平方米同时考虑设备的主备则可按1+1模式设置。
算出即是空调所需的功率。
其中机房热负荷计算方法还有:概略计算(也称为估算)在机房初始设计阶段,为了较快的选定空调机的容量,可采用此方法,即以单位面积所需冷量进行估算。
计算机房(包括程控交换机房):1kcal/h(大卡/小时)=1.163W楼层较高时,250~300kcal/m2h楼层较低时,150~250kcal/m2h (根据设备的密度作适当的增减)办公室(值班室):90kcal/m2h简易热负荷计算计算机房空调负荷,主要来自计算机设备、外部设备及机房设备的发热量,大约占总热量的80%以上,其次是照明热、传导热、辐射热等,这几项计算方法与一般空调房间负荷计算相同。
计算机制造商,一般能提供设备发热量的具体数值。
否则根据计算机的耗电量计算其发热量。
a. 外部设备发热量计算Q=860N¢(kcal/h) 式中:N:用电量(kW);¢:同时使用系数(0.2~0.5);860:功的热当量,即l kW电能全部转化为热能所产生的热量。
b. 主机发热量计算Q=860× P× h 1×h 2 ×h 3 式中,P:总功率(kW);h 1:同时使用系数;h 2:利用系数;h 3:负荷工作均匀系数。
机房内各种设备的总功率,应以机房内设备的最大功耗为准,但这些功耗并未全部转换成热量,因此,必须用以上三种系数来修正,这些系数又与计算机的系统结构、功能、用途、工作状态及所用电子元件有关。
总系数一般取0.6~0.8之间为好c. 照明设备热负荷计算机房照明设备的耗电量,一部分变成光,一部分变成热。
洁净室净化空调机组负荷计算公式以及详解
洁净室净化空调机组负荷计算公式以及详解1.冷负荷:冷负荷=(送风量*1.2*△h)/3600其中:△h为焓差(室外状态点或者混合点状态点与露点之间的焓差)注意单位要带入正确1.2:空气密度,kg/m3送风量:m3/h△h:kJ/kg空气冷负荷:Kw2.热负荷、再热负荷:热负荷、再热负荷=(送风量*1.2*△t)/3600其中:△t为温差(室外状态点或者混合点状态点与送风状态点温差,或者露点温度与送风状态点温差)3.电预热:电预热电量=(送风量*1.2*△t)/3600*0.9其中:△t为温差(室外状态点与预热后空气状态点温差)4、蒸发器预热:预热量=(送风量*1.2*△t)/3600其中:△t为温差(室外状态点与预热后空气状态点温差)此计算和热负荷计算、再热负荷计算公式相同。
5、电再热量:电再热量=(送风量*Δt)/3000*0.9其中:△t为温差(露点干球温度与送风状态点干球温度温差)6、加湿量:加湿量=(送风量*1.2*△d)/1000其中:△d为含湿量差(露点与室外状态点或者混合点状态点含湿量差7、冷冻水7℃、12℃水流量估算:水流量=冷量*0.1723注意:此估算数值仅针对7℃、12℃系统适用,并且还比较准确,有利于人员快速选择水泵。
针对于上面负荷计算公式,有一些参数有必要为大家进一步做出解释。
首先就是混合点焓值h:hc=(QAhw+QBhN)/(QA+QB)≈(Qhw* 新风比+QhN* 回风比)/Q=新风比 * hw+回风比 * hN其次就是混合点含湿量d:dc=(QAdw+QBdN)/(QA+QB)≈(Qdw*新风比+QdN*回风比)/Q=新风比 * dw+回风比 * dN其中:Q -- 送风量QA-- 新风量QB-- 回风量hw-- 新风焓值hN-- 回风焓值dw-- 新风含湿量dN-- 回风含湿量。
计算机房空调负荷计算
计算机房空调负荷计算首先,我们先来看计算机房的散热负荷计算。
计算机房内的散热主要来自以下几个方面:1.计算机设备本身的散热。
计算机设备在运行时会产生大量的热量,主要来自CPU、GPU、硬盘、电源等部件的工作产热。
这些设备的散热功率一般在设备的技术参数中可以找到。
计算机房的散热负荷就是这些设备散热功率的总和。
2.灯具和设备。
计算机房内的灯具和其他电子设备也会产生一定的热量,一般来说,灯具的散热功率在灯具上有标明,其他电子设备可以根据功率参数计算得出。
3.人体散热。
计算机房内有人员工作时,人体也会产生热量。
一般来说,每个人的散热功率为80-100W,根据计算机房内工作人员的数量来计算总的人体散热功率。
4.空调漏风和散热。
空调的风管系统一般会有一定的漏风和散热,需要将其考虑在内。
计算机房的冷却负荷计算主要包括以下几个方面:1.计算机设备本身的冷却需求。
计算机设备在使用过程中需要保持一定的温度范围内,一般来说,在18-27摄氏度之间。
通过计算机设备的散热功率和设备的工作效率,可以确定设备的冷却需求。
2.外部环境温度影响。
计算机房的外部环境温度也会影响到冷却负荷的计算。
通常情况下,计算机房内的温度应比外部环境温度低5-10摄氏度,可以根据实际情况确定具体数值。
3.热负荷传导和辐射。
计算机房内的设备和墙壁、天花板等都会发生热传导和辐射现象,需要将其考虑在内。
在计算散热负荷和冷却负荷时,可以使用以下公式:散热负荷=计算机设备散热功率+灯具散热功率+设备散热功率+人体散热功率-空调散热差冷却负荷=计算机设备冷却需求+外部环境温度影响+热负荷传导和辐射通过计算机房的散热负荷和冷却负荷,我们就可以确定计算机房所需的空调功率和空调型号。
机房热负荷计算方法
1、机房热负荷计算方法,各系统累加法
(1)设备热负荷:
Q1=P×η1×η2×η3 (KW)
Q1:计算机设备热负荷
P:机房内各种设备总功耗(KW)
η1:同时使用系数
η2:利用系数
η3:负荷工作均匀系数
通常,η1、η2、η3 取0.6~0.8之间,考虑制冷量的冗余,通常η1×η2×η3取值为0.8。
(2)机房照明热负荷:
Q2=C×S (KW)
C:根据国家标准《计算站场地技术要求》要求,机房照度应大于2001x,其功耗大约为20W/M2。
以后的计算中,照明功耗将以20 W/M2为依据计算。
S:机房面积
(3)建筑维护结构热负荷
Q3=K×S/1000 (KW)
K:建筑维护结构热负荷系数(50W/m2机房面积)
S:机房面积
(4)人员的散热负荷:
Q4=P×N/1000 (KW)
N:机房常有人员数量
P:人体发热量,轻体力工作人员热负荷显热与潜热之和,在室温为21℃和24℃时均为130W/人。
(5)新风热负荷计算较为复杂,我们以空调本身的设备余量来平衡,不另外计算。
以上五种热源组成了机房的总热负荷,即机房热负荷Qt= Q1+Q2+ Q3+ Q4。
由于上述(3)(4)(5)计算复杂,通常是采用工程查表予以确定。
但是因为数据中心的规划与设计阶段,非常难以确定,所以实际在数据中心中通常采用设计估算与事后调整法。
空调总负荷计算公式
空调总负荷计算公式
空调总负荷计算公式如下:
1. 制冷负荷=房间面积×空调匹数-开启时间。
2. 制热负荷=房间面积×空调匹数-开启时间。
3. 电负荷=房间面积×空调匹数。
4. 冷却水供回水温度差=制冷量(冷负荷-制热量)/供冷量。
5. 冷却水供回水温度差=房间面积×室温。
6. 冷却水供回水温度差=制冷量(冷负荷-制热量)/电功率。
7. 制冷量=制冷设备容量×每小时使用冷却水的次数。
此外,围护结构冷负荷计算公式为:CL=KF(),其中K为传热系数,一般由建筑节能计算给出,F为传热面积,tn为空调室内设计(计算)温度,为逐时冷负荷计算温度。
如需获取更具体的空调负荷计算方式,可以查阅关于空调负荷计算的书籍、资料或咨询专业的空调工程师,获取更全面的信息。
热负荷的三种计算方法
热负荷的三种计算方法
热负荷是指建筑物或设备需要的热量,通常用于设计和选择空调、供暖和通风设备等。
以下是常见的三种热负荷计算方法:
1. 经验法:这种方法基于经验公式,根据建筑物的面积、高度、墙体材料、玻璃面积等因素来估算热负荷。
这种方法适用于简单的建筑物,但可能不够准确。
2. 精细法:这种方法使用数学模型,根据建筑物的材料、尺寸、方向、气象数据等详细信息来计算热量流动和传递。
这种方法通常需要专业软件进行计算,可以得到较准确的结果。
3. 测量法:这种方法通过实际测量建筑物在特定条件下的热负荷来计算。
这种方法需要在建筑物内安装传感器和记录仪等设备,收集数据并进行分析,可以得到最准确的结果。
但是,这种方法成本较高,需要专业人员进行操作和分析。
空调热负荷计算方法
空调热负荷计算方法
1. 嘿,你知道空调热负荷计算方法之一就是通过围护结构传热计算吗?就像冬天你穿着厚棉袄,棉袄阻挡寒冷入侵,房子的围护结构也类似呀!比如拿一间房子来说,计算它的墙壁、窗户这些传进来多少热量,这可重要啦!
2. 还有啊,室内人员和设备散热也是很关键的一部分呢!这不就像一群人在房间里,每个人都会散发热量,那些电器设备也一样呀!比如说一个办公室里好多人还有电脑在工作,这些热量都得算进去呀!
3. 太阳辐射得算进去吧!想象一下夏天太阳晒在房子上那股热劲儿,这可得仔细考量呢!像那种大窗户朝向西边的房间,太阳落山时那热量可不得了,计算时能忽视吗?
4. 照明散热也别小看呀!那亮堂堂的灯光也会产生热量呢,就如同一个个小太阳在发光发热呀!好比一个挂满大灯的商场,这方面计算可不能马虎!
5. 渗透风带来的热量也要考虑哦!这不就跟有时候会有风吹进房间一样,那也是有热量跟着进来的呀!像那种窗户密封不太好的房间,这方面得特别注意呢!
6. 可别忘了食物散热哦!你想啊,聚餐时那些热腾腾的食物也会增加房间的热量呀!就好比吃火锅时热气腾腾的场景,计算时能忘掉嘛!
7. 最后,各种热负荷还得综合起来考虑呀!这就像把各种不同的食材放在一起煮成一锅美味的汤一样,要让它们相互配合好。
总之,空调热负荷的计算方法可真不简单,都得好好琢磨呢!
我的观点结论就是:空调热负荷计算方法多样又复杂,每一项都得仔细研究和考虑,这样才能让空调更好地发挥作用,给我们舒适的环境呀!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据现有资料计算机房空调按如下比较简易有理:
所需空调的热负荷为Q;
Q=Q1+Q2
Q1:设备热负荷,设备热负荷一般为设备总功耗的60%-80%作为发热。
(一般按80%计算)
Q2:为环境热负荷,一般取值为120-180W/每平方米
同时考虑设备的主备则可按1+1模式设置。
算出即是空调所需的功率。
其中机房热负荷计算方法还有:
概略计算(也称为估算)
在机房初始设计阶段,为了较快的选定空调机的容量,可采用此方法,即以单位面积所需冷量进行估算。
计算机房(包括程控交换机房):
1kcal/h(大卡/小时)=1.163W
楼层较高时,250~300kcal/m2h
楼层较低时,150~250kcal/m2h (根据设备的密度作适当的增减)
办公室(值班室):90kcal/m2h
简易热负荷计算
计算机房空调负荷,主要来自计算机设备、外部设备及机房设备的发热量,大约占总热量的80%以上,其次是照明热、传导热、辐射热等,这几项计算方法与一般空调房间负荷计算相同。
计算机制造商,一般能提供设备发热量的具体数值。
否则根据计算机的耗电量计算其发热量。
a. 外部设备发热量计算Q=860N¢(kcal/h) 式中:N:用电量(kW);¢:同时使用系数(0.2~0.5);860:功的热当量,即l kW电能全部转化为热能所产生的热量。
b. 主机发热量计算
Q=860× P× h 1×h 2 ×h 3 式中,
P:总功率(kW);
h 1:同时使用系数;
h 2:利用系数;
h 3:负荷工作均匀系数。
机房内各种设备的总功率,应以机房内设备的最大功耗为准,但这些功耗并未全部转换成热量,因此,必须用以上三种系数来修正,这些系数又与计算机的系统结构、功能、用途、工作状态及所用电子元件有关。
总系数一般取0.6~0.8之间为好
c. 照明设备热负荷计算
机房照明设备的耗电量,一部分变成光,一部分变成热。
变成光
的部分也因被建筑物和设备等所吸收而变成热。
照明设备的热负荷计算如下:
Q=C×P kcal/h
式中,P:照明设备的标称额定输出功率(W);
C:每输出l W的热量(kcal/h W),
通常自炽灯0.86,日光灯1.0。
d. 人体发热量
人体内的热是通过皮肤和呼吸器官放出来的,这种热因含有水蒸汽,其热负荷应是显热和潜热负荷之和。
人体发出的热随工作状态而异。
机房中工作人员可按轻体力工作处理。
当室温为24℃时,其显热负荷为56cal,潜热负荷为46cal;当室温为21℃时,其显热负荷为65cal,潜热负荷为37ca1。
在两种情况下,其总热负荷均为102cal。
e. 围护结构的传导热
通过机房屋顶、墙壁、隔断等围护结构进入机房的传导热是一个与季节、时间、地理位置和太阳的照射角度等有关的量。
因此,要准确地求出这样的量是很复杂的问题。
当室内外空气温度保持一定的稳定状态时,由平面形状墙壁传入机房的热量可按下式计算:
Q=KF(t1-t2) kcal/h
式中,K:围护结构的导热系数(kcal/m2h℃);
F:围护结构面积(m2);
t1:机房内温度(℃);
t2:机房外的计算温度(℃)。
当计算不与室外空气直接接触的围护结构如隔断等时,室内外计算温度差应乘以修正系数,其值通常取0.4~0.7。
常用材料导热系数如下表所示:
材料导热系数(kcal/m2h℃) 材料导热系数(kcal/m2h℃) 普通混凝土1.4~1.5 石膏板0.2
轻型混凝土0.5~0.7 石棉水泥板1
砂浆1.3 软质纤维板0.15
熟石膏0.5 玻璃纤维0.03
砖1.1 镀锌钢板38
玻璃0.7 铝板180
木材0.1~0.25
f.从玻璃透入的太阳辐射热
当玻璃受阳光照射时,一部分被反射、一部分被玻璃吸收,剩下透过玻璃射入机房转化为热。
被玻璃吸收的热使玻璃温度升高,其中一部分通过对流进入机房也成为热负荷。
透过玻璃进入室内的热量可按下式计算:
Q=KFq (kcal/h ) 式中,K:太阳辐射热的透入系数;
F:玻璃窗的面积(m2);
q:透过玻璃窗进入的太阳辐射热强度(kcal/m2h)。
透入系数K值取决于窗户的种类,通常取0.36~0.4。
太阳辐射热强度q随纬度、季节和时间而不同,又随太阳照射角度而变化。
具体数值请参考当地气象资料。
g. 换气及室外侵入的热负荷
为了给在计算机房内工作人员不断补充新鲜空气,以及用换气来维持机房的正压,需要通过空调设备的新风口向机房送入室外的新鲜空气,这些新鲜空气也将成为热负荷。
通过门、窗缝隙和开关而侵入的室外空气量,随机房的密封程度,人的出入次数和室外的风速而改变。
这种热负荷通常都很小,如需要,可将其拆算为房间的换气量来确定热负荷。
h. 其它热负荷
在机房中,除上述热负荷外,在工作中使用示被器、电烙铁、吸尘器等都将成为热负荷。
由于这些设备的功耗一般都较小,可粗略按其额定输入功率与功的热当量之积来计算。
此外,机房内使用大量的传输电缆,也是发热体。
其计算如下:
Q=860 Pl (kcal/h) 式中,860:功的热当量(kca1/h);
P:每米电缆的功耗(W);
l:电缆的长度(m)。
总之,机房热负荷应由上述a—h各项热负荷之和来确定。