七年级下全等三角形练习题经典综合拔高题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形综合练习题
知识点睛
1、三角形全等的条件
(1)边边边公理:如果两个三角形的三条边分别对应相等,那么这两个三角形全等,简记为SSS (2)边角边公理:如果两个三角形的两边及其夹角分别对应相等,那么这两个三角形全等,简记为SAS
(3)角边角公理:如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等,简记为ASA
(4)角角边公理:有两个角和其中一角的对边对应相等的两个三角形全等,简记为AAS
2、直角三角形全等的特殊条件:斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”
3、选择证明三角形全等的方法(“题目中找,图形中看”)
(1)已知两边对应相等
①证第三边相等,再用SSS证全等
②证已知边的夹角相等,再用SAS证全等
③找直角,再用HL证全等
(2)已知一角及其邻边相等
①证已知角的另一邻边相等,再用SAS证全等
②证已知边的另一邻角相等,再用ASA证全等
③证已知边的对角相等,再用AAS证全等
(3)已知一角及其对边相等
证另一角相等,再用AAS证全等
(4)已知两角对应相等
①证其夹边相等,再用ASA证全等
②证一已知角的对边相等,再用AAS证全等
4、全等三角形中的基本图形的构造与运用
(2)出现线段的中点(或三角形的中线)时,可利用中点构造全等三角形(常用加倍延长中线) (3)利用加长(或截取)的方法解决线段的和、倍问题(转移线段)
1. 已知:如图,点B,E,C,F 在同一直线上,AB ∥DE,且AB=DE,BE=CF.求证:AC ∥DF .
2. 如图,已知: AD 是BC 上的中线 ,且DF=DE .求证:BE ∥CF .
3. 如图, 已知:AB ⊥BC 于B , EF ⊥AC 于G , DF ⊥BC 于D , BC=DF .求
证:AC=EF .
4. 如图,在ΔABC 中,AC=AB ,AD 是BC 边上的中线,则AD ⊥BC ,请说明理由。
5. 如图,已知AB=DE ,BC=EF ,AF=DC ,则∠EFD=∠BCA ,请说明理由。
6. 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC ,连结DE ,已知DE=2cm ,
经典例题
F
G
E
D
C
B
A
A B C D E F
A B C D
F E
D
C
B
A
7. 如图,ΔABC 的两条高AD 、BE 相交于H ,且AD=BD ,试说明下列结论成立的理由。 (1)∠DBH=∠DAC ; (2)ΔBDH ≌ΔADC 。
8. 如图,已知ABC ∆为等边三角形,D 、E 、F 分别在边BC 、CA 、AB 上,且DEF ∆也是等边
三角形.
(1) 除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的; (2) 你所证明相等的线段,可以通过怎样的变化相互得到?写出变化过程.
9. 已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小。
10. 如图,在矩形ABCD 中,F 是BC 边上的一点,AF 的延长线交DC 的
延长线于G ,DE ⊥AG 于E ,且DE =DC ,根据上述条件,请你在图中找出一对全等三角形,并证明你的结论。 A
B
C
D
E H
11. 已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM
⊥AD 于M ,•PN ⊥CD 于N ,判断PM 与PN 的关系.
12. 如图所示,P 为∠AOB 的平分线上一点,PC ⊥OA 于C ,•∠OAP+∠OBP=180°,若OC=4cm ,求AO+BO
的值.
13. 如图,∠ABC=90°,AB=BC ,BP 为一条射线,AD ⊥BP ,CE ⊥PB ,若AD=4,EC=2.求DE 的长。
i.
14. 如图所示,A ,E ,F ,C 在一条直线上,AE=CF ,过E ,F 分别作DE•⊥AC ,BF ⊥AC ,若AB=CD ,
可以得到BD 平分EF ,为什么?若将△DEC 的边EC 沿AC 方向移动,变为如图所示时,其余条件不变,上述结论是否成立?请说明理由.
15. 如图,OE=OF ,OC=OD ,CF 与DE 交于点A ,求证: AC=AD 。
P D A C M N P D A
C B O G
D F
A C
B E G D
F A C
B
E F E
D C A
O
16. 已知:如图E 在△ABC 的边AC 上,且∠AEB=∠ABC 。 (1) 求证:∠ABE=∠C ;
(2) 若∠BAE 的平分线AF 交BE 于F ,FD ∥BC 交AC 于D ,设AB=5,AC=8,求DC 的长。
17. 如图∠ACB=90°,AC=BC,BE ⊥CE,AD ⊥CE 于D ,AD=2、5cm ,DE=1.7cm,
求BE 的长
18. 如图,在△ABE 中,AB =AE,AD =AC,∠BAD =∠EAC, BC 、DE 交于点O.求证:(1) △ABC ≌△AED ;
(2) OB =OE .
19. 如图,D 是等边△ABC 的边AB 上的一动点,以CD 为一边向上作等边△EDC ,连接AE ,找出图中
的一组全等三角形,并说明理由.
20. 已知:如图,B 、E 、F 、C 四点在同一条直线上,AB =DC ,BE =CF ,∠B =∠C . 求证:OA =OD .
E D C B A