《合并同类项》PPT课件
合并同类项公开课PPT课件
概率统计中简化计算方法
排列组合公式应用
在概率统计中,经常需要计算排列组合问题,熟练掌握排 列组合公式可以简化计算过程。
概率分布列表法
对于离散型随机变量,可以列出其所有可能的取值及对应 的概率,形成概率分布列表,便于计算和分析。
期望与方差简化计 算
对于连续型随机变量,可以利用期望与方差的性质进行简 化计算,提高计算效率。
04 代数式中合并同类项应用
一元一次方程求解过程
识别方程中的同类项
将方程中所有含未知数的项与常数项区分开,识别出可以合并的同 类项。
合并同类项
将识别出的同类项进行合并,简化方程。
移项求解
将简化后的方程进行移项处理,使未知数项在等号一侧,常数项在等 号另一侧,进而求解出未知数的值。
多元一次方程组化简方法
函数图像分析辅助工具
绘制函数图像
利用数学软件或绘图工具绘制函数图像,可以直观地展示 函数的性质,便于分析和解决问题。
函数性质分析工具
利用数学软件中的函数性质分析工具,可以快速获取函数 的单调性、极值点、拐点等重要信息。
图像处理技术
对于复杂的函数图像,可以采用图像处理技术进行预处理 ,如平滑处理、滤波处理等,以提高图像质量和分析精度 。
分类讨论步骤
将多项式中的各项按照字母部分进行 分类,然后比较各类中各项的系数, 若系数相等或成比例,则这些项可视 为同类项。
实际应用中注意事项
注意识别隐含的同类项
01
有些同类项可能不是显而易见的,需要通过变形或化简才能识
别出来。
避免合并不同类项
02
在合并同类项时,要注意不要将不同类的项误合并在一起。
复杂图形问题简化策略
1 2
2024版《合并同类项》PPT课件
PPT课件•合并同类项基本概念•一元一次方程中合并同类项•多元一次方程组中合并同类项•分式方程中合并同类项目•拓展应用:在其他数学问题中运用合并同类项•总结回顾与课堂互动录合并同类项基本概念01CATALOGUE同类项定义及性质同类项定义所含字母相同,并且相同字母的指数也相同的项叫做同类项。
同类项性质同类项的系数可以不同,但所含字母和字母的指数必须相同。
写出合并后的结果将合并后的系数与字母部分相乘,得到最终的多项式。
将提取出的公因子与剩余部分相加,得到合并后的系数。
提取公因子将同类项的系数提取出来,作为公因子。
合并同类项原则把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
识别同类项根据同类项的定义,识别出多项式中的同类项。
合并同类项原则与方法示例解析与练习示例解析通过具体例子展示如何识别同类项、提取公因子、合并系数以及写出合并后的结果。
练习提供多个练习题,让学生实践并掌握合并同类项的方法。
注意在扩展内容时,需要确保内容的准确性和专业性,同时尽量丰富内容,以便更好地帮助学生理解和掌握合并同类项的概念和方法。
一元一次方程中合并同类项02CATALOGUE1 2 3只含有一个未知数,且未知数的最高次数为1的整式方程。
一元一次方程定义ax + b = 0(a ≠ 0)。
一元一次方程标准形式去分母、去括号、移项、合并同类项、系数化为1。
解一元一次方程的基本步骤一元一次方程概述03合并同类项在解一元一次方程中的作用简化方程,降低求解难度。
01合并同类项定义把多项式中的同类项合并成一项,叫做合并同类项。
02合并同类项法则同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
合并同类项在解一元一次方程中应用通过具体的一元一次方程实例,展示如何运用合并同类项的方法解方程。
示例解析提供若干道一元一次方程练习题,让学生运用所学知识进行求解。
练习题目在解一元一次方程时,需要注意移项和合并同类项的步骤,确保计算正确。
4.2 第1课时 合并同类项 课件(共23张PPT)
同步精品课件
人教版七年级上册
人教2024新版七(上)数学精彩课堂精品课件
第1课时 合并同类项
知识关联
探究与应用
课堂小结与检测
旧知回顾
知
识
关
联
1.单项式-34a2b5的系数是
,次数是
.
2.多项式1+xy-xy2的次数及最高次项的系数是
A.2,1
B.2,-1
1
2
C.3,-1
3. 多项式a3+ ab4-a6-6的项为
原式 =(
=1
- ,
- )×2×(-3)
例题精讲
探
究
与
应
用
例3
(1)水库水位第一天连续下降了a h,平均每小时下降2
cm;第二天连续上升了a h,平均每小时上升0.5 cm.这两天水
位总的变化情况如何?
解:(1)把下降的水位变化量记为负,上升的水位变化量记为正,
则第一天水位的变化量是一2a cm,第二天水位的变化量是
0.5a cm,由
-2a十0.5a=(-2+0.5)a =-1.5a
可知,这两天水位总的变化情况为下降了1.5a cm.
例题精讲
探
究
与
应
用
例3
(2)某商店原有5袋大米,每袋大米为x kg,上午售出3袋,下午又
购进同样包装的大米4袋.进货后这个商店有大米多少千克?
(2)把进货的数量记为正,售出的数量记为负,则上午大米质量
堂
小
结
与
检
测
4.合并同类项:
(1)2a+3b+6a+9b-8a+12b;
数学45合并同类项图片ppt课件
教师点评和总结陈述
点评1
01
对学生的操作练习进行点评,指出其中的优点和不足,并提供
改进建议。
点评2
02
总结学生在小组讨论中的表现,强调分享和交流在学习数学中
的重要性。
总结陈述
03
总结本节课的内容,强调合并同类项在数学运算中的重要性,
并鼓励学生在今后的学习中多加练习,掌握这一技能。
06
课程回顾与拓展延伸
寻找规律并分类
在观察代数式的过程中,可以寻找其中的规律,并根据规律 将同类项进行分类。这样可以更快速地定位和合并同类项。
利用公式法进行批量处理
利用分配律进行合并
分配律是合并同类项的重要工具。通 过利用分配律,可以将多个同类项合 并为一个项,从而简化代数式。
掌握公式并灵活运用
除了分配律外,还有一些其他的公式 可以用于合并同类项。学生需要掌握 这些公式,并能够灵活运用它们进行 批量处理。
2. 在解决实际问题如面积、体积等计算时,也常涉及到多项式的加减运算及合并同类项的过 程。例如,计算一个矩形的面积时,若长和宽分别为 a+b 和 a-b,则面积为 (a+b)(a-b) = a^2 - b^2,其中就涉及到了合并同类项的过程。
02
图形表示法在合并同类项中应用
柱状图表示法
柱状图的高度表示同 类项的系数大小,宽 度可表示同类项的次 数或变量。
识别方法
观察两个项,若所含字母及对应 指数均相同,则可判断为同类项 。
合并同类项原则与步骤
合并原则:把同类项的系数相加,所得 结果作为系数,字母和字母的指数不变 。
3. 合并同类项的系数,得到新的多项式 。
2. 利用交换律、结合律将同类项合并在 一起。
合并同类项课件完整版
本题同样考查了分式的加减法运算。 两个分式已经有相同的分母$x-2$,因 此可以直接进行分子的加减运算。注 意在运算过程中要合并同类项。
典型例题分析与解答
解答:原式$= frac{(x^2 - 4x + 4) - (x^2 - 2x)}{x - 2}$ $= frac{x^2 - 4x + 4 - x^2 + 2x}{x - 2}$
合并同类项在解一元一次方程中的应用
03
通过合并同类项,简化方程,从而更容易求解未知数。
典型例题分析与解答
例题1
解方程 2x + 3 = 5x - 7。
分析
首先移项,将含x的项放在等式左边,常数项放在等式右边,得到 3x = -10。然后合并同类项,将x的系数化为1,得到 x = 10/3。
例题2
解方程 (x + 2)/3 - (2x - 1)/6 = 1。
03
分析
首先去分母,将方程两边分别乘以20(5、10和4的最小公倍数),得
到 4(2x - 1) + 2(3x + 2) = 5(2x + 3) - 20。然后去括号并移项,得到
8x - 4 + 6x + 4 = 10x + 15 - 20。接着合并同类项并化简得到 x = -
1/4。
03
二元一次方程组中合并同类项
一元一次方程标准形式
ax + b = 0(a ≠ 0)。
3
解一元一次方程的基本步骤
去分母、去括号、移项、合并同类项、系数化为 1。
合并同类项在解方程中应用
合并同类项的定义
01
把多项式中同类项合并成一项,叫做合并同类项。
5.2 第1课时 合并同类项 课件(共19张PPT) 人教版七年级数学上册
注:同学们,我们要注意解方程中的合并同类项和整式加减中的合并同类项一样,依据都是乘法分配律,实质都是系数的合并,目的是运用合并同类项,使方程变得更简单,为运用等式的性质2求出方程的解创造条件;系数为1或-1的项,合并时千万不能漏掉哦!
相等关系:总量=各部分量的和.一般先设其中一个部分的量为x,再用x表示出其他各部分量,最后根据等量关系列出方程.
【题型二】根据“总量=各部分量的和”列方程
420
变式:某地下停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场小型汽车的数量是中型汽车数量的3倍,这些车共交停车费270元,则小型汽车有多少辆?
解:设中型汽车有x辆,则小型汽车有3x辆.依题意,得6x+4×3x=270.解得x=15.故3x=45.答:小型汽车有45辆.
重点
难点
旧知回顾
所含字母相同,并且相同字母的指数也相同的项
-2x
4x
4y
-y
问题导入
同学们,这样的方程你们会解吗?(1)-3x+0.5x=2.(2)7x-2x=8+2.请同学们观察,这两个方程有什么特点呢?请同学们试着解一解.
一边是含有未知数的项,另一边是常数项
情境导入
程大位,明代商人,珠算发明家,历经二十年,于明万历壬辰年(1592年)写就巨著《算法统宗》.《算法统宗》搜集了古代流传的595道数学难题并记载了解决方法,堪称中国16-17世纪数学领域集大成的著作.在该书中,有一道“百羊问题”:甲赶羊群逐草茂,乙拽一羊随其后,戏问甲及一百否?甲云所说无差谬若得这般一群凑,于添半群小半群,得你一只来方凑,玄机奥妙谁猜透(注:小半即四分之一)
合并同类项ppt课件
[延伸拓展] B [解析] 因为(xyz2-4yx-1)+(3xy+z2yx-3)-(2xyz2+xy) =xyz2-4yx-1+3xy+z2yx-3-2xyz2-xy=-2xy-4, 所以此代数式的值只与x,y的值有关,而与z的值无关, 故应选B.
谢 谢 观 看!
(3)求值:按指定的运算顺序进行计算.
探 【延伸拓展】 究 整式加减中的“无关”型问题
与
应 代数式(xyz2-4yx-1)+(3xy+z2yx-3)-(2xyz2+xy)的值 ( B ) 用 A.与x,y,z的值都无关
B.与x,y的值有关,而与z的值无关
C.与x的值有关,与y,z的值无关
D.与x,y,z的值都有关
2(a+b)2-3(a+b)-5(a-b) .
探 细 琢磨 究 合并同类项的“四点注意”
与
应 (1)不是同类项的不能合并; 用 (2)系数互为相反数的同类项,合并同类项的结果为0;
(3)有时可以把多项式看作一个整体进行合并;
(4)若合并后的系数为带分数,要把它化为假分数.
探
应用二 对多项式进行化简求值
检 测
解:(1)2x2+x-6 (2)-a2b-ab
4.先化简,再求值:-3a2+4-a2+3a-5+4a-a2,其中a=-3.
解:原式=-5a2+7a-1. 当a=-3时,原式=-5×(-3)2+7×(-3)-1=-45-21-1=-67.
相关解析
例2 (1)4(a+b)-7(a-b) (2)2(a+b)2-3(a+b)-5(a-b) [解析] (1)在3(a+b)-5(a-b)-2(a-b)+(a+b)中,3(a+b)与(a+b), -5(a-b)与-2(a-b)分别为同类项,可以分别合并; (2)在3(a+b)2+(a+b)-2(a-b)-(a+b)2-4(a+b)-3(a-b)中,3(a+b)2与 -(a+b)2,(a+b)与-4(a+b),-2(a-b)与-3(a-b)分别是同类项,可以 分别合并.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
能力提升练 13.下列说法中错误的是( A )
①如果两项的字母相同,那么这两项是同类项; ②所含字母相同,并且相同字母的指数也分别相同的项叫同
n-1=3,所以 n=4,所以 m-2n=2-2×4=-6.
能力提升练 15.(1)先合并同类项,再求值:a3+a2b-ab2-a2b+ab2+b3,其
中 a=1,b=-1;
解:原式=a3+b3,当 a=1,b=-1 时,a3+b3=13+(-1)3=0.
能力提升练
(2)已知 2a+b=-4,求12(2a+b)-4(2a-b)+3(2a-b)-32(2a+ b)+(2a-b)的值.
1. 你虽然没有完整地回答问题,但你能大胆发言就是好样的!
此页为防盗标记页(下载后可删)
1、你的眼睛真亮,发现这么多问题! 2、能提出这么有价值的问题来,真了不起! 3、会提问的孩子,就是聪明的孩子! 4、这个问题很有价值,我们可以共同研究一下! 5、这种想法别具一格,令人耳目一新,请再说一遍好吗? 6、多么好的想法啊,你真是一个会想的孩子! 7、猜测是科学发现的前奏,你们已经迈出了精彩的一步! 8、没关系,大声地把自己的想法说出来,我知道你能行! 9、你真聪明!想出了这么妙的方法,真是个爱动脑筋的小朋友! 10、你又想出新方法了,真会动脑筋,能不能讲给大家听一听? 11、你的想法很独特,老师都佩服你! 12、你特别爱动脑筋,常常一鸣惊人,让大家禁不住要为你鼓掌喝彩! 13、你的发言给了我很大的启发,真谢谢你! 14、瞧瞧,谁是火眼金睛,发现得最多、最快? 15、你发现了这么重要的方法,老师为你感到骄傲! 16、你真爱动脑筋,老师就喜欢你思考的样子! 17、你的回答真是与众不同啊,很有创造性,老师特欣赏你这点! 18、××同学真聪明!想出了这么妙的方法,真是个爱动脑筋的同学! 19、你的思维很独特,你能具体说说自己的想法吗? 20、这么好的想法,为什么不大声地、自信地表达出来呢? 21、你有自己独特想法,真了不起! 22、你的办法真好!考虑的真全面! 23、你很会思考,真像一个小科学家! 24、老师很欣赏你实事求是的态度! 25、你的记录很有特色,可以获得“牛津奖”!
原式=(3-8)x+(-1+1)xy2-x2y=-5x-x2y. (5)5a2+2ab-4a2-4ab.
原式=(5-4)a2+(2-4)ab=a2-2ab.
基础巩固练 12.已知多项式 2x2+4xy-3y2+x2+kxy+5y2,当 k 为何值时,
它与多项式 3x2+6xy+2y2 是相等的多项式?
基础巩固练
5. 写出 3a2 的一个同类项:_-__2_a_2 ___. (答案不唯一)
基础巩固练
6.【中考·台州】合并 2a-3a,结果正确的是( C ) A.-1 B.1 C.-a D.a
基础巩固练
7.【中考·武汉】计算 3x2-x2 的结果是( B )
A.2
B.2x2
C.2x
D.4x2
基础巩固练
8.下列计算中正确的是( C ) A.3+2ab=5ab B.5xy-y=5x C.-5m2n+5nm2=0 D.x3-x=x2
基础巩固练 9.【中考·怀化】合并同类项:4a2+6a2-a2=__9_a_2____.
【点拨】原式=(4+6-1)a2=9a2.
基础巩固练
10.若 3a2bn 与-5amb4 的差仍是单项式,则其差为__8_a_2_b_4____. 【点拨】依题意得 3a2bn 与-5amb4 是同类项,所以 m=2,n=4, 所以 3a2b4-(-5a2b4)=8a2b4.
素养核心练 18.若关于 x,y 的多项式 xm-1y3+x3-my|n-2|+xm-1y+x2m-3y|n|+
m+n-1 合并同类项后得到一个四次三项式,求 m,n 的 值.(所有指数均为正整数)
素养核心练 解:由题意得 m-1=1,解得 m=2, 多项式变为 xy3+xy|n-2|+xy+xy|n|+n+1, ①当|n|=1 时,n=±1, 若 n=1,则 xy3+xy|n-2|+xy+xy|n|+n+1=xy3+xy+xy+xy+ 1+1=xy3+3xy+2,符合题意; 若 n=-1,则 xy3+xy|n-2|+xy+xy|n|+n+1=xy3+xy3+xy+xy =2xy3+2xy,不符合题意.
素养核心练
②当|n|=3 时,n=±3, 若 n=3,则 xy3+xy|n-2|+xy+xy|n|+n+1=xy3+xy+xy+xy3+ 3+1=2xy3+2xy+4,符合题意; 若 n=-3,则 xy3+xy|n-2|+xy+xy|n|+n+1=xy3+xy5+xy+ xy3-3+1=2xy3+xy5+xy-2,不符合题意. 故 m=2,n=1 或 3.
1. 你真让人感动,老师喜欢你的敢想、敢说、敢问和敢辩,希望你继续保持下去。 2. 这么难的题你能回答得很完整,真是了不起!你是我们班的小爱因斯坦。 3. 你预习的可真全面,自主学习的能力很强,课下把你的学习方法介绍给同学们,好不好? 4. 哎呀. 通过你的发言,老师觉得你不仅认真听,而且积极动脑思考了,加油哇! 四、提醒类
C.-1
D.0
基础巩固练
3【 .中考·包头】如果 2xa+1y 与 x2yb-1 是同类项,那么ab的值是( A )
A.12
B.32
C.1 D.3
【点拨】因为 2xa+1y 与 x2yb-1 是同类项,所以 a+1=2,b-1=1,
解得 a=1,b=2.所以ab=12.
基础巩固练 4.若 ax+1b 与12ba2 的和是一个单项式,则 x=____1____.
___系__数___都相等,那么称这两个多项式相等.
基础巩固练
1.【中考·株洲】下列各式中,与 3x2y3 是同类项的是( C )
A.2x5
B.3x3y2
C.-12x2y3
D.-13y5
基础巩固练
2.【中考·毕节】如果 3ab2m-1 与 9abm+1 是同类项,那么 m 等于
( A)
A.2
B.1
类项; ③系数相同的项能合并; ④系数互为相反数的同类项合并后为零. A. ①③ B. ②④ C. ①④ D. ②③
能力提升练
14.若关于 x,y 的单项式-xmyn-1 与 mx2y3 可以合并,则 m-2n
的值为( D )
A.0
B.-2
C.-4
D.-6
【点拨】由题意可知-xmyn-1 与 mx2y3 是同类项,所以 m=2,
湘教版 七年级上
第2章 代数式
2.5 整式的加法和减法 第1课时 合并同类项
习题链接
提示:点击 进入习题
答案显示
新知笔记 1 相同;相同 2 同类项 3 系数;不变 4 系数
1C
2A
3A
41
5 见习题
6C
7B
8C
9 9a2 10 8a2b4
11 见习题 12 见习题 13 A
14 D
15 见习题
16 见习题 17 见习题 18 见习题
同学们下课啦
授课老师:xxx
此页为防盗标记页(下载后可删)
教师课堂用语在学科专业方面重在进行“引”与“导”,通过点拨、搭桥等方式让学生豁然开朗,得出结论,而不是和盘托 出,灌输告知。一般可分为:启发类、赏识类、表扬类、提醒类、劝诫类、鼓励类、反思类。
一、启发类
1. 集体力量是强大的,你们小组合作了吗?你能将这个原理应用于生活吗?你的探究目标制定好了吗? 2. 自学结束,请带着疑问与同伴交流。 3. 学习要善于观察,你从这道题中获取了哪些信息? 4. 请把你的想法与同伴交流一下,好吗? 5. 你说的办法很好,还有其他办法吗?看谁想出的解法多? 二、赏识类
解:当 2a+b=-4 时, 原式=12-32(2a+b)+(-4+3+1)(2a-b)=-(2a+b)+0 =-(-4)=4.
能力提升练 16.已知 4x2my3+n 与-3x6y2 是同类项,求多项式
0.3m2n-15mn2+0.4n2m-m2n+12nm2 的值.
解:由题意可知 2m=6,3+n=2,所以 m=3,n=-1, 所以原式=0.3-1+12m2n+-15+0.4mn2=-15m2n+15mn2 =-15×32×(-1)+15×3×(-1)2=152.
此页为防盗标记页(下载后可删)
1、谢谢大家听得这么专心。 2、大家对这些内容这么感兴趣,真让我高兴。 3、你们专注听讲的表情,使我快乐,给我鼓励。 4、我从你们的姿态上感觉到,你们听明白了。 5、我不知道我这样说是否合适。 6、不知我说清了没有,说明白了没有。 7、我的解释不知是否令你们满意,课后让我们大家再去找有关的书来读读。 8、你们的眼神告诉我,你们还是没有明白,想不想让我再讲一遍? 9、会“听”也是会学习的表现。我希望大家认真听好我下面要说的一段话。 10、从听课的情况反映出,我们是一个素质良好的集体。 1、谢谢你,你说的很正确,很清楚。 2、虽然你说的不完全正确,但我还是要感谢你的勇气。 3、你很有创见,这非常可贵。请再响亮地说一遍。 4、××说得还不完全,请哪一位再补充。 5、老师知道你心里已经明白,但是嘴上说不出,我把你的意思转述出来,然后再请你学说一遍。 6、说,是用嘴来写,无论是一句话,还是一段话,首先要说清楚,想好了再说,把自己要说的话在心里整理一下就能说清楚。 7、对!说得很好,我很高兴你有这样的认识,很高兴你能说得这么好! 8、我们今天的讨论很热烈,参与的人数也多,说得很有质量,我为你们感到骄傲。 9、说话,是把自己心里的想法表达出来,与别人交流。说时要想想,别人听得明白吗? 10、说话,是与别人交流,所以要注意仪态,身要正,不扭动,眼要正视对方。对!就是这样!人在小时候容易纠正不良习惯,经常 注意哦。