2019年上海松江区高考数学一模试卷及答案

合集下载

上海市2019年七校联考高考数学一模试卷(理科)含答案解析

上海市2019年七校联考高考数学一模试卷(理科)含答案解析

上海市2019年七校联考高考数学一模试卷(理科)(解析版)一、填空题(本大题满分56分)本大题共有14题,只要求直接填写结果,每题填对得4分,否则一律得零分.1.方程4x=2x+1﹣1的解是.2.增广矩阵对应方程组的系数行列式中,元素3的代数余子式的值为.3.在x(1+)6的展开式中,含x3项系数是.(用数字作答)4.若关于x的不等式2x2﹣3x+a<0的解集为(m,1),则实数m=.5.若,则它的反函数是f﹣1(x)=.6.设抛物线x2=py的焦点与双曲线的上焦点重合,则p的值为.7.已知数列,则a1+a2+a3+a4+…+a99+a100=.8.已知函数f(x)=则使f[f(x)]=2成立的实数x的集合为.9.执行如图所示的程序框图,若p=0.8,则输出的n=.10.曲线y=Asin2ωx+k(A>0,k>0)在区间上截直线y=4与y=﹣2所得的弦长相等且不为0,则A+k的取值范围是.11.若边长为6的等边三角形ABC,M是其外接圆上任一点,则的最大值为.12.设ξ为随机变量,从边长为1的正方体12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱异面时,ξ=1;当两条棱平行时,ξ的值为两条棱之间的距离,则数学期望Eξ=.13.设数列{a n}是首项为0的递增数列,,满足:对于任意的b∈[0,1),f n(x)=b总有两个不同的根,则{a n}的通项公式为.14.如图,半径为R的半球O的底面圆O在平面α内,过点O作平面α的垂线交半球面于点A,过圆O的直径CD作与平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B,该交线上的一点P满足∠BOP=60°,则A,P两点间的球面距离为.二、选择题(本大题满分20分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,选对得5分,否则一律得零分.15.设a、b均为非零实数,则“”是“”的什么条件?()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件16.已知a是实数,则函数f(x)=acosax的图象可能是()A.B.C.D.17.数列{a n}满足,,则的整数部分是()A.0 B.1 C.2 D.318.在直角坐标系中,如果不同的两点A(a,b),B(﹣a,﹣b)都在函数y=f(x)的图象上,那么称[A,B]为函数f(x)的一组关于原点的中心对称点([A,B]与[B,A]看作同一组),函数g(x)=,关于原点的中心对称点的组数为()A.0 B.1 C.2 D.3三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须写出必要的步骤.19.已知函数f(x)=cosx(sinx+cosx)﹣.(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.20.设在直三棱柱ABC﹣A1B1C1中,AB=AC=AA1=2,∠BAC=90°,E,F依次为C1C,BC 的中点.(1)求异面直线A1B、EF所成角θ的大小(用反三角函数值表示);(2)求点B1到平面AEF的距离.21.已知椭圆的长轴长是短轴长的2倍,且过点B(0,1).(1)求椭圆的标准方程;(2)直线l:y=k(x+2)交椭圆于P,Q两点,若点B始终在以PQ为直径的圆内,求实数k的取值范围.22.已知函数f(x)=a(x+)﹣|x﹣|(x>0)a∈R.(1)若a=,求y=f(x)的单调区间;(2)若关于x的方程f(x)=t有四个不同的解x1,x2,x3,x4,求实数a,t应满足的条件;(3)在(2)条件下,若x1,x2,x3,x4成等比数列,求t用a表示.23.设数列{a n}的前n项和为S n,对一切n∈N*,点(n,)都在函数f(x)=x+的图象上.(1)计算a1,a2,a3,并归纳出数列{a n}的通项公式;(2)将数列{a n}依次按1项、2项、3项、4项循环地分为(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10);(a11),(a12,a13),(a14,a15,a16),(a17,a18,a19,a20);(a21)…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{b n},求b5+b100的值;(3)设A n为数列的前n项积,若不等式A n<f(a)﹣对一切n∈N*都成立,求a的取值范围.2019年上海市七校联考高考数学一模试卷(理科)参考答案与试题解析一、填空题(本大题满分56分)本大题共有14题,只要求直接填写结果,每题填对得4分,否则一律得零分.1.方程4x=2x+1﹣1的解是x=0.【分析】由已知得(2x)2﹣2×2x+1=0,由此能求出原方程的解.【解答】解:∵4x=2x+1﹣1,∴(2x)2﹣2×2x+1=0,解得2x=1,∴x=0.故答案为:x=0.【点评】本题考查方程的解的求法,是基础题,解题时要认真审题,注意有理数指数幂的性质的合理运用.2.增广矩阵对应方程组的系数行列式中,元素3的代数余子式的值为5.【分析】根据余子式的定义可知,M21=﹣,计算即可得解.【解答】解:由题意得:M21=﹣=5,故答案为:5.【点评】此题考查学生掌握三阶行列式的余子式的定义,会进行行列式的运算,是一道基础题.3.在x(1+)6的展开式中,含x3项系数是15.(用数字作答)【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为2,即可求解含x3的项的系数【解答】解:(1+)6展开式的通项为T r+1=C6r()r=C6r,令r=4得含x2的项的系数是C64=15,∴在x(1+)6的展开式中,含x3项系数是:15.故答案为:15【点评】本题考查二项展开式上通项公式是解决二项展开式的特定项问题的工具.4.若关于x的不等式2x2﹣3x+a<0的解集为(m,1),则实数m=.【分析】由不等式2x2﹣3x+a<0的解集为(m,1)可知:x=m,x=1是方程2x2﹣3x+a=0的两根.根据韦达定理便可分别求出m和a的值.【解答】解:由不等式2x2﹣3x+a<0的解集为(m,1)可知:x=m,x=1是方程2x2﹣3x+a=0的两根由韦达定理得:,解得:m=,a=1.【点评】本题考查一元二次不等式的解法.5.若,则它的反函数是f﹣1(x)=.【分析】由y=(x≤0),解得:x=﹣,把x与y互换即可得出.【解答】解:由y=(x≤0),解得:x=﹣,把x与y互换可得:y=﹣.故答案为:.【点评】本题考查了反函数的求法、方程的解法,考查了推理能力与计算能力,属于中档题.6.设抛物线x2=py的焦点与双曲线的上焦点重合,则p的值为8.【分析】利用双曲线和抛物线的简单性质直接求解.【解答】解:∵双曲线,∴c==2,∴双曲线的两个焦点坐标分别为F1(﹣2,0),F2(2,0),∵抛物线x2=py的焦点F(,0)与双曲线的上焦点重合,∴==2,∴p=8.故答案为:8.【点评】本题考查抛物线中参数的求法,是基础题,解题时要注意双曲线和抛物线的简单性质的合理运用.7.已知数列,则a1+a2+a3+a4+…+a99+a100=5000.【分析】由已知条件可得数列的奇数项是以0为首项,以2为公差的等差数列、偶数项以2为首项,2为公差的等差数列,分别代入等差数列的前n项和公式计算.【解答】解:a1+a2+a3+a4+…+a99+a100=(a1+a3+…+a99)+(a2+a4+…+a100)=(0+2+4+...+98)+(2+4+ (100)=49×50+51×50=5000故答案为5000.【点评】本题主要考查等差数列的求和公式,分组求和的方法,考查学生的运算能力.8.已知函数f(x)=则使f[f(x)]=2成立的实数x的集合为{x|0≤x ≤1,或x=2} .【分析】结合函数的图象可得,若f[f(x)]=2,则f(x)=2 或0≤f(x)≤1.若f(x)=2,由函数f(x)的图象求得x得范围;若0≤f(x)≤1,则由f(x)的图象可得x的范围,再把这2个x的范围取并集,即得所求.【解答】解:画出函数f(x)=的图象,如图所示:故函数的值域为(﹣∞,0)∪(1,+∞).由f[f(x)]=2 可得f(x)=2 或0≤f(x)≤1.若f(x)=2,由函数f(x)的图象可得0≤x≤1,或x=2.若0≤f(x)≤1,则由f(x)的图象可得x∈∅.综上可得,使f[f(x)]=2成立的实数x的集合为{x|0≤x≤1,或x=2},故答案为{x|0≤x≤1,或x=2}.【点评】本题主要考查函数的零点与方程的根的关系,体现了数形结合与分类讨论的数学思想,属于中档题.9.执行如图所示的程序框图,若p=0.8,则输出的n=4.【分析】根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是判断S=>0.8时,n+1的值.【解答】解:根据流程图所示的顺序,该程序的作用是判断S=>0.8时,n+1的值.当n=2时,当n=3时,,此时n+1=4.故答案为:4【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.10.曲线y=Asin2ωx+k(A>0,k>0)在区间上截直线y=4与y=﹣2所得的弦长相等且不为0,则A+k的取值范围是(4,+∞).【分析】根据曲线的方程可求得函数的周期,进而根据被直线y=4和y=﹣2所截的弦长相等且不为0,推断出k==1,A>=3.答案可得.【解答】解:曲线y=Asin(2ωx+ϕ)+k(A>0,k>0)的周期为T==,被直线y=4和y=﹣2所截的弦长相等且不为0,结合图形可得k==1,A>=3.则A+k>4,故答案为:(4,+∞).【点评】本题主要考查了三角函数图象和性质,对y=Asin(ωx+ϕ)+B(A>0,ω>0),周期为T=,平衡位置为y=B,y max=A+B,y min=﹣A+B,属于中档题.11.若边长为6的等边三角形ABC,M是其外接圆上任一点,则的最大值为18+12.【分析】求出外接圆圆心,建立平面直角坐标系,将表示成θ的三角函数,求出最.大值【解答】解:∵△ABC是等边三角形,∴三角形的外接圆半径为2,以外接圆圆心O为原点建立平面直角坐标系,设A(2,0),B(﹣,3).设M(2cosθ,2sinθ),则,.∴=﹣18cosθ+6sinθ+18=12sin(θ﹣)+18.∴的最大值是18+12.故答案为18+12.【点评】本题考查了三角函数的恒等变换,平面向量的数量积运算,数形结合的解题思想,属于中档题.12.设ξ为随机变量,从边长为1的正方体12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱异面时,ξ=1;当两条棱平行时,ξ的值为两条棱之间的距离,则数学期望Eξ=.【分析】从棱长为1的正方体的12条棱中任取两条,共有种方法,若两条棱相交,则交点必为正方体8个顶点中的一个,过任意1个顶点恰有3条棱,共有8对相交棱,两条棱平行,则它们的距离为1或,其中距离为的共有6对,由此能求出数学期望Eξ.【解答】解:若两条棱相交,则交点必为正方体8个顶点中的一个,过任意1个顶点恰有3条棱,∴共有8对相交棱,∴P(ξ=0)==,若两条棱平行,则它们的距离为1或,其中距离为的共有6对,∴P(ξ=)==,P(ξ=1)=1﹣P(ξ=0)﹣P(ξ=)=,∴随机变量ξ的数学期望E(ξ)=1×+×=.故答案为:.【点评】本题考查数学期望的求法,是中档题,解题时要认真审题,注意空间几何体的性质的合理运用.13.设数列{a n}是首项为0的递增数列,,满足:对于任意的b∈[0,1),f n(x)=b总有两个不同的根,则{a n}的通项公式为.【分析】根据条件确定a n+1﹣a n=nπ,利用叠加可求得{a n}的通项公式.【解答】解:∵a1=0,当n=1时,f1(x)=|sin(x﹣a1)|=|sinx|,x∈[0,a2],又∵对任意的b∈[0,1),f1(x)=b总有两个不同的根,∴a2=π∴f1(x)=sinx,x∈[0,π],a2=π又f2(x)=|sin(x﹣a2)|=|sin(x﹣π)|=|cos|,x∈[π,a3]∵对任意的b∈[0,1),f1(x)=b总有两个不同的根,∴a3=3π…(5分)又f3(x)=|sin(x﹣a3)|=|sin(x﹣3π)|=|sinπ|,x∈[3π,a4]∵对任意的b∈[0,1),f1(x)=b总有两个不同的根,∴a4=6π…(6分)由此可得a n+1﹣a n=nπ,∴a n=a1+(a2﹣a1)+…+(a n﹣a n)=0+π+…+(n﹣1)π=﹣1∴故答案为:【点评】本题考查数列与三角函数的结合,考查学生分析解决问题的能力,具有一定的综合性,属于中档题.14.如图,半径为R的半球O的底面圆O在平面α内,过点O作平面α的垂线交半球面于点A,过圆O的直径CD作与平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B,该交线上的一点P满足∠BOP=60°,则A,P两点间的球面距离为.【分析】由题意求出AP的距离,然后求出∠AOP,即可求解A、P两点间的球面距离.【解答】解:半径为R的半球O的底面圆O在平面α内,过点O作平面α的垂线交半球面于点A,过圆O的直径CD作平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B,所以CD⊥平面AOB,因为∠BOP=60°,所以△OPB为正三角形,P到BO的距离为PE=R,E为BO的中点,AE==R,AP==R,AP2=OP2+OA2﹣2OPOAcos∠AOP,∴(R)2=R2+R2﹣2RRcos∠AOP,∴cos∠AOP=,∠AOP=arccos,∴A、P两点间的球面距离为.故答案为:.【点评】本题考查反三角函数的运用,球面距离及相关计算,考查计算能力以及空间想象能力.二、选择题(本大题满分20分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,选对得5分,否则一律得零分.15.设a、b均为非零实数,则“”是“”的什么条件?()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【分析】分别求出不等式成立的等价条件,然后利用充分条件和必要条件的定义进行判断.【解答】解:当b=﹣1,a=1时,满足,但不成立.若,则,∴,∴成立.∴“”是“”成立的必要不充分条件.故选:B.【点评】本题主要考查充分条件和必要条件的判断,利用不等式的性质是解决本题的关键.16.已知a是实数,则函数f(x)=acosax的图象可能是()A.B.C.D.【分析】根据函数的奇偶性排除不满足题意的选项,根据函数的表达式确定函数的最值与周期的关系,推出正确结果.【解答】解:函数f(x)=acosax,因为函数f(﹣x)=acos(﹣ax)=acosax=f(x),所以函数是偶函数,所以A、D错误;结合选项B、C,可知函数的周期为:π,所以a=2,所以B不正确,C正确.故选C【点评】本题是基础题,考查视图能力,发现问题解决问题的能力,排除方法的应用,函数的周期与最值的关系是解题的关键,好题.17.数列{a n}满足,,则的整数部分是()A.0 B.1 C.2 D.3【分析】由题意可知,a n+1﹣1=a n(a n﹣1)从而得到,通过累加得:m=+…+=﹣=2﹣,a n+1﹣a n=≥0,a n+1≥a n,可得:a2019≥a2019≥a3≥2,,1<m<2,故可求得m的整数部分.【解答】解:由题意可知,a n+1﹣1=a n(a n﹣1),,∴m=+…+=﹣═2﹣,a n+1﹣a n=≥0,a n+1≥a n,∴a2019≥a2019≥a3≥2,,1<m<2,故可求得m的整数部分1.故答案选:B.【点评】本题考查数列的性质和应用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地运用数列的递推式.18.在直角坐标系中,如果不同的两点A(a,b),B(﹣a,﹣b)都在函数y=f(x)的图象上,那么称[A,B]为函数f(x)的一组关于原点的中心对称点([A,B]与[B,A]看作同一组),函数g(x)=,关于原点的中心对称点的组数为()A.0 B.1 C.2 D.3【分析】利用定义,只要求出g(x)=sin,x≤0,关于原点对称的函数h(x)=sin,x>0,观察h(x)与g(x)=log2(x+1),x>0的交点个数,即为中心对称点的组数.【解答】解:由题意可知g(x)=sin,x≤0,则函数g(x)=sin,x≤0,关于原点对称的函数为h(x)=sin,x>0,则坐标系中分别作出函数h(x)=sin,x>0,g(x)=log2(x+1),x>0的图象如图,由图象可知,两个图象的交点个数有1个,所以函数g(x)=关于原点的中心对称点的组数为1组.故选:B【点评】本题主要考查函数的交点问题,利用定义先求出函数关于原点对称的函数,是解决本题的关键.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须写出必要的步骤.19.已知函数f(x)=cosx(sinx+cosx)﹣.(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.【分析】(1)利用同角三角函数关系求得cosα的值,分别代入函数解析式即可求得f(α)的值.(2)利用两角和公式和二倍角公式对函数解析式进行恒等变换,进而利用三角函数性质和周期公式求得函数最小正周期和单调增区间.【解答】解:(1)∵0<α<,且sinα=,∴cosα=,∴f(α)=cosα(sinα+cosα)﹣,=×(+)﹣=.(2)f(x)=cosx(sinx+cosx)﹣.=sinxcosx+cos2x﹣=sin2x+cos2x=sin(2x+),∴T==π,由2kπ﹣≤2x+≤2kπ+,k∈Z,得kπ﹣≤x≤kπ+,k∈Z,∴f(x)的单调递增区间为[kπ﹣,kπ+],k∈Z.【点评】本题主要考查了三角函数恒等变换的应用.考查了学生对基础知识的综合运用.20.设在直三棱柱ABC﹣A1B1C1中,AB=AC=AA1=2,∠BAC=90°,E,F依次为C1C,BC 的中点.(1)求异面直线A1B、EF所成角θ的大小(用反三角函数值表示);(2)求点B1到平面AEF的距离.【分析】(1)连接C1B,因为C1B∥EF,异面直线A1B、EF所成角与C1B、A1B所成角相等.(2)利用平面AEF的一个法向量,建立空间坐标系,求出求点B1到平面AEF的距离.【解答】解:以A为原点建立如图空间坐标系,则各点坐标为A1(0,0,2),B(2,0,0),B1(2,0,2),E(0,2,1),F(1,1,0)(2分)(1),,∴(6分)(2)设平面AEF的一个法向量为,∵,由得令a=1可得(10分)∵,∴(13分)∴点B1到平面AEF的距离为.(14分)【点评】此题主要考查异面直线的角度及余弦值计算.21.已知椭圆的长轴长是短轴长的2倍,且过点B(0,1).(1)求椭圆的标准方程;(2)直线l:y=k(x+2)交椭圆于P,Q两点,若点B始终在以PQ为直径的圆内,求实数k的取值范围.【分析】(1)由题意可得a=2b,b=1,解得a=2,进而得到椭圆方程;(2)设P(x1,y1),Q(x2,y2),联立直线l的方程和椭圆方程,运用韦达定理,可得Q的坐标,由点B在以PQ为直径圆内,得∠PBQ为钝角或平角,即有,运用数量积的坐标表示,解不等式即可得到所求范围.【解答】解:(1)由题意知,a=2b,b=1,解得a=2,可得椭圆的标准方程为:;(2)设P(x1,y1),Q(x2,y2)联立,消去y,得(1+4k2)x2+16k2x+16k2﹣4=0,(*)依题意:直线l:y=k(x+2)恒过点(﹣2,0),此点为椭圆的左顶点,所以x1=﹣2,y1=0 ①,由(*)式,②,得y1+y2=k(x1+x2)+4k③,由①②③,可得,由点B在以PQ为直径圆内,得∠PBQ为钝角或平角,即..即,整理得20k2﹣4k﹣3<0,解得.【点评】本题考查椭圆方程的求法,注意运用椭圆的性质,考查实数的取值范围,注意联立直线方程和椭圆方程,运用韦达定理,考查点在圆内的条件:点与直径的端点的张角为钝角或平角,运用数量积小于0,考查化简整理的运算能力,属于中档题.22.已知函数f(x)=a(x+)﹣|x﹣|(x>0)a∈R.(1)若a=,求y=f(x)的单调区间;(2)若关于x的方程f(x)=t有四个不同的解x1,x2,x3,x4,求实数a,t应满足的条件;(3)在(2)条件下,若x1,x2,x3,x4成等比数列,求t用a表示.【分析】(1)将a=代入,结合正比例函数和反比例函数的图象和性质,可得函数的单调区间;(2)利用导数法,分类讨论,不同情况下y=f(x)的单调性,进而求出满足条件的实数a,t的范围;(3)韦达定理可得x1,x2,x3,x4两两互为倒数,结合等比数列的性质,结合韦达定理,可用a表示t.【解答】解:(1)当a=时,函数f(x)=(x+)﹣|x﹣|=.故y=f(x)的单调递增区间为(0,1],单调递减区间为[1,+∞);(2)f(x)=a(x+)﹣|x﹣|=,f′(x)=,当a≤1时,y=f(x)的单调递增区间为(0,1],单调递减区间为[1,+∞),不合题意.当a>1时,f(x)在(0,]上单调递减,在[,1]上单调递增,在[1,]上单调递减,在[,+∞)上单调递增,又由f()=f()=,f(1)=2a,∴方程f(x)=t有四个不同的解x1,x2,x3,x4时,a,t应满足的条件为:<t<2a,a>1;(3)f(x)=t即,或,即(a+1)x2﹣tx+a﹣1=0,或(a﹣1)x2﹣tx+a+1=0,由韦达定理可得两方程的根分别互为倒数,设四个解从小到大依次为x1,x2,x3,x4,则x2x3=1,x1x4=1,∴x1x2x3x4=1,若x1,x2,x3,x4成等比数列,则x1=x23,∴x1x2=x24=,x1+x2=,∴x2=,∴+()3=,解得:t=+(a>1)【点评】本题考查的知识点是分段函数的应用,根的存在性及判断,函数的单调性,与函数的极值,数列的性质,综合性强,转化困难,属于难题.23.设数列{a n}的前n项和为S n,对一切n∈N*,点(n,)都在函数f(x)=x+的图象上.(1)计算a1,a2,a3,并归纳出数列{a n}的通项公式;(2)将数列{a n}依次按1项、2项、3项、4项循环地分为(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10);(a11),(a12,a13),(a14,a15,a16),(a17,a18,a19,a20);(a21)…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{b n},求b5+b100的值;(3)设A n为数列的前n项积,若不等式A n<f(a)﹣对一切n∈N*都成立,求a的取值范围.【分析】(1)由已知可得,即.分别令n=1,n=2,n=3,代入可求a1,a2,a3,进而猜想a n(2)由a n=2n可得数列{a n}依次按1项、2项、3项、4项循环地分为(2),(4,6),(8,10,12),(14,16,18,20);(22),(24,26),(28,30,32),(34,36,38,40);(42),….每一次循环记为一组.由于每一个循环含有4个括号,故b100是第25组中第4个括号内各数之和.由分组规律知,由各组第4个括号中所有第1个数,所有第2个数、所有第3个数、所有第4个所有第4个数分别组成都是等差数列,公差均为20.故各组第4个括号中各数之和构成等差数列,且公差为80.代入可求(3)因为,,若成立设,则只需即可利用g(n)的单调性可求其最大值,从而可求a的范围【解答】解:(1)因为点在函数的图象上,故,所以.令n=1,得,所以a1=2;令n=2,得,所以a2=4;令n=3,得,所以a3=6.由此猜想:a n=2n.(2)因为a n=2n(n∈N*),所以数列{a n}依次按1项、2项、3项、4项循环地分为(2),(4,6),(8,10,12),(14,16,18,20);(22),(24,26),(28,30,32),(34,36,38,40);(42),….每一次循环记为一组.由于每一个循环含有4个括号,故b100是第25组中第4个括号内各数之和.由分组规律知,由各组第4个括号中所有第1个数组成的数列是等差数列,且公差为20.同理,由各组第4个括号中所有第2个数、所有第3个数、所有第4个数分别组成的数列也都是等差数列,且公差均为20.故各组第4个括号中各数之和构成等差数列,且公差为80.注意到第一组中第4个括号内各数之和是68,所以b100=68+24×80=1988.又b5=22,所以b5+b100=2010(3)因为,故,所以.又,故对一切n∈N*都成立,就是对一切n∈N*都成立.设,则只需即可.由于=,所以g(n+1)<g(n),故g(n)是单调递减,于是.令,即,解得,或.综上所述,使得所给不等式对一切n∈N*都成立的实数a的取值范围是.【点评】本题综合考查了利用函数的解析式求解数列的递推公式进而求解数列的项,等差数列的求和公式的应用,及利用数列的单调性求解数列的最大(小)项问题的求解,属于函数与数列知识的综合应用的考查。

2019年高三年级第一次练习数学试卷文参考答案

2019年高三年级第一次练习数学试卷文参考答案

嘉定区2019年高三年级第一次质量调研 数学试卷(文)参考答案与评分标准一.填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.答案:1.因i a a ai i )1(1)1)(1(-++=-+是实数,所以=a 1. 2.答案:]2,0[.由022≥-x x ,得022≤-x x ,所以]2,0[∈x . 3.答案:1.112+=a a ,314+=a a ,由已知得4122a a a =,即)3()1(1121+=+a a a ,解得11=a . 4.答案:257-.由532sin =⎪⎭⎫ ⎝⎛+θπ,得53cos =θ,所以2571cos 22cos 2-=-=θθ.5.答案:2-.解法一:函数x x f -=)(的反函数为21)(x x f =-(0≤x ),由4)(1=-x f 得42=x ,因为0<x ,故2-=x .解法二:由4)(1=-x f ,得2)4(-==f x .6.答案:5arctan .因为BC ∥AD ,所以BC D 1∠就是异面直线1BD 与AD 所成的角,连结C D 1,在直角三角形BC D 1中,0190=∠BCD ,1=BC ,51=C D ,所以5tan 11==∠BCCD BC D . 7.答案:3π(或060). 设a 与b 的夹角为θ,由2)(=+⋅b a a ,得22=⋅+b a a ,即2c o s 21=+θ,21cos =θ.8.答案:2.9)21(x -展开式的第3项为288)2(2293=-=x C T ,解得23=x ,所以232132132lim 323232lim 111lim 22=-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+++∞→∞→∞→nn nn n n x x x .9.答案:1.三阶行列式xa x 1214532+中元素3的余子式为xa x x f 21)(+=,由0)(<x f 得022<-+ax x ,由题意得a b -=+-1,所以1=+b a . 10.答案:16.1=a ,满足3≤a ,于是4211==+b ;2=a ,满足3≤a ,8212==+b ;3=a ,满足3≤a ,则16213==+b ;4=a ,不满足3≤a ,则输出b ,16=b .11.答案:21.21210105)(3101337===C C C A P . 12.答案:32π.由题意,61cos 2>θ且21sin 2>θ,⎩⎨⎧==+2cos 34ab b a θ,⎪⎪⎩⎪⎪⎨⎧=⋅-=+2111sin 211a b a b θ,所以θθsin 2cos 32-=,3tan -=θ,因⎪⎭⎫⎝⎛∈ππθ,2,32πθ=.13.答案:1±.因为)(x f 是奇函数,所以0)()(=-+x f x f ,即0212212=⋅+-+⋅+---xxx x k k k k , 0212212=+-⋅+⋅+-x x x x k k k k ,0)2)(21()12)(1(22=+⋅++-xx x k k k ,所以12=k ,1±=k . 14.答案:100.])1[()1()1()1()1()1()(22221n n n n n f n f a n n n n -+-=+⋅-+⋅-=++=-,)12()1(+-=n n ,所以201)199(9)7(5)3(100321+-+++-++-=++++ a a a a 100502=⨯=.二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.C .16.A .17.D .18.B .15.因为A 、B 是三角形内角,所以A 、),0(π∈B ,在),0(π上,x y cos =是减函数. 16.①错.不在同一直线上的三点才能确定一个平面;②错.四边相等的四边形也可以是空间四边形;③错.如果三棱锥的底面是等边三角形,一条侧棱垂直于底面且长度等于底面边长,则三个侧面都是等腰三角形;④错.若这两点是球的直径的两个端点,过这两点可作无数个大圆.17.作出函数xy 2=与2x y =,可发现两函数图像在第二象限有一个交点,在第一象限有两个交点(第一象限的两个交点是)4,2(和)16,4(). 18.若取1x 、2x 为区间]4,2[的两个`端点,则22)()(21=x f x f .若22>C ,取21=x ,2)(1=x f ,对任意]4,2[2∈x ,4)(2≤x f ,于是22)(2)()(221≤=x f x f x f ;若22<C ,取41=x ,4)(1=x f ,对任意]4,2[2∈x ,2)(2≥x f ,于是22)(4)()(221≥=x f x f x f .所以22=C .三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19.(本题满分12分)解:设半圆的半径为r ,在△ABC 中,090=∠ACB ,030=∠ABC ,3=BC , 连结OM ,则AB OM ⊥,……(2分) 设r OM =,则r OB 2=,…………(4分) 因为OB OC BC +=,所以r BC 3=,即33=r .………………(6分)130tan 0=⋅=BC AC .阴影部分绕直线BC 旋转一周所得旋转体为底面半径1=AC ,高3=BC 的圆锥中间挖掉一个半径33=r 的球.………………(8分) 所以,圆锥V V =球V -πππ27353334313132=⎪⎪⎭⎫ ⎝⎛⋅⋅-⋅⋅⋅=.…………(12分) 20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.解:(1)由a ∥b的充要条件知,存在非零实数λ,使得a b ⋅=λ, 即⎩⎨⎧=⋅=λλx x cos sin 1,所以1cos sin =x x ,212sin =x ,…………(3分)6)1(2ππ⋅-+=k k x ,Z k ∈.所以x 的集合是⎭⎬⎫⎩⎨⎧∈⋅-+=Z k k x x k ,12)1(2ππ.………………(6分)(也可写成⎭⎬⎫⎩⎨⎧∈+=⎭⎬⎫⎩⎨⎧∈+=Z k k x x Z k k x x ,125,12ππππ ) (2)2)cos (sin 2cos sin )1(cos )1(sin ||)(22222++++=+++=+=x x x x x x b a x f3)cos (sin 2++=x x 34sin 22+⎪⎭⎫ ⎝⎛+=πx ,…………(9分)因为⎥⎦⎤⎢⎣⎡-∈2,2ππx ,所以⎥⎦⎤⎢⎣⎡-∈+43,44πππx ,……(10分)所以⎥⎦⎤⎢⎣⎡-∈⎪⎭⎫ ⎝⎛+1,224sin πx ,……………(12分) 所以函数)(x f 的值域为]223,1[+.………………(14分)21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 解:(1)由已知,当0=x 时,8)(=x C ,即85=k,所以40=k ,……(1分) 所以5340)(+=x x C ,…………(2分)又加装隔热层的费用为x x C 6)(1=.所以5380066534020)()(20)(1++=++⨯=+⋅=x x x x x C x C x f ,…………(5分) )(x f 定义域为]10,0[.…………(6分)(2)10380062103538003563538006538006)(-⨯≥-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛++=++=x x x x x x x f70=,…………(10分)当且仅当⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+353800356x x ,18800352=⎪⎭⎫ ⎝⎛+x ,32035=+x ,即5=x 时取等号.…………(13分) 所以当隔热层加装厚度为5厘米时,总费用)(x f 最小.最小总费用为70万元.…(14分)22.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分7分,第3小题满分6分.解:(1)1=m 时,1)(2+=x x f ,因为01=a ,所以1)0()(12===f a f a ,2)(23==a f a ,5)(34==a f a .…………(3分,每求对一项得1分)(2)m x x f +=2)(,则m a =2,m m a +=23,m m m m m m m a +++=++=2342242)(,…………(5分) 如果2a ,3a ,4a 成等差数列,则)()2(22342m m m m m m m m m +-+++=-+,02234=-+m m m ,……(6分) 若0=m ,则0432===a a a ,不合题意,故0≠m .所以,0122=-+m m ,所以21282±-=±-=m .…………(8分) 当21+-=m 时,公差==-+=-=2223m m m m a a d 223-,…………(9分) 当21--=m 时,公差2232+==m d .………………(10分) (3)11=b ,n n n b m m b b 22)(21=-+=+,…………(12分)所以}{n b 是首项为1,公比为2的等比数列,12-=n n b ,…………(13分)201012>-=n n S ,20112>n ,10>n .…………(15分)所以,使2010>n S 成立的最小正整数n 的值为11.…………(16分)23.(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分6分,第3小题满分7分.23.解:(1)设),(y x P 为图像2C 上任意一点,P 关于点A 对称的点为),(y x P ''',则12='+x x ,22='+y y ,于是x x -='2,y y -='4,…………(2分) 因为),(y x P '''在1C 上,所以x a x y '+'=',即x a x y -+-=-224,22-++=x ax y .所以22)(-++=x ax x g .…………(5分) (2)由a x g =)(得a x ax =-++22,整理得0)43(2=-+-a ax x ① ………(7分)若2=x 是方程①的解,则0=a ,此时方程①有两个实数解2=x 和2-=x ,原方程有且仅有一个实数解2-=x ;…………(8分)若2=x 不是方程①的解,则由△016122=+-=a a ,解得526±=a .……(9分) 所以,当0=a 时,方程的解为2-=x ; …………(10分) 当=a 526+时,方程的解为53+=x ; …………(11分)当=a 526-时,方程的解为53-=x . …………(12分) (3)设1x 、),2[2∞+∈x ,且21x x <,因为函数)(x f 在区间),2[∞+上是增函数,所以0)()(12>-x f x f .……(14分)0)()()()(212112212112112212>-⋅-=-+-=--+=-x x a x x x x x x x x a x x x ax x a x x f x f , 因为012>-x x ,021>x x ,所以021>-a x x ,即21x x a <,…………(16分) 而421>x x ,所以4≤a . …………(17分) 因此a 的取值范围是]4,(-∞.…………(18分)。

2019年普通高等学校招生全国统一考试(上海卷)数学试题含答案

2019年普通高等学校招生全国统一考试(上海卷)数学试题含答案

2019年普通高等学校招生全国统一考试(上海卷) 数学一、填空题(本大题共12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.(4分)已知集合,2,3,4,,,5,,则 .2.(4分)计算 . 3.(4分)不等式的解集为 .4.(4分)函数的反函数为 .5.(4分)设为虚数单位,,则的值为 6.(4分)已知,当方程有无穷多解时,的值为 . 7.(5分)在的展开式中,常数项等于 .8.(5分)在中,,,且,则 . 9.(5分)首届中国国际进口博览会在上海举行,某高校拟派4人参加连续5天的志愿者活动,其中甲连续参加2天,其他人各参加1天,则不同的安排方法有 种(结果用数值表示)10.(5分)如图,已知正方形,其中,函数交于点,函数交于点,当最小时,则的值为 .11.(5分)在椭圆上任意一点,与关于轴对称,若有,则与的夹角范围为 .{1A =5}{3B =6}AB =22231lim 41n n n n n →∞-+=-+|1|5x +<2()(0)f x x x =>i 365z i i -=+||z 22214x y x a y a +=-⎧⎨+=⎩a 61()x x+ABC ∆3AC =3sin 2sin A B =1cos 4C =AB =OABC (1)OA a a =>23y x =BC P 12y x-=AB Q ||||AQ CP +a 22142x y +=P Q P x 121F P F P 1F P 2F Q12.(5分)已知集合,,,,存在正数,使得对任意,都有,则的值是 .二、选择题(本大题共4题,每题5分,共20分) 13.(5分)下列函数中,值域为,的是 A .B .C .D .14.(5分)已知、,则“”是“”的 A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件15.(5分)已知平面、、两两垂直,直线、、满足:,,,则直线、、不可能满足以下哪种关系 A .两两垂直B .两两平行C .两两相交D .两两异面16.(5分)以,,,为圆心的两圆均过,与轴正半轴分别交于,,,,且满足,则点的轨迹是 A .直线 B .圆 C .椭圆 D .双曲线三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,在正三棱锥中,. (1)若的中点为,的中点为,求与的夹角; (2)求的体积.18.(14分)已知数列,,前项和为. (1)若为等差数列,且,求;(2)若为等比数列,且,求公比的取值范围.[A t =1][4t t ++9]t +0A ∉λa A ∈A aλ∈t [0)+∞()2xy =12y x =tan y x =cos y x =a b R ∈22a b >||||a b >()αβγa b c a α⊆b β⊆c γ⊆a b c ()1(a 0)2(a 0)(1,0)y 1(y 0)2(y 0)120lny lny +=1211(,)a a ()P ABC -2,3PA PB PC AB BC AC ======PB M BC N AC MN P ABC -{}n a 13a =n n S {}n a 415a =n S {}n a lim 12n n S →∞<q19.(14分)改革开放40年,我国卫生事业取得巨大成就,卫生总费用增长了数十倍.卫生总费用包括个人现在支出、社会支出、政府支出,如表为2012年年我国卫生货用中个人现金支出、社会支出和政府支出的费用(单位:亿元)和在卫生总费用中的占比.(数据来源于国家统计年鉴)(1)指出2012年到2015年之间我国卫生总费用中个人现金支出占比和社会支出占比的变化趋势:(2)设表示1978年,第年卫生总费用与年份之间拟合函数研究函数的单调性,并预测我国卫生总费用首次超过12万亿的年份.2015-1t =n t 6.44200.1136357876.6053()1tf t e -=+()f t20.(16分)已知抛物线方程,为焦点,为抛物线准线上一点,为线段与抛物线的交点,定义:. (1)当时,求;(2)证明:存在常数,使得;(3),,为抛物线准线上三点,且,判断与的关系.21.(18分)已知等差数列的公差,,数列满足,集合.(1)若,求集合; (2)若,求使得集合恰好有两个元素;(3)若集合恰好有三个元素:,是不超过7的正整数,求的所有可能的值.24y x =F P Q PF ||()||PF d P FQ =8(1,)3P --()d P a 2()||d P PF a =+1P 2P 3P 1223||||PP P P =13()()d P d P +22()d P {}n a (0d ∈]π{}n b sin()n n b a ={}*|,n S x x b n N ==∈120,3a d π==S 12a π=d S S n T n b b +=T T2019年普通高等学校招生全国统一考试(上海卷)数 学 答 案一、填空题(本大题共12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.(4分)已知集合,2,3,4,,,5,,则 , .【解答】解:集合,2,3,4,,,5,, ,.故答案为:,.2.(4分)计算 2 . 【解答】解:. 故答案为:2.3.(4分)不等式的解集为 . 【解答】解:由得,即 故答案为:,.4.(4分)函数的反函数为 .【解答】解:由解得,故答案为5.(4分)设为虚数单位,,则的值为【解答】解:由,得,即,故答案为:.{1A =5}{3B =6}A B ={35}{1A =5}{3B =6}{3AB ∴=5}{35}22231lim 41n n n n n →∞-+=-+2222312231lim lim 241411n n n n n n n n n n→∞→∞-+-+==-+-+|1|5x +<(6,4)-|1|5x +<515x -<+<64x -<<{6-4)2()(0)f x x x =>1()0)f x x -=>2(0)y x x =>x =1()0)f x x -∴=>1f -()0)x x =>i 365z i i -=+||z 365z i i -=+366z i =+22z i =+||||z z ∴===6.(4分)已知,当方程有无穷多解时,的值为 . 【解答】解:由题意,可知: 方程有无穷多解,可对①,得:.再与②式比较,可得:. 故答案为:. 7.(5分)在的展开式中,常数项等于 15 .【解答】解:展开式的通项为令得, 故展开式的常数项为第3项:.故答案为:15.8.(5分)在中,,,且,则【解答】解:,由正弦定理可得:, 由,可得:,, 由余弦定理可得:,解得:.9.(5分)首届中国国际进口博览会在上海举行,某高校拟派4人参加连续5天的志愿者活动,其中甲连续参加2天,其他人各参加1天,则不同的安排方法有 24 种(结果用数值表示)【解答】解:在五天里,连续的2天,一共有4种,剩下的3人排列,故有种,故答案为:24.10.(5分)如图,已知正方形,其中,函数交于点,函数22214x y x a y a +=-⎧⎨+=⎩a 2-∴2⨯442x y +=-2a =-2-6(x 6(x 36216r r r T C x-+=3902r -=2r =2615C =ABC ∆3AC =3sin 2sin A B =1cos 4C =AB 3sin 2sin A B =∴32BC AC =∴3AC =2BC =1cos 4C =∴2221324232AB +--=⨯⨯∴AB =33424A =OABC (1)OA a a =>23y x =BC P交于点,当最小时,则.【解答】解:由题意得:点坐标为,,点坐标为,,当且仅当.11.(5分)在椭圆上任意一点,与关于轴对称,若有,则与的夹角范围为 , .【解答】解:设,则点,椭圆的焦点坐标为,,,, ,,结合 可得:,故与的夹角满足:,故,故答案为:,12y x-=AB Q||||AQ CP +aP )a Q (a 11||||23AQ CP a+=a 22142x y +=P Q P x 121F P F P 1F P 2F Q 1[arccos 3π-]π(,)P x y Q (,)x y -22142x y +=(0)0)121F P F P 2221x y ∴-+22142x y +=2[1y ∈2]1F P 2F Q θ222122212238cos 3[122(F P F Qy y y F P F Q x θ-====-+∈-++1]3-1[arccos 3θπ∈-]π1[arccos 3π-]π12.(5分)已知集合,,,,存在正数,使得对任意,都有,则的值是 1或 .【解答】解:当时,当,时,则,,当,时,则,,即当时,;当时,,即; 当时,,当时,,即,,解得.当时,当,时,则,.当,,则,,即当时,,当时,,即,即当时,,当时,,即,,解得.[A t =1][4t t ++9]t +0A ∉λa A ∈A aλ∈t 3-0t >[a t ∈1]t +[4t aλ∈+9]t +[4a t ∈+9]t +[t aλ∈1]t +a t =9t aλ+9a t =+t aλ(9)t t λ=+1a t =+4t aλ+4a t =+1t aλ+(1)(4)t t λ=++(9)(1)(4)t t t t ∴+=++1t=104t t +<<+[a t ∈1]t +[t aλ∈1]t +[4a t ∈+9]t +[4t aλ∈+9]t +a t =1t aλ+1a t =+t aλ(1)t t λ=+4a t =+9t aλ+9a t =+4t aλ+(4)(9)t t λ=++(1)(4)(9)t t t t ∴+=++3t =-当时,同理可得无解. 综上,的值为1或. 故答案为:1或.二、选择题(本大题共4题,每题5分,共20分) 13.(5分)下列函数中,值域为,的是 A .B .C .D .【解答】解:,的值域为,故错,的定义域为,,值域也是,,故正确.,的值域为,故错 ,的值域为,,故错. 故选:.14.(5分)已知、,则“”是“”的 A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件【解答】解:等价,,得“”,“”是“”的充要条件,故选:.15.(5分)已知平面、、两两垂直,直线、、满足:,,,则直线、、不可能满足以下哪种关系90t +<t 3-3-[0)+∞()2xy =12y x =tan y x =cos y x =A 2xy =(0,)+∞AB y [0)+∞[0)+∞BC tan y x =(,)-∞+∞CD cos y x =[1-1]+D B a b R ∈22a b >||||a b >()22a b >22||||a b >||||a b >∴22a b >||||a b >C αβγa b c a α⊆b β⊆c γ⊆a b c ()A .两两垂直B .两两平行C .两两相交D .两两异面【解答】解:如图1,可得、、可能两两垂直; 如图2,可得、、可能两两相交; 如图3,可得、、可能两两异面;故选:.16.(5分)以,,,为圆心的两圆均过,与轴正半轴分别交于,,,,且满足,则点的轨迹是 A .直线 B .圆 C .椭圆 D .双曲线【解答】解:因为,则,同理可得,又因为, 所以, 则, 即, 则, 设,则为直线,故选:.三、解答题(本大题共5题,共14+14+14+16+18=76分)a b c a b c a bc B 1(a 0)2(a 0)(1,0)y 1(y 0)2(y 0)120lny lny +=1211(,)a a ()11|1|r a =-21112y a =-22212y a =-120lny lny +=121y y =12(12)(12)1a a --=12122a a a a =+12112a a +=1211x a y a ⎧=⎪⎪⎨⎪=⎪⎩2x y +=A17.(14分)如图,在正三棱锥中,. (1)若的中点为,的中点为,求与的夹角; (2)求的体积.【解答】解:(1),分别为,的中点,, 则为与所成角,在中,由,,可得,与的夹角为; (2)过作底面垂线,垂直为,则为底面三角形的中心, 连接并延长,交于,则,. ..18.(14分)已知数列,,前项和为. (1)若为等差数列,且,求;(2)若为等比数列,且,求公比的取值范围.【解答】解:(1),,P ABC-2,PA PB PC AB BC AC ======PB M BC N AC MN P ABC-M N PB BC //MN PC ∴PCA ∠AC MN PAC ∆2PA PC ==AC=222cos 2PC AC PA PCA PC AC +-∠===AC ∴MN P O O AO BC N 32AN=213AO AN ==PO ∴∴11333224P ABC V -=⨯={}n a 13a =n n S {}n a 415a =n S {}n a lim 12n n S →∞<q 4133315a a d d =+=+=4d ∴=; (2),存在,,存在,且,,,,或,公比的取值范围为,,.19.(14分)改革开放40年,我国卫生事业取得巨大成就,卫生总费用增长了数十倍.卫生总费用包括个人现在支出、社会支出、政府支出,如表为2012年年我国卫生货用中个人现金支出、社会支出和政府支出的费用(单位:亿元)和在卫生总费用中的占比.(数据来源于国家统计年鉴)(1)指出2012年到2015年之间我国卫生总费用中个人现金支出占比和社会支出占比的变化趋势:(2)设表示1978年,第年卫生总费用与年份之间拟合函数研究函数的单调性,并预测我国卫生总费用首次超过12万亿的年份.【解答】解:(1)由表格数据可知个人现金支出占比逐渐减少,社会支出占比逐渐增多. (2)是减函数,且, 在上单调递增,2(1)3422n n n S n n n -∴=+⨯=+3(1)1n n q S q-=-lim n n S →∞11q ∴-<<∴lim n n S →∞11q ∴-<<0q ≠∴3(1)3lim lim 11n n n n q S q q→∞→∞-==--∴3121q<-34q ∴<10q ∴-<<304q <<∴q (1-0)(0⋃3)42015-1t =n t 6.44200.1136357876.6053()1tf t e -=+()f t 6.44200.1136t y e -= 6.44200.11360t y e -=>6.44200.1136357876.6053()1tf t e -∴=+N令,解得,当时,我国卫生总费用超过12万亿,预测我国到2028年我国卫生总费用首次超过12万亿.20.(16分)已知抛物线方程,为焦点,为抛物线准线上一点,为线段与抛物线的交点,定义:. (1)当时,求;(2)证明:存在常数,使得;(3),,为抛物线准线上三点,且,判断与的关系. 【解答】解:(1)抛物线方程的焦点,,,的方程为,代入抛物线的方程,解得, 抛物线的准线方程为,可得, ,; (2)证明:当时,, 设,,,则,联立和,可得,, ,则存在常数,使得; (3)设,,,则, 6.44200.1136357876.60531200001te ->+50.68t >∴51t ∴24y x =F P Q PF ||()||PF d P FQ =8(1,)3P --()d P a 2()||d P PF a =+1P 2P 3P 1223||||PP P P =13()()d P d P +22()d P 24y x =(1,0)F 8(1,)3P --84323PFk ==PF 4(1)3y x =-14Q x =1x =-10||3PF =15||144QF =+=||8()||3PF d P QF ==(1,0)P -2()||2222a d P PF =-=⨯-=(1,)P P y -0P y >:1PF x my =+2P my =-1x my =+24y x =2440y my --=2Q y m ==+22()||22(22P P Q y d P PF y m m --==+2122m m +-=-=a 2()||d P PF a=+11(1,)P y -22(1,)P y -33(1,)P y -1321322[()()]4()||||2||d P d pd P PF P FP F+-=+-由,,则.21.(18分)已知等差数列的公差,,数列满足,集合.(1)若,求集合; (2)若,求使得集合恰好有两个元素;(3)若集合恰好有三个元素:,是不超过7的正整数,求的所有可能的值. 【解答】解:(1)等差数列的公差,,数列满足,集合.当, 集合,0. (2),数列满足,集合恰好有两个元素,如图:根据三角函数线,①等差数列的终边落在轴的正负半轴上时,集合恰好有两个元素,此时,②终边落在上,要使得集合恰好有两个元素,可以使,的终边关于轴对称,如图,,此时, 综上,或者.(3)①当时,,集合,,,符合题意.②当时,,,,或者,221313[()16]28y y y y -++=-2222221313131313(4)(4(4)4()84()0y y y y y y y y y y ++-+=+-=->132()()2()d P d P d P +>{}n a (0d ∈]π{}n b sin()n n b a ={}*|,n S x x b n N ==∈120,3a d π==S 12a π=d S S n T n b b +=T T {}n a (0d ∈]π{}n b sin()n n b a ={}*|,n S x x b n N ==∈∴120,3a d π=={S =12a π={}n b sin()n n b a ={}*|,n S x x b n N ==∈{}n a y S d π=1a OA S 2a 3a y OB OC 23d π=23d π=d π=3T =3n n b b +=1{S b =2b 3}b 4T =4n n b b +=sin(4)sin n n a d a +=42n n a d a k π+=+42n n a d k a π+=-等差数列的公差,,故,,又,2 当时满足条件,此时,1,.③当时,,,,或者,因为,,故,2. 当时,,1,满足题意. ④当时,,,所以或者,,,故,2,3. 当时,,满足题意. ⑤当时,,,所以,或者,,,故,2,3当时,因为对应着3个正弦值,故必有一个正弦值对应着3个点,必然有,,,,不符合条件. 当时,因为对应着3个正弦值,故必有一个正弦值对应着3个点,必然有,,不是整数,不符合条件. 当时,因为对应着3个正弦值,故必有一个正弦值对应着3个点,必然有或者,,或者,此时,均不是整数,不符合题意.综上,,4,5,6.{}n a (0d ∈]π42n n a d a k π+=+2k d π=1k ∴=1k ={S =-1}-5T =5n n b b +=sin(5)sin n n a d a +=52n n a d a k π+=+52n n a d k a π+=-(0d ∈]π1k =1k ={sin10S π=sin}10π-6T =6n n b b +=sin(6)sin n n a d a +=62n n a d a k π+=+62n n a d k a π+=-(0d ∈]π1k =1k=S =7T =7n n b b +=sin(7)sin sin n n n a d a a +==72n n a d a k π+=+72n n a d k a π+=-(0d ∈]π1k =1k =17~b b 2m n a a π-=227d m n ππ==-7m n -=7m >2k =17~b b 2m n a a π-=247d m n ππ==-m n -3k =17~b b 2m n a a π-=4π267d m n ππ==-467d m n ππ==-m n -3T =。

上海市松江区高考数学一模试卷解析版

上海市松江区高考数学一模试卷解析版

(i,j=1,2,3,4,5,6,i≠j)},在 M 中任取两个元素 、 ,则
率为______. 三、解答题(本大题共 5 小题,共 76.0 分) 17. 如图,圆锥的底面半径 OA=2,高 PO=6,点 C 是底面直径 AB
所对弧的中点,点 D 是母线 PA 的中点. (1)求圆锥的侧面积和体积; (2)求异面直线 CD 与 AB 所成角的大小.(结果用反三角 函数表示)
10. 若关于 x、y 的二元一次方程组
无解,则实数 m=______.
11. 已则实数 m=______.
12. 已知函数 y=f(x)存在反函数 y=f-1(x),若函数 y=f(x)+2x 的图象经过点(1,6 ),则函数 y=f-1(x)+log2x 的图象必经过点______.
的概
18. 已知函数

(1)求 f(x)的最大值;
(2)在△ABC 中,内角 A、B、C 所对的边分别为 a、b、c,若 f(A)=0,b、a、c
成等差数列,且 • =2,求边 a 的长.
第 2 页,共 12 页
19. 汽车智能辅助驾驶已得到广泛应用,其自动刹车的工作原理是用雷达测出车辆与前 方障碍物之间的距离(并结合车速转化为所需时间),当此距离等于报警距离时就
11.【答案】
【解析】解:向量


则 -2 =(1-2m,8),

∥,
则-3(1-2m)-8m=0,
解得 m=- .
故答案为:- .
根据平面向量的坐标运算与共线定理,列方程求出 m 的值. 本题考查了平面向量的共线定理与坐标运算问题,是基础题.
12.【答案】(4,3)
【解析】解:y=f(x)+2x 图象经过点(1,6),得 6=f(1)+2,f(1)=4,故 f(x) 反函数经过(4,1)点, 所以 y=f-1(4)+log24=1+2=3, 故答案为:(4,3) 根据反函数的性质,先求出 f(x)上(1,4)对应的点(4,1),代入求出 y 即可. 本题考查了反函数的求法,属于基础题.

上海市2019年高考数学一模试卷(解析版)

上海市2019年高考数学一模试卷(解析版)

2019年上海市高考数学一模试卷一、填空题(共12小题,1-6每题4分,7-12每题5分,共54分)1.(4分)设集合A={x||x﹣2|<1,x∈R},集合B=Z,则A∩B=.2.(4分)函数y=sin(ωx﹣)(ω>0)的最小正周期是π,则ω=.3.(4分)设i为虚数单位,在复平面上,复数对应的点到原点的距离为.4.(4分)若函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),则实数a=.5.(4分)已知(a+3b)n展开式中,各项系数的和与各项二项式系数的和之比为64,则n=.6.(4分)甲、乙两人从5门不同的选修课中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有种.7.若圆锥的侧面展开图是半径为2cm,圆心角为270°的扇形,则这个圆锥的体积为cm3.8.若数列{a n}的所有项都是正数,且++…+=n2+3n(n∈N*),则()=.9.如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3,则AB的长为.10.有以下命题:①若函数f(x)既是奇函数又是偶函数,则f(x)的值域为{0};②若函数f(x)是偶函数,则f(|x|)=f(x);③若函数f(x)在其定义域内不是单调函数,则f(x)不存在反函数;④若函数f(x)存在反函数f﹣1(x),且f﹣1(x)与f(x)不完全相同,则f(x)与f﹣1(x)图象的公共点必在直线y=x上;其中真命题的序号是.(写出所有真命题的序号)11.设向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中O为坐标原点,a>0,b>0,若A、B、C三点共线,则+的最小值为.12.如图,已知正三棱柱ABC﹣A1B1C1的底面边长为2cm,高为5cm,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为cm.二、选择题(共4小题,每小题5分,满分20分)13.“x<2”是“x2<4”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件14.若无穷等差数列{a n}的首项a1<0,公差d>0,{a n}的前n项和为S n,则以下结论中一定正确的是()A.S n单调递增B.S n单调递减C.S n有最小值D.S n有最大值15.给出下列命题:(1)存在实数α使.(2)直线是函数y=sinx图象的一条对称轴.(3)y=cos(cosx)(x∈R)的值域是[cos1,1].(4)若α,β都是第一象限角,且α>β,则tanα>tanβ.其中正确命题的题号为()A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)16.如果对一切实数x、y,不等式﹣cos2x≥asinx﹣恒成立,则实数a的取值范围是()A.(﹣∞,]B.[3,+∞)C.[﹣2,2]D.[﹣3,3]三、解答题(共5小题,满分76分)17.(14分)如图,已知AB⊥平面BCD,BC⊥CD,AD与平面BCD 所成的角为30°,且AB=BC=2;(1)求三棱锥A﹣BCD的体积;(2)设M为BD的中点,求异面直线AD与CM所成角的大小(结果用反三角函数值表示).18.(14分)在△ABC中,a,b,c分别是角A,B,C的对边,且8sin2.(I)求角A的大小;(II)若a=,b+c=3,求b和c的值.19.(14分)某地要建造一个边长为2(单位:km)的正方形市民休闲公园OABC,将其中的区域ODC开挖成一个池塘,如图建立平面直角坐标系后,点D的坐标为(1,2),曲线OD是函数y=ax2图象的一部分,对边OA上一点M在区域OABD内作一次函数y=kx+b(k >0)的图象,与线段DB交于点N(点N不与点D重合),且线段MN与曲线OD有且只有一个公共点P,四边形MABN为绿化风景区:(1)求证:b=﹣;(2)设点P的横坐标为t,①用t表示M、N两点坐标;②将四边形MABN的面积S表示成关于t的函数S=S(t),并求S的最大值.20.(16分)已知函数f(x)=9x﹣2a•3x+3:(1)若a=1,x∈[0,1]时,求f(x)的值域;(2)当x∈[﹣1,1]时,求f(x)的最小值h(a);(3)是否存在实数m、n,同时满足下列条件:①n>m>3;②当h (a)的定义域为[m,n]时,其值域为[m2,n2],若存在,求出m、n的值,若不存在,请说明理由.21.(18分)已知无穷数列{a n}的各项都是正数,其前n项和为S n,且满足:a1=a,rS n=a n a n+1﹣1,其中a≠1,常数r∈N;(1)求证:a n+2﹣a n是一个定值;(2)若数列{a n}是一个周期数列(存在正整数T,使得对任意n∈N*,都有a n+T=a n成立,则称{a n}为周期数列,T为它的一个周期,求该数列的最小周期;(3)若数列{a n}是各项均为有理数的等差数列,c n=2•3n﹣1(n∈N*),问:数列{c n}中的所有项是否都是数列{a n}中的项?若是,请说明理由,若不是,请举出反例.参考答案与试题解析一、填空题(共12小题,1-6每题4分,7-12每题5分,共54分)1.设集合A={x||x﹣2|<1,x∈R},集合B=Z,则A∩B={2} .【考点】交集及其运算.【分析】利用交集定义求解.【解答】解:|x﹣2|<1,即﹣1<x﹣2<1,解得1<x<3,即A=(1,3),集合B=Z,则A∩B={2},故答案为:{2}【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意定义法的合理运用.2.函数y=sin(ωx﹣)(ω>0)的最小正周期是π,则ω=2.【考点】正弦函数的图象.【分析】根据三角函数的周期性及其求法即可求值.【解答】解:∵y=sin(ωx﹣)(ω>0),∴T==π,∴ω=2.故答案是:2.【点评】本题主要考查了三角函数的周期性及其求法,属于基础题.3.设i为虚数单位,在复平面上,复数对应的点到原点的距离为.【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、几何意义、两点之间的距离公式即可得出.【解答】解:复数===对应的点到原点的距离==.故答案为:.【点评】本题考查了复数的运算法则、几何意义、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.4.若函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),则实数a=3.【考点】反函数.【分析】由题意可得函数f(x)=log2(x+1)+a过(1,4),代入求得a的值.【解答】解:函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),即函数f(x)=log2(x+1)+a的图象经过点(1,4),∴4=log2(1+1)+a∴4=1+a,a=3.故答案为:3.【点评】本题考查了互为反函数的两个函数之间的关系与应用问题,属于基础题.5.已知(a+3b)n展开式中,各项系数的和与各项二项式系数的和之比为64,则n=6.【考点】二项式系数的性质.【分析】令二项式中的a=b=1得到展开式中的各项系数的和,根据二项式系数和公式得到各项二项式系数的和2n,据已知列出方程求出n 的值.【解答】解:令二项式中的a=b=1得到展开式中的各项系数的和4n 又各项二项式系数的和为2n据题意得,解得n=6.故答案:6【点评】求二项展开式的系数和问题一般通过赋值求出系数和;二项式系数和为2n.属于基础题.6.甲、乙两人从5门不同的选修课中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有60种.【考点】排列、组合及简单计数问题.【分析】间接法:①先求所有两人各选修2门的种数,②再求两人所选两门都相同与都不同的种数,作差可得答案.【解答】解:根据题意,采用间接法:①由题意可得,所有两人各选修2门的种数C52C52=100,②两人所选两门都相同的有为C52=10种,都不同的种数为C52C32=30,故只恰好有1门相同的选法有100﹣10﹣30=60种.故答案为60.【点评】本题考查组合公式的运用,解题时注意事件之间的关系,选用间接法是解决本题的关键,属中档题.7.若圆锥的侧面展开图是半径为2cm,圆心角为270°的扇形,则这个圆锥的体积为cm3.【考点】旋转体(圆柱、圆锥、圆台).【分析】利用圆锥的侧面展开图中扇形的弧长等于圆锥底面的周长可得底面半径,进而求出圆锥的高,代入圆锥体积公式,可得答案.【解答】解:设此圆锥的底面半径为r,由题意,得:2πr=π×2,解得r=.故圆锥的高h==,∴圆锥的体积V=πr2h=cm3.故答案为:.【点评】本题考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.本题就是把扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.8.若数列{a n}的所有项都是正数,且++…+=n2+3n(n∈N*),则()=2.【考点】数列的求和;极限及其运算.【分析】利用数列递推关系可得a n,再利用等差数列的求和公式、极限的运算性质即可得出.【解答】解:∵ ++…+=n2+3n(n∈N*),∴n=1时,=4,解得a1=16.n≥2时,且++…+=(n﹣1)2+3(n﹣1),可得:=2n+2,∴a n=4(n+1)2.=4(n+1).∴()==2.故答案为:2.【点评】本题考查了数列递推关系、等差数列的求和公式、极限运算性质,考查了推理能力与计算能力,属于中档题.9.如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3,则AB的长为.【考点】余弦定理.【分析】先根据余弦定理求出∠ADC的值,即可得到∠ADB的值,最后根据正弦定理可得答案.【解答】解:在△ADC中,AD=5,AC=7,DC=3,由余弦定理得cos∠ADC==﹣,∴∠ADC=120°,∠ADB=60°在△ABD中,AD=5,∠B=45°,∠ADB=60°,由正弦定理得,∴AB=故答案为:.【点评】本题主要考查余弦定理和正弦定理的应用,在解决问题的过程中要灵活运用正弦定理和余弦定理.属基础题.10.有以下命题:①若函数f(x)既是奇函数又是偶函数,则f(x)的值域为{0};②若函数f(x)是偶函数,则f(|x|)=f(x);③若函数f(x)在其定义域内不是单调函数,则f(x)不存在反函数;④若函数f(x)存在反函数f﹣1(x),且f﹣1(x)与f(x)不完全相同,则f(x)与f﹣1(x)图象的公共点必在直线y=x上;其中真命题的序号是①②.(写出所有真命题的序号)【考点】必要条件、充分条件与充要条件的判断.【分析】①函数f(x)既是奇函数又是偶函数,则f(x)=0.②利用偶函数的定义和性质判断.③利用单调函数的定义进行判断.④利用反函数的性质进行判断.【解答】解:①若函数f(x)既是奇函数又是偶函数,则f(x)=0,为常数函数,所以f(x)的值域是{0},所以①正确.②若函数为偶函数,则f(﹣x)=f(x),所以f(|x|)=f(x)成立,所以②正确.③因为函数f(x)=在定义域上不单调,但函数f(x)存在反函数,所以③错误.④原函数图象与其反函数图象的交点关于直线y=x对称,但不一定在直线y=x上,比如函数y=﹣与其反函数y=x2﹣1(x≤0)的交点坐标有(﹣1,0),(0,1),显然交点不在直线y=x上,所以④错误.故答案为:①②.【点评】本题主要考查函数的有关性质的判定和应用,要求熟练掌握相应的函数的性质,综合性较强.11.设向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中O为坐标原点,a>0,b>0,若A、B、C三点共线,则+的最小值为8.【考点】基本不等式.【分析】A、B、C三点共线,则=λ,化简可得2a+b=1.根据+ =(+)(2a+b),利用基本不等式求得它的最小值【解答】解:向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中O为坐标原点,a>0,b>0,∴=﹣=(a﹣1,1),=﹣=(﹣b﹣1,2),∵A、B、C三点共线,∴=λ,∴,解得2a+b=1,∴+=(+)(2a+b)=2+2++≥4+2=8,当且仅当a=,b=,取等号,故+的最小值为8,故答案为:8【点评】本题主要考查两个向量共线的性质,两个向量坐标形式的运算,基本不等式的应用,属于中档题.12.如图,已知正三棱柱ABC﹣A1B1C1的底面边长为2cm,高为5cm,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为13cm.【考点】多面体和旋转体表面上的最短距离问题.【分析】将三棱柱展开两次如图,不难发现最短距离是六个矩形对角线的连线,正好相当于绕三棱柱转两次的最短路径.【解答】解:将正三棱柱ABC﹣A1B1C1沿侧棱展开,再拼接一次,其侧面展开图如图所示,在展开图中,最短距离是六个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得矩形的长等于6×2=12,宽等于5,由勾股定理d==13故答案为:13.【点评】本题考查棱柱的结构特征,空间想象能力,几何体的展开与折叠,体现了转化(空间问题转化为平面问题,化曲为直)的思想方法.二、选择题(共4小题,每小题5分,满分20分)13.“x<2”是“x2<4”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】先求出x2<4的充要条件,结合集合的包含关系判断即可.【解答】解:由x2<4,解得:﹣2<x<2,故x<2是x2<4的必要不充分条件,故选:B.【点评】本题考察了充分必要条件,考察集合的包含关系,是一道基础题.14.若无穷等差数列{a n}的首项a1<0,公差d>0,{a n}的前n项和为S n,则以下结论中一定正确的是()A.S n单调递增B.S n单调递减C.S n有最小值D.S n有最大值【考点】等差数列的前n项和.【分析】S n=na1+d=n2+n,利用二次函数的单调性即可判断出结论.【解答】解:S n=na1+d=n2+n,∵>0,∴S n有最小值.故选:C.【点评】本题考查了等差数列的求和公式、二次函数的单调性,考查了推理能力与计算能力,属于中档题.15.给出下列命题:(1)存在实数α使.(2)直线是函数y=sinx图象的一条对称轴.(3)y=cos(cosx)(x∈R)的值域是[cos1,1].(4)若α,β都是第一象限角,且α>β,则tanα>tanβ.其中正确命题的题号为()A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【考点】正弦函数的定义域和值域;两角和与差的正弦函数;正弦函数的对称性;余弦函数的定义域和值域.【分析】(1)利用辅助角公式将可判断(1);(2)根据函数y=sinx图象的对称轴方程可判断(2);(3)根据余弦函数的性质可求出y=cos(cosx)(x∈R)的最大值与最小值,从而可判断(3)的正误;(4)用特值法令α,β都是第一象限角,且α>β,可判断(4).【解答】解:(1)∵,∴(1)错误;(2)∵y=sinx图象的对称轴方程为,k=﹣1,,∴(2)正确;(3)根据余弦函数的性质可得y=cos(cosx)的最大值为y max=cos0=1,y min=cos(cos1),其值域是[cos1,1],(3)正确;(4)不妨令,满足α,β都是第一象限角,且α>β,但tanα<tanβ,(4)错误;故选B.【点评】本题考查正弦函数与余弦函数、正切函数的性质,着重考查学生综合运用三角函数的性质分析问题、解决问题的能力,属于中档题.16.如果对一切实数x、y,不等式﹣cos2x≥asinx﹣恒成立,则实数a的取值范围是()A.(﹣∞,]B.[3,+∞)C.[﹣2,2]D.[﹣3,3]【考点】函数恒成立问题.【分析】将不等式﹣cos2x≥asinx﹣恒成立转化为+≥asinx+1﹣sin2x恒成立,构造函数f(y)=+,利用基本不等式可求得f(y)=3,于是问题转化为asinx﹣sin2x≤2恒成立.通过对sinx>0、sinx min<0、sinx=0三类讨论,可求得对应情况下的实数a的取值范围,最后取其交集即可得到答案.【解答】解:∀实数x、y,不等式﹣cos2x≥asinx﹣恒成立⇔+≥asinx+1﹣sin2x恒成立,令f(y)=+,则asinx+1﹣sin2x≤f(y)min,当y>0时,f(y)=+≥2=3(当且仅当y=6时取“=”),f(y)=3;min当y<0时,f(y)=+≤﹣2=﹣3(当且仅当y=﹣6时取“=”),f(y)max=﹣3,f(y)min不存在;综上所述,f(y)min=3.所以,asinx+1﹣sin2x≤3,即asinx﹣sin2x≤2恒成立.①若sinx>0,a≤sinx+恒成立,令sinx=t,则0<t≤1,再令g(t)=t+(0<t≤1),则a≤g(t)min.由于g′(t)=1﹣<0,所以,g(t)=t+在区间(0,1]上单调递减,因此,g(t)min=g(1)=3,所以a≤3;②若sinx<0,则a≥sinx+恒成立,同理可得a≥﹣3;③若sinx=0,0≤2恒成立,故a∈R;综合①②③,﹣3≤a≤3.故选:D.【点评】本题考查恒成立问题,将不等式﹣cos2x≥asinx﹣恒成立转化为+≥asinx+1﹣sin2x恒成立是基础,令f(y)=+,求得f (y)min=3是关键,也是难点,考查等价转化思想、分类讨论思想的综合运用,属于难题.三、解答题(共5小题,满分76分)17.(14分)(2017•上海一模)如图,已知AB⊥平面BCD,BC⊥CD,AD与平面BCD所成的角为30°,且AB=BC=2;(1)求三棱锥A﹣BCD的体积;(2)设M为BD的中点,求异面直线AD与CM所成角的大小(结果用反三角函数值表示).【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】(1)由AB⊥平面BCD,得CD⊥平面ABC,由此能求出三棱锥A﹣BCD的体积.(2)以C为原点,CD为x轴,CB为y轴,过C作平面BCD的垂线为z轴,建立空间直角坐标系,由此能求出异面直线AD与CM所成角的大小.【解答】解:(1)如图,因为AB⊥平面BCD,所以AB⊥CD,又BC⊥CD,所以CD⊥平面ABC,因为AB⊥平面BCD,AD与平面BCD所成的角为30°,故∠ADB=30°,由AB=BC=2,得AD=4,AC=2,∴BD==2,CD==2,则V A﹣BCD====.(2)以C为原点,CD为x轴,CB为y轴,过C作平面BCD的垂线为z轴,建立空间直角坐标系,则A(0,2,2),D(2,0,0),C(0,0,0),B(0,2,0),M(),=(2,﹣2,﹣2),=(),设异面直线AD与CM所成角为θ,则cosθ===.θ=arccos.∴异面直线AD与CM所成角的大小为arccos.【点评】本题考查了直线和平面所成角的计算,考查了利用等积法求点到面的距离,变换椎体的顶点,利用其体积相等求空间中点到面的距离是较有效的方法,此题是中档题.18.(14分)(2017•上海一模)在△ABC中,a,b,c分别是角A,B,C的对边,且8sin2.(I)求角A的大小;(II)若a=,b+c=3,求b和c的值.【考点】余弦定理;解三角形.【分析】(I)在△ABC中有B+C=π﹣A,由条件可得:4[1﹣cos(B+C)]﹣4cos2A+2=7,解方程求得cosA 的值,即可得到A的值.(II)由余弦定理及a=,b+c=3,解方程组求得b 和c的值.【解答】解:(I)在△ABC中有B+C=π﹣A,由条件可得:4[1﹣cos (B+C)]﹣4cos2A+2=7,(1分)又∵cos(B+C)=﹣cosA,∴4cos2A﹣4cosA+1=0.(4分)解得,∴.(6分)(II)由.(8分)又.(10分)由.(12分)【点评】本题主要考查余弦定理,二倍角公式及诱导公式的应用,属于中档题.19.(14分)(2017•上海一模)某地要建造一个边长为2(单位:km)的正方形市民休闲公园OABC,将其中的区域ODC开挖成一个池塘,如图建立平面直角坐标系后,点D的坐标为(1,2),曲线OD 是函数y=ax2图象的一部分,对边OA上一点M在区域OABD内作一次函数y=kx+b(k>0)的图象,与线段DB交于点N(点N不与点D 重合),且线段MN与曲线OD有且只有一个公共点P,四边形MABN 为绿化风景区:(1)求证:b=﹣;(2)设点P的横坐标为t,①用t表示M、N两点坐标;②将四边形MABN的面积S表示成关于t的函数S=S(t),并求S的最大值.【考点】函数模型的选择与应用.【分析】(1)根据函数y=ax2过点D,求出解析式y=2x2;由,消去y得△=0即可证明b=﹣;(2)写出点P的坐标(t,2t2),代入①直线MN的方程,用t表示出直线方程为y=4tx﹣2t2,令y=0,求出M的坐标;令y=2求出N的坐标;②将四边形MABN的面积S表示成关于t的函数S(t),利用基本不等式求出S的最大值.【解答】(1)证明:函数y=ax2过点D(1,2),代入计算得a=2,∴y=2x2;由,消去y得2x2﹣kx﹣b=0,由线段MN与曲线OD有且只有一个公共点P,得△=(﹣k)2﹣4×2×b=0,解得b=﹣;(2)解:设点P的横坐标为t,则P(t,2t2);①直线MN的方程为y=kx+b,即y=kx﹣过点P,∴kt﹣=2t2,解得k=4t;y=4tx﹣2t2令y=0,解得x=,∴M(,0);令y=2,解得x=+,∴N(+,2);②将四边形MABN的面积S表示成关于t的函数为S=S(t)=2×2﹣×2×[+(+)]=4﹣(t+);由t+≥2•=,当且仅当t=,即t=时“=”成立,所以S≤4﹣2;即S的最大值是4﹣.【点评】本题考查了函数模型的应用问题,也考查了阅读理解能力,是综合性题目.20.(16分)(2017•上海一模)已知函数f(x)=9x﹣2a•3x+3:(1)若a=1,x∈[0,1]时,求f(x)的值域;(2)当x∈[﹣1,1]时,求f(x)的最小值h(a);(3)是否存在实数m、n,同时满足下列条件:①n>m>3;②当h (a)的定义域为[m,n]时,其值域为[m2,n2],若存在,求出m、n的值,若不存在,请说明理由.【考点】函数的最值及其几何意义;函数的值域.【分析】(1)设t=3x,则φ(t)=t2﹣2at+3=(t﹣a)2+3﹣a2,φ(t)的对称轴为t=a,当a=1时,即可求出f(x)的值域;(2)由函数φ(t)的对称轴为t=a,分类讨论当a<时,当≤a ≤3时,当a>3时,求出最小值,则h(a)的表达式可求;(3)假设满足题意的m,n存在,函数h(a)在(3,+∞)上是减函数,求出h(a)的定义域,值域,然后列出不等式组,求解与已知矛盾,即可得到结论.【解答】解:(1)∵函数f(x)=9x﹣2a•3x+3,设t=3x,t∈[1,3],则φ(t)=t2﹣2at+3=(t﹣a)2+3﹣a2,对称轴为t=a.当a=1时,φ(t)=(t﹣1)2+2在[1,3]递增,∴φ(t)∈[φ(1),φ(3)],∴函数f(x)的值域是:[2,6];(Ⅱ)∵函数φ(t)的对称轴为t=a,当x∈[﹣1,1]时,t∈[,3],当a<时,y min=h(a)=φ()=﹣;当≤a≤3时,y min=h(a)=φ(a)=3﹣a2;当a>3时,y min=h(a)=φ(3)=12﹣6a.故h(a)=;(Ⅲ)假设满足题意的m,n存在,∵n>m>3,∴h(a)=12﹣6a,∴函数h(a)在(3,+∞)上是减函数.又∵h(a)的定义域为[m,n],值域为[m2,n2],则,两式相减得6(n﹣m)=(n﹣m)•(m+n),又∵n>m>3,∴m﹣n≠0,∴m+n=6,与n>m>3矛盾.∴满足题意的m,n不存在.【点评】本题主要考查二次函数的值域问题,二次函数在特定区间上的值域问题一般结合图象和单调性处理,是中档题.21.(18分)(2017•上海一模)已知无穷数列{a n}的各项都是正数,其前n项和为S n,且满足:a1=a,rS n=a n a n+1﹣1,其中a≠1,常数r ∈N;(1)求证:a n+2﹣a n是一个定值;(2)若数列{a n}是一个周期数列(存在正整数T,使得对任意n∈N*,都有a n+T=a n成立,则称{a n}为周期数列,T为它的一个周期,求该数列的最小周期;(3)若数列{a n}是各项均为有理数的等差数列,c n=2•3n﹣1(n∈N*),问:数列{c n}中的所有项是否都是数列{a n}中的项?若是,请说明理由,若不是,请举出反例.【考点】数列递推式.【分析】(1)由rS n=a n a n+1﹣1,利用迭代法得:ra n+1=a n+1(a n+2﹣a n),由此能够证明a n+2﹣a n为定值.(2)当n=1时,ra=aa2﹣1,故a2=,根据数列是隔项成等差,写出数列的前几项,再由r>0和r=0两种情况进行讨论,能够求出该数列的周期.(3)因为数列{a n}是一个有理等差数列,所以a+a=r=2(r+),化简2a2﹣ar﹣2=0,解得a是有理数,由此入手进行合理猜想,能够求出S n.【解答】(1)证明:∵rS n=a n a n+1﹣1,①∴rS n+1=a n+1a n+2﹣1,②②﹣①,得:ra n+1=a n+1(a n+2﹣a n),∵a n>0,∴a n+2﹣a n=r.(2)解:当n=1时,ra=aa2﹣1,∴a2=,根据数列是隔项成等差,写出数列的前几项:a,r+,a+r,2r+,a+2r,3r+,….当r>0时,奇数项和偶数项都是单调递增的,所以不可能是周期数列,∴r=0时,数列写出数列的前几项:a,,a,,….所以当a>0且a≠1时,该数列的周期是2,(3)解:因为数列{a n}是一个有理等差数列,a+a+r=2(r+),化简2a2﹣ar﹣2=0,a=是有理数.设=k,是一个完全平方数,则r2+16=k2,r,k均是非负整数r=0时,a=1,a n=1,S n=n.r≠0时(k﹣r)(k+r)=16=2×8=4×4可以分解成8组,其中只有,符合要求,此时a=2,a n=,S n=,∵c n=2•3n﹣1(n∈N*),a n=1时,不符合,舍去.a n=时,若2•3n﹣1=,则:3k=4×3n﹣1﹣1,n=2时,k=,不是整数,因此数列{c n}中的所有项不都是数列{a n}中的项.【点评】本题考查了数列递推关系、等差数列的定义与通项公式、数列的周期性性,考查了推理能力与计算能力,属于难题.。

2019年普通高等学校招生全国统一考试上海数学试卷参考答案

2019年普通高等学校招生全国统一考试上海数学试卷参考答案

2019年普通高等学校招生全国统一考试上海(数学试卷)参考答案考生注意:1.本场考试时间120分钟,试卷共4页,满分150分.答题纸共2页:2.作答前.在答题纸正面填写姓名、准考证号、反面填写姓名.将核对后的条形码贴在答題紙指定位置:3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区城.不得错位.在试卷上作答一律不得分: 用2B 铅笔作答选择题,用黑色色字迹钢笔、水笔或圆珠笔作答非选择题.一,填空题(本大慝共12小题,满分70分,第1〜6册聲最4分,第7〜12最每最5分)考生应在答题纸的相应住位置直接填写果1. 已知集合(,3)A =-∞,(2,)B =+∞,则A B = 。

答案:(2,3)2. 已知z ∈C ,且满足1i 5z =-,求z = 。

答案:5i -3. 已知向量(1,0,2)a =,(2,1,0)b =,则a 与b 的夹角为 。

答案:2arccos 54. 已知二项式5(21)x +,则展开式中含2x 项的系数为 。

答案:405. 已知x 、y 满足002x y x y ≥⎧⎪≥⎨⎪+≤⎩,求23z x y =-的最小值为 。

答案:-66. 已知函数()f x 周期为1,且当01x <≤,2()log f x x =,则3()2f = 。

答案:-17. 若,x y +∈R ,且123y x +=,则yx的最大值为 。

答案:98解析:132y x =+≥,∴298y x ≤=8. 已知数列{}n a 前n 项和为n S ,且满足2n n S a +=,则5S = 。

答案:31169. 过曲线24y x =的焦点F 并垂直于x 轴的直线分别与曲线24y x =交于A 、B ,A 在B 上方,M 为抛物线上一点,(2)OM OA OB λλ=+-,则λ= 。

答案:310. 某三位数密码,每位数字可在0-9这10个数字中任选一个,则该三位数密码中,恰有两位数字相同的概率是 。

2019年高考数学上海卷及答案解析

2019年高考数学上海卷及答案解析

数学试卷 第1页(共14页) 数学试卷 第2页(共14页)绝密★启用前2019年普通高等学校招生全国统一考试(上海卷)数 学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共36分)一、填空题(本大题共12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.已知集合{1,2,3,4,5}A =,{356}B =,,,则AB = .2.计算22231lim 41n n n n n →∞-+=-+ .3.不等式|1|5x +<的解集为 . 4.函数2()(0)f x x x =>的反函数为 .5.设i 为虚数单位,365z i i -=+,则||z 的值为6.已知22214x y x a y a +=-⎧⎨+=⎩,当方程有无穷多解时,a 的值为 . 7.在6x ⎛⎝的展开式中,常数项等于 .8.在ABC △中,3AC =,3sin 2sin A B =,且1cos 4C =,则AB = . 9.首届中国国际进口博览会在上海举行,某高校拟派4人参加连续5天的志愿者活动,其中甲连续参加2天,其他人各参加1天,则不同的安排方法有 种(结果用数值表示)10.如图,已知正方形OABC ,其中(1)OA a a =>,函数23y x =交BC 于点P ,函数12y x -=交AB 于点Q ,当||||AQ CP +最小时,则a 的值为 .11.在椭圆22142x y +=上任意一点P ,Q 与P 关于x 轴对称,若有121F P F P ⋅,则1F P与2F Q 的夹角范围为 .12.已知集合[,1]U[4,9]A t t t t =+++,0A ∉,存在正数λ,使得对任意a A ∈,都有A aλ∈,则t 的值是 .二、选择题(本大题共4题,每题5分,共20分) 13.下列函数中,值域为[0,)+∞的是( ) A .2xy =B .12y x = C .tan y x =D .cos y x = 14.已知,a b R ∈,则“22a b >”是“||||a b >”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件15.已知平面αβγ、、两两垂直,直线a b c 、、满足:a α⊆,b β⊆,c γ⊆,则直线a b c 、、不可能满足以下哪种关系( ) A .两两垂直B .两两平行C .两两相交D .两两异面16.以()1,0a ,()20,a 为圆心的两圆均过(1,0),与y 轴正半轴分别交于()1,0y ,()2,0y ,且满足12ln ln 0y y +=,则点1211,a a ⎛⎫⎪⎝⎭的轨迹是( ) A .直线B .圆C .椭圆D .双曲线三、解答题(本大题共5题,共14+14+14+16+18=76分)17.如图,在正三棱锥P ABC -中,2,PA PB PC AB BC AC ====== (1)若PB 的中点为M ,BC 的中点为N ,求AC 与MN 的夹角; (2)求P ABC -的体积.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共14页) 数学试卷 第4页(共14页)18.已知数列{}n a ,13a =,前n 项和为n S . (1)若{}n a 为等差数列,且415a =,求n S ;(2)若{}n a 为等比数列,且lim 12n n S →∞<,求公比q 的取值范围.19.改革开放40年,我国卫生事业取得巨大成就,卫生总费用增长了数十倍.卫生总费用包括个人现在支出、社会支出、政府支出,如表为2012年—2015年我国卫生货用中个人现金支出、社会支出和政府支出的费用(单位:亿元)和在卫生总费用中的占(数据来源于国家统计年鉴)(1)指出2012年到2015年之间我国卫生总费用中个人现金支出占比和社会支出占比的变化趋势:(2)设1t =表示1978年,第n 年卫生总费用与年份之间拟合函数6.44200.1136357876.6053()1tf t e -=+研究函数()f t 的单调性,并预测我国卫生总费用首次超过12万亿的年份.20.已知抛物线方程24y x =,F 为焦点,P 为抛物线准线上一点,Q 为线段PF 与抛物线的交点,定义:||()||PF d P FQ =.(1)当81,3P ⎛⎫-- ⎪⎝⎭时,求()d P ;(2)证明:存在常数a ,使得2()||d P PF a =+;(3)123,,P P P 为抛物线准线上三点,且1223PP P P =,判断()()13d P d P +与()22d P 的关系.21.已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈.(1)若120,3a d π==,求集合S ; (2)若12a π=,求d 使得集合S 恰好有两个元素;(3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的值.t数学试卷 第5页(共14页) 数学试卷 第6页(共14页)2019年普通高等学校招生全国统一考试(上海卷)数学答案解析1.【答案】{3,5}【解析】解:集合{1,2,3,4,5}A =,{356}B =,,,{3,5}A B ∴=.故答案为:{3,5}. 2.【答案】2【解析】解:2222312231lim lim 241411n n n n n n n n n n→∞→∞-+-+==-+-+. 故答案为:2. 3.【答案】{6,4}-【解析】解:由15x +<得515x -<+<,即64x -<<. 故答案为:{6,4}-.4.【答案】1()0)f x x -> 【解析】解:由2(0)y x x =>解得x1()0)f x x -∴=>故答案为1()0)f x x -∴=> 5.【答案】【解析】解:由365z i i -=+,得366z i =+,即22z i =+,||||z z ∴=故答案为: 6.【答案】2-【解析】解:由题意,可知: 方程有无穷多解,∴可对①,得:442x y +=-.再与②式比较,可得:2a =-.故答案为:2-. 7.【答案】15【解析】解:6x ⎛ ⎝展开式的通项为36216r rr T C x -+=令3902r -=得2r =, 故展开式的常数项为第3项:2615C =. 故答案为:15. 8.【解析】解:3sin 2sin A B =,∴由正弦定理可得:32BC AC =, ∴由3AC =,可得:2BC =,1cosC 4=,∴由余弦定理可得:2221324232AB +--=⨯⨯,∴解得:AB9.【答案】24【解析】解:在五天里,连续的2天,一共有4种,剩下的3人排列,故有33424A =种, 故答案为:24.10.【解析】解:由题意得:点坐标为a ⎫⎪⎪⎭,点坐标为a ⎛ ⎝,11||||23AQ CP a +=,当且仅当a =时,取最小值,11.【答案】1arccos ,3ππ⎡⎤-⎢⎥⎣⎦【解析】解:设(,)P x y ,则Q 点(,)x y -,椭圆22142x y+=的焦点坐标为(,(,2⨯P Q数学试卷 第7页(共14页) 数学试卷 第8页(共14页)121F P F P ⋅,2221x y ∴-+≤,结合22142x y +=可得:2[1,2]y ∈故1F P 与2F Q 的夹角θ满足:(2221222122381cos 31,223F P F Qy y y F P F Q x θ⋅-⎡⎤====-+∈--⎢⎥++⎣⎦⋅故1arccos ,3θππ⎡⎤∈-⎢⎥⎣⎦故答案为:1arccos ,3ππ⎡⎤-⎢⎥⎣⎦12.【答案】1或3-【解析】解:当0t >时,当[,1]a t t ∈+时,则[4,9]t t aλ∈++,当[4,9]a t t ∈++时,则[,1]t t aλ∈+,即当a t =时,9t aλ+;当9a t =+时,t aλ,即(9)t t λ=+; 当1a t =+时,4t aλ+,当4a t =+时,1t aλ+,即(1)(4)t t λ=++,(9)(1)(4)t t t t ∴+=++,解得=1t .当104t t +<<+时,当[,1]a t t ∈+时,则[,1]t t aλ∈+.当[4,9]a t t ∈++,则[4,9]t t aλ∈++,即当a t =时,1t aλ+,当1a t =+时,t aλ,即(1)t t λ=+,即当4a t =+时,9t aλ+,当9a t =+时,4t aλ+,即(4)(9)t t λ=++,(1)(4)(9)t t t t ∴+=++,解得3t =-.当90t +<时,同理可得无解. 综上,的值为1或3-. 故答案为:1或3-.13.【答案】B【解析】解:A ,2xy =的值域为(0,)+∞,故A 错B ,y [0,)+∞,值域也是[0,)+∞,故B 正确C ,tan y x =的值域为(,)-∞+∞,故C 错D ,cos y x =的值域为[1,1]-+,故D错故选:B 14.【答案】C【解析】解:22a b >等价,22|||a b >,得“||||a b >”,∴“22a b >”是“||||a b >”的充要条件,故选:C 15.【答案】B【解析】解:如图1,可得,,a b c 可能两两垂直; 如图2,可得,,a b c 可能两两相交;t数学试卷 第9页(共14页) 数学试卷 第10页(共14页)如图3,可得,,a b c 可能两两异面;故选:B 16.【答案】A【解析】解:因为111r a =-21112y a =-,同理可得22212y a =-, 又因为12ln ln 0y y +=, 所以121y y =,则()()1212121a a --=, 即12122a a a a =+, 则12112a a +=, 设1211x a y a ⎧=⎪⎪⎨⎪=⎪⎩,则2x y +=为直线,故选:A17.【答案】解:(1),M N 分别为,PB BC 的中点,//MN PC ∴, 则PCA ∠为AC 与MN 所成角, 在PAC △中,由2,PA PC AC ===可得222cos 2PC AC PA PCA PC AC +-∠===⋅AC ∴与MN的夹角为; (2)过P 作底面垂线,垂直为O ,则O 为底面三角形的中心, 连接AO 并延长,交BC 于N ,则32123AN AO AN ===,.PO ∴==11333224P ABC V -∴=⨯=.18.【答案】解:(1)4133315,4a a d d d =+=+=∴=,2(1)3422n n n S n n n -∴=+⨯=+; (2)()31,lim 1n n n n q S S q →∞-=-存在,11q ∴-<<,lim n n S →∞∴存在,11q ∴-<<且0q ≠,()313lim lim11n n n n q S qq→∞→∞-∴==--, 3121q ∴<-,34q ∴<,10q ∴-<<或304q <<, ∴公比q 的取值范围为3(1,0)0,4⎛⎫-⋃ ⎪⎝⎭.19.【答案】解:(1)由表格数据可知个人现金支出占比逐渐减少,社会支出占比逐渐增多. (2)6.44200.1136t y e -=是减函数,且 6.44200.11360t y e -=>,6.44200.1136357876.6053()1tf t e -∴=+在N 上单调递增, 令 6.4200.1136357876.60531200001t e->+,解得50.68t >,数学试卷 第11页(共14页) 数学试卷 第12页(共14页)当51t 时,我国卫生总费用超过12万亿,预测我国到2028年我国卫生总费用首次超过12万亿.20.【答案】解:(1)抛物线方程24y x =的焦点8(1,0),1,3F P ⎛⎫-- ⎪⎝⎭,84323PF k ==,PF 的方程为4(1)3y x =-,代入抛物线的方程,解得14Q x =,抛物线的准线方程为1x =-,可得103PF =, 15||144QF =+=,||8()||3PF d P QF ==; (2)证明:当(1,0)P -时,2()||2222a d P PF =-=⨯-=, 设()1,P P y -,0P y >,:1PF x my =+,则2P my =-, 联立1x my =+和24y x=,可得2440y my --=,2Q y m ==+,2()||22P P Q y d P PF y -==22=-=,则存在常数a ,使得2()||d P PF a =+; (3)设()()()1122331,,1,,1,P y P y P y ---,则()()()132132242d P d p d P PFP F P F ⎡+⎤-=+-=⎣⎦=由()2213131628y y y y ⎡⎤-++=-⎣⎦,()()()()(22222213131313134444840y y y yy y y y y y ++-+=+-=->,则()()()1322d P d P d P +>.21.【答案】解:(1)等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈.当120,3a d π==,集合S ⎧⎪=⎨⎪⎪⎩⎭. (2)12a π=,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈恰好有两个元素,如图:根据三角函数线,①等差数列{}n a 的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d π=,②1a 终边落在OA 上,要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,如图OB ,OC ,此时23d π=,综上,23d π=或者d π=.(3)①当3T =时,3n n b b +=,集合{}123,,S b b b =,符合题意.②当4T =时,4n n b b +=,()sin 4sin n n a d a +=,42n n a d a k π+=+,或者42n n a d k a π+=-,等差数列{}n a 的公差(0,]d π∈,故42n n a d a k π+=+,2k d π=,又1,2k ∴= 当1k =时满足条件,此时{,1,1}S =--.③当5T =时,5n n b b +=,()sin 5sin ,52n n n n a d a a d a k π+=+=+,或者52n n a d k a π+=-,因为(0,]d π∈,故1,2k =.当1k =时,sin ,1,sin 1010S ππ⎧⎫=-⎨⎬⎩⎭满足题意.④当6T =时,6n n b b +=,()sin 6sin n n a d a +=,所以62n n a d a k π+=+或者62n n a d k a π+=-,(0,]d π∈,故1,2,3k =.当1k =时,22S =⎨⎪⎪⎩⎭,满足题意.⑤当7T =时,()7,sin 7sin sin n n n n n b b a d a a +=+==,所以72n n a d a k π+=+,或者72n n a d k a π+=-,(0,]d π∈,故1,2,3k =∴∴∴数学试卷 第13页(共14页) 数学试卷 第14页(共14页)当1k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=,227d m n ππ==-,7,7m n m -=>,不符合条件. 当2k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=,247d m n ππ==-,m n -不是整数,不符合条件. 当3k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=或者4π,267d m n ππ==-,或者467d m n ππ==-,此时,m n -均不是整数,不符合题意. 综上,3,4,5,6T =.。

2019年上海高考数学真题试卷(word解析版)

2019年上海高考数学真题试卷(word解析版)

⎨ ⎩f ( ) n →∞绝密★启用前2019 年普通高等学校招生全国统一考试(上海卷)数学试卷(满分 150 分,考试时间 120 分钟)考生注意1. 本场考试时间 120 分钟,试卷共 4 页,满分 150 分,答题纸共 2 页.2. 作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3. 所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4. 用 2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、选择题:(本大题共 12 题,1-6 题每题 4 分,7-12 题每题 5 分,共 54 分) 1. 已知集合 A = (-∞, 3)、B = (2, +∞) ,则 A B =.2. 已知 z ∈ C 且满足 1- 5 = i ,求 z = .z 3. 已知向量a = (1,0,2) , b = (2,1,0) ,则a 与b 的夹角为 . 4. 已知二项式(2x +1)5,则展开式中含 x 2 项的系数为. ⎧ 5. 已知 x 、y 满足⎪x ≥ 0 y ≥ 0 ,求 z = 2x - 3y 的最小值为.⎪x + y ≤ 2 6. 已知函数 f (x ) 周期为1,且当0 < x ≤ 1, f ( x ) = - log 2x ,则 3= .27. 若 x 、y ∈ R + ,且 1+ 2 y = 3 ,则 yx x的最大值为.8. 已知数列{a n }前 n 项和为 S n ,且满足 S n + a n = 2 ,则 S 5 =.9. 过 y 2 = 4x 的焦点 F 并垂直于 x 轴的直线分别与 y 2 = 4x 交于 A 、B , A 在 B 上方, M 为抛物线上一点, OM = λOA + (λ - 2)OB ,则λ =.10. 某三位数密码锁,每位数字在0 - 9 数字中选取,其中恰有两位数字相同的概率是.11. 已知数列{a n } 满足a n < a n +1 ( n ∈ N *), P n (n , a n ) 在双曲线 x 2 - y 2 = 上,则lim P n P n +1 6 2= .12. 已知 f (x ) = - a ( x > 1, a > 0) ,若a = a 0 , f ( x ) 与 x 轴交点为 A , f ( x ) 为曲线 L ,在 L 上任意一点 P ,总存在一点Q ( P 异于 A )使得 AP ⊥ AQ 且 AP = a 0 =.AQ ,则 2 x -11二.选择题(本大题共 4 题,每题 5 分,共 20 分) 13. 已知直线方程2x - y + c = 0 的一个方向向量d 可以是( ) A. (2,-1)B. (2,1)C. (-1,2)D. (1,2)14. 一个直角三角形的两条直角边长分别为 1 和 2,将该三角形分别绕其两个直角边旋转得到的两个圆锥的体积之比为( ) A. 1B. 2C. 4D. 815. 已知ω ∈ R ,函数 f (x ) = ( x - 6)2⋅sin (ωx ) ,存在常数 a ∈ R ,使得 f ( x + a ) 为偶函数,则ω 可能的值为( )A.πB.2πC. 3πD. π4516. 已知tan α ⋅ tan β = tan(α + β ) . ①存在α 在第一象限,角 β 在第三象限; ②存在α 在第二象限,角 β 在第四象限; A. ①②均正确;B. ①②均错误;C. ①对,②错;D. ①错,②对;三.解答题(本大题共 5 题,共 76 分)17. (本题满分 14 分)如图,在长方体 ABCD - A 1B 1C 1D 1 中, M 为 BB 1 上一点,已知BM = 2 , AD = 4 , CD = 3 , AA 1 = 5 .(1) 求直线 A 1C 与平面 ABCD 的夹角; (2) 求点 A 到平面 A 1MC 的距离.18.(本题满分 14 分)已知 f ( x ) = ax +1x +1(a ∈ R ) . (1) 当a = 1 时,求不等式 f (x ) +1 < f ( x +1) 的解集; (2) 若 x ∈[1, 2]时, f ( x ) 有零点,求a 的范围.19.(本题满分 14 分)如图, A - B - C 为海岸线, AB 为线段, BC 为四分之一圆弧,BD = 39.2km , ∠BDC = 22, ∠CBD = 68, ∠BDA = 58.(1) 求 BC 长度;2 (2) 若 AB = 40km ,求 D 到海岸线 A - B - C 的最短距离.(精确到0.001km )20.(本题满分 16 分)已知椭圆 x+ y 8 4= 1, F 1 , F 2 为左、右焦点,直线l 过 F 2 交椭圆于 A 、B 两点.(1) 若 AB 垂直于 x 轴时,求 AB ;(2) 当∠F 1 AB = 90 时, A 在 x 轴上方时,求 A , B 的坐标;(3) 若直线 AF 1 交 y 轴于 M ,直线 BF 1 交 y 轴于 N ,是否存在直线l ,使 S △F AB = S △F MN ,11若存在,求出直线l 的方程;若不存在,请说明理由.21.(本题满分 18 分)数列{a n } 有100 项,a 1 = a ,对任意n ∈[2,100] ,存在a n = a i + d , i ∈[1, n -1],若a k与前n 项中某一项相等,则称 a k 具有性质 P .(1) 若a 1 = 1,求a 4 可能的值;(2) 若{a n } 不为等差数列,求证:{a n } 中存在满足性质 P ;(3) 若{a n } 中恰有三项具有性质 P ,这三项和为C ,使用a , d , c 表示 a 1 + a 2 ++ a 100 .25 ⎨ ⎩3上海市 2019 届秋季高考数学考试卷参考答案与试题解析一、选择题:(本大题共 12 题,1-6 题每题 4 分,7-12 题每题 5 分,共 54 分)1. 已知集合 A =(-∞, 3)、B = (2, +∞) ,则 A B =.【思路分析】然后根据交集定义得结果. 【解析】:根据交集概念,得出: (2,3) .【归纳与总结】本题主要考查集合的基本运算,比较基础.2. 已知 z ∈ C 且满足 1- 5 = i ,求 z = .z 【思路分析】解复数方程即可求解结果.【解析】: 1 = 5 + i , z =z1 5 + i = 5 - i (5 + i )(5 - i ) = 5 - 26 1 i . 26 【归纳与总结】本题主要考查复数的基本运算,比较基础.3. 已知向量a = (1,0,2) , b = (2,1,0) ,则a 与b 的夹角为.【思路分析】根据夹角运算公式cos θ 求解.【解析】: cos θ a ⋅ b = = 2 .5【归纳与总结】本题主要考查空间向量数量积,比较基础.4. 已知二项式(2x +1)5,则展开式中含 x 2 项的系数为.【思路分析】根据二项式展开式通项公式求出取得含 x 2项的的项,再求系数.【解析】: T = C r ⋅ (2x )5-r ⋅1r = C r ⋅ 25-r ⋅ x 5-rr +155令5 - r = 2 ,则r = 3 , x 2 系数为C 3 ⋅ 22 = 40 .【归纳与总结】本题主要考查项式展开式通项公式的应用,比较基础.⎧ 5. 已知 x 、y 满足⎪x ≥ 0y ≥ 0 ,求 z = 2x - 3y 的最小值为.⎪x + y ≤ 2 【思路分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案. 【解析】:线性规划作图:后求出边界点代入求最值,当 x = 0 ,y = 2 时, z min = -6 .【归纳与总结】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.6. 已知函数 f( x ) 周期为1,且当0 < x ≤ 1, f ( x ) = - log 2 x ,则 f ( 2) =.【思路分析】直接利用函数周期为 1,将转 3 到已知范围0 < x ≤ 1内,代入函数解析式即2a ⋅b a ⋅ ba ⋅ b2 5 ⋅ 51⋅ 2 y x S n →∞3 可.【解析】:f ( ) = 21 f ( ) 2= -log1 = 1 .2 2【归纳与总结】本题考查函数图像与性质,是中档题.7. 若 x 、y ∈ R + ,且1 +2 y =3 ,则 yx x的最大值为 .y 【思路分析】利用已知等式转化为一个变量或者转化为函有x的式子求解1y ⎛ 3 ⎫2 9 【解析】:法一: 3 = + 2 y ≥ 2 x ,∴ ≤ ⎪ = ;x ⎝ 2 2 ⎭ 8 法二:由 1 = 3 - 2 y , y = (3 - 2 y ) ⋅ y = -2 y 2+ 3y ( 0 < y < 3 ),求二次最值⎛ y ⎫ = 9 .⎪x x 2 ⎝ x ⎭max 8【归纳与总结】本题考查基本不等式的应用,是中档题.8. 已知数列{a n }前 n 项和为 S n ,且满足 S n + a n = 2 ,则 S 5 =.【思路分析】将和的关系转化为项的递推关系,得到数列为等比数列. 【解析】:由⎧S n + a n = 2 得: a = 1a ( n ≥ 2 ) ⎨ ⎩ n -1{ } + a n -1 = 2(n ≥ 2)1n 2 n -1 1⋅[1 -( 1 )5] 231 ∴ a n 为等比数列,且a 1 = 1 , q = 2 ,∴ S 5 == . 1 -1 16 29. 过 y 2 = 4x 的焦点 F 并垂直于 x 轴的直线分别与 y 2= 4x 交于 A 、B ,A 在 B 上方,M 为抛物线上一点, OM = λOA + (λ - 2)OB ,则λ = .【思路分析】根据等式建立坐标方程求解【解析】:依题意求得: A (1,2) , B (1,-2) ,设 M 坐标 M (x , y )有: (x , y ) = λ(1,2) + (λ - 2) ⋅ (1,-2) = (2λ - 2,4) ,代入 y 2 = 4x 有:16 = 4 ⋅ (2λ - 2) 即: λ = 3 .【归纳与总结】本题考查直线与抛物线的位置关系,考查数形结合的解题思想方法,是中档题.10 某三位数密码锁,每位数字在0 - 9 数字中选取,其中恰有两位数字相同的概率是.【思路分析】分别计算出总的排列数和恰有两位数字相同的种类求解.C 1 ⋅ C 2 ⋅ C 1 27【解析】:法一: P = 10 3 9 = 103100 (分子含义:选相同数字×选位置×选第三个数字) C 1 + P 3 27 法二: P = 1 - 10 10= 103100 (分子含义:三位数字都相同+三位数字都不同) 【归纳与总结】本题考查古典概型的求解,是中档题.11. 已知数列{a n } 满足a n < a n +1 ( n ∈ N * ), P n (n , a n ) 在双曲线 x 2 - y2= 上,则lim P n P n +1 6 2= .1n →∞ 2 2【思路分析】利用点在曲线上得到 P n P n +1 关于 n 的表达式,再求极限.【解析】:法一:由 n 8 a 2 - n = 1 得: a n = 2 n 2 2( 6-1) ,∴ P n (n , 2( n -1)) , 6 P n +1 (n +1, (n +1)2 2(61) ) ,利用两点间距离公式求解极限。

2019上海高考数学试卷及参考答案

2019上海高考数学试卷及参考答案

2019年全国普通高等学校招生统一考试上海数学试卷1 .答卷前,考生务必将姓名、咼考座位号、校验码等填与清楚考生注意:2.本试卷共有21道试题,满分150分,考试时间120分钟.一.填空题(本大题满分54分)本大题共有12题,1: 6题每题4分,7: 12题每题5 分.考生Array应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分或5分,否则一律得零分.1. 已知集合A (,3),B (2,___________ ),则AI B .12. 已知Z C,且满足i,则z ________ .z 5r r r r3. 已知向量a (1,0,2),b (2,1,0),则a与b的夹角为_________________ .5 24. 已知二项式(2x 1),则其展开式中含x的系数为________________ .x 05. 已知x、y满足y 0 ,则z 2x 3y的最小值为___________________________ .x y 236. 已知函数f (x)的周期为1,且当0 x 1时,f (x)log 2x,则f()________ .2厂 1 y7. 若x,y R ,且2 y 3,则一的最大值为_________________________ .x x8. 已知数列a n的前n项和为S n,且满足S n a n 2,则S _________________________ .2 29. 过曲线y 4x的焦点F并垂直于x轴的直线分别与曲线y 4x交于A、B两点,A在B的uuuu uuu uuu上方,M为曲线上的一点,且OM OA ( 2)OB,贝U _________________ .10. 某三位数密码,每位数字可在0: 9这10个数中任选一个,则该三位数密码中,恰有两位数字相同的概率为___________ .x2 y211. 已知数列a n满足a n a* 1 (n N ),点R(n,a n)(n 3)均在双曲线1上,则6 2lim |P n巳1 | _________ .xa(x 1, a 0) , f (x)与x 轴交于点A ,若对于f (x)图像上的任意 x 1则实数a圆锥的体积之比为( ) 12.设函数f(X )一点P ,在其图像上总存在一点 Q ( P 、Q 异于A ),使得AP AQ ,且 |AP| | AQ|,选择题(本大题满分 20分)本大题共有4题,每题有且只有一个正确答案在答题纸的相应编号上,填上正确的答案的序号,选对得5分,否则一律得零分uy c 0的一个方向向量d 可以是( )A. (2 ,1)B. (2 , 1)C. ( 1,2)D. (1,2)考生应14.已知一个直角三角形的两条直角边长分别为1和2,将该三角形分别绕其两条直角边旋转得到的两个A. 1B. 2C. 4D. 815.已知R ,函数f (x)2(x 6) sin x ,若存在a R ,使得f (x a)为偶函数,则值可能是()A. —B. 一C. —D.—2 3 4 516.对于tan tan tan( ),有以下两个结论:① 存在 在第一象限, 在第三象限② 存在 在第二象限, 在第四象限则( )A.①②均正确B.①②均错误C.①正确,②错误D.①错误,②正确三.解答题(本大题满分 76分)本大题共有 5题,解答下列各题必须在答题纸相应编13.直线2x号的规定区域内写岀必要的步骤17.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图所示,在长方体ABCD ABiGD i , M为BB i上一点,BMAD 4,DC 3,AA 5.①求直线AC与平面ABCD所成角的大小;②求点A到平面AMC的距离.18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.得分评卷人------------------------ 1 设常数a R ,函数f(x) ax --------------- .x 1①当a 1时,求不等式f(x) 1 f(x 1)的解集;②若f (x)在x 1,2上存在零点,求实数a的取值范围19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.得分评卷人---------------------- 如图所示,A—B—C为海岸线,AB为线段,Be 为四分之一圆,BD 39.2千------------ 米,BDC 22,CBD 68,BDA 58e①求Be 的长度;②若AB 40千米,求D到海岸线A— B —C的最短距离,并精确到0.001千米.20.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3得分评卷人----------------------- 小题满分6分.2 2x y已知椭圆1, F2分别为椭圆的左、右焦点,直线I过F2角椭圆于A、B两点.8 4①若直线I垂直于x轴,求| AB | ;②当F1 AB 90 ,A在x轴上方时,求A,B的坐标;③若直线AF1交y轴于M ,直线BF2交y轴于N ,是否存在直线I ,使得VRAB与VRMN的面积相等,若存在,求岀直线I的方程;若不存在,请说明理由.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3得分评卷人---------- 小题满分8分.已知数列a n(n N )有100项,a1a ,对任意n 2,100,存在a n a i d , i 1 , n 1 ,若a k与前n项中的某一项相等,则称a k具有性质P.①若a1 1,d 2,求a k所有可能的值;②若a n不是等差数列,求证:数列a n中存在某些项具有性质p ;③若a n中恰有三项具有性质P,设这三项的和为c,请用a、d、c表示a1 a2 a3a100.32019年普通高等学校招生全国统一考试上海 数学试卷参考答案填空题(本大题满分54分)本大题共有12题,1: 6题每题4分,7: 12题每题5分.考生应在答 题纸相应编号的空格内直接填写结果 ,每个空格填对得4分或5分,否则一律得零分1. (2,3)8. 31 162.5 i9.32273.arccos —10.5100 4.402,311.—3 5.612.26.197.—8二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确.考生应在答题纸的相应编号上 填上正确的答案,选对得5分,否则一律得零分.13. D. 14. B. 15. C. 16. D.三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写岀 必要的步骤.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.17.18.①(2,1)2’ 619. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.①16.310千米②35.752千米.20. (本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.①2.2②A(0,2),B(8,3)3 3③x 3y 2 021. (本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.①3,5,7②略③97a 4656d c。

2019年上海市松江区高考数学一模试卷及解析〔精品解析版〕

2019年上海市松江区高考数学一模试卷及解析〔精品解析版〕


6.(4 分)已知双曲线标准方程为 ﹣y2=1,则其焦点到渐近线的距离为

7.(5 分)若向量 , 满足( + ) =7,且| |= ,| |=2,则向量 与 夹角为

8.(5 分)在△ABC 中,内角 A,B,C 所对应的边分别是 a,b,c,若 c2=(a﹣b)2+6,
C= ,则△ABC 的面积是

9.(5 分)若函数 f(x)=
,则 y=f(x)图象上关于原点 O 对称的点
共有
对.
10.(5 分)已知 A、B、C 是单位圆上三个互不相同的点,若| |=| |,则 • 的最小
值是

11.(5 分)已知向量 , 是平面 α 内的一组基向量,O 为 α 内的定点,对于 α 内任意
一点 P,当 =x +y 时,则称
其中的真命题是
.(请写出所有真命题的序号)
12.(5 分)已知函数 f(x)的定义域为 R,且 f(x)•f(﹣x)=1 和 f(1+x)•f(1﹣x)=4
对任意的 x∈R 都成立.若当 x∈[0,1],f(x)的值城为[1,2],则当 x∈[﹣100,100]时,
函数 f(x)的值域为

二、选择题(本大题满分 20 分)本大题共有 4 题,每题有且只有一个正确答案,选对得 5
2019 年上海市松江区高考数学一模试卷
一、填空题(本大题满分 54 分),本大题共有 12 题,第 1-6 题每个空格填对得 4 分,第 7-12 题每个空格得 5 分,否则一律得零分
1.(4 分)设集合 A={x|x>1},B={x| <0},则 A∩B=

2.(4 分)若复数 z 满足(3﹣4i)•z═4+3i,则|z|=

2019.12松江一模(定稿)纯答

2019.12松江一模(定稿)纯答

2019.12松江区2019学年度第一学期高三期末考试数学试卷参考答案一、填空题1.{}12, ; 2.45- ; 3.1 ; 4. 40; 5.4; 6.2-;7.32-; 8.(4,3) ;9.112(0,)(,)333; 10.2:1:1:1-;11.-;12. 851;二、选择题13.B 14.A 15.B 16.C 三、解答题17. 解:(1)由题意,得OA =2,PO =6,∴PA == ………………………2分∴圆锥的侧面积为2S rl ππ==⨯⨯=;……………………4分 体积为221126833V r h πππ==⨯⨯= ;………………6分 (2)取PO 的中点E ,连接DE ,CE ,则∠CDE 或其补角即为所求,如图所示;……………… 8分因AO ⊥EO ,AO ⊥CO ,EOCO=O 知,AO ⊥平面ECO 又//DE AO ,∴DE ⊥平面ECO ,∴DE ⊥EC ,∴DEC ∆是RT ∆ ……………… 10分由112DE OA ==, ……………… 11分CE = ……………… 13分∴CDE ∠=AB 与CD 所成的角为…………14分 18. 解:(1)2()cos 2sin 2cos 212sin(2)16f x x x x x x x π=-=+-=+-……4分∴max ()()2116f x f π==-=……………… 6分此时2262x k πππ+=+,则6x k ππ=+,()k Z ∈,(2) 由 ()0f A = 得1sin(2)62A π+=, ∴2266A k πππ+=+或2266A k ππππ+=-+,()k Z ∈因0A π<< ∴3A π=………………………… 9分由b ,a ,c 成等差数列,得2a =b +c , ………………… 10分 ∵2AB AC ⋅=,∴bc cos A =2,∴bc =4, ………………… 11分 由余弦定理,得a 2=b 2+c 2﹣2bc cos A =(b +c )2﹣3bc ,…………12分 ∴a 2=4a 2﹣3×4,∴2a =. ………………………… 14分19. 解:(1)由题意得0123()d v d d d d =+++ ……………………… 1分 ∴21()2020d v v v k=++………………………… 3分 当0.9k =时,2()2018v d v v =++, ……………4分20()1112 3.1183v t v v =++≥+=+⋅=(秒)……………7分 (2)根据题意, 要求对于任意[0.5,0.9]k ∈,()80d v <恒成立,…………9分 即对于任意[0.5,0.9]k ∈, 21208020v v k ++< 即2160120k v v<-恒成立, 由[0.5,0.9]k ∈得 111[,]201810k ∈ ∴2160110v v<- 即2106000v v +-< ………………………12分 解得3020v -<<∴020v ≤<(米/秒), ………………………13分360020721000⨯=(千米/小时)∴汽车的行驶速度应限制在20米/秒以下,合72千米/小时………………………14分20. 解:(1)由抛物线方程知,焦点是(1,0)F ,准线方程为1x =-,设A (x 1,y 1),由|F A |=3及抛物线定义知,x 1=2,代入24y x =得y =±所以A 点的坐标(2,A 或(2,A - ………………………4分(2)设A (x 1,y 1),B (x 2,y 2), 设直线AB 的方程是:x =my +2, 联立224x my y x =+⎧⎨=⎩,消去x 得:y 2﹣4my ﹣8=0,由韦达定理得121248y y m y y +=⎧⎨=-⎩,………6分 11221212(,)(,)OA OB x y x y x x y y ⋅=⋅=+22212121212()4804416y y y y y y y y =⋅+=+=-<, 故AOB ∠恒为钝角,故原点O 总在以线段AB 为直径的圆的内部. ………………………10分(3)设A (x 1,y 1),则x 1y 1≠0,因为|F A |=|FM |,则|m ﹣1|=x 1+1,由m >0得m =x 1+2,故M (x 1+2,0).故直线AB 的斜率K AB =12y -. 因为直线l 1和直线AB 平行,设直线l 1的方程为12y y x b =-+,代入抛物线方程 得211880b y y y y +-=,由题意21164320b y y ∆=+=,得12b y =-.……………12分 设E (x E ,y E ),则14E y y =-,21141E x y x ==11111111014111222141OAEy x S x y x y x y ∆==+≥- ………………………14分当且仅当11114y x x y =,即22114y x =时等号成立, 由221121144y x y x ⎧=⎨=⎩ 得21144x x =,解得11x =或10x =(舍),………………15分 所以M 点的坐标为(3,0)M ,min ()2OAE S ∆= ………………………16分 21. 解:(1)因21a =,12a a <,且1a 是自然数,10a ∴=; ………………2分42a =,340a a ≤<,且34,a a 都是自然数;∴30a =或31a =;………………3分168a =,9101608a a a ≤<<<=,且*()i a N i N ∈∈,∴90a =或91a =.……4分(2)122()k k a k N -*=∈,当122k k n -<≤(,)n k N *∈时,1111212223202k k k k k a a a a ----+++≤<<<<=,由于n a N ∈,所以121k m a m -+=-或m ,11,2,3,,2 1.k m -=- ………………………6分∴()64max (01)(12)(1234)(128)(1216)S =+++++++++++++++23458916173233(1232)171422222⨯⨯⨯⨯⨯++++=+++++= ()128max 646571427942S ⨯=+= 7142020279<<,64128n ∴<< ………………………8分 又20207141306-=,123501275130612350511326++++=<<+++++=所以min 6451115n =+= ………………………10分(3)必要性:若242n n S S n =-+则:122422n n n S S +=-+ ①122214(21)2n n n S S +++=-++ ②①-②得:1121222141()n n n a a a n N ++*++++=-∈ ③ ………………………11分由于1121220,1n n a a ++++=⎧⎨=⎩或1121221,2n n a a ++++=⎧⎨=⎩或11212202n n a a ++++=⎧⎨=⎩,且210,n a +=或1 只有当112121221,1,2n n n a a a +++++===同时成立时,等式③才成立211()n a n N *+∴=∈ ………………………13分充分性:若211()n a n N *+=∈,由于1212223212n n n n n a a a a ++++=<<<<=所以2(,,2)n n k a k n N k N k **+=∈∈≤,即211n a +=,222n a +=,233n a +=,…,12121n n a +-=-,又122n n a +=所以对任意的n N *∈,都有2211n n a a -=+…(I ) ………………………14分另一方面,由2n k a k +=,1222n k a k ++=(,,2)n n N k N k **∈∈≤所以对任意的n N *∈,都有22n n a a =…(II ) ………………………15分21221321242()()n n n n S a a a a a a a a a -∴=+++=+++++++2422232()24()n n a a a n a a a a n =+++-=++++-由于120,1a a ==2124()242n n n S a a a n S n ∴=+++-+=-+ 证毕. ………18分。

2019届上海高三数学一模汇编(60页)

2019届上海高三数学一模汇编(60页)

2019一模集合命题不等式专题一、解答题(宝山区一模2)集合U R =,集合{}{}30,10A x x B x x =->=+>,则U B C A =__________. 答案:(]1,3- (虹口区一模2)不等式的解集为________. 【答案】(虹口区一模3)设全集,若,则________. 【答案】(浦东新区一模1) 已知全集R U =,集合(][)12,,=-∞+∞A ,则U=A ______________. 答案:()12,(青浦区一模1)已知集合{1,0,1,2}A =-,(,0)B =-∞,则A B =答案: {1}-(青浦区一模2)写出命题“若22am bm <,则a b <”的逆命题 答案: 若a b <,则22am bm < (青浦区一模3)不等式2433(1)12()2x x x ---<的解集为 答案:(2,3)-(徐汇区一模2)已知全集U R =,集合{}2|,,0A y y x x R x ==∈≠,则U C A =_________. 答案:(],0-∞(徐汇区一模3)若实数,x y 满足1xy =,则222x y +的最小值为_________.答案:(杨浦区一模1)设全集{1,2,3,4,5}U =,若集合{3,4,5}A =,则UA =21xx >-1,12⎛⎫⎪⎝⎭U R ={2,1,0,1,2}A =--{}2|log (1)B x y x ==-()U A C B ={}1,2答案: {1,2}(杨浦区一模5)若实数x 、y 满足221x y +=,则xy 的取值范围是 答案: 11[,]22-(杨浦区一模11)当0x a <<时,不等式22112()x a x +≥-恒成立,则实数a 的最大值为 答案: 2(长宁区一模1)已知集合{1,2,3,4}A =,{2,4,6}B =,则A B =答案:}6,4,3,2,1{(长宁区一模12) 已知1a 、2a 、3a 与1b 、2b 、3b 是6个不同的实数,若关于x 的方程123123||||||||||||x a x a x a x b x b x b -+-+-=-+-+-的解集A 是有限集,则集合A 中最多有 个元素 答案:3(崇明区一模2)已知集合{}{}|12,1,0,1,2,3A x x B =-<<=-,则=A B ⋂ . (松江区一模1) 设集合{|1}A x x =>,{|0}3xB x x =<-,则A B = 答案: (1,3)(虹口区一模13)已知,则“”是“”的( ) A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【答案】A(宝山区一模14)“,22x ππ⎡⎤∈-⎢⎥⎣⎦”是“()sin arcsin x x =”的( )条件..A 充分非必要 .B 必要非充分 .C 充要 .D 既非充分也非必要(浦东新区一模13) “14<a ”是“一元二次方程20-+=x x a 有实数解”的( ) (A )充分非必要条件 (B )充分必要条件 (C )必要非充分条件 (D )非充分非必要条件x R ∈1233x -<1x <答案: A(长宁区一模13)已知x ∈R ,则“0x ≥”是“3x >”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件 答案:B(崇明区一模13)若b a <<0,则下列不等式恒成立的是( ).A ba 11> .B b a >- .C 22b a > .D 33b a < (崇明区一模14 )“2<p ”是“关于x 的实系数方程012=++px x 有虚数根”的( ).A 充分不必要条件 .B 必要不充分条件 .C 充分必要条件 .D 既不充分也不必要条件(松江区一模14)若0a >,0b >,则x y a b x y a b +>+⎧⎨⋅>⋅⎩是x ay b>⎧⎨>⎩的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既非充分又非必要三、解答题(长宁区一模17) 求下列不等式的解集: (1)|23|5x -<;(2)442120x x-⋅->答案:(本题满分14分,第1小题满分6分,第2小题满分8分)解:(1)由5|32|<-x 得 5325<-<-x ,……………………4分 解得 41<<-x .所以原不等式的解集是 )4,1(-.…………………………………6分 (2)原不等式可化为()()22260x x +->, ……………………4分 因为220x+>,所以62>x, ……………………………………5分 解得 6log 2>x . ………………………………………7分所以原不等式的解集是()2log 6,+∞. ……………………………8分2019一模函数专题一、填空题(宝山区一模4)方程()ln 9310x x +-=的根为__________. 答案:0x =(宝山区一模8)函数()y f x =与ln y x =的图像关于直线y x =-对称,则()f x =__________. 答案:()x f x e -=-(宝山区一模10)将函数y =的图像绕y 轴旋转一周所得的几何容器的容积是__________. 答案:23π(虹口区一模4)设常数,若函数的反函数的图像经过点,则__________. 【答案】(虹口区一模6)函数的值域为__________.【答案】(虹口区一模12)若直线与曲线恰有两个公共点,则实数的取值范围为________. 【答案】(浦东新区一模5)若函数()=y f x 的图像恒过点01(,),则函数13()-=+y f x 的图像一定经过定点____. 答案:()13,(浦东新区一模10)已知函数()2||1=+-f x x x a 有三个不同的零点,则实数a 的取值范围为_____.答案:(,-∞a R ∈3()log ()f x x a =+()2,1a =88()([2,8])f x x x x=+∈y kx =2|log (2)|2|1|x y x +=--k (,0]{1}-∞(浦东新区一模12)已知函数()2,24161,22-⎧≥⎪+⎪=⎨⎛⎫⎪< ⎪⎪⎝⎭⎩x ax x x f x x ,若对任意的[)12,∈+∞x ,都存在唯一的()2,2∈-∞x ,满足()()12=f x f x ,则实数a 的取值范围为_________. 答案:[)2,6∈-a(普陀区一模1)函数()2f x x=的定义城为 . 答案: (,0)(0,1]-∞(普陀区一模3)设11{,,1,2,3}32α∈--,若()f x x α=为偶函数,则α= . 答案: 2-(普陀区一模12)设a 为常数,记函数()1log 2axf x a x=+- (0a >且1,0a x a ≠<< )的反函数为()1f x -,则1121f a -⎛⎫+⎪+⎝⎭111232++=212121a f f f a a a ---⎛⎫⎛⎫⎛⎫+⋅⋅⋅ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭.答案:2a(青浦区一模11)已知函数()2f x +=,当(0,1]x ∈时,2()f x x =,若在区间[1,1]-内()()(1)g x f x t x =-+有两个不同的零点,则实数t 的取值范围是(徐汇区一模9)已知函数()f x 是以2为周期的偶函数,当01x ≤≤时,()lg(1)f x x =+,令函数[]()()()1,2g x f x x =∈,则()g x 的反函数为_________. 答案:()[]1310,0,lg2x gx x -=-∈(徐汇区一模11)已知R λ∈,函数24,()43,x x f x x x x λλ-≥⎧=⎨-+<⎩,若函数()f x 恰有2个零点,则λ的取值范围是_________. 答案:(]()1,34+∞,(杨浦区一模8)若函数1()ln1xf x x+=-的定义域为集合A ,集合(,1)B a a =+,且B A ⊆,则实数a 的取值范围为答案: [1,0]-(长宁区一模6) 已知幂函数()a f x x =的图像过点2,则()f x 的定义域为 答案:),0(+∞(长宁区一模8) 已知函数()log a f x x =和g()(2)x k x =-的图像如图所示,则不等式()0()f xg x ≥的解集是答案:)2,1[(崇明区一模9)若函数()1log 2+-=x ax x f 的反函数的图像过点()73,-,则=a .(崇明区一模11)设()x f 是定义在R 上的以2为周期的偶函数,在区间[]10,上单调递减,且满足()()22,1==ππf f ,则不等式组()⎩⎨⎧≤≤≤≤2121x f x 的解集为 .(松江区一模3)已知函数()y f x =的图像与函数xy a =(0,1)a a >≠的图像关于直线y x =对称,且点(4,2)P 在函数()y f x =的图像上,则实数a =答案:2(松江区一模9)若|lg(1)|0()sin 0x x f x x x ->⎧=⎨≤⎩,则()y f x =图像上关于原点O 对称的点共有 对 答案: 4(松江区一模12)已知函数()f x 的定义域为R ,且()()1f x f x ⋅-=和(1)(1)4f x f x +⋅-=对任意的x ∈R 都成立,若当[0,1]x ∈时,()f x 的值域为[1,2],则当[100,100]x ∈-时,函数()f x 的值域为 答案:二、选择题(虹口区一模15)已知函数,,若函数恰有两个零点,则实数的取值范围为( ) A.B.C.D.【答案】B(宝山区一模15)关于函数()232f x x =-的下列判断,其中正确的是( ) .A 函数的图像是轴对称图形 .B 函数的图像是中心对称图形 .C 函数有最大值 .D 当0x >时,()y f x =是减函数答案:A(普陀区一模16)设()f x 是定义在R 上的周期为4的函数,且()2sin 2,012log ,14x x f x x x π≤≤⎧=⎨<<⎩,记()()g x f x a =-,若102a <<,则函数()g x 在区间[]-45,上零点的个数是( ) .A 5 .B 6 .C 7 .D 8 答案:D(青浦区一模16)记号[]x 表示不超过实数x的最大整数,若2()[]30x f x =+,则(1)(2)(3)(29)(30)f f f f f +++⋅⋅⋅++的值为( )A. 899B. 900C. 901D. 902(徐汇区一模15)对于函数()y f x =,如果其图像上的任意一点都在平面区域{}(,)|()()0x y y x y x -+≤内,则称函数()f x 为“蝶型函数”,已知函数:①sin y x =;②y = )100100[2,2]-2()1f x ax x =-+1, 1(), 1 1 1, 1x g x x x x -≤-⎧⎪=-<<⎨⎪≥⎩()()y f x g x =-a (0,)+∞(,0)(0,1)-∞1(,)(1,)2-∞-+∞(,0)(0,2)-∞.A ①、②均不是“蝶型函数” .B ①、②均是“蝶型函数”.C ①是“蝶型函数”;②不是“蝶型函数 .D ①不是“蝶型函数”;②是“蝶型函数” 答案:B(杨浦区一模16)已知函数2()2x f x m x nx =⋅++,记集合{|()0,}A x f x x ==∈R ,集合{|[()]0,}B x f f x x ==∈R ,若A B =,且都不是空集,则m n +的取值范围是( )A. [0,4)B. [1,4)-C. [3,5]-D. [0,7) 答案:A(杨浦区一模15)已知x x f θsin log )(=,(0,)2πθ∈,设sin cos ()2a f θθ+=,b f =,sin 2()sin cos c f θθθ=+,则a 、b 、c 的大小关系是( )A. a c b ≤≤B. b c a ≤≤C. c b a ≤≤D. a b c ≤≤ 答案:D(杨浦区一模13)下列函数中既是奇函数,又在区间[1,1]-上单调递减的是( ) A. ()arcsin f x x = B. ()lg ||f x x = C. ()f x x =- D. ()cos f x x = 答案: C(长宁区一模16)某位喜欢思考的同学在学习函数的性质时提出了如下两个命题: 已知函数()y f x =的定义域为D ,12,x x D ∈,① 若当12()()0f x f x +=时,都有120x x +=,则函数()y f x =是D 上的奇函数; ② 若当12()()f x f x <时,都有12x x <,则函数()y f x =是D 上的增函数. 下列判断正确的是( )A. ①和②都是真命题B. ①是真命题,②是假命题C. ①和②都是假命题D. ①是假命题,②是真命题 答案:C(崇明区一模16)函数()(),,22+-==x x x g x x f 若存在,,,,,⎥⎦⎤⎢⎣⎡∈⋯29021n x x x 使得 ()()()()()()()(),n n n n x f x g x g x g x g x f x f x f +⋯++=++⋯++--121121则n 的最大值为( ).A 11 .B 13 .C 14 .D 18三、解答题(宝山区一模19)某温室大棚规定:一天中,从中午12点到第二天上午8点为保温时段,其余4小时为工人作业时段,从中午12点连续测量20小时,得出此温室大棚的温度y (单位:度)与时间t (单位:小时,[]20,0∈t )近似地满足函数213++-=t bt y 关系,其中,b 为大棚内一天中保温时段的通风量.(1)若一天中保温时段的通风量保持100个单位不变,求大棚一天中保温时段的最低温度(精确到0.1C ︒);(2)若要保持大棚一天中保温时段的最低温度不小于17C ︒.求大棚一天中保温时段通风最的最小值. 答案:(1)203(2)256(虹口区一模18)已知函数是定义在上的奇函数. (1)求实数的值及函数的值域;(2)若不等式在上恒成立,求实数的取值范围.【解析】(1)由解得,反之时, ,符合题意,故据此,,即值域为 ⑵在显然是单调增函数,,所以,故,令,则随的增大而增大, 最大值为,所求范围是16()1x f x a a+=-+(0,1)a a >≠R a ()f x ()33x t f x ⋅≥-[1,2]x ∈t (0)0f =3a =3a =16()133x f x +=-+23113131x x x -=-=++3131()()3131x x x x f x f x -----==-=-++3a =1()301()x f x f x +=>-()(1,1)f x ∈-(1,1)-32()131f x =-+[1,2]x ∈13[,]25x ∈31(33)31x xx t +≥-⋅-max31(33)31x x x t ⎡⎤+≥-⋅⎢⎥-⎣⎦31,[2,8]xm m -=∈31(33)(2)31x xx m +-⋅--24m m m m+⋅=-m 152∴15[,)2+∞(浦东新区一模19)(本小题满分14分,第1小题满分6分,第2小题满分8分)某游戏厂商对新出品的一款游戏设定了“防沉迷系统”,规则如下:①3小时以内(含3小时)为健康时间,玩家在这段时间内获得的累积经验值.....E (单位:exp )与游玩时间t (小时)满足关系式:22016E t t a =++;②3到5小时(含5小时)为疲劳时间,玩家在这段时间内获得的经验值为0(即累积经验....值.不变); ③超过5小时为不健康时间,累积经验值.....开始损失,损失的经验值与不健康时间成正比例关系,比例系数为50.(1)当1a =时,写出累积经验值.....E 与游玩时间t 的函数关系式()E f t =,并求出游玩6小时的累积经验值.....; (2)该游戏厂商把累积经验值.....E 与游玩时间t 的比值称为“玩家愉悦指数”,记作()H t ;若0a >,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24,求实数a的取值范围.解:答案:(1)22016,03()85,3533550,5t t t E f t t t t ⎧++<≤⎪==<≤⎨⎪->⎩ (写对一段得1分,共3分)6t =时,(6)35E =    (6分) (2)03t <≤时,16()=20aH t t t++  (8分) 16()244≥⇒+≥aH t t t①0319[,]4164a ⎧<≤⎪⇒∈⎨≥⎪⎩     (10分) ②39(,)1616343a a ⎧>⎪⇒∈+∞⎨+≥⎪⎩    (12分)综上,1[,)4a ∈+∞        (14分)(普陀区一模21)已知函数()2xf x =(x ∈R ),记()()()g x f x f x =--.(1)解不等式:(2)()6f x f x -≤;(2)设k 为实数,若存在实数0(1,2]x ∈,使得200(2)()1g x k g x =⋅-成立,求k 取值范围;(3)记()(22)()h x f x a f x b =++⋅+(其中a 、b 均为实数),若对于任意[0,1]x ∈,均 有1|()|2h x ≤,求a 、b 的值. 答案:(1)2(,log 3]-∞;(2)27119[,)2259;(3)12a =-,172b =.(青浦区一模19)对于在某个区间[,)a +∞上有意义的函数()f x ,如果存在一次函数()g x kx b =+使得对于任意的[,)x a ∈+∞,有|()()|1f x g x -≤恒成立,则称函数()g x 是函数()f x 在区间[,)a +∞上的弱渐近函数. (1)若函数()3g x x =是函数()3mf x x x=+在区间[4,)+∞上的弱渐近函数,求实数m 的取值范围;(2)证明:函数()2g x x =是函数()f x =[2,)+∞上的弱渐近函数. 答案:(1)[4,4]-;(2)略.(徐汇区一模18)已知函数()22ax f x x -=+,其中a R ∈. (1)解关于x 的不等式()1f x ≤-;(2)求a 的取值范围,使()f x 在区间()0+∞,上是单调减函数.答案:(1)1,2;1,20;1,02a x a x a x x =-≠->--<≤<-≥<-或 (2)1a <-(杨浦区一模19) 上海某工厂以x 千克/小时的速度匀速生产某种产品,每一小时可获得的利润是3(51)x x+-元,其中110x ≤≤.(1)要使生产该产品2小时获得的利润不低于30元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:该厂应选取何种生产速度?并求最大利润.答案:(1)[3,10];(2)6x =,最大值为4575.(长宁区一模20)已知函数2()1f x x mx =-++,()2sin()6g x x πω=+.(1)若函数()2y f x x =+为偶函数,求实数m 的值; (2)若0ω>,2()()3g x g π≤,且函数()g x 在[0,]2π上是单调函数,求实数ω的值; (3)若1ω=,若当1[1,2]x ∈时,总有2[0,]x π∈,使得21()()g x f x =,求实数m 的取值 范围.答案:(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)解:(1)设()()2h x f x x =+,则()()221h x x m x =-+++由于()h x 是偶函数,所以对任意R ∈x ,()()h x h x -=成立.……2分 即 1)2(1))(2()(22+++-=+-++--x m x x m x 恒成立.即 0)2(2=+x m 恒成立, …………………………………3分 所以 02=+m ,解得 2-=m .所以所求实数m 的值是 2-=m . …………………………………4分 (2)由()2()3g x g π≤, 得22,362k k Z πππωπ⋅+=+∈ ,即132k ω=+()k Z ∈ ………2分 当[0,]2x π∈时,[,]6626x ππωππω+∈+()0ω>,因为sin y x =在区间[,]62ππ的单调递增, 所以262ωπππ+≤,再由题设得203ω<<…………………………5分 所以12ω=. ……………………………………6分 (3)设函数()f x 在[]1,2上的值域为A ,()g x 在[]0,π上的值域为B , 由题意和子集的定义,得A B ⊆.………………………………………2分 当],0[π∈x 时,]67,6[6πππ∈+x ,]2,1[)(-∈x g . ………………3分 所以当[]1,2x ∈时,不等式2112x mx -≤-++≤恒成立, 由[]1,1,2m x x x≤+∈恒成立,得2m ≤, 由[]2,1,2m x x x≥-∈恒成立,得1m ≥, 综上,实数m 的取值范围为[]1,2 . ………………6分(崇明区一模19)(本题满分14分,本题共有2个小题,第(1)小题满分5分,第(2)小题满分9分)某创业投资公司拟投资开发某种新能源产品,估计能活得25万元1600万元的投资收益,现准备制定一个对科研课题组的奖励方案:奖金y (单位:万元)随投资收益x (单位:万元)的增加而增加,奖金不超过75万元,同时奖金不超过投资收益的20%.(即:设奖励方案函数模型为()y f x =时,则公司对函数模型的基本要求是:当[]25,1600x ∈时,①()f x 是增函数;②()75f x ≤恒成立;(3)()5xf x ≤恒成立.) (1) 判断函数()1030xf x =+是否符合公司奖励方案函数模型的要求,并说明理由;(2)已知函数()()51g x a =≥符合公司奖励方案函数模型要求,求实数a 的取值范围. (松江区一模18)已知函数2()21x f x a =-+(常数a ∈R ) (1)讨论函数()f x 的奇偶性,并说明理由;(2)当()f x 为奇函数时,若对任意的[2,3]x ∈,都有()2x mf x ≥成立,求m 的最大值. 答案:解:(1)若)(x f 为奇函数,必有(0)10f a =-= 得1a =,……………………2分当1a =时,221()12121x x x f x -=-=++,2112()()2121x xx x f x f x -----===-++∴当且仅当1a =时,)(x f 为奇函数 ………………………4分又2(1)3f a =-,4(1)3f a -=-,∴对任意实数a ,都有(1)(1)f f -≠∴)(x f 不可能是偶函数 ………………………6分(2)由条件可得:222()2(1)(21)32121x x x x x m f x ≤⋅=-=++-++恒成立, ……8分记21x t =+,则由[2,3]x ∈ 得[5,9]t ∈, ………………………10分此时函数2()3g t t t=+-在[5,9]t ∈上单调递增, ………………………12分所以()g t 的最小值是12(5)5g =, ………………………13分所以125m ≤ ,即m 的最大值是125 ………………………14分2019一模三角专题一、填空题(宝山区一模1)函数()()sin 2f x x =-的最小正周期为___________. 答案:π(宝山区一模9)已知()()2,3,1,4A B ,且()1sin ,cos ,,,222AB x y x y ππ⎛⎫=∈- ⎪⎝⎭,则x y +=__________. 答案:62or ππ-(宝山区一模11)章老师整理旧资料时发现一题部分字迹模糊不清,只能看到:在ABC ∆中,,,a b c 分别是角,,A B C 的对边,已知45b A =∠=︒,求边c 。

普通高等学校招生全国统一考试数学试题上海卷理附解答

普通高等学校招生全国统一考试数学试题上海卷理附解答

2019年一般高等学校招生全国一致考试(上海卷)数学(理工农医类)本试卷共 22道题,满分 150分考试时间120分钟第Ⅰ卷(共110分)一、填空题(本大题满分48分)本大题共有12题,只需求直接填写结果,每个空格填对得分,不然一律得零分1.函数ysinxcos(xcosxsin(x)的最小正周期T=.442.若x是方程2cos(x)1的解,此中(0,2),则33.在等差数列{a n}中,a5=3,a6=-2,则a4+a5++a10=4.在极坐标系中,定点A(1,),点B在直线cossin0上运动,当线段AB最短2时,点B的极坐标是5.在正四棱锥P—ABCD中,若侧面与底面所成二面角的大小为60°,则异面直线PA与BC所成角的大小等于.(结果用反三角函数值表示)6.设会合A={x||x|<4},B={x|x2-4x+3>0},则会合{x|x∈A且x AB}=.7.在△ABC中,sinA;sinB:sinC=2:3:4,则∠ABC=.(结果用反三角函数值表示)8.若首项为a1,公比为q的等比数列{a n}的前n项和总小于这个数列的各项和,则首项a1,公比q的一组取值能够是(a1,q)=.9.某国际科研合作项目成员由11个美国人、4个法国人和5此中国人构成.现从中随机选出两位作为成就公布人,则此两人不属于同一个国家的概率为.(结果用分数表示)10.方程x3+lgx=18的根x≈.(结果精准到)11.已知点A(0,2),B(0,2),C(42,0),此中n的为正整数.设Sn表示△ABC外接圆的面n n n积,则limS n=n112.给出问题:F1、F2是双曲线x2y2=1的焦点,点P在双曲线上.若点P到焦点F1的距162 0离等于9,求点P到焦点F2的距离.某学生的解答以下:双曲线的实轴长为8,由||PF1|-|PF2||=8,即|9-|PF2||=8,得|PF2|=1或17.该学生的解答能否正确?若正确,请将他的解题依照填在下边空格内,若不正确,将正确的结果填在下边空格内.二、选择题(本大题满分16分)本大题共4题,每题都给出代号为A、B、C、D的四个结论,此中有且只有一个结论是正确的,一定把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或许选出的代号超出一个(无论能否都写在圆括号内),一律得零分.13.以下函数中,既为偶函数又在(0,π)上单一递加的是()A.y=tg|x|.B.y=cos(-x).C.ysin(x).D.y|ctg x|.2214.在以下条件中,可判断平面α与β平行的是()A.α、β都垂直于平面r.B.α内存在不共线的三点到β的距离相等.C.l,m是α内两条直线,且l∥β,m∥β.D.l,m是两条异面直线,且l∥α,m∥α,l∥β,m∥β.15.a1、b1、c1、a2、b2、c2均为非零实数,不等式a1x2+b1x+c1>0和a2x2+b2x+c2>0的解集分别为会合M和N,那么“a1b1c1”是“M=N”的()a2b2c2A.充足非必需条件.B.必需非充足条件.C.充要条件D.既非充足又非必需条件.16.f(x)是定义在区间[-c,c]上的奇函数,其图象以下图:令g(x)=af(x)+b,则下列对于函数g(x)的表达正确的选项是()A.若a<0,则函数g(x)的图象对于原点对称.B.若a=-1,-2<b<0,则方程g(x)=0有大于2的实根.C.若a≠0,b=2,则方程g(x)=0有两个实根.D.若a≥1,b<2,则方程g(x)=0有三个实根.2三、解答题(本大题满分86分)本大题共有6题,解答以下各题一定写出必需的步骤.17.(此题满分12分)-1·z212已知复数z=cosθi,z=sinθ+i,求|z|的最大值和最小值.318.(此题满分12分)已知平行六面体ABCD—A1B1C1D1中,A1A⊥平面ABCD,AB=4,AD=2.若B1D⊥BC,直线B1D与平面ABCD所成的角等于30°,求平行六面体ABCD—A1B1C1D1的体积.419.(此题满分14分)此题共有2个小题,第1小题满分5分,第2小题满分9分.已知数列{a n}(n为正整数)是首项是a1,公比为q的等比数列.(1)乞降:a1C20a2C12a3C22,a1C30a2C13a3C32a4C33;(2)由(1)的结果归纳归纳出对于正整数n的一个结论,并加以证明 .520.(此题满分14分)此题共有2个小题,第1小题满分6分,第2小题满分8分.如图,某地道设计为双向四车道,车道总宽22米,要求通行车辆限高米,地道全长千米,地道的拱线近似地当作半个椭圆形状.(1)若最大拱高h为6米,则地道设计的拱宽l是多少?(2)若最大拱高h不小于6米,则应怎样设计拱高h和拱宽l,才能使半个椭圆形隧道的土方工程量最最小?(半个椭圆的面积公式为S lh,柱体体积为:底面积乘以高.此题结果精准到4米)621.(此题满分16分)此题共有3个小题,第1小题满分4分,第2小题满分5分,第3小题满分7分.在以O为原点的直角坐标系中,点A(4,-3)为△OAB的直角极点.已知|AB|=2|OA|,且点B的纵坐标大于零.(1)求向量AB的坐标;(2)求圆x26x y22y 0对于直线OB对称的圆的方程;(3)能否存在实数a,使抛物线y ax21上总有对于直线OB对称的两个点?若不存在,说明原因:若存在,求a的取值范围.7(22.(此题满分18分)此题共有3个小题,第1小题满分5分,第2小题满分6分,第3小题满分7分.已知会合M 是知足以下性质的函数f(x)的全体:存在非零常数T,对随意x∈R,有f(x+T)=Tf(x)成立.1)函数f(x)=x能否属于会合M?说明原因;2)设函数f(x)=a x(a>0,且a≠1)的图象与y=x的图象有公共点,证明:f(x)=a x∈M;3)若函数f(x)=sinkx∈M,务实数k的取值范围.82003年一般高等学校招生全国一致考试(上海卷)数学(理工农医类)答案一、(第1题至第12题)4.3.-49.4.(236.[1,3].1.π.2.,).5.arctg2.3247.arccos11.8.(1,1)(a10,0q1的一组数).9.11962190 10..11.4π12.|PF2|=17.二、(第13题至第16题)题号13141516代号C D D B 三、(第17题至第22题)17.[解]|z1z2||1sin cos(cos sin)i|(1s in cos)2(cos sin)22sin2cos221sin22.4故|z1z2|的最大值为3,最小值为2.218.[解]连接BD,由于B1B⊥平面ABCD,B1D⊥BC,所以BC⊥BD.在△BCD中,BC=2,CD=4,所以BD=2 3.又由于直线B1D与平面ABCD所成的角等于30°,所以1∠B1DB=30°,于是BB1= BD=2.3故平行六面体ABCD—A1B1C1D1的体积为S ABCD·BB1=8 3.919.[解](1)a1C20a2C21a3C22a12a1qa1q2a1(1q)2,a1C30a2C31a3C32a4C33a13a1q3a1q2a1q3a1(1q)3.2)归纳归纳的结论为:若数列{a n}是首项为a1,公比为q的等比数列,则0123(1)n n n为正整数.a1C n a2C n a3C n a4C n a n1C n a1(1q),n 证明:a1C n0a2C n1a3C n2a4C n3(1)n a n1C n na1C n0a1qC n1a1q2C n2a1q3C n3(1)n a1q n C n na1[C n0qC n1q2C n2q3C n3(1)n q n C n n]a1(1q)n20.[解](1)如图成立直角坐标系,则点P(11,),x2y21.椭圆方程为2b2a将b=h=6与点P坐标代入椭圆方程,得a447,此时l2a887.所以隧77道的拱宽约为米.(2)[解一]由椭圆方程x2y21,得1122 1.a2b2a2b2由于1122211即ab99,且l2a,h b,a2b2ab所以S4lh ab99.22当S取最小值时,有11221,得a112,b92a2b222此时l2a22231.1,h b故当拱高约为米、拱宽约为米时,土方工程量最小.[解二]由椭圆方程x2y21,得1122 1.于是b281a2, a2b2a2b24a212110a2b281(a21211212242)81(21212242)81121, 4a21214即ab99,当取最小值时,有a21211212Sa2,121得a112,b92.以下同解一.211。

2019年松江一中高考数学选择题专项训练(一模)

2019年松江一中高考数学选择题专项训练(一模)

2019年松江一中高考数学选择题专项训练(一模)抽选各地名校试卷,经典试题,有针对性的应对高考数学考点中的难点、重点和常规考点进行强化训练。

第1 题:来源: 2019高考数学一轮复习第5章平面向量第3讲平面向量的数量积及应用分层演练文20180910188设单位向量e1,e2的夹角为,a=e1+2e2,b=2e1-3e2,则b在a方向上的投影为( )A.- B.-C. D.【答案】A.依题意得e1·e2=1×1×cos=-,|a|==,a·b=(e1+2e2)·(2e1-3e2)=2e-6e+e1·e2=-,因此b在a方向上的投影为-,故选A.第 2 题:来源:宁夏石嘴山市2017_2018学年高二数学上学期期中试题理在等比数列中,若,是方程的两根,则的值是A. B. A.A.【答案】B第 3 题:来源:新疆呼图壁县2018届高三数学9月月考试题理试卷及答案命题“x∈R,都有ln(x2+1)>0”的否定为()A、x∈R,都有ln(x2+1)≤0B、x0∈R,都有ln(x02+1)>0C、x∈R,都有ln(x2+1)<0D、x0∈R,都有ln(x02+1)≤0 【答案】D第 4 题:来源:河南省鲁山县2017_2018学年高二数学上学期第一次月考试题理试卷及答案在等比数列中,已知前n项和=,则的值为()A.-1 B.1 C .-5 D.5【答案】C第 5 题:来源: 2017届山东省枣庄市高三数学4月阶段性自测试题试卷答案执行如图的程序框图,当输入25时,则该程序运行后输出的结果是()A.4 B.5 C.6 D.7【答案】B第 6 题:来源:甘肃省民勤县第一中学2017_2018学年高一数学上学期期末考试试题已知直线若,则的值为()A.B.C.D.【答案】A第 7 题:来源:黑龙江省大庆市2018届高三数学上学期期初考试试题试卷及答案理已知三棱锥的四个顶点都在球的表面上,平面,且,则球的表面积为()A. B. C.D.【答案】C第 8 题:来源:甘肃省兰州市2017_2018学年高一数学上学期期中试题试卷及答案设集合,集合,,则等于()A.B.C.D.【答案】B第 9 题:来源:吉林省普通高中2016_2017学年高三数学毕业第三次调研测试试卷理试卷及答案给出下列几个命题:①命题任意,都有,则存在,使得.②命题“若且,则且”的逆命题为假命题.③空间任意一点和三点,则是三点共线的充分不必要条件.④线性回归方程对应的直线一定经过其样本数据点中的一个.其中不正确的个数为A. B. C.D.【答案】B第 10 题:来源:福建省永春县第一中学2017_2018学年高二数学上学期期初考试试题文(含解析)设集合,下列四个图象中能表示从集合到集合的函数关系的有()A. B.C. D.【答案】B【解析】因为,对于图①中,在集合中区间内的元素没有象,比如的值就不存在,所以图①不符合题意;对于图②中,对于中任意一个元素,中有唯一元素与之对应,符合函数的对应法则,故②正确;对于图③中,在集合中区间内的元素没有象,比如的值就不存在,故③不符合题意;对于图④中,集合的一个元素对应中的两个元素,比如当时,有两个值与之对应,不符合函数的定义,故④不正确,故选B.第 11 题:来源: 2016_2017学年江西省宜春市奉新县高二数学下学期期末考试试题试卷及答案理定义在上的奇函数,满足,且在上单调递增,则的解集为()A.或B.或C.或D.或【答案】A第 12 题:来源:江西省南昌市第二中学2018_2019学年高二数学上学期第三次月考试题理如果椭圆上一点P到它的右焦点距离是6,那么点P到它的左焦点的距离是()A.2 B.3 C.4D.8【答案】A第 13 题:来源:广东省深圳市耀华实验学校2018_2019学年高二数学上学期第一次月考试题理在ABC中,角A、B、C所对的边分别为a、b、c,其外接圆半径为6,,则=( )A. B.C. 1 D.【答案】D第 14 题:来源:四川省成都市第七中学2019届高三数学一诊模拟考试试题理(含解析)已知正三棱锥的高为6,侧面与底面成的二面角,则其内切球(与四个面都相切)的表面积为()A. B. C. D.【答案】B【解析】【分析】过点P作PD⊥平面ABC于D,连结并延长AD交BC于E,连结PE,△ABC是正三角形,AE是BC边上的高和中线,D为△ABC的中心.由此能求出棱锥的全面积,再求出棱锥的体积,设球的半径为r,以球心O 为顶点,棱锥的四个面为底面把正三棱锥分割为四个小棱锥,利用等体积能求出球的表面积.【详解】如图,过点P作PD⊥平面ABC于D,连结并延长AD交BC于E,连结PE,△ABC是正三角形,∴AE是BC边上的高和中线,D为△ABC的中心.∴为侧面与底面所成的二面角的平面角,∴=∵PD=6,∴DE=2,PE=4 , AB=12,∴S△ABC=×(12)2=36,S△PAB=S△PBC=S△PCA==24.∴S表=108.设球的半径为r,以球心O为顶点,棱锥的四个面为底面把正三棱锥分割为四个小棱锥,∵PD=6,∴VP﹣ABC=•36•6=72.则由等体积可得r==2,∴S球=4π22=16π.故选B.【点睛】本题考查棱锥的内切球的半径的求法,棱锥全面积和体积的求法,考查球的表面积公式,解题时要认真审题,注意空间思维能力的培养.第 15 题:来源:湖南省醴陵二中、醴陵四中2018_2019学年高二数学下学期期中联考试题理=()A.1B.2C.3D.4【答案】 A第 16 题:来源: 2017届安徽省马鞍山市高三第三次模拟数学试卷(理)含答案已知向量,,,若实数满足,则()(A)5 (B)6 (C)7 (D)8【答案】B【命题意图】本题考查平面向量相等的定义及坐标运算,难度:简单题.第 17 题:来源:高中数学第三章导数及其应用3.3导数的应用3.3.2利用导数研究函数的极值课后导练新人教B版选修1_120171101249若函数y=f(x)可导,则“f′(x)=0有实根”是“f(x)有极值”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【答案】A第 18 题:来源:山东省泰安市2019届高三数学一轮复习质量检测试卷理(含解析)某中学数学竞赛培训班共有10人,分为甲,乙两个小组,在一次阶段测试中两个小组成绩的茎叶图如图所示,已知甲组5名同学成绩的平均数为81,乙组5名同学成绩的中位数为73,则的值为A. 2B.C.3 D.【答案】D【解析】【分析】根据茎叶图中的数据,结合平均数与中位数的概念,求出x、y的值.【详解】解:根据茎叶图中的数据,得;甲班5名同学成绩的平均数为,解得;又乙班5名同学的中位数为73,则;.故选:D.【点睛】本题考查了平均数与中位数的概念与应用问题,是基础题.第 19 题:来源: 2017届四川省泸州市高三三诊考试理科数学试题含答案已知中,,以为焦点的双曲线()经过点,且与边交于点,若,则该双曲线的离心率为()A. B. C. D.【答案】D第 20 题:来源:辽宁省大石桥市2017_2018学年高二数学上学期期初考试试题如图,在中,点满足,()则A. B.( )C. D.【答案】D第 21 题:来源:辽宁省六校协作体2019届高三数学上学期初考试试题理已知集合,则()A. B. C. D.【答案】D第 22 题:来源: 2017届河南省高考适应性测试数学试题(理)含答案已知函数在点处的切线为,若与二次函数的图象也相切,则实数的取值范围为A. B. C. D.【答案】D第 23 题:来源:福建省莆田市第二十四中学2016-2017学年高二数学上学期期末考试试题试卷及答案理某学校安排甲、乙、丙、丁四位同学参加数学、物理、化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲、乙不能参加同一学科,则不同的安排方法有()(A)36种(B)30种(C)24种(D)6种【答案】B第 24 题:来源: 2019高中数学第一章统计案例测评(含解析)新人教A版选修1_2已知两个分类变量X和Y,它们的取值分别为{x1,x2}和{y1,y2},其样本频数分别是a=10,b=21,c+d=35,若“X和Y有关系”的可信程度为90%,则c等于( )A.4B.5C.6D.7【答案】B由a=10,b=21,c+d=35,可得n=66,d=35-c,a+b=31,a+c=10+c,b+d=56-c,ad=10(35-c),bc=21c.由于“X和Y有关系”的可信度为90%,则随机变量K2的观测值 3.841>k>2.706,得3.841>>2.706,代入检验,得c=5符合题意.第 25 题:来源:四川省资阳中学2019届高三数学10月月考试题定义在R上的奇函数y=f(x)满足f(3)=0,且不等式f(x)>-xf′(x)在(0,+∞)上恒成立,则函数g(x)=xf(x)+lg|x+1|的零点个数为( )A.4 B.3 C.2 D.1【答案】 B解析定义在R上的奇函数f(x)满足:f(0)=0=f(3)=f(-3),f(-x)=-f(x),当x>0时,f(x)>-xf′(x),即f(x)+xf′(x)>0,∴[xf(x)]′>0,即h(x)=xf(x)在x>0时是增函数,又h(-x)=-xf(-x)=xf(x),∴h(x)=xf(x)是偶函数,∴当x<0时,h(x)是减函数,结合函数的定义域为R,且f(0)=f(3)=f(-3)=0,可得函数y1=xf(x)与y2=-lg|x+1|的大致图象如图,由图象可知,函数g(x)=xf(x)+lg|x+1|的零点的个数为3.第 26 题:来源:广东省天河区普通高中2017_2018学年高二数学11月月考试题04 试卷及答案不等式的解集为A. B. C. D.【答案】C第 27 题:来源: 2016_2017学年黑龙江省哈尔滨市高一数学6月月考试题已知点在表示的区域内(包含边界),且目标函数取得最大值的最优解有无穷多个,则的值为()【答案】B第 28 题:来源:河北省石家庄市2017_2018学年高一数学上学期期中试题试卷及答案在区间(-∞,0)上为增函数的是( )A.y=-2x B.y= C.y=|x| D.y=-x2【答案】D第 29 题:来源:河南省兰考县2016_2017学年高二数学下学期期末考试试题试卷及答案理已知集合A={x∈R ||x|≤2},B={x∈R |x≤1},则A∩B= ( )A.(-∞,2]B.[1,2]C.[-2,2]D.[-2,1]【答案】D第 30 题:来源:广东省中山市2016_2017学年高一数学下学期期末统一考试试题(含解析)执行如图的程序框图,如果输入的,,,则输出的值满足()A. B.C. D.【答案】C【解析】试题分析:运行程序,,判断否,,判断否,,判断是,输出,满足.考点:程序框图.第 31 题:来源:内蒙古翁牛特旗2017_2018学年高二数学上学期期中试题试卷及答案、圆的周长是().A. B. C. D.【答案】A第 32 题:来源:福建省莆田市2016_2017学年高二数学下学期第二次月考试题理已知,则的最小值是()A.8 B.6 C.2 D.9【答案】A第 33 题:来源:甘肃省静宁县第一中学2018_2019学年高二数学下学期期末考试试题理已知函数是函数的导函数,,对任意实数都有,则不等式的解集为()A. B. C.D.【答案】B第 34 题:来源:湖北省“荆、荆、襄、宜四地七校考试联盟”2019届高三数学4月联考试题理(含解析)向量在正方形网格中的位置如图所示.若向量与共线,则实数()A. B. C.D.【答案】D【解析】【分析】由图像,根据向量的线性运算法则,可直接用表示出,进而可得出.【详解】由题中所给图像可得:,又,所以.故选D【点睛】本题主要考查向量的线性运算,熟记向量的线性运算法则,即可得出结果,属于基础题型.第 35 题:来源:湖南省怀化三中2017_2018学年高二数学下学期期中试题理“1<x<2”是“x<2”成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A第 36 题:来源:湖南省衡阳市2017_2018学年高二数学上学期第一次月考试题(实验班)理试卷及答案已知数列{an}通项公式为an=,其前m项和为,则双曲线=1的渐近线方程是()A.y=±x B.y=±x C.y=±xD.y=±x【答案】C第 37 题:来源:山东省临沂市2017届高三数学二模试卷理(含解析)全集为实数集R,集合M={x||x|≤3},集合N={x|x<2},则(∁RM)∩N=()A.{x|x<﹣3} B.{x|﹣3<x<2} C.{x|x<2} D.{x|﹣3≤x<2}【答案】A【考点】1H:交、并、补集的混合运算.【分析】根据题意,解|x|≤3可得集合M,由集合补集的性质可得∁RM,进而由集合交集的定义计算可得答案.【解答】解:根据题意,集合M={x||x|≤3}={x|﹣3≤x≤3},则∁RM={x|x<﹣3或x>3},又由集合N={x|x<2},则(∁RM)∩N={x|x<﹣3},故选:A.第 38 题:来源: 2017年河南省高考数学适应性试卷(理科)含答案解析已知函数y=x+1+lnx在点A(1,2)处的切线l,若l与二次函数y=ax2+(a+2)x+1的图象也相切,则实数a的取值为()A.12 B.8 C.0 D.4【答案】D【考点】利用导数研究曲线上某点切线方程.【分析】求出y=x+1+lnx的导数,求得切线的斜率,可得切线方程,再由于切线与曲线y=ax2+(a+2)x+1相切,有且只有一切点,进而可联立切线与曲线方程,根据△=0得到a的值.【解答】解:y=x+1+lnx的导数为y′=1+,曲线y=x+1+lnx在x=1处的切线斜率为k=2,则曲线y=x+1+lnx在x=1处的切线方程为y﹣2=2x﹣2,即y=2x.由于切线与曲线y=ax2+(a+2)x+1相切,y=ax2+(a+2)x+1可联立y=2x,得ax2+ax+1=0,又a≠0,两线相切有一切点,所以有△=a2﹣4a=0,解得a=4.故选:D.第 39 题:来源:湖北省黄冈市某校2018_2019学年高二数学4月月考试题理.已知向量,则以为邻边的平行四边形的面积为()A.B.C.4 D.8【答案】B【解析】设向量和的夹角是,则由空间向量的数量积公式和題意得,所以以和为邻边的平行四边形的面积为,故选B.第 40 题:来源:西藏日喀则市南木林高级中学2019届高三数学上学期期中试题已知圆C过双曲线的一个顶点和一个焦点,且圆心在该双曲线上,则圆心到该双曲线的中心的距离是().A.B. C.D.5已知直线与圆及抛物线依次交于四点,则等于()A.10B.12C.14D.16【答案】C第 41 题:来源:浙江省温州市“十五校联合体”2018_2019学年高二数学上学期期中联考试题设α,β是两个不同的平面,l,m是两条不同的直线,且l ⊂α,m⊂β()A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m 【答案】A第 42 题:来源: 2019高中数学第四章框图测评(含解析)新人教A版选修1_2.如图是一商场某一个时间制订销售计划时的局部结构图,则“计划”受影响的主要要素有( )A.1个B.2个C.3个D.4个【答案】C解析:影响“计划”的主要要素应是3个“上位”要素,分别是“政府行为”“策划部”“社会需求”. 第 43 题:来源:广西钦州市钦州港区2017届高三数学12月月考试题理若非零向量满足,则与的夹角为()A. B. C. D.【答案】D第 44 题:来源: 2019高中数学第二章平面向量单元测试(一)新人教A版必修4向量,,若与平行,则等于()A. B. C.D.【答案】D【解析】,,则,.故选D.第 45 题:来源: 2017-2018学年吉林省通化市辉南高一(上)期末数学试卷(含答案解析)下列函数中在区间(0,1)上为增函数的是()A.y=2x2﹣x+3 B. C. D.【答案】C】解:对于A,函数的对称轴是x=,函数在(0,)递减,不合题意;对于B,函数在R递减,不合题意;对于C,函数在(0,+∞)递增,符合题意;对于D,函数在(0,+∞)递减,不合题意;第 46 题:来源:广东省惠州市惠城区2018届高三数学9月月考试题理试卷及答案函数则A. B. C. D.【答案】A第 47 题:来源:高中数学第三章导数及其应用3.1导数3.1.1函数的平均变化率自我小测新人教B版选修1_120171101233函数f(x)=x2在x0到x0+Δx之间的平均变化率为k1,在x0-Δx到x0之间的平均变化率为k2,则k1,k2的大小关系是( )A.k1<k2 B.k1>k2 C.k1=k2 D.无法确定【答案】D第 48 题:来源:四川省眉山一中办学共同体2018_2019学年高二数学上学期期中试题理已知l,m,n为不同的直线,α,β,γ为不同的平面,则下列判断正确的是( )A.若m∥α,n∥α,则m∥nB.若m⊥α,n∥β,α⊥β,则m⊥nC.若α∩β=m,α∩γ=n,l⊥m,l⊥n,则l⊥αD.若α∩β=l,m∥α,m∥β,则m∥l【答案】D第 49 题:来源:河北省武邑中学2019届高三数学上学期第三次调研考试试题文已知是虚数单位,表示复数的共轭复数.若,则 ( )A. B. C. D.【答案】 B第 50 题:来源:高中数学第三章导数及其应用3.1导数3.1.2瞬时速度与导数3.1.3导数的几何意义自我小测新人教B版选修1_120171101235曲线y=x3+2在点处切线的倾斜角为( )A.30° B.45° C.135° D.60°【答案】B。

2020届松江区高考数学一模.

2020届松江区高考数学一模.

则∠CDE 或其补角即为所求,如图所示;……………… 8 分
因 AO⊥EO,AO⊥CO,EO CO=O 知,AO⊥平面 ECO 又
DE / / AO ,∴DE⊥平面 ECO,∴DE⊥EC,
∴ DEC 是 RT
……………… 10 分
由 DE = 1 OA = 1, 2
……………… 11 分
CE = OC2 + OE2 = 22 + 33 = 13 ……………… 13 分
车.某种算法(如下图所示)将报警时间划分为 4 段,分别为准备时间 t0 、人的反应时间 t1 、系统反应时 间 t2 、制动时间 t3 ,相应的距离分别为 d0 、 d1 、 d2 、 d3 .当车速为 v (米/秒),且 v [0,33.3] 时,通 过大数据统计分析得到下表(其中系数 k 随地面湿滑程度等路面情况而变化, k [0.5, 0.9]).
(A) M 的最小值为1 (C) M 的最小值为 4
(B) M 的最小值为 2 (D) M 的最小值为 8
16. 已知集合 M = {1, 2,3, ,10},集合 A M ,定义 M ( A) 为 A 中元素的最小值,当 A 取遍 M 的所
有非空子集时,对应的 M ( A) 的和记为 S10 ,则 S10 = (
所以 A 点的坐标 A(2, 2 2) 或 A(2, −2 2)
………………………4 分
(2)设 A(x1,y1),B(x2,y2), 设直线 AB 的方程是:x=my+2,
联立

x
= y2
my + = 4x
中点. (1)求圆锥的侧面积与体积;
(2)求异面直线 CD 与 AB 所成角的大小(结果用反三角函数表示).

2019年上海市松江区高考数学一模试卷及答案

2019年上海市松江区高考数学一模试卷及答案

上海市松江区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)计算:=.2.(4分)已知集合A={x|0<x<3},B={x|x2≥4},则A∩B=.3.(4分)已知{a n}为等差数列,S n为其前n项和.若a1+a9=18,a4=7,则S10=.4.(4分)已知函数f(x)=log2(x+a)的反函数为y=f﹣1(x),且f﹣1(2)=1,则实数a=.5.(4分)已知角α的终边与单位圆x2+y2=1交于,则cos2α等于.6.(4分)如图是一个算法的程序框图,当输入的值x为8时,则其输出的结果是.7.(5分)函数y=sin2x的图象与y=cosx的图象在区间[0,2π]上交点的个数是.8.(5分)设直线ax﹣y+3=0与圆(x﹣1)2+(y﹣2)2=4相交于A、B两点,且弦AB的长为2,则a=.9.(5分)在△ABC中,∠A=90°,△ABC的面积为1,若=,=4,则的最小值为.10.(5分)已知函数f(x)=x|2x﹣a|﹣1有三个零点,则实数a的取值范围为.11.(5分)定义,已知函数f(x)、g(x)的定义域都是R,则下列四个命题中为真命题的是(写出所有真命题的序号)①若f(x)、g(x)都是奇函数,则函数F(f(x),g(x))为奇函数;②若f(x)、g(x)都是偶函数,则函数F(f(x),g(x))为偶函数;③若f(x)、g(x)都是增函数,则函数F(f(x),g(x))为增函数;④若f(x)、g(x)都是减函数,则函数F(f(x),g(x))为减函数.12.(5分)已知数列{a n}的通项公式为a n=2q n+q(q<0,n∈N*),若对任意m,n∈N*都有,则实数q的取值范围为.二.选择题(本大题共4题,每题5分,共20分)13.(5分)若2﹣i是关于x的方程x2+px+q=0的一个根(其中i为虚数单位,p,q∈R),则q的值为()A.﹣5 B.5 C.﹣3 D.314.(5分)已知f(x)是R上的偶函数,则“x1+x2=0”是“f(x1)﹣f(x2)=0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件15.(5分)若存在x∈[0,+∞)使成立,则实数m的取值范围是()A.(﹣∞,1)B.(﹣1,+∞)C.(﹣∞,﹣1]D.[1,+∞)16.(5分)已知曲线C1:|y|﹣x=2与曲线C2:λx2+y2=4恰好有两个不同的公共点,则实数λ的取值范围是()A.(﹣∞,﹣1]∪[0,1)B.(﹣1,1]C.[﹣1,1)D.[﹣1,0]∪(1,+∞)三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)在△ABC中,AB=6,AC=3,=﹣18.(1)求BC边的长;(2)求△ABC的面积.18.(14分)已知函数(x≠0,常数a∈R).(1)讨论函数f(x)的奇偶性,并说明理由;(2)当a>0时,研究函数f(x)在x∈(0,+∞)内的单调性.19.(14分)松江有轨电车项目正在如火如荼的进行中,通车后将给市民出行带来便利,已知某条线路通车后,电车的发车时间间隔t(单位:分钟)满足2≤t ≤20,经市场调研测算,电车载客量与发车时间间隔t相关,当10≤t≤20时电车为满载状态,载客量为400人,当2≤t<10时,载客量会减少,减少的人数与(10﹣t)的平方成正比,且发车时间间隔为2分钟时的载客量为272人,记电车载客量为p(t).(1)求p(t)的表达式,并求当发车时间间隔为6分钟时,电车的载客量;(2)若该线路每分钟的净收益为(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?20.(16分)已知椭圆E:=1(a>b>0)经过点,其左焦点为,过F点的直线l交椭圆于A、B两点,交y轴的正半轴于点M.(1)求椭圆E的方程;(2)过点F且与l垂直的直线交椭圆于C、D两点,若四边形ACBD的面积为,求直线l的方程;(3)设,,求证:λ1+λ2为定值.21.(18分)已知有穷数列{a n}共有m项(m≥2,m∈N*),且|a n+1﹣a n|=n(1≤n≤m﹣1,n∈N*).(1)若m=5,a1=1,a5=3,试写出一个满足条件的数列{a n};(2)若m=64,a1=2,求证:数列{a n}为递增数列的充要条件是a64=2018;(3)若a1=0,则a m所有可能的取值共有多少个?请说明理由.2018年上海市松江区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)计算:=.【解答】解:==,故答案为:,2.(4分)已知集合A={x|0<x<3},B={x|x2≥4},则A∩B={x|2≤x<3} .【解答】解:由已知得:B={x|x≤﹣2或x≥2},∵A={ x|0<x<3},∴A∩B={x|0<x<3}∩{ x|x≤﹣2或x≥2}={x|2≤x<3}为所求.故答案为:{x|2≤x<3}.3.(4分)已知{a n}为等差数列,S n为其前n项和.若a1+a9=18,a4=7,则S10= 100.【解答】解:设等差数列{a n}的公差为d,∵a1+a9=18,a4=7,∴,解得d=2,a1=1.则S10=10+=100.故答案为:100.4.(4分)已知函数f(x)=log2(x+a)的反函数为y=f﹣1(x),且f﹣1(2)=1,则实数a=3.【解答】解:函数f(x)=log2(x+a)的反函数为y=f﹣1(x),且f﹣1(2)=1,则:2=,解得:a=3.故答案为:3.5.(4分)已知角α的终边与单位圆x2+y2=1交于,则cos2α等于﹣.【解答】解:∵角α的终边与单位圆x2+y2=1交于,∴可得:r=1,cosα=,∴cos2α=2cos2α﹣1=2×﹣1=﹣.故答案为:﹣.6.(4分)如图是一个算法的程序框图,当输入的值x为8时,则其输出的结果是2.【解答】解:x=8>0,执行循环体,x=x﹣3=5﹣3=2>0,继续执行循环体,x=x﹣3=2﹣3=﹣1<0,满足条件,退出循环体,故输出y=0.5﹣1=()﹣1=2.故答案为:27.(5分)函数y=sin2x的图象与y=cosx的图象在区间[0,2π]上交点的个数是4.【解答】解:由于函数y=sin2x与y=cosx有交点,则:sin2x=cosx,整理得:sinx=或cosx=0所以:在[0,2π]范围内,x=,,,,故答案为:4.8.(5分)设直线ax﹣y+3=0与圆(x﹣1)2+(y﹣2)2=4相交于A、B两点,且弦AB的长为2,则a=0.【解答】解:由于圆(x﹣1)2+(y﹣2)2=4的圆心C(1,2),半径等于2,且圆截直线所得的弦AB的长为2,故圆心到直线ax﹣y+3=0的距离为=1,即=1,解得a=0,故答案为0.9.(5分)在△ABC中,∠A=90°,△ABC的面积为1,若=,=4,则的最小值为.【解答】解:如图,建立直角坐标系,设B(10x,0),C(0,10y),若=,=4,则M(5x,5y),N(2x,8y),由题意△ABC的面积为1,可得50xy=1,=10x2+40y2≥2xy=,当且仅当x=2y=时取等号.故答案为:.10.(5分)已知函数f(x)=x|2x﹣a|﹣1有三个零点,则实数a的取值范围为(2,+∞).【解答】解:函数f(x)=x|2x﹣a|﹣1有三个零点,就是x|2x﹣a|=1,即|2x﹣a|=有三个解,令y=|2x﹣a|,y=,可知y=,画出两个函数的图象,如图:x,y=,y′==﹣2,解得x=,x=﹣(舍去),此时切点坐标(,),代入y=a﹣2x可得,a==2,函数f(x)=x|2x﹣a|﹣1有三个零点,则实数a的取值范围为(2,+∞).故答案为:(2,+∞).11.(5分)定义,已知函数f(x)、g(x)的定义域都是R,则下列四个命题中为真命题的是②③④(写出所有真命题的序号)①若f(x)、g(x)都是奇函数,则函数F(f(x),g(x))为奇函数;②若f(x)、g(x)都是偶函数,则函数F(f(x),g(x))为偶函数;③若f(x)、g(x)都是增函数,则函数F(f(x),g(x))为增函数;④若f(x)、g(x)都是减函数,则函数F(f(x),g(x))为减函数.【解答】解:,若f(x)、g(x)都是奇函数,则函数F(f(x),g(x))不一定是奇函数,如y=x 与y=x3,故①是假命题;若f(x)、g(x)都是偶函数,则函数F(f(x),g(x))为偶函数,故②是真命题;若f(x)、g(x)都是增函数,则函数F(f(x),g(x))为增函数,故③是真命题;若f(x)、g(x)都是减函数,则函数F(f(x),g(x))为减函数,故④是真命题.故答案为:②③④.12.(5分)已知数列{a n}的通项公式为a n=2q n+q(q<0,n∈N*),若对任意m,n∈N*都有,则实数q的取值范围为(﹣,0).【解答】解:由a n=2q n+q(q<0,n∈N*),因为a1=3q<0,且对任意n∈N*,∈(,6)故a n<0,特别地2q2+q<0,于是q∈(﹣,0),此时对任意n∈N*,a n≠0.当﹣<q<0时,a2n=|q|2n+q>q,a2n﹣1=﹣2|q|2n﹣1+q<q,由指数函数的单调性知,{a n}的最大值为a2=2q2+q,最小值为a1=3q,由题意,的最大值及最小值分别为=和=.由>及<6,解得﹣<q<0.综上所述,q的取值范围为(﹣,0),故答案为:(﹣,0).二.选择题(本大题共4题,每题5分,共20分)13.(5分)若2﹣i是关于x的方程x2+px+q=0的一个根(其中i为虚数单位,p,q∈R),则q的值为()A.﹣5 B.5 C.﹣3 D.3【解答】解:∵2﹣i是关于x的实系数方程x2+px+q=0的一个根,∴2+i是关于x的实系数方程x2+px+q=0的另一个根,则q=(2﹣i)(2+i)=|2﹣i|2=5.故选:B.14.(5分)已知f(x)是R上的偶函数,则“x1+x2=0”是“f(x1)﹣f(x2)=0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:∵f(x)是R上的偶函数,∴“x1+x2=0”⇒“f(x1)﹣f(x2)=0”,“f(x1)﹣f(x2)=0”⇒“x1+x2=0”或“x1=x2”,∴“x1+x2=0”是“f(x1)﹣f(x2)=0”的充分而不必要条件.故选:A.15.(5分)若存在x∈[0,+∞)使成立,则实数m的取值范围是()A.(﹣∞,1)B.(﹣1,+∞)C.(﹣∞,﹣1]D.[1,+∞)【解答】解:存在x∈[0,+∞)使成立,∴2x•x﹣2x•m<1,∴2x•m>2x•x﹣1,∴m>x﹣,∵x∈[0,+∞),∴2x≥1,∴m>x﹣≥﹣1.∴实数m的取值范围是(﹣1,+∞).故选:B.16.(5分)已知曲线C1:|y|﹣x=2与曲线C2:λx2+y2=4恰好有两个不同的公共点,则实数λ的取值范围是()A.(﹣∞,﹣1]∪[0,1)B.(﹣1,1]C.[﹣1,1)D.[﹣1,0]∪(1,+∞)【解答】解:由x=|y|﹣2可得,y≥0时,x=y﹣2;y<0时,x=﹣y﹣2,∴函数x=|y|﹣2的图象与方程y2+λx2=4的曲线必相交于(0,±2),所以为了使曲线C1:|y|﹣x=2与曲线C2:λx2+y2=4恰好有两个不同的公共点,则将x=y﹣2代入方程y2+λx2=4,整理可得(1+λ)y2﹣4λy+4λ﹣4=0,当λ=﹣1时,y=2满足题意,∵曲线C1:|y|﹣x=2与曲线C2:λx2+y2=4恰好有两个不同的公共点,∴△>0,2是方程的根,∴<0,即﹣1<λ<1时,方程两根异号,满足题意;综上知,实数λ的取值范围是[﹣1,1).故选C.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)在△ABC中,AB=6,AC=3,=﹣18.(1)求BC边的长;(2)求△ABC的面积.【解答】解:(1)=﹣18,由于:AB=6,AC=3,所以:BC2=AB2+AC2﹣2AB•ACcosA,解得:BC=3.(2)在△ABC中,BA=6,AC=3,BC=3,则:cosA==﹣,所以:sinA=,则:=.18.(14分)已知函数(x≠0,常数a∈R).(1)讨论函数f(x)的奇偶性,并说明理由;(2)当a>0时,研究函数f(x)在x∈(0,+∞)内的单调性.【解答】解:(1)当a=0时,函数f(x)=1(x≠0)满足f(﹣x)=f(x),此时f(x)为偶函数;当a≠0时,函数f(a)=0,f(﹣a)=2,不满足f(﹣x)=f(x),也不满足f(﹣x)=﹣f(x),此时f(x)为非奇非偶函数;(2)当a>0时,若x∈(0,a),则,为减函数;若x∈(a,+∞),则,为增函数;故f(x)在(0,a)上为减函数,在(a,+∞)上为增函数;19.(14分)松江有轨电车项目正在如火如荼的进行中,通车后将给市民出行带来便利,已知某条线路通车后,电车的发车时间间隔t(单位:分钟)满足2≤t ≤20,经市场调研测算,电车载客量与发车时间间隔t相关,当10≤t≤20时电车为满载状态,载客量为400人,当2≤t<10时,载客量会减少,减少的人数与(10﹣t)的平方成正比,且发车时间间隔为2分钟时的载客量为272人,记电车载客量为p(t).(1)求p(t)的表达式,并求当发车时间间隔为6分钟时,电车的载客量;(2)若该线路每分钟的净收益为(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?【解答】解:(1)由题意知,p(t)=(k为常数),∵p(2)=400﹣k(10﹣2)2=272,∴k=2.∴p(t)=.∴p(6)=400﹣2(10﹣6)2=368;(2)由,可得Q=,当2≤t<10时,Q=180﹣(12t+),当且仅当t=5时等号成立;当10≤t≤20时,Q=﹣60+≤﹣60+90=30,当t=10时等号成立.∴当发车时间间隔为5分钟时,该线路每分钟的净收益最大,最大为60元.20.(16分)已知椭圆E:=1(a>b>0)经过点,其左焦点为,过F点的直线l交椭圆于A、B两点,交y轴的正半轴于点M.(1)求椭圆E的方程;(2)过点F且与l垂直的直线交椭圆于C、D两点,若四边形ACBD的面积为,求直线l的方程;(3)设,,求证:λ1+λ2为定值.【解答】解:(1)由题意可得:c=,则a2=b2+c2=b2+3,将代入椭圆方程:,解得:b2=1,a2=4,∴椭圆的E的方程:;(2)设直线l:y=k(x+),A(x1,y1),B(x2,y2),C(x0,y0),则D(x1,﹣y1),联立,整理得:(1+4k2)x2+8k2x+12k2﹣4=0,∴x1+x2=﹣,x1x2=,|AB|==,由直线CD的斜率为﹣,将k转化成﹣,同理|CD|=,∴四边形ACBD的面积S=×|AB||CD|==,∴2k4﹣5k2+2=0,解得:k2=2,k2=,∴k=±或k=±,由k>0,∴k=或k=,∴直线AB的方程为x﹣y+=0或x﹣y+=0;(3),,得x1=λ1(﹣﹣x1),x2=λ2(﹣﹣x2),∴λ1=,λ2=,λ1+λ2=﹣(+)=﹣==﹣8,λ1+λ2为定值,定值为﹣8.21.(18分)已知有穷数列{a n}共有m项(m≥2,m∈N*),且|a n+1﹣a n|=n(1≤n≤m﹣1,n∈N*).(1)若m=5,a1=1,a5=3,试写出一个满足条件的数列{a n};(2)若m=64,a1=2,求证:数列{a n}为递增数列的充要条件是a64=2018;(3)若a1=0,则a m所有可能的取值共有多少个?请说明理由.﹣a n|=n(1【解答】解:(1)有穷数列{a n}共有m项(m≥2,m∈N*),且|a n+1≤n≤m﹣1,n∈N*).m=5,a1=1,a5=3,则满足条件的数列{a n}有:1,2,4,7,3和1,0,2,﹣1,3.证明:(2)必要性若{a n}为递增数列,由题意得:a2﹣a1=1,a3﹣a2=2,…,a64﹣a63=63,∴a64﹣a1==2016,∵a1=2,∴a64=2018.充分性﹣a n|=n,1≤n≤63,n∈N*,由题意|a n+1∴a2﹣a1≤1,a3﹣a2≤2,…,a64﹣a63≤63,∴a64﹣a1≤2016,∴a64≤2018,∵a64=2018,∴a n﹣a n=n,1≤n≤63,n∈N*,+1∴{a n}是增数列,综上,数列{a n}为递增数列的充要条件是a64=2018.解:(3)由题意得a2﹣a1=±1,a3﹣a2=±2,…,a m﹣a m﹣1=±(m﹣1),假设a m=b1+b2+b3+…+b m﹣1,其中,b i∈{﹣i,i},(i∈N*,1≤i≤m﹣1),则(a m)min=﹣1﹣2﹣…﹣(m﹣1)=﹣.若a n中有k项,,,…,取负值,则有a m=(a m)max﹣(+++…+),(*)∴a m的所有可能值与(a m)max的差必为偶数,下面用数学归纳法证明a n可以取到﹣与之间相差2的所有整数,由(*)知,只需从1,2,3,…,m﹣1中任取一项或若干项相加,可以得到2从1到的所有整数值即可,当m=2时,成立,当m=3时,从1,2中任取一项或两项相加,可以得到从1,2,3中任取一项或若干项相加,可以得到从1到3的所有整数,结论成立,②假设m=k(k≥3,k∈N*)结论成立,即从1,2,3,…,k﹣1中任取一项或若干项相加,可以得到从1到的所有整数值,则当m=k+1时,由假设,从1,2,3,…,k﹣1中任取一项或若干项相加,可以得到从1到的所有整数值,用k取代1,2,3,…,k﹣1中的k,可得,用k取代1,2,3,…,k﹣1中的k﹣2,可得,将1,2,3,…,k﹣1,k全部相加,可得,故命题成立,∴a m所有可能的取值共有:=个.。

2019年松江四中高考数学选择题专项训练(一模)

2019年松江四中高考数学选择题专项训练(一模)

2019年松江四中高考数学选择题专项训练(一模)抽选各地名校试卷,经典试题,有针对性的应对高考数学考点中的难点、重点和常规考点进行强化训练。

第 1 题:来源:宁夏银川市2016_2017学年高二数学下学期第一次月考试题试卷及答案理下面用“三段论”形式写出的演绎推理:因为指数函数y=ax(a>0,且a≠1)在(0,+∞)上是增函数,y=()x是指数函数,所以y=()x在(0,+∞)上是增函数.该结论显然是错误的,其原因是()A.大前提错误B.小前提错误 C.推理形式错误D.以上都可能【答案】A第 2 题:来源:湖北省黄冈市某校2018_2019学年高二数学4月月考试题理某中学高一年级从甲、乙两个班级各选出8名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生成绩的平均分为86,乙班学生成绩的中位数是83,则的值为( )A.9B.10C.11D.13【答案】D第 3 题:来源: 2016_2017学年广西桂林市高一数学下学期开学考试试题试卷及答案已知为第三象限角,则所在的象限是( )A.第一或第二象限 B.第二或第三象限C.第一或第三象限 D.第二或第四象限【答案】D第 4 题:来源: 2019高考数学一轮复习第5章平面向量第2讲平面向量的基本定理及坐标表示分层演练文20180910186在平面直角坐标系中,已知向量a=(1,2),a-b=(3,1),c=(x,3),若(2a+b)∥c,则x=( ) A.-2 B.-4C.-3 D.-1【答案】D.因为a-b=(3,1),所以a-(3,1)=b,则b=(-4,2).所以2a+b=(-2,6).又(2a+b)∥c,所以-6=6x,x=-1.故选D.第 5 题:来源:甘肃省武威市第六中学2018_2019学年高二数学下学期第三次学段考试试题理一件产品要经过2道独立的加工程序,第一道工序的次品率为,第二道工序的次品率为,则产品的正品率为()A. B. C. D.【答案】C第 6 题:来源:四川省凉山州木里县2017_2018学年高一数学10月月考试题试卷及答案已知二次函数图象的对称轴是直线,且若在有最大值3,最小值1,则实数的取值范围是( ).A. B. C. D.【答案】D第 7 题:来源: 2019高考数学一轮复习第2章函数的概念与基本初等函数第3讲函数的奇偶性与周期性分层演练文已知函数f(x)的定义域为R,当x∈[-2,2]时,f(x)单调递减,且函数f(x+2)为偶函数.则下列结论正确的是( )A.f(π)<f(3)<f() B.f(π)<f()<f(3)C.f()<f(3)<f(π) D.f()<f(π)<f(3) 【答案】C.因为函数f(x+2)为偶函数,所以函数f(x)的图象关于直线x=2对称,又当x∈[-2,2]时,f(x)单调递减,所以当x∈[2,6]时,f(x)单调递增,f()=f(4-),因为2<4-<3<π,所以f()<f(3)<f(π).第 8 题:来源:河南省鹤壁市2016_2017学年高二数学下学期第二次月考试卷理(含解析)利用数学归纳法证明不等式1+++…<f(n)(n≥2,n∈N*)的过程中,由n=k 变到n=k+1时,左边增加了()A.1项 B.k项 C.2k﹣1项 D.2k项【答案】D【考点】RG:数学归纳法.【分析】依题意,由n=k递推到n=k+1时,不等式左边为1+++…++++…+,与n=k时不等式的左边比较即可得到答案.【解答】解:用数学归纳法证明等式1+++…+<f(n)(n≥2,n∈N*)的过程中,假设n=k时不等式成立,左边=1+++…+,则当n=k+1时,左边=1+++…++++…+,∴由n=k递推到n=k+1时不等式左边增加了:++…+,共(2k+1﹣1)﹣2k+1=2k项,第 9 题:来源:浙江省台州市书生中学2018_2019学年高一数学下学期起始考试试题已知函数的最大值为M,最小值为,则M+的值等于()A.1 B.2 C. D.【答案】B第 10 题:来源:辽宁省沈阳市2018届高三数学11月阶段测试试题理试卷及答案下列判断错误的是()SX010202A.“”是“”的充分不必要条件B.命题“”的否定是“”C.若为真命题,则均为假命题D.命题“若,则”为真命题,则“若,则”也为真命题【答案】C第 11 题:来源:江西省会昌县2018届高三数学上学期第一次半月考试卷理试卷及答案已知,当时,有,则必有()A. B. C. D.【答案】D第 12 题:来源:四川省资阳市2019届高三数学第一次诊断性考试试题理(含解析)已知集合,,则A. B. C. D.【答案】D【解析】【分析】求出函数的定义域,化简集合,然后根据交集的定义求解即可.【详解】,由交集的定义可得,故选D.第 13 题:来源:四川省雅安市2016_2017学年高二数学3月月考试题试卷及答案理在空间直角坐标系中,,则为()A.等边三角形 B.等腰直角三角形 C. 钝角三角形D.锐角三角形【答案】B【解析】试题分析:因为,,,所以,所以为等腰直角三角形,故选B.考点:空间距离公式.第 14 题:来源:安徽省2016_2017学年高一数学下学期期中试题试卷及答案在中,若,,三角形的面积,则三角形外接圆的半径为()A. B.2 C. D. 4【答案】B第 15 题:来源:江西省南昌市2016_2017学年高二数学下学期期中试题试卷及答案理一个几何体的三视图如图所示,正视图与侧视图为全等的矩形,俯视图为正方形,则该几何体的体积为()A. 4B. 8C. 9【答案】B【解析】由三视图可知几何体为正四棱柱中挖去一个四棱锥得到的几何体,,故选B.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.第 16 题:来源:甘肃省甘谷第一中学2018_2019学年高二数学下学期期末考试试题理点在直线上,当取得最小值时,函数的图象大致为()【答案】B第 17 题:来源:河南省信阳市2017_2018学年高二数学上学期第一次月考试题理试卷及答案的值是()A. -1B. 0C. 1D. 2【答案】D第 18 题:来源:安徽省巢湖市2018届高三数学上学期第一次月考试题理试卷及答案若函数f(x)=x2-2x+m在[3,+∞)上的最小值为1,则实数m的值为 ( )A.-3 B.-2 C.-1 D.1【答案】B第 19 题:来源:福建省龙海市2017_2018学年高一数学上学期第二次月考试题试卷及答案设,则()A. B. C. D.【答案】B第 20 题:来源: 2018届高考数学文科总复习课时跟踪检测试卷(7)函数的图象试卷及答案已知f(x)=则下列函数的图象错误的是( )【答案】D 先在坐标平面内画出函数y=f(x)的图象,如图所示,再将函数y=f(x)的图象向右平移1个单位长度即可得到y=f(x-1)的图象,因此A正确;作函数y=f(x)的图象关于y轴的对称图形,即可得到y=f(-x)的图象,因此B正确;y=f(x)的值域是[0,2],因此y=|f(x)|的图象与y=f(x)的图象重合,C正确;y=f(|x|)的定义域是[-1,1],且是一个偶函数,当0≤x≤1时,y=f(|x|)=,相应这部分图象不是一条线段,因此选项D不正确.综上所述,选D.第 21 题:来源: 2016-2017学年重庆市璧山中学高一数学上学期期中试题试卷及答案已知下列各组对象:①中国古代四大发明;②所有非常小的负数;③某班中个子高的男生;④底边长为3的等腰三角形的全体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市松江区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)分)计算:=.1.(42≥4},则A∩B=|x.A=(4分)已知集合{x|0<x<3},B={x2.3.(4分)已知{a}为等差数列,S为其前n项和.若a+a=18,a=7,则S=.10nn914 11﹣﹣(2)=1x),且)x=log(x+a)的反函数为y=ff,(4.(4分)已知函数f(2则实数a=.22交于,则cos2α+y等5.(4分)已知角α的终边与单位圆x=1.于时,则其输出的结果分)如图是一个算法的程序框图,当输入的值x为86.(4.是7.(5分)函数y=sin2x的图象与y=cosx的图象在区间[0,2π]上交点的个数是.22=4相交于A、B两点,且)+(y﹣2)﹣+分)设直线8.(5ax﹣y3=0与圆(x1 2,则a=的长为.弦AB若的面积为△A=90°中,在△5.=,=4,则9(分)ABC∠,ABC1,的最小值为.10.(5分)已知函数f(x)=x|2x﹣a|﹣1有三个零点,则实数a的取值范围为.分)定义,已知函数f(x)、g(x)的定义域都是R11.(5,则下列四个命题中为真命题的是(写出所有真命题的序号)①若f(x)、g(x)都是奇函数,则函数F(f(x),g(x))为奇函数;②若f(x)、g(x)都是偶函数,则函数F(f(x),g(x))为偶函数;③若f(x)、g(x)都是增函数,则函数F(f(x),g(x))为增函数;④若f(x)、g(x)都是减函数,则函数F(f(x),g(x))为减函数.n*),若对任意mN,n∈=2q,+q(q<0}12.(5分)已知数列{a的通项公式为a nn*都有,则实数q的取值范围为n∈N .分)205分,共选择题(本大题共二.4题,每题2,为虚数单位,是关于分)若2﹣ix的方程xp+px+q=0的一个根(其中i13.(5)Rq∈),则q的值为(3.﹣A.﹣5 B.5C3 D.14.(5分)已知f(x)是R上的偶函数,则“x+x=0”是“f(x)﹣f(x)=0”的2211()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件使成立,则实数m的取值范围是(∈[0,+∞))15.(5分)若存在x C.(﹣∞,﹣1,+∞)] D.[1,+∞)1 .A(﹣∞,1)B.(﹣22=4y:λx恰好有两个不同的公共+x=2分)已知曲线5C:|y|﹣与曲线C16.(21点,则实数λ的取值范围是()A.(﹣∞,﹣1]∪[0,1)B.(﹣1,1] C.[﹣1,1)D.[﹣1,0]∪(1,∞)+三.解答题(本大题共5题,共14+14+14+16+18=76分),=﹣AC=31814分)在△ABC中,AB=6,.17.(边的长;(1)求BC的面积.(2)求△ABC.R),常数a18.(14∈分)已知函数(x≠0(1)讨论函数f(x)的奇偶性,并说明理由;(2)当a>0时,研究函数f(x)在x∈(0,+∞)内的单调性.19.(14分)松江有轨电车项目正在如火如荼的进行中,通车后将给市民出行带来便利,已知某条线路通车后,电车的发车时间间隔t(单位:分钟)满足2≤t≤20,经市场调研测算,电车载客量与发车时间间隔t相关,当10≤t≤20时电车为满载状态,载客量为400人,当2≤t<10时,载客量会减少,减少的人数与(10﹣t)的平方成正比,且发车时间间隔为2分钟时的载客量为272人,记电车载客量为p(t).(1)求p(t)的表达式,并求当发车时间间隔为6分钟时,电车的载客量;若该线路每分钟的净收益为(元)),问当发车时间间隔为(2多少时,该线路每分钟的净收益最大?,其左焦点为b)经过点>E(16分)已知椭圆0:=1(a>.20,过F点的直线l交椭圆于A、B两点,交y轴的正半轴于点M.(1)求椭圆E的方程;的面积为,ACBD、D两点,若四边形CF(2)过点且与l垂直的直线交椭圆于求直线l的方程;,,求证:λ+λ为定值.(3)设21*),且|a﹣a|=n(1项({a}共有mm≥2,m∈N1821.(分)已知有穷数列nnn1+*)N.1,n∈n≤≤m﹣(1)若m=5,a=1,a=3,试写出一个满足条件的数列{a};n51(2)若m=64,a=2,求证:数列{a}为递增数列的充要条件是a=2018;641n(3)若a=0,则a 所有可能的取值共有多少个?请说明理由.m1年上海市松江区高考数学一模试卷2018参考答案与试题解析分)545分,共每题4分,7-12每题题,一.填空题(本大题共121-6(4.分)计算:=1.=【解答】=解:,故答案为:,2≥4},则A∩B= {x|2≤x<x{x|0<x<3},B={x|3} .分)已知集合2.(4A=【解答】解:由已知得:B={x|x≤﹣2或x≥2},∵A={ x|0<x<3},∴A∩B={x|0<x<3}∩{ x|x≤﹣2或x≥2}={x|2≤x<3}为所求.故答案为:{x|2≤x<3}.3.(4分)已知{a}为等差数列,S为其前n项和.若a+a=18,a=7,则S=109n41n100.【解答】解:设等差数列{a}的公差为d,∵a+a=18,a=7,49n1∴,解得d=2,a=1.1=100+.则S=1010.故答案为:10011﹣﹣,)y=fx)分)已知函数4.(4f(x=log(+a)的反函数为2x(),且f=1(2.a=则实数311﹣﹣,y=fax()(解:函数【解答】fx=log+)的反函数为x())(f2=1,且2,则:2=解得:a=3.故答案为:3.22交于,则cos2α等于α的终边与单位圆x +y﹣=1.5(4分)已知角.22,【解答】解:∵角α的终边与单位圆x+y交于=1,cosα=,∴可得:r=12.1=α﹣1=2﹣×﹣∴cos2α=2cos.故答案为:﹣时,则其输出的结果分)如图是一个算法的程序框图,当输入的值x为846.(.2是【解答】解:x=8>0,执行循环体,x=x﹣3=5﹣3=2>0,继续执行循环体,1﹣)﹣(=1=2y=0.5013=3=2x=x﹣﹣﹣<,满足条件,退出循环体,故输出.2故答案为:7.(5分)函数y=sin2x的图象与y=cosx的图象在区间[0,2π]上交点的个数是4.【解答】解:由于函数y=sin2x与y=cosx有交点,则:sin2x=cosx,sinx=或cosx=0整理得:,,,,[0,2π]范围内,x=所以:在.故答案为:422两点,且B相交于=4与圆(x﹣1)A+(y﹣2)、+8.(5分)设直线ax﹣y3=0.a=弦AB的长为02,则22=4的圆心C(1,2),半径等于1)+(y﹣2)2,且【解答】解:由于圆(x﹣2,AB的长为圆截直线所得的弦3=0的距离为ax﹣y+,即a=0 =1,解得,故圆心到直线=1故答案为0.则若=4=,,的面积为在△9.(5分)ABC中,∠A=90°,△ABC1,.的最小值为【解答】解:如图,建立直角坐标系,设B(10x,0),C(0,10y),=4,=,若则M(5x,5y),N(2x,8y),由题意△ABC的面积为1,可得50xy=1,22x=2y=时取等号.,当且仅当xy=40y=10x+≥2.故答案为:10.(5分)已知函数f(x)=x|2x﹣a|﹣1有三个零点,则实数a的取值范围为(2,+∞).【解答】解:函数f(x)=x|2x﹣a|﹣1有三个零点,就是x|2x﹣a|=1,即|2x﹣a|=有三个解,y=,可知y=,画出两个函数的图象,如图:x,令y=|2x,﹣a|x=,x=﹣(舍去),此时切点坐标(=﹣2,,解得),y′=y=,代入y=a,﹣2x可得,=2a=函数f(x)=x|2x﹣a|﹣1有三个零点,则实数a的取值范围为(2,+∞)..,(故答案为:2+∞),)的定义域都是Rg(x,已知函数f(x)11.(5、分)定义(写出所有真命题的序号)则下列四个命题中为真命题的是②③④)为奇函数;)g(x(f(x),①若f(x)、g(x)都是奇函数,则函数F)为偶函数;)g(xf(x),f②若(x)、g(x)都是偶函数,则函数F()为增函数;)(x(x),gF(x)、g(x)都是增函数,则函数(f③若f)为减函数.)(x(x),g)、g(x)都是减函数,则函数F(fx④若f(,【解答】解:y=x)不一定是奇函数,如x)),g(g(x)都是奇函数,则函数F(f(x若f(x)、3,故①是假命题;y=x与)为偶函数,故②是真命x)),g((x)都是偶函数,则函数F(f(x若f(x)、g 题;)为增函数,故③是真命x),g()都是增函数,则函数F(f(x)x若f()、g (x题;)为减函数,故④是真命)g(x(Ff(x),若f(x)、g(x)都是减函数,则函数题.故答案为:②③④.*n,m),n∈N,若对任意a}的通项公式为a=2qq+(q<012.(5分)已知数列{nn *(﹣,0)Nn∈.都有,则实数q的取值范围为*n*,N,且对任意n∈),因为a=3q<0=2q【解答】解:由a,+q(q<0n∈N1n∈(,6)故a<0,n*2,a≠0n∈N.q<0,于是q∈(﹣,0),此时对任意特别地2q+n2n2n1﹣+q<q|﹣=|q>+qq,a2|q,|=时,<<当﹣q0a12n2n﹣2+q,最小值为a=2qa}a由指数函数的单调性知,{的最大值为=3q,1n2.由题意,和的最大值及最小值分别为==.0<q及<6<由>,解得﹣,),综上所述,q0的取值范围为(﹣.),故答案为:0(﹣分)205分,共二.选择题(本大题共4题,每题2,pi为虚数单位,px+q=02﹣i是关于x的方程x的一个根(其中+13.(5分)若)的值为(R),则qq∈3D.5C.﹣3 A.﹣5 B.2的一个根,+xq=0+px【解答】解:∵2﹣i是关于x的实系数方程2的另一个根,+q=0+px+∴2i是关于x的实系数方程x2.=5﹣i|+i)=|22则q=(﹣i)(2.B故选:的=0”x)f“f(x)﹣(x分)已知f()是R上的偶函数,则“x+x=0”是14.(52121)(.必要而不充分条件B.充分而不必要条件A.既不充分也不必要条件D.充分必要条件C上的偶函数,Rx)是【解答】解:∵f(,)=0”)﹣f(x“x+x=0”?“f(x∴2112,”或“x=x=0”)?“x+x=0”x“f()﹣f (x212211的充分而不必要条件.)x=0”x)﹣f(“f∴“x+x=0”是(2112.故选:A )的取值范围是(使成立,则实数m0若存在.15(5分)x∈[,+∞)∞)+1∞),(﹣B)(﹣∞,A.1 .1+.1.C(﹣∞,﹣]D[,∞)使成立,0,+【解答】解:存在x∈[xx,<1?x﹣2?m∴2xx,﹣?m>21∴2?x,﹣∴m>xx≥12,0,+∞),∴∵x∈[﹣≥﹣1.∴m>x∴实数m的取值范围是(﹣1,+∞).故选:B.22=4y:λx恰好有两个不同的公共+:|y|﹣x=2与曲线C16.(5分)已知曲线C21点,则实数λ的取值范围是()A.(﹣∞,﹣1]∪[0,1)B.(﹣1,1] C.[﹣1,1)D.[﹣1,0]∪(1,∞)+;x=y﹣22【解答】解:由x=|y|﹣可得,y≥0时,,2﹣y<0时,x=y﹣22,),±2+λx的曲线必相交于(=40|∴函数x=y|﹣2的图象与方程y22恰好有两个不同的公共点,=4+λx与曲线y所以为了使曲线C:||﹣x=2C:y2122,代入方程则将x=y﹣2yλx+=42,4=0﹣﹣4λy+4λλ整理可得(1+)y满足题意,时,﹣1y=2当λ=22恰好有两个不同的公共点,∵曲线C:=4y:x=2﹣与曲线Cλx+||y21是方程的根,2∴△>0,时,方程两根异号,满足题意;110∴<,即﹣<λ<综上知,实数λ的取值范围是[﹣1,1).故选C.三.解答题(本大题共5题,共14+14+14+16+18=76分),=﹣,18AC=3.17.(14分)在△ABC中,AB=6边的长;)求BC(1的面积.)求△ABC(2=【解答】解:(1﹣)18,,AC=3AB=6,由于:222﹣2AB?ACcosA=AB,+所以:BCACBC=3解得:.AC=3BA=6,)在△ABC,中,BC=3,(2﹣,cosA=则:=,所以:sinA=.=则:(x.(14≠分)已知函数0,常数a∈R).18(1)讨论函数f(x)的奇偶性,并说明理由;(2)当a>0时,研究函数f(x)在x∈(0,+∞)内的单调性.【解答】解:(1)当a=0时,函数f(x)=1(x≠0)满足f(﹣x)=f(x),此时f(x)为偶函数;当a≠0时,函数f(a)=0,f(﹣a)=2,不满足f(﹣x)=f(x),也不满足f(﹣x)=﹣f(x),此时f(x)为非奇非偶函数;(2)当a>0时,,)为减函数;,则若x∈(0,a为增函数;,,则+x若∈(a,∞)故f(x)在(0,a)上为减函数,在(a,+∞)上为增函数;19.(14分)松江有轨电车项目正在如火如荼的进行中,通车后将给市民出行带来便利,已知某条线路通车后,电车的发车时间间隔t(单位:分钟)满足2≤t ≤20,经市场调研测算,电车载客量与发车时间间隔t相关,当10≤t≤20时电车为满载状态,载客量为400人,当2≤t<10时,载客量会减少,减少的人数与(10﹣t)的平方成正比,且发车时间间隔为2分钟时的载客量为272人,记电车载客量为p(t).(1)求p(t)的表达式,并求当发车时间间隔为6分钟时,电车的载客量;若该线路每分钟的净收益为(元)),问当发车时间间隔为(2多少时,该线路每分钟的净收益最大?,(t)k=为常数)【解答】解:(1)由题意知,p(2.﹣k(10﹣2)k=2=272,∴=400∵p(2).∴p=t)(2;610﹣)=3686∴p()=400﹣2(,可得(2)由Q=,)12t,+时,≤t<10Q=180﹣(当2时等号成立;当且仅当t=5≤﹣60+90=30,当t=1020当10≤t≤时,Q=﹣60时等号成立.+∴当发车时间间隔为5分钟时,该线路每分钟的净收益最大,最大为60元.)经过点,其左焦点为b>0E:=1(a>(20.16分)已知椭圆,过F点的直线l交椭圆于A、B两点,交y轴的正半轴于点M.(1)求椭圆E的方程;的面积为ACBDDClF2()过点且与垂直的直线交椭圆于、两点,若四边形,求直线l的方程;,,求证:λ3+)设λ为定值.(212222+3c+1)由题意可得:,c=,则a=b=b(【解答】解:22=4ab,代入椭圆方程:=1,将,解得:的方程:∴椭圆的E;+),A(x,y),B(x,y),C(x,y),则D(x,2()设直线l:y=k(x1010212,﹣y)12222﹣4=0+12k8k,,整理得:(1+4k)xx联立+=,xx=x﹣,∴x+2121的斜率为﹣,将k转=|AB|,由直线CD==|,化成﹣,同理|CD==CD|,ACBD的面积S=×|AB||∴四边形2242,k=k=±5k+2=0,解得:k±=2,k或=,∴∴2k﹣,k=k=或k由>0,∴﹣x∴直线AB的方程为y+=0或x﹣y+=0;(﹣﹣x)=λ,)﹣x=λx,得(﹣x,,∴(3)221112,λ,=λ=21+)(==λ+λ﹣﹣21==﹣8,λ+λ为定值,定值为﹣8.21*),且|a﹣a|=n(1}共有m项(m≥2,m∈N1821.(分)已知有穷数列{a n1nn+*).∈Nm﹣1,nn≤≤(1)若m=5,a=1,a=3,试写出一个满足条件的数列{a};n51(2)若m=64,a=2,求证:数列{a}为递增数列的充要条件是a=2018;641n(3)若a=0,则a 所有可能的取值共有多少个?请说明理由.m1*),且|a﹣a|2,m∈N=n(1(【解答】解:1)有穷数列{a}共有m项(m≥n1nn+*)N.,n∈≤n≤m﹣1m=5,a=1,a=3,51则满足条件的数列{a}有:1,2,4,7,3和1,0,2,﹣1,3.n证明:(2)必要性若{a}为递增数列,由题意得:n a﹣a=1,a﹣a=2,…,a﹣a=63,63641232==2016a,∴a﹣164.=2,∴a=2018∵a641充分性*,∈N≤n≤63,n1﹣由题意|aa|=n,n1n+,63,a﹣a≤aaa﹣≤1,a﹣≤2,…∴63136422,a≤2018,∴∴a﹣a≤201664641,∵a=201864*,∈N,≤=n﹣∴aa,1n≤63n n1n+是增数列,}{∴a n.a}a综上,数列{为递增数列的充要条件是=201864n 解:(3)由题意得a﹣a=±1,a﹣a=±2,…,a﹣a=±(m﹣1),1213mm2﹣*,1≤i≤m﹣1i},(i∈N),,其中,假设a=b+b+b+…+bb∈{﹣i,im2m311﹣﹣=.m ﹣1)=﹣1﹣2﹣…﹣()则(a minm取负值,,,,,…若a中有k项n+…+),(*+)则有a+=(a)﹣(maxmm∴a的所有可能值与(a)的差必为偶数,maxmm与之间相差可以取到﹣2下面用数学归纳法证明a的所有整数,n由(*)知,只需从1,2,3,…,m﹣1中任取一项或若干项相加,可以得到2到的所有整数值即可,从1当m=2时,成立,当m=3时,从1,2中任取一项或两项相加,可以得到从1,2,3中任取一项或若干项相加,可以得到从1到3的所有整数,结论成立,*)结论成立,∈N≥3,k②假设m=k(k到1的所﹣1中任取一项或若干项相加,可以得到从2,,3,…,k即从1有整数值,中任取一项或若干项相加,1,k﹣,2,3,…m=k则当+1时,由假设,从1,可中的k,k﹣1,k到取代12,3,…的所有整数值,用可以得到从1,得,可得2k﹣,k﹣1中的…2k用取代1,,,3,全部相加,可得k1,k3,2,,…,,﹣1将故命题成立,=所有可能的取值共有:个.a∴m。

相关文档
最新文档