2019年重点高中提前招生数学试卷及答案

合集下载

2019年省重点高中提前招生选拔考试数学试卷

2019年省重点高中提前招生选拔考试数学试卷

2019年省重点高中提前招生选拔考试数学试卷注意事项: 本卷全卷满分为120分,考试时间为100分钟.一、 填空题(本大题共有7小题,每题5分,共35分).1.同时抛掷两枚正方体骰子,所得点数之和为7的概率是 . 2.设a >b >0, a 2+b 2=4ab ,则a +b a -b的值等于 .3.如图,在△ABC 中,AB =AC ,∠BAD =20︒,且AE =AD ,则∠CDE = . 4.已知实数x 、y 满足x 2-2x +4y =5,则x +2y 的最大值为 . 5.将正偶数按下表排列: 第1列 第2列 第3列 第4列第1行 2第2行 4 6第3行 8 10 12 第1行 2第2行 4 6第3行 8 10 12第4行 14 16 18 20 ……根据上面的规律,则2006所在行、列分别是 .6.某学生为了描点作出函数y =ax 2+bx +c (a ≠0)的图象,取自变量的7个值,x 1<x 2<……<x 7,且x 2-x 1=x 3-x 2=……=x 7-x 6,分别算出对应的y 值,列表如下:但由于粗心算错了其中一个y 值,请指出算错的是___________.(从上述数据中选一个填入) 7.已知四边形ABCD 中,AD+DB+BC=16,则四边形ABCD 的面积的最大值为 .二、选择题(本大题共9小题,每小题5分,共45分.在每题所给出的四个选项中,只有一个是符合题意的,请把正确选项前的字母代号填在题后的括号内)8.方程1)1(32=-++x x x 的所有整数解的个数是( )A .2个B .3个C .4个D .5个AE D CB20°第3题 学校 姓名 试场号 座位号密 封 线 内 不 要 答 题9. 方程x1x x 2=-的解的情况是( )A .仅有一正根B .仅有一负根C .有一正根一负根D .无实根 10.甲、乙、丙、丁四名运动员参加4×100米接力赛,甲必须为第一接力棒或第四接力棒的运动员,那么这四名运动员在比赛过程中的接棒顺序有 ( )A .3种B .4种C .6种D .12种11. 如图,圆柱形开口杯底部固定在长方体水池底,向水池匀速注入水(倒在杯外),水池中水面高度是h ,注水时间为t ,则h 与t 之间的关系大致为下图中的 ( )A .B .C .D . 12.关于x 的不等式组⎩⎨⎧x +152>x -32x +23<x +a只有4个整数解,则a 的取值范围是( )A .-5≤a ≤-143B .-5≤a <-143C .-5<a ≤-143D .-5<a <-14313. 在3×3方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都等于S ,又填在图中三格中的数字如图,若要 能填成,则( )A . S =24B . S =30C . S =31D . S =3914.如图,已知⊙O 的半径是R ,C 、D 是直径AB 同侧圆周上的两点,弧AC 的度数为960,弧BD 的度数为360,动点P 在AB 上,则PC+PD 的最小值为( )A .2R BCD .R 15.观察图形,寻找规律,在“?”填上数字A .128B .136C .162D .18816. 一个三角形的边长分别为a,a,b ,另一个三角形的边长分别为b,b,a ,其中a>b ,若两个三角形的最小内角相等,则ab的值等于( ) 8 1013DCABOP?884826148422A C 三、解答题(本大题共3小题,满分40分,第17题10分,第18、19题15分,共40分).17.18.课间休息时,同学们到饮水机旁依次每人接水0.25升,他们先打开了一个饮水管,后来又打开了第二个饮水管.假设接水的过程中每根饮水管出水的速度是匀速的,在不关闭饮水管的情况下,饮水机水桶内的存水量)()(分与接水时间升x y 的函数关系图像如图所示.请结合图像回答下列问题:⑴ 存水量)()(分与接水时间升x y 的函数关系式;⑵ 如果接水的同学有28名,那么他们都接完水需要几分钟?⑶ 如果有若干名同学按上述方法接水,他们接水所用时间要比只开第一个饮水管接水的时间少用2分钟,那么有多少名学生接完水?19.已知抛物线y=ax2+bx+c经过点(1,2).(1)若a=1,抛物线顶点为A,它与x轴交于两点B、C,且△ABC为等边三角形,求b的值.(2)若abc=4,且a≥b≥c,求|a|+|b|+|c|的最小值.。

2019年省重点高中提前招生选拔考试数学试卷及答案

2019年省重点高中提前招生选拔考试数学试卷及答案

省重点高中提前招生选拔数学试卷注意事项:1.全卷满分150分,考试时间120分钟;2.考生在答题过程中,不能使用计数器。

一、填空题:(每小题3分,共30分)1、23-的绝对值是 。

2、方程x x 22=的解是 。

3、函数x y 21-=的自变量x 的取值笵围是 。

4、抛物线3)2(2-+-=x y 的对称轴为直线 。

5、写出一条经过第一、二、四象限,且过点(-1,3)的直线解析式 。

6、已知32=b a ,则=+bb a 。

7、一顶简易的圆锥形帐蓬,帐篷收起来时伞面的长度有4米,撑开后帐篷高2米,则帐篷撑好后的底面直径是 米。

8、在Rt △ABC 中,∠C=90°,AC=6,BC=8,则其外接圆的半径为 。

9、圆心在x 轴上的两圆相交于A 、B 两点,已知A 点的坐标为(-3,2),则B 点的坐标是 。

10、用长4㎝,宽3㎝的邮票300枚不重不漏摆成一个正方形,这个正方形的边长等于 ㎝。

二、选择题:(每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的)11、用科学记数法表示0.0625,应记作 ( )(A)0.625×101- (B)6.25210-⨯ (C)62.5310-⨯ (D)625410-⨯ 12、如果a >b,且c 为实数,那么下列不等式一定成立的是 ( )(A)ac >bc (B)ac <bc (C)ac 2>bc 2 (D)ac 2≥bc 213、元月份某一天,北京市的最低气温为-6℃,长泰县的最低气温为15℃,那么这一天长泰县的最低气温比北京市的最低气温高 ( )(A)15℃ (B)20℃ (C)-21℃ (D)21℃14、在下列图形中,既是中心对称图形又是轴对称图形的是 ( )(A)等腰三角形 (B)圆 (C)梯形 (D)平行四边形15、抛物线y=2x 2是由抛物线y=2(x+1)22+经过平移得到的,则正确的平移是( )(A)先向右平移1个单位,再向下平移2个单位(B)先向左平移1个单位,再向上平移2个单位(C)先向右平移2个单位,再向下平移1个单位(D)先向左平移2个单位,再向上平移1个单位数学试题第一页(共8页)16、在平面内有线段AB 和直线l,点A 、B 到直线l 的距离分别是4㎝、6㎝.则线段AB 的中点C 到直线l 的距离是 ( )(A)1 或 5 (B)3 或 5 (C)4 (D)517、在Rt △ABC 的直角边AC 边上有一动点P(点P 与点A 、C 不重合),过点P 作直线截得的三角形与△ABC 相似,满足条件的直线最多有 ( )(A)1条 (B)2条 (C)3条 (D)4条18、在1000个数据中,用适当的方法抽取50个作为样本进行统计,频数分布表中,54.5~57.5这一组的频率是0.12,那么,估计总体数据落在54.5~57.5之间的约有 ( )(A)6个 (B)12个 (C)60个 (D)120个19、若不等式组{148-<+>x x mx 的解集是x >3,则m 的取值范围是 ( )(A)m >3 (B)m ≥3 (C)m ≤3 (D)m <320、如图,一个等边三角形的边长与它的一边相外切的圆的周长相等,当这个圆按箭头方向从 某一位置沿等边三角形的三边做无滑动旋转,直至回到原出发位置时,则这个圆共转了( )(A)4圈 (B)3圈 (C)5圈 (D)3.5圈三、解答题:(共90分)21、(本题10分)计算:927)31()3(20-++--πtan30°数学试题第二页(共8页)22、(本题10分)解方程:113162=---x x23、(本题10分)将分别标有数字0,1,2,3的四张卡片洗匀后,背面朝上放在桌面上.抽取一张作为百位上的数字,再抽取一张作为十位上的数字, 再抽取一张作为个位上的数字,每次抽取都不放回.(1)能组成几个三位数?请写出个位数是“0”的三位数.(2)这些三位数中末两位数字恰好是“01”的概率为多少.数学试题第三页(共8页)24、(本题10分)已知:关于x 的方程022=-+k x x 有两个不相等的实数根.(1)求k 的取值范围;(2)若α、β是这个方程的两个实数根,求:ββαα+++11的值. (3)根据(2)的结果你能得出什么结论?数学试题第四页(共8页)25、(本题12分)如图,Rt △ABC 中,∠ABC=90°,OA=OB=1,与x 轴的正方向夹角为30°.求直线AB 的解析式. yBAO x数学试题第五页(共8页)26、(本题12分)已知:如图,AB是⊙O的直径,点C是⊙O上一点,CD⊥AB,垂足为D,点P在BA的延长线上,且PC是圆O的切线. C(1)求证:∠PCD=∠POC(2)若OD:DA=1:2,PA=8,求的半径的长.D OP A D B B数学试题第六页(共8页)27、(本题12分)已知:如图,⊙O1和⊙O2相交于A、B两点,动点P在⊙O2上,且在⊙O1外,直线PA、PB分别交⊙O1于C、D,问: ⊙O1的弦CD的长是否随点P的运动而发生变化?如果发生变化,请你确定CD最长和最短时P的位置;如果不发生变化,请你给出证明.C AO21OPBD数学试题第七页(共8页)28、(本题14分)已知抛物线y=-x2+bx+c与x轴的两个交点分别为A(x1,0)、B(x2,0)(A在B的左边),且x1+ x2=4.(1)求b的值及c的取值范围;(2)如果AB=2,求抛物线的解析式;(3)设此抛物线与y轴的交点为C,顶点为D,对称轴与x轴的交点为E,问是否存在这样的抛物线,使△AOC和△BED全等,如果存在,求出抛物线的解析式;如果不存在,请说明理由.+数学试题第八页(共8页)参考答案及评分标准一.1.2-3; 2。

2019最新重点高中提前招生数学试卷

2019最新重点高中提前招生数学试卷

2019年三位一体学科素养测试数学试题卷本试卷分试题卷和答题卷两部分,满分150分。

考试时间共90分钟。

一、选择题(本大题共8小题,每小题6分,共48分.在每小题给出的四个选项中) 1.不等式组1020x x +≥⎧⎨-<⎩的解在数轴上表示正确的是( ▲ )2.已知实数,a b 满足2217404a b a b +-++=,那么ab -的平方根是 ( ▲ ) A . ±1 B .1 C .±21 D .213.下面哪个图形不是..正方体的展开图( ▲ )4.若210x x --=,则3225x x -+的值为( ▲ )A .0B .2C .4D .55.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高( ▲ ) A . 40% B .13 C .12D . 30% 6.方程组223x y x y ⎧+=⎪⎨+=⎪⎩的实数解的个数为( ▲ )A .4B .3C .2D .17.对于每个自变量x ,y 是21211y x y x =+=-,两个值中的最小值,则当32x -≤≤时,函数y 的最小值与最大值的和是( ▲ )A .B .C .D .A .B .C .D .第10题第12题A .2-B .1C .2D .38.如图,在□ABCD 中,AB =2BC ,BE ⊥AD 于E ,F 为CD 中点, 设DEF α∠=,EFC β∠=,则下面结论成立的是( ▲ )A .3βα<B .4βα>C .3βα=D .4βα=二、填空题 (本题有7个小题,每小题6分,共42分) 9.在2,2-,0三个整数中,任取一个,恰好使分式xx-+22有意义...的概率是 ▲ . 10.已知一个几何体由一些大小相同的小正方体组成,它的主视图和俯视图如图所示,那么组成该几何体所需小正方体的个数最多为 ▲ . 11.求()22(sin 20)sin 70tan 28tan 62++= ▲ .12.如图,△ABC 是直角三角形,∠ABC=90︒,BC=6,BA=8,现以AC 为边在AC 的右侧作正方形ACDE ,则BE 的长为 ▲ . 13.已知△ABC 的两条高线的长分别为5和20, 若第三条高线的长也是整数,则第三条高线长的最大值为 ▲ .14.抛物线221236y x tx t =-+-与x 轴有两个交点A 、B ,线段AB (含端点)上有若干个横坐标为整数的点,且这些点的横坐标之和为21,则t 的取值范围是 ▲ . 15.设12211=112S ++,22211=123S ++,32211=134S ++,…, 2211=1(1)n S n n +++,…, 1210S S S += ▲ .第8题ABCD E F三、解答题(本大题共4题,共60分.解答应写出文字说明、证明过程或演算步骤) 16.(本题满分12分) (Ⅰ)已知,,a b c 均不为0,且232757a b b c c a +--==,求223c bb a -+的值; (Ⅱ)已知:0x >,且70x y -=,求xy的值.17.(本题满分12分) 如图,点A 是函数111(0,0)k y k x x=>>图象上的任意一点,过点A 作AB ⊥x 轴,交另一个函数222(0,0)k y k x x =<>的图象于点B ,在y 轴上取点C ,使四边形ABCO 是平行四边形.(Ⅰ)求证:平行四边形ABCO 的面积为定值;(Ⅱ)设直线CB 与函数222(0,0)k y k x x =<>的图象相交于另一点D ,若不论点A 在何处,都有CB BD =,试求12k k 与的关系式.18.(本题满分18分)已知矩形ABCD 中,AB =2,AD =5,点E 是AD 边上一动点,连接BE 、CE ,以BE 为直径作⊙O ,交BC 于点F ,过点F 作FH ⊥CE 于H . (Ⅰ)当直线FH 与⊙O 相切时,求AE 的长; (Ⅱ)若直线FH 交⊙O 于点G ,(ⅰ)当FH ∥BE 时,求AE 的长;(ⅱ)在点E 运动过程中,△OFG 能否成为等腰直角三角形?如果能,求出此时AE 的长;如果不能,说明理由. 19.(本题满分18分)如图,Rt △ABC 的斜边AB 在x 轴上,AB =4,点B 的坐标为(-1,0),点C 在y 轴的正半轴.若抛物线2(0)y ax bx c a =++≠的图象经过点A ,B ,C . (Ⅰ)求y 关于x 的函数解析式;(Ⅱ)设对称轴与抛物线交于点E ,与AC 交于点D 。

2019年浙江省温州市重点中学提前招生数学试卷及答案

2019年浙江省温州市重点中学提前招生数学试卷及答案

2019年浙江省温州市重点中学提前招生数学试卷一.仔细选一选(本题有10个小题,每小题3分,共30分)(下面每小题给出的四个选项中,只有一个是正确的。

) 1.下列计算正确的是().A.32a a a -=B.22(2)4a a -= C.326x x x --⋅= D.623x x x ÷= 2.如图,M ,N 两点在数轴上表示的数分别是m ,n ,则下列 式子中成立的是( ).A .-m <-nB . |m |-|n |>0C .m -1<n -1D .m +n <03. 用反证法证明命题“三角形中最多有一个角是直角或钝角”时,下列假设正确..的是( ). A .三角形中最少有一个角是直角或钝角 B .三角形中没有一个角是直角或钝角 C .三角形中三个角全是直角或钝角 D .三角形中有两个或三个角是直角或钝角4. 若函数mx x y ++=212的自变量x 的取值范围为一切实数,则m 的取值范围是( ).A .m<lB .m=1C . m>lD .m ≤15. 已知一个函数图象经过(1,-4),(2,-2)两点,在自变量x 的某个取值范围内,都有函数值y 随x 的增大而减小,则符合上述条件的函数可能是().A. 正比例函数B. 一次函数C. 反比例函数D. 二次函数6.已知四边形ABCD 的两条对角线AC 与BD 相等,则下列结论正确的个数是(). ①.当AC ⊥BD 时,四边形ABCD 一定是菱形②.当AB=AD ,CB=CD 时,四边形ABCD 一定是正方形 ③.当AB=AD=BC 时,四边形ABCD 一定是正方形④.当AC ⊥BD ,AD=AB 时,四边形ABCD 有可能是正方形 A. 1个 B. 2个 C. 3个 D. 4个 7.对于反比例函数ky x =,如果当2-≤x ≤1-时有最大值4=y ,则当x ≥8时,有(). A .最小值y =21- B .最小值1-=y C .最大值y =21- D .最大值1-=y8.七个正整数的中位数是4, 唯一众数是6, 则这七个正整数的和最小值为().A .32 B. 31 C.29 D.269. 如图,在平面直角坐标系中,以原点O 为圆心的圆过点A(13,0),直线y =kx -3k+4与⊙O 交于B 、C两点,则弦BC 长的最小值为( ). A.22B.105C.24D.123(第9题图) (第10题图)10.如图,正方形ABCD 的边长为4,点E 是AB 上的一点,将△BCE 沿CE 折叠至△FCE ,若CF 、CE 恰好与以正方形ABCD 的中心为圆心的圆O 相切,则圆O 的半径为( ).A. 1B.21- C. 31- D.312+ 二.认真填一填(本题有6个小题,每小题4分,共24分) 11. 计算:()222)4(160sin 4-+---πo =____________.12.如图,在⊙O 的内接五边形ABCDE 中,∠CAD=35°,则∠B+∠E=.(第12题图) (第13题图) (第16题图)13. 如图,在5×5的正方形网格中,△ABC 为格点三角形(顶点都在格点上),则图中与△ABC 相似(但不全等)的最小的三角形与最大的三角形的面积比值为__________.14.已知函数()31()y k x x k =+-,下列说法:①方程()31()3k x x k+-=-必有实数根;②若移动函数图象使其经过原点,则只能将图象向右移动1个单位;③当k >3时,抛物线顶点在第三象限;④若k <0,则当x<-1时,y 随着x 的增大而增大.其中正确的序号是.15.用18根火柴棒搭一个三角形,火柴棒不允许剩余、折断,则搭出的所有三角形中,属于锐角三角形的概率是________.16.如图,在四边形ABDC 中,AD=4,CD=32,∠ABC=∠ACB=∠ADC=045,则BD 的长是_________.三.全面答一答(本题有6个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.如图,在边长为4的正方形ABCD 中,请画出以A 为一个顶点,另外两个顶点在正方形ABCD 的边上,且含边长为3的所有大小不同的等腰三角形.(要求:以下为备用图,只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)18.(本小题满分10分)对x ,y 定义一种新运算▲,规定:x ▲y =by ax +(其中a ,b 均为非零常数), 例如:1▲0=a .已知1▲1=3,1-▲1=1-. (1)求a ,b 的值;(2)若关于m 的不等式组⎩⎨⎧>≤-p m m m m ▲▲24)21(3恰有3个整数解,求实数p 的取值范围.19. (本小题满分10分)记3(3)(43)(3)z x y x x y x y =---+.(1)若,x y 均为整数,求证:当x 是3的倍数时,z 能被9整除; (2)若1y x =+,求z 的最小值.小杰到学校食堂买饭,看到A ,B 两个窗口前排队的人一样多(设为a 人,8>a ),就站到A 窗口队伍的后面,观察了2分钟,他发现A 窗口每分钟有4人买了饭离开队伍,B 窗口每分钟有6人买了饭离开队伍,且B 窗口队伍后面每分钟增加5人。

2019年河南重点高中自主招生数学试卷

2019年河南重点高中自主招生数学试卷

y 数学试题150分,考试时间100分钟,请将答案写到答题卷上,写在本试卷上无效. 6分,共60分)()2212=11x x x x x +⎛⎫÷- ⎪--⎝⎭▲ 2330x x ---=的根是 ▲a ,b ,c ,d 的长度比为1:2:3:4,任取其中三条线段,以它们为边能作出三角形的概率是 ▲1表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A ,且当钟面显示点30分时,分针垂直于桌面,A 点距桌面的高度为10cm ,如图2,若此钟面显示3点45A 点距桌面的高度为16cm ,则钟面显示3点50分时,A 点距桌面的高度为 ▲ cmm =,则3222016m m m --的值是 ▲.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为 ▲21y x =+与双曲线ky x=的交点 的横坐标是1,则关于x 的不等式2+10kx x+<的解集是 ▲ 1开始的连续自然数按如下规律分组: 第1行: 1 第2行: 2,3,4图1图2EBC第3行: 5,6,7,8,9 第4行: 10,11,12,13,14,15,16……则2017在第 ▲ 行. 第9题图9.如图,在△ABC 中,E 是BC 上的一点,EC =2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF -S △BEF = ▲ 10.如图,四边形MNPQ 中,NP //MQ ,NP =2,MN= PQ=3,60NMQ ∠= ,正方形ABCD 的边长为1,它的一边AD 在MN 上,且顶点A 与M 重合.现将正方形ABCD 在四边形MNPQ 的外面沿边MN 、NP 、PQ 进行翻滚,翻滚到有一个顶点与Q 重合即停止滚动,则正方形在整个翻滚过程中点A 所经过的路线与四边形MNPQ 的三边MN 、NP 、PQ 所围成图形的面积是 ▲二、解答题(本大题共6小题,共90分)11.(本小题满分12分)对x ,y 定义一种新运算T ,规定:(),2ax byT x y x y+=+(其中a 、b均为非零常数),这里等式右边是通常的四则运算,例如:()010,1201a b T b ⨯+⨯==⨯+.已知()1,12T -=-,()4,21T =.(1)求a ,b 的值; (2)若关于m 的不等式组()()2,544,32T m m T m m p-≤⎧⎪⎨->⎪⎩恰好有3个整数解,求实数p 的取值范围.12.(本小题满分14分)如图,已知A ,B两点的坐标分别为(A ,()2,0B ,直线AB 与反比例函数my x=的图像交于点C 和点()1,D a -.(1)求直线AB 和反比例函数的解析式;BA (M )D C NPQ(2)求∠ACO 的度数;(3)将△OBC 绕点O 逆时针方向旋转α角(α为锐角), 得到△''OBC ,当α为多少度时'OC AB ⊥,并求此时线段'AB 的长.13.(本小题满分14分)已知抛物线2243m mx x y -+=(m >0)与x 轴交于A 、B 两点. (1)求证:抛物线的对称轴在y 轴的左侧; (2)若3211=-OA OB (O 是坐标原点),求抛物线的解析式; (3)设抛物线与y 轴交于点C ,若∆ABC 是直角三角形,求∆ABC 的面积.14.(本小题满分14分)已知在△ABC 中,以AC 边为直径的⊙O 交BC 于点D ,在劣弧AD 上有一点E 使得∠EBC =∠DEC ,延长BE 依次交AC 于G ,交⊙O 于H . (1)求证:AC ⊥BH ;(2)若∠ABC =45°,⊙O 的直径等于10,BD =8,求CE 的长.15.(本小题满分16分)为了提高市民的宜居环境,某区规划修建一个文化广场(平面图形如图所示),其中四边形ABCD 是矩形,分别以AB 、BC 、CD 、DA 边为直径向外作半圆,若整个广场的周长为628米,矩形的边长AB y =米,BC x =米.(注:取=3.14π) (1)试用含x 的代数式表示y ;(2)现计划在矩形ABCD 区域上种植花草和铺设鹅卵石等,平均每平方米造价为428元,在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为400元. ①设该工程的总造价为W 元,求W 关于x 的函数关系式;②若该工程政府投入1千万元,问能否完成该工程的建设任务?若能,请列出设计方案,若不能,请说明理由;ABCD③若该工程在政府投入1千万元的基础上,又增加企业募捐资金64.82万元,但要求矩形的边BC 的长不超过AB 长的三分之二,且建设广场恰好用完所有资金,问:能否完成该工程的建设任务?若能,请列出所有可能的设计方案,若不能,请说明理由.16.(本小题满分20分)如图,第一象限内半径为2的⊙C 与y 轴相切于点A ,作直径AD ,过点D 作⊙C 的切线l 交x 轴于点B ,P 为直线l 上一动点,已知直线P A 的解析式为:3y kx =+.(1)设点P 的纵坐标为p ,写出p 随k 变化的函数关系式;(2)设⊙C 与P A 交于点M ,与AB 交于点N ,则不论动点P 处于直线l 上(除点B 以外)的什么位置时,都有△AMN ∽△ABP ,请你对于点P 处于图中位置时的情形给予证明; (3)是否存在k ,使得△AMN 的面积等于3225请求出符合条件的k 值;若不存在,请说明理由.。

2019年重点高中提前招生选拔考试数学试卷及答案

2019年重点高中提前招生选拔考试数学试卷及答案

2019年重点高中提前招生选拔考试数学试卷(本卷满分120分,考试时间100分钟)一、选择题:(每小题4分,共40分) 1、已知y=12x -P (x ,y )所在的象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2、如图,△ABC 中,D 、E 分别是BC 、AC 的中点,BF 平分∠ABC ,交DE 于点F ,若BC=6,则DF 的长是( )A .2B .3C .52D .43、现规定一种新的运算:“*”:*()m n m n m n -=+,那么51*22=( )A.54B.5C.3D.9 4、已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2的取值范围在数轴上表示正确的是( )5、在学习掷硬币的概率时,老师说:“掷一枚质地均匀的硬币,正面朝上的概率是12”,小明做了下列三个模拟实验来验证。

①取一枚新硬币,在桌面上进行抛掷,计算正面朝上的次数与总次数的比值。

②把一个质地均匀的圆形转盘平均分成偶数份,并依次标上奇数和偶数,转动转盘,计算指针落在奇数区域的次数与总次数的比值。

③将一个圆形纸板放在水平的桌面上,纸板正中间放一个圆锥(如右图),从圆锥的正上方往下撒米粒,计算其中一半纸板上的米粒数与纸板上总米粒数的比值。

上面的实验中,不.科学的有( ) A .0个 B .1个 C .2个 D .3个6、抛物线2x y =上有三点P 1、P 2、P 3,其横坐标分别为m,m+1,m+3,则△P 1P 2P 3的面积为( )A .1B .2C .3D .47、矩形ABCD 中,8cm 6cm AD AB ==,.动点E 从点C 开始沿边CB 向点B 以2cm/sB .3 1 0 24 5D .3 1 0 24 5A .3 1 0 24 5C .3 1 0 24 5的速度运动至点B 停止,动点F 从点C 同时出发沿边CD 向点D 以1cm/s 的速度运动至点D 停止。

【重点高中】江西九江一中2019中考提前自主招生数学模拟试卷(6套)附解析

【重点高中】江西九江一中2019中考提前自主招生数学模拟试卷(6套)附解析

为 Q1( x'1, y'1)、 Q2(x'2, y'2)、 …、Q2015(x'2015, y'2015),则 P2015Q2015 的长度是

20.将连续正整数按以下规律排列,则位于第 7 行第 7 列的数 x 是

试卷第 4 页,总 7 页
三.解答题(共 6 小题,共 70 分)
21.若关于 x 的不等式组

A. B. C. D.
4.已知 x+y= ,| x|+| y| =5 ,则 x﹣y 的值为( )
A.
B.
C.
D.
5.二次函数 y=ax2+bx+c 的图象如图所示( a、b、 c 为常数),则函数 y=(4ac﹣b2) x+abc 和
y= 在同一平面直角坐标系中的图象,可能是(

试卷第 1 页,总 7 页
1.下列等式中,不一定成立的是(

A. =2
B.
C.a =﹣
D.
2.中国人民银行授权中国外汇交易中心公布, 2014 年 1 月 14 日银行间外汇市场人民币汇率
中间价为: 1 美元对人民币 6.0930 元,某上市公司持有美元资产为 980 万美元,用科学记数
法表示其美元资产折合成人民币为(
)元(保留两位有效数字)
A.
B.
6.关于 x 的一元二次方程 mx2+
()
A. m 且 m≠0 B.﹣
C.
D.
x+1=0 有两个不相等的同号实数根,则 m 的取值范围是
C.﹣
ቤተ መጻሕፍቲ ባይዱ
且 m≠0 D.0
7.由于货源紧缺,小王、小李两名商贩连续两次以不同的价格在同一公司购进了

2019年重点高中提前招生第一次选拔数学试卷及答案

2019年重点高中提前招生第一次选拔数学试卷及答案

MQNP重点高中提前招生第一次选拔试卷――数学一、选择题:(本大题共6小题,每小题5分,满分30分)1、若y <1是不等式a -3(a -y ) <y -4的解集,则a 的取值为( ) A .a >3 B 、a =3 C 、a <3 D 、a =42、在平面直角坐标系xOy 中,满足不等式2222x y x y +≤+的整数点坐标()x y ,的个数为( ) A 、10 B 、9 C 、7 D 、53、在平面直角坐标系中,点A 的坐标是(1,0),点B 的坐标是(3,3)--,点C 是y 轴上一动点,要使△ABC 为等腰三角形,则符合要求的点C 的位置共有( ) A 、2个 B 、3个 C 、4个 D 、5个4、如图,直角梯形MNPQ ,∠MNP =90°,PM ⊥NQ ,若 22PM NQ =,则=NPMQ( ) A 、21 B 、22 C 、4 D 、325、如图,三个半径为3的圆两两外切,且△ABC 的每一边都与其中的两个圆相切,则△ABC 的周长是( )A 、12+63B 、18+63C 、18+123D 、12+123 6、如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5,则CD 的长为( ) A 、23 B 、4 C 、52 D 、4.5 二、填空题(本大题共5小题,每小题5分,满分25分) 7、如果关于x 的方程22393042x kx k k ++-+=的两个实数根分别为1x ,2x ,那么2012220111x x 的值为 .8、如图,直角三角形AOB 中,O 为坐标原点,∠AOB =90°,∠B =30°,若点A 在反比例函数y =x1(x >0)图像上运动,那么点B 必在函数_________________的图像上运动。

(填写该函数表达式) 9、如图,半径为r 的圆O 沿折线ABCDE 作无滑动的滚动,如果2AB BC CD DE r π====,150,120ABC CDE BCD ∠=∠=∠=,那么,圆O 自点A至点E 转动了__________周.10、依次将正整数1,2,3,……的平方数排成一串:149162536496481100121144……,排在第1个位置的数字是1,排在第5个位置的数字是6,排在第10个位置的数字是4,排在第2008个位置的数字是_________________ 11、如果正数x ,y ,z 可以是一个三角形的三边长,那么称x y z (,,)是三角形数.若a b c (,,)和111a b c (,,)均为三角形数,且a ≤b ≤c ,则ac 的取值范围是 .三、解答题(本大题共2小题,共25分) 12、(12分)如图,⊙O 的内接四边形ABCD 中,AC ,BD 是它的对角线,AC 的中点I 是△ABD的内心. 求证:(1)OI 是△IBD 的外接圆的切线;(2)AB +AD =2BD .13、(13分)如图,在平面直角坐标系中,直角梯形OABC 的顶点A 、B 的坐标分别是(5,0)、(3,2),点D 在线段OA 上,BD =BA , 点Q 是线段BD 上一个动点,点P 的坐标是(0,3),设直线PQ 的解析式为y kx b =+.(1)求k 的取值范围;(2)当k 为取值范围内的最大整数时,若抛物线25y ax ax =-的顶点在直线PQ 、OA 、AB 、BC 围成的四边形内部,求a 的取值范围.QP xy DCBAO数学答案1.B2.B3.D4.A5.B6.B7、32-8、3y x-=9、 143 10、1 11、 1253≤<-c a12、解:(1)如图,根据三角形内心的性质和同弧上圆周角的性质知CID IAD IDA ∠=∠+∠,CDI CDB BDI BAC IDA IAD IDA ∠=∠+∠=∠+∠=∠+∠. 所以CID CDI ∠=∠, CI = CD .同理,CI = CB .故点C 是△IBD 的外心.连接OA ,OC ,因为I 是AC 的中点,且OA = OC ,所以OI ⊥AC ,即OI ⊥CI .故OI 是△IBD 外接圆的切线. (2)如图,过点I 作IE ⊥AD 于点E ,设OC 与BD 交于点F . 由BC CD =,知OC ⊥BD .因为∠CBF =∠IAE ,BC = CI = AI ,所以Rt BCF Rt AIE △≌△.所以BF = AE . 又因为I 是△ABD 的内心,所以22AB AD BD AE BD BD BF BD +-=+-==. 故2AB AD BD +=.13、解:(1)直线y kx b =+经过P (0,3),∴ 3b =. ∵B (3,2),A (5,0),BD =BA ,∴ 点D 的坐标是(1,0), ∴ BD 的解析式是1y x =-, 1 3.x ≤≤依题意,得 1,3.y x y kx =-⎧⎨=+⎩,∴4,1x k =-∴ 41 3.1k -≤≤解得13.3k --≤≤………………………………………… (2) 13,3k --≤≤且k 为最大整数,∴1k =-.则直线PQ 的解析式为3y x =-+.……………………………………………又因为抛物线25y ax ax =-的顶点坐标是525,24a ⎛⎫-⎪⎝⎭,对称轴为52x =.解方程组⎪⎩⎪⎨⎧=+-=.25,3x x y 得⎪⎪⎩⎪⎪⎨⎧==.21,25y x 即直线PQ 与对称轴为52x =的交点坐标为51(,)22,∴125224a <-<.解得 822525a -<<-.…………………………………… QPxy DC BAO。

重点高中提前招生考试语数英科试卷及答案

重点高中提前招生考试语数英科试卷及答案

2019年重点高中高一分班考试考试数学试题满分:120分 时间:90分钟一、选择题(本题有10个小题,每小题3分,共30分)1.当1<a <2时,代数式︱a -2︱+︱1-a ︱的值是 ( ▲ ) A .-1 B .-3 C . 1 D .3 2.已知b a ,为实数,且1=ab ,设11+++=b b a a M ,1111+++=b a N ,则N M ,的大小关系是 ( ▲ )A .N M >B .N M =C .N M <D .无法确定3. 化简yx y x y x -+-22的结果是 ( ▲ ) A . y x + B .x y - C . y x - D . y x -- 4.已知()0332=++++m y x x 中,y 为负数,则m 的取值范围是 ( ▲ )A . m >9B . m <9C . m >9-D . m <9-5. 如图是一张简易活动餐桌,现测得OA=OB=30cm , OC=OD=50cm ,现要求桌面离地面的高度为40cm ,那么两条桌腿的张角∠COD 的大小应为 ( ▲ ) A .100° B .120° C .135° D .150° 6. 某市按以下标准收取水费:用水不超过20吨,按每吨1.2元收费,超 过20 吨则超过部分按每吨1.5元收费.某家庭五月份的水费是平均每吨1.25元, 那么这个家庭五月份应交水费 ( ▲ ) A .20元 B .24元 C .30元 D .36元 7.如图,一张半径为1的圆形纸片在边长为4的正方形内任意移动,则 在该正方形内,这张圆形纸片“能接触到的部分”的面积是 ( ▲ ) A .π-4 B . π C . π+12 D . 415π+8.已知一元二次方程x 2+bx -3=0的一根为-3,在二次函数y =x 2+bx -3的图象上有三点⎝⎛⎭⎫-45,y 1、⎝⎛⎭⎫-54,y 2、⎝⎛⎭⎫16,y 3,则y 1、y 2、y 3的大小关系是 ( ▲ ) A . y 1<y 2<y 3 B .y 2<y 1<y 3 C . y 3<y 1<y 2 D .y 1<y 3<y 29.已知20112012)322()223(-+=a ,则与a 最接近的整数是 ( ▲ ) A .6- B .5- C . 5 D . 610. 若不等式组⎪⎩⎪⎨⎧>>-a x x 1312的解为2>x ,则函数81)26(2+--=x x a y 图象与x 轴的交点情况是( ▲ )A .相交于两点B .没有交点C .相交于一点D .没有交点或相交于一点二、填空(本题有6个小题,每小题4分,共24分)11.分解因式 a a 64163+-= ▲ . 12.已知4个数据:4-,2,a ,b ,其中a ,b 是方程2220x x k +-=的两个根,则这4个数据的平均数是 ▲ . . 13. 已知31=-x x ,则代数式221xx += ▲ .14. 已知直角三角形的周长为14,斜边上的中线长为3,则直角三角形的面积为 ▲ .15. 已知a 、b 是一元二次方程012=-+x x 的两个根,则b a b a +++2222=___▲ .16.如图所示的二次函数y =ax 2+bx +c 的图象中,刘星同学观察得出了下面四条信息:(1)b 2-4ac >0; (2)0<+-c b a ; (3)2a -b <0; (4)a +b +c <0.你认为其中正确的有 ▲ (写出你认为正确的所有 信息的序号).三、解答题(本题有7小题,共66分) 17.(本题满分6分)如图,在梯形ABCD 中,AB ∥CD , °90D ∠=, 4CD =,ACB D ∠=∠,32tan =∠B , 求梯形ABCD 的面积.18. (本题满分10分)已知一次函数131+-=x y 和二次函数22+-=x x y (1)在同一坐标系中作出两个函数的图象;(2)写出二次函数的顶点坐标及与其x 轴的交点坐标;(3)根据图象写出满足>++-322x x 131+-x 的x19. (本题满分8分)(1)已知正数y x ,满足212342222=+-+yxy x y x ,且x ya =,求a 的值. (2)化简代数式()()3112131122+++-⨯-+-+a a a a a a a ,再根据(1)中求得的a 代入求值.20.(本题满分8分)如图,一次函数y =k 1x +b 的图象经过A (0,-2),B (1,0)两点,与反比例函数xk y 2= 的图象在第一象限内的交点为M ,若△OBM 的面积为2. (1)求一次函数和反比例函数的表达式;(2)在x 轴上找出点P 的坐标,使AM ⊥MP .A OBCD21.(本题满分10分)如图,C 为以AB 为直径的⊙O 上一点,AD 和过点C 的切线互相垂直,垂足为点D . (1)求证:AC 平分∠BAD ;(2)过点O 作线段AC 的垂线OE ,垂足为点E (尺规作图,保留作图痕迹,不写作法); (3)若CD =4,AC =45,求垂线段OE 的长.22.(本题满分12分)已知二次函数)0(2222≠--=m m mx x y 的图像与x 轴交于A 、B 两点,它的顶点在以AB 为直径的圆上. (1)证明:A 、B 是x 轴上两个不同的交点; (2)求二次函数的解析式;(3)设以AB 为直径的圆与y 轴交于C ,D ,求弦CD 的长.23.(本小题满分12分)矩形OABC 在直角坐标系中的位置如图所示,A 、C 两点的坐标分别为(6,0)A 、(0,3)C ,直线34y x =与BC 边相交于点D .(1) 若抛物线2(0)y ax bx a =+≠经过D 、A 两点,试确定此抛物线的表达式;(2) 若以点A 为圆心的⊙A 与直线OD 相切,试求⊙A 的半径;(3) 设(1)中抛物线的对称轴与直线OD 交于点M ,在对称轴上是否存在点Q ,以Q 、O 、 M 为顶点的三角形与OCD ∆相似,若存在,试求出符合条件的Q 点的坐标;若不存在,试说明理由.2018年重点高中分班考试语文试题(满分:120分考试时间:90分钟)一、下面短文中有10处文字差错,请找出并订正。

2019年浙江省温州市重点高中提前自主招生考试数学模拟试题(解析答案)

2019年浙江省温州市重点高中提前自主招生考试数学模拟试题(解析答案)

第 12页(共 15页)
15.【解析】∵实数 a、b、c、d 满足:一元二次方程 x2+cx+d=0 的两根为 a、b,一元二次 方程 x2+ax+b=0 的两根为 c、d,

解得

(a 为任意实数).
故答案为:(1,﹣2,1,﹣2)或(a,0,﹣a,0)(a 为任意实数). 16.【解析】设 x,y 分别表示已经卖出的铅笔和圆珠笔的支数,则
AD BD CD2 10r ①,而 AD BD 2r ②
第 13页(共 15页)
令 AD x, BD y ,①/②即 xy 10r 5 y y 1,显然有 0 y x ,则
x y 2r
x5
0 y 1 ,即 0 y 1 1 5 y 10 , y 为正整数,故 y 6,7,8,9 ,又 x 也为正整数,
若这次跳动在 1999 次后,则 a2000 =7+1999=2006.
(3)因为这个 (n 1) 次跳动的情形,能同时满足如下两个条件:
① a1 2 ,② a1 + a2 + a3 + an =2.
经过 (k 1) 步跳动到达 ak ,假设这 (k 1) 步中向右跳了 xk 步,向左跳了 yk 步,
∴ SEHC CH CH 1 3 .故 C 正确; SAEH AH EH tan 30
④设 EH=a,则 AH=EH=a,CH= EH= a, ∴AC=a+ a, 根据等腰直角三角形的性质,AE= EH= a,
AB= AC= (a+ a)=

∴BE=AB﹣AE=
﹣ a=

∴=

≠2,故 D 错误;
重点高中提前自主招生选拔考试

2019年重点高中提前招生选拔考试数学试卷及答案

2019年重点高中提前招生选拔考试数学试卷及答案

重点高中提前招生选拔考试数学试卷(本卷满分100分,时间120分钟)一、选择题(每题4分,共40分) 1.下列运算正确的是( )A.a 5.a 6= a 30B. (a 5)6= a 30C.a 5+a 6= a 11D.a 5÷a 6=65 2.抛物线2)8x (y 2+--=的顶点坐标是( )A .(2,8)B .(8,2)C .(—8,2)D .(—8,—2)3.在平面内有线段AB 和直线L,点A 、B 到直线L 的距离分别是4㎝、6㎝.则线段AB 的中点C到直线l 的距离是 ( )A .1或5B .3或5C .4D .54.已知:3223222⨯=+; 8338332⨯=+;154415442⨯=+;245524552⨯=+,……;809980992⨯=+,若ab10a b 102⨯=+(a,b 为正整数)则a+b 的值不可能是( ) A .109 B .218 C .326 D .4365.无论m 为何实数,直线y=2x+3m 与y=-x+5的交点不可能在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知a 、b 、c 为△ABC 的三条边,且满足a 2+ab -ac -bc=0,b 2+bc -ba -ca=0,则 △ABC 是( )A .等边三角形 B.直角三角形C.等腰三角形D.等腰三角形或直角三角形7.若关于x 的不等式组 x ≥3a -2 无解,则函数y=(a -3)x 2-x -41的图象与 x<a+4 x 轴的交点个数为( )A.0B.1C.2D.1或28.将任意一张凸四边形的纸片对折,使它的两个不相邻的顶点重合,然后剪去纸片 的不重合部分,展开纸片,再一次对折,使另外的两个顶点重合,再剪去不重合 的部分后展开,此时纸片的形状是( )A.正方形B.长方形C.菱形D.等腰梯形9.如图,点M 是正方形ABCD 的CD 边上的中点, 点P 按A →B →C →M 的顺序在正方形的边上运动, 设AB=1,点P 经过的路程为x ,△APM 的面积为y ,CP则y 关于x 的函数是( )10.为了迎接2010年亚运会的到来,某足球协会举办了一次足球联赛,其记分规则及奖励方案如下表:胜一场 平一场 负一场 积分 3 1 0 奖金(元/人)1500700当比赛进行到12轮结束(每队均需比赛12场)时,A 队共积19分,若每 赛一场每名参赛队员均得出场费500元,设A 队其中一名参赛队员所得的奖金与 出场费的和为W (元),试求W 的最大值是( ) .16300 B. 16900 C. 15700 D. 17500二、填空题(每题5分,共30分)11.一盒子内放有3个红球、6个白球和5个黑球,它们除颜色外都相同,搅匀后任意摸出1个球是白球的概率为 .12.某校七年级2班的男生人数是女生人数的1.8倍,在一次数学测试中,全班成绩 的平均分是75分,其中女生的平均分比男生的平均分高20%,则女生的平均分是 ___________分。

重点高中新生提前招生语数英科试卷及答案

重点高中新生提前招生语数英科试卷及答案

2019年重点中学分班考试数学试卷满分:120分 时间:90分钟一、选择题(本题有10个小题,每小题3分,共30分) (1)如果一元一次不等式组⎩⎨⎧>>a x x 3的解集为x >3,则a 的取值范围是 A .a >3 B .a ≥3 C .a <3 D .a ≤3(2)若实数x 满足12223-=++x x x ,则9932x x x x ++++ =A .1-B .0C .1D .99(3)如果从一卷粗细均匀的电线上截取1米长的电线, 称得它的质量为a 克,再称得剩余电线的质量为b 克,那么原来这卷电线的总长度是A .a b 1+米B .(a b +1)米C .(a+b a +1)米D .(b a +1)米(4)若实数n 满足2)45()46(22=-+-n n ,则代数式)45)(46(n n --的值是A .1-B .21-C .21D .1(5)已知方程2(21)10x k x k +++-=的两个实数根12,x x 满足1241x x k -=-,则实数k 的值为 A .—3,0 B .1,43-C .1,13- D .1,0 (6)如图,矩形AOBC 的面积为16,反比例函数xky =的图象经过矩形的对角线的交点P ,则反比例函数的解析式是A .x y 1= B .x y 2=C .x y 4=D .x y 8= (7)设213a a +=,213b b +=,且a b ≠,则代数式3311ba +的值为A .24-B .18-C .18D .24(8)当x 分别取值201,191,181,…31,21,1,2,3,…,18,19,20时,计算代数式2211x x +-的值,将所得的结果相加,其和等于A .-20B .0C .1D .20(9)如图,∠ACB =60○,半径为2的⊙O 切BC 于点C ,若将⊙O 在CB 上向右滚动,则当滚动到⊙O 与CA 也相切时,圆心O 移动的水平距离为A .32B .4C .πD .2π(10)方程813222=++y xy x 的整数解(,)x y 的组数为A .7B . 6C .5D .4二、填空(本题有7个小题,其中11题6分,其余每小题4分,共30(第9题)分)(11)直接写出下列关于x 的方程的根:①015722=-+x x ; ②24)3)(2)(1(=+++x x x x ;③41122=+++x x xx ;④01)2(2=+--+a x a x ; (12)已知三个数a 、b 、c 的积为负数,和为正数,且x =a a +b b +c c +ab ab +ac ac +cb bc,则ax 3+bx 2+cx +1=_________.(13)若化简16812+---x x x 的结果为52-x ,则x 的取值范围是 . (14)如图,DE 是△ABC 的中位线,点P 是DE 的中点,CP 的延长线交AB 于点Q ,那么:DPQ ABC S S ∆∆=______________. (15)若实数a 、b 满足b >a >0,且ab b a 422=+,则ba b a +-= . (16)若实数b a ,满足0111=+--ba b a ,则=+ab b a 22. (17)桌面上有三颗球,相互靠在一起。

2019年高中提前招生数学试卷及答案(2)

2019年高中提前招生数学试卷及答案(2)

2019年高中提前招生考试数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1、﹣5的相反数是A、﹣5B、5C、﹣15D、152、四边形的内角和为A、180°B、360°C、540°D、720°3、数据1,2,4,4,3的众数是A、1B、2C、3D、44、下面四个几何体中,主视图是四边形的几何体共有A、1个B、2个C、3个D、4个5、第六次人口普查显示,湛江市常住人口数约为6990000人,数据6990000用科学记数法表示为A、69.9×105B、0.699×107C、6.99×106D、6.99×1076、在下列图形中,既是轴对称图形,又是中心对称图形的是A、直角三角形B、正五边形C、正方形D、等腰梯形7、下列计算正确的是A、a2•a3=a5B、a+a=a2C、(a2)3=a5D、a2(a+1)=a3+18、不等式的解集x≤2在数轴上表示为A、B、C、D、9、甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是A、甲B、乙C、丙D、丁10、如图,直线AB 、CD 相交于点E ,DF ∥AB .若∠AEC=100°,则∠D 等于 A 、70°B 、80°C 、90°D 、100°11、化简22a b a b a b---的结果是 22A C C D 1a b a b a b +-- 、、、、12、在同一坐标系中,正比例函数=y x 与反比例函数2=y x的图象大致是A 、B 、C 、 D二、填空题(本大题共8小题,每小题4分,其中17~20小题每空2分,共32分) 13、分解因式:x 2+3x = ▲ .14、已知∠1=30°,则∠1的补角的度数为 ▲ 度.15、若x =2是关于x 的方程2x +3m -1=0的解,则m 的值等于 ▲ . 16、如图,A ,B ,C 是⊙O 上的三点,∠BAC=30°,则∠BOC= ▲ 度. 17、多项式2x 2﹣3x +5是 ▲ 次 ▲ 项式.18、函数y 中自变量x 的取值范围是 ▲ ,若x =4,则函数值y = ▲ . 19、如图,点B ,C ,F ,E 在同直线上,∠1=∠2,BC=EF ,∠1 ▲ (填“是”或“不是”)∠2的对顶角,要使△ABC ≌△DEF ,还需添加一个条件,可以是 ▲ (只需写出一个)20、若:A 32=3×2=6,A 53=5×4×3=60,A 54=5×4×3×2=120,A 64=6×5×4×3=360,…,观察前面计算过程,寻找计算规律计算A 73= ▲ (直接写出计算结果),并比较A 103 ▲ A 104(填“>”或“<”或“=”)三、解答题(本大题共8小题,其中21~22每小题7分,23~24每小题10分,25~28每小题12分,共82分)21()020112π-+-.22、如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣4,3),(﹣1,1).(1)作出△ABC向右平移5个单位的△A1B1C1;(2)作出△ABC关于x轴对称的△A2B2C2,并写出点C2的坐标.23、一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4.(1)随机摸取一个小球,求恰好摸到标号为2的小球的概率;(2)随机摸取一个小球然后放回,再随机摸取一个小球,求两次摸取的小球的标号的和为5的概率.24、五一期间,小红到美丽的世界地质公园湖光岩参加社会实践活动,在景点P处测得景点B位于南偏东45°方向;然后沿北偏东60°方向走100米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与B之间的距离.(结果精确到0.125、某中学为了了解学生的体育锻炼情况,随机抽查了部分学生一周参加体育锻炼的时间,得到如图的条形统计图,根据图形解答下列问题:(1)这次抽查了名学生;(2)所抽查的学生一周平均参加体育锻炼多少小时?(3)已知该校有1200名学生,估计该校有多少名学生一周参加体育锻炼的时间超过6小时?26、某工厂计划生产A,B两种产品共10件,其生产成本和利润如下表:(1)若工厂计划获利14万元,问A ,B 两种产品应分别生产多少件?(2)若工厂投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案? (3)在(2)条件下,哪种方案获利最大?并求最大利润.27、如图,在Rt △ABC 中,∠C=90°,点D 是AC 的中点,且∠A+∠CDB=90°,过点A ,D 作⊙O ,使圆心O 在AB 上,⊙O 与AB 交于点E .(1)求证:直线BD 与⊙O 相切;(2)若AD :AE=4:5,BC=6,求⊙O 的直径.设AC=4x ,AB=5x ,那么BC=3x ,∴BC :AB=3:5。

2019年高中提前招生数学试卷及答案

2019年高中提前招生数学试卷及答案

2019年高中提前招生数学试卷一、选择题(本题有12小题,每小题3分,共36分,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.下列计算正确的是A 、22a ·632a a = B 、6329)3(a a = C 、326a a a =÷ D 、(632)--=a a2.抛物线2)8(2+--=a y 的顶点坐标是A 、(2,8)B 、(8,2)C 、(—8,2)D 、(—8,—2)3.已知圆锥的底面半径为9㎝,母线长为30㎝,则圆锥的侧面积为 A 、270π2cm B 、360π2cm C 、450π2cm D 、540π2cm 4.如图,已知AB ∥CD ,AB=C D ,AE=F D ,则图中的全等三角形有A 、1对B 、2对C 、3对D 、4对5.现有2008年奥运会福娃卡片20张,其中贝贝6张,京京5张,欢欢4张,迎迎3张,妮妮2张,每张卡片大小、质地均匀相同,将画有福娃的一面朝下反扣在桌子上,从中随机抽取一张,抽到京京的概率是A 、101B 、103C 、41 D 、516.如果一个定值电阻R 两端所加电压为5伏时,通过它的电流为1安培,那么通过这一电阻的电流I 随它的两端电压U 变化的图像是7.如图是5×5的正方形网络,以点D 、E 为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC 全等,这样的格点三角形最多可以画出A 、2个B 、4个C 、6个D 、8个8.如图,已知△ABC的六个元素,则下列甲、乙、丙三个三角形中和△ABC全等的图形是A、甲乙B、甲丙C、乙丙D、乙9.如图,∠ACB=60○,半径为2的⊙0切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离为A、2πB、4πC、32D、410.如图,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用X、Y表示直角三角形的两直角边(X>Y),请观察图案,指出以下关系式中不正确的是A、X2+Y2=49B、X-Y=2C、2XY+4=49D、X+Y=1311.如图,正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为Y,AE为X,则Y关于X的函数图象大致是12.先作半径为22的圆的内接正方形,接着作上述内接正方形的内切圆,再作上述内切圆的内接正方aac丙︒72︒50 乙︒50甲a︒507250︒︒︒58cbaCBA形,…,则按以上规律作出的第7个圆的内接正方形的边长为A 、(6)22 B 、(7)22 C 、(6)2 D 、7)2( 二、填空题(第小题4分,共24分)13.我们知道,1纳米=10—9米,一种花粉直径为35000纳米,那么这种花粉的直径用 科学记数法可记为 ▲ 米。

2019年重点高中提前招生考试数学试卷

2019年重点高中提前招生考试数学试卷

宁波市余姚中学自主招生考试试卷数 学满分100分,考试时间100分钟一、选择题(每小题4分,共32分) 1.如果实数m ≠n ,且8181m n m n m n ++=++,则m +n =( ) A .7 B .8 C .9 D .10 2.生物学指出:生态系统中,每输入一个营养级的能量,大约只有10%的能量能够流动到下一个营养级,在H 1→H 2→H 3→H 4→H 5→H 6这条生物链中(Hn 表示第n 个营养级,n =1, 2,…,6),要使H 6获得10千焦的能量,那么需要H 1提供的能量约为( )A .104千焦B .105千焦C .106千焦D .107千焦3.甲、乙、丙、丁四位同学参加校田径运动会4×100m 接力跑比赛,如果任意安排四位同学的跑步顺序,那么恰好由甲将接力棒交给乙的概率是 ( )A .14B .16C .18D . 1124.如图是一个无盖正方体盒子的表面展开图,A ,B ,C 为图上三点,则在正方体盒子中,∠ABC 的度数为( )A . 150°B .120°C .90°D .60°5.如图是某条公共汽车线路收支差额y 与乘客量x 的图象(收支差额=车票收入一支出费用).由于目前本条线路亏损,公司有关人员提出两条建议:建议(1)是不改变车票价格,减少支出费用;建议(2)是不改变支出费用,提高车票价格,下面给出四个图象(如图所示)则 ( )A .①反映了建议(2),③反映了建议(1)B .①反映了建议(1),③反映了建议(2)C .②反映了建议(1),④反映了建议(2)D .④反映了建议(1),②反映了建议(2)6.如图,在菱形ABCD 和菱形BEFG 中,点A ,B ,E 在同一直线上,P 是线段DF 的中点,连结PG ,PC ,若∠ABC =∠BEF =60°,则PGPC=( )④③②①A B C D7.在高速公路上,从3 km 处开始,每隔4 km 经过一个限速标志牌,并且从10 km 处开始,每隔9 km 经过一个速度监控仪,刚好在19 km 处第一次同时经过这两种设施,那么,第二次同时 经过这两种设施是在( )千米处.A .36B .37C .55D .918.函数y =ax 2+bx +c 图象的大致位置如图所示,则ab ,bc ,2a +b ,(a +c )2-b 2, (a +b )2–c 2,b 2–a 2等代数式的值中,正数有( )A .2个B .3个C .4个D .5个二、填空题(每小题4分,共24分)9.若Q (a -2011,41-49a)是第三象限内的点,且a 为整数,则a = . 10.若f (n )为n 2+1(n 为正整数)的各位数字之和,如:62+1=37,则f (6)=3+7=10. 记f l (n )= f (n ),f 2(n )=f (f 1(n )),f k +1(n )=f (f k (n )),k 为正整数,则f 2011(8)= .11.如图,Rt △AOB 中,0为坐标原点,点B 在第四象限,么AOB =90°,∠B =30°,如果点A 在反比例函数y =1x(x >0)的图象上运动,那么点B 在函数 (填函数解析式)的图象上运动.12.已知函数y =x 2+2ax +a 2-1在0≤x ≤3范围内有最大值24,最小值3,则实数a 的值为_______. 13.如图,△ABC 的面积为1.点D ,G ,E 和F 分别在边AB ,AC ,BC 上, BD <DA ,DG ∥BC ,DE ∥AC ,GF ∥AB .则梯形DEFG 面积的最大可能值为__________. 14.已知△ABC 中,∠A ,∠B , ∠C 的对边分别为a ,b ,c ,若111tantantan222A CB +=,b =4,则a +c= .三、解答题(共3小题,满分44分)15.(12分)为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下:(l)估计该校男生的人数.(2)估计该校学生身高在170~185cm之间的概率.(3)从样本中身高在165~180cm之间的女生中任选2人,求至少有1人身高在170~180cm之间的概率.16.(16分)对于二次函数y=ax2+bx+c,如果当x取任意整数时,函数值y都是整数,那么我们把该函数的图象叫做整点抛物线(例如:y=x2+2x+2).(1)请你写出一个二次项系数的绝对值小于1的整点抛物线的解析式(不必证明)(2)请探索:是否存在二次项系数的绝对值小于12的整点抛物线?若存在,请写出其中一条抛物线的解析式;若不存在,请说明理由.17. (16分)如图,在Rt△ABC中,∠C=90°,BC=2,AC=x,点G、H在边BC上,点F在边AE 上,四边形EFGH是一个边长为y的正方形,且AE=AC.(1)求y关于x的函数解析式.(2)当x为何值时,y取得最大值?并求出y的最大值.。

2019年山东省青岛市重点中学第十七中学提前自主招生考试数学试题及答案(PDF版)

2019年山东省青岛市重点中学第十七中学提前自主招生考试数学试题及答案(PDF版)

2019年山东省青岛市第十七中学提前招生数学试题一、填空题(每小题6分,共60分)1.计算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°=.2.化简:(﹣)÷得,当a=﹣2+,其值是.3.如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,则α,β,γ三者之间的等量关系是.第3题第4题第6题4.如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则在45°,60°,75°,85°四个角度中,∠AMB的度数不可能是.5.已知关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1,x2.若+=4m,则m 的值是.6.如图,平行于x轴的直线与函数y=(k1>0,x>0)和y=(k2>0,x>0)的图象分别相交于A,B两点.点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为.7.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为.第7题第8题8.如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则EF的值为.9.抛物线y=ax2+bx+c的对称轴为直线x=﹣1,图象过(1,0)点,部分图象如图所示,下列判断中:①abc >0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.其中正确的序号有.第9题第10题10.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是,其中正确结论的个数是.二、解答题(每小题15分,共60分)11.(15分)为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:(1)在这次调查中,一共调查了名市民,扇形统计图中,C组对应的扇形圆心角是°;(2)请补全条形统计图;(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.12.(15分)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.13.(15分)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.14.(15分)如图,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q两点分别从A,B同时出发,点P沿折线AB﹣BC运动,在AB上的速度是2cm/s,在BC上的速度是2cm/s;点Q在BD上以2cm/s的速度向终点D运动,过点P作PN⊥AD,垂足为点N.连接PQ,以PQ,PN为邻边作□PQMN.设运动的时间为x (s),□PQMN与矩形ABCD重叠部分的图形面积为y(cm2)(1)当PQ⊥AB时,x=;(2)求y关于x的函数解析式,并写出x的取值范围;(3)直线AM将矩形ABCD的面积分成1:3两部分时,直接写出x的值.2019年山东省青岛市第十七中学提前招生数学试题参考答案与试题解析一、填空题(每小题6分,共60分)1.【答案】﹣1【解析】|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°=3+1﹣4﹣2×=﹣12.【答案】,【解析】原式=÷=,当a=﹣2+时,∴原式==.3.【答案】γ=2α+β【解析】由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β.4.【答案】85°【解析】∵B是的中点,∴∠AOB=2∠BDC=80°,又∵M是OD上一点,∴∠AMB≤∠AOB=80°.则不符合条件的只有85°.5.【答案】2【解析】∵关于x的一元二次方mx2﹣(m+2)x+=0有两个不相等的实数根x1、x2,∴,解得:m>﹣1且m≠0.∵x1、x2是方程mx2﹣(m+2)x+=0的两个实数根,∴x1+x2=,x1x2=,∵+=4m,∴=4m,∴m=2或﹣1,∵m>﹣1,∴m=2.6.【答案】8【解析】设A、B、C三点的坐标分别是A(,m)、B(,m),则△ABC的面积=•AB•y A=•(﹣)•m=4,则k1﹣k2=8.7.【答案】(6053,2)【解析】第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,2),第五次P5(17,2),…发现点P的位置4次一个循环,∵2017÷4=504余1,P2017的纵坐标与P1相同为2,横坐标为5+12×504=6053,∴P2017(6053,2).8.【答案】【解析】根据折叠,可知:△DCP≌△DEP,∴DC=DE=4,CP=EP.在△OEF和△OBP中,,∴△OEF≌△OBP(AAS),∴OE=OB,EF=BP.设EF=x,则BP=x,DF=DE﹣EF=4﹣x,又∵BF=OB+OF=OE+OP=PE=PC,PC=BC﹣BP=3﹣x,∴AF=AB﹣BF=1+x.在Rt△DAF中,AF2+AD2=DF2,即(1+x)2+32=(4﹣x)2,∴x=∴EF=.9.【答案】②③⑤【解析】①∵a>0,∴b>0,∵c<0,∴abc<0,故①错误.②∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确.③∵抛物线与x轴的一个交点是(1,0),对称轴是x=﹣1,∴抛物线与x轴的另一个交点是(﹣3,0),∴9a﹣3b+c=0,故③正确.④∵点(﹣0.5,y1)在抛物线上,对称轴为x=﹣1,∴(﹣1.5,y1)也在抛物线上,∵﹣1.5>﹣2,且(﹣1.5,y1),(﹣2,y2)都在对称轴的左侧,∴y1<y2,故④错误.⑤:∵抛物线对称轴x=﹣1,经过(1,0),∴﹣=﹣1,a+b+c=0,∴b=2a,c=﹣3a,∴5a﹣2b+c=5a﹣4a﹣3a=﹣2a<0,∴⑤正确.故正确的判断是②③⑤.10.【答案】5【解析】∵正方形ABCD中,CD=BC,∠BCD=90°,∴∠BCN+∠DCN=90°,又∵CN⊥DM,∴∠CDM+∠DCN=90°,∴∠BCN=∠CDM,又∵∠CBN=∠DCM=90°,∴△CNB≌△DMC(ASA),故①正确;根据△CNB≌△DMC,可得CM=BN,又∵∠OCM=∠OBN=45°,OC=OB,∴△OCM≌△OBN(SAS),∴OM=ON,∠COM=∠BON,∴∠DOC+∠COM=∠COB+∠BPN,即∠DOM=∠CON,又∵DO=CO,∴△CON≌△DOM(SAS),故②正确;∵∠BON+∠BOM=∠COM+∠BOM=90°,∴∠MON=90°,即△MON是等腰直角三角形,又∵△AOD是等腰直角三角形,∴△OMN∽△OAD,故③正确;∵AB=BC,CM=BN,∴BM=AN,又∵Rt△BMN中,BM2+BN2=MN2,∴AN2+CM2=MN2,故④正确;∵△OCM≌△OBN,∴四边形BMON的面积=△BOC的面积=1,即四边形BMON的面积是定值1,∴当△MNB的面积最大时,△MNO的面积最小,设BN=x=CM,则BM=2﹣x,∴△MNB的面积=x(2﹣x)=﹣x2+x,∴当x=1时,△MNB的面积有最大值,的最小值是1﹣=,故⑤正确;此时S△OMN综上所述,正确结论的个数是5个.二、解答题(每小题15分,共60分)11.【解析】(1)被调查的人数为:800÷40%=2000(人),C组的人数为:2000﹣100﹣800﹣200﹣300=600(人),∴C组对应的扇形圆心角度数为:×360°=108°,故答案为:2000,108;(2)条形统计图如下:(3)画树状图得:∵共有16种等可能的结果,甲、乙两人选择同一种交通工具的有4种情况,∴甲、乙两人选择同一种交通工具上班的概率为:=.12.【解析】(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM==2,∴MN=OM=2.13.【解析】(1)设水柱所在抛物线(第一象限部分)的函数表达式为y=a(x﹣3)2+5(a≠0),将(8,0)代入y=a(x﹣3)2+5,得:25a+5=0,解得:a=﹣,∴水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣3)2+5(0<x<8).(2)当y=1.8时,有﹣(x﹣3)2+5=1.8,解得:x1=﹣1,x2=7,∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.(3)当x=0时,y=﹣(x﹣3)2+5=.设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+bx+,∵该函数图象过点(16,0),∴0=﹣×162+16b+,解得:b=3,∴改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+3x+=﹣(x﹣)2+.∴扩建改造后喷水池水柱的最大高度为米.14.【解析】(1)当PQ⊥AB时,BQ=2PB,∴2x=2(2﹣2x),∴x=s.故答案为s.(2)①如图1中,当0<x≤时,重叠部分是四边形PQMN.y=2x×x=2x2.②如图2中,当<x≤1时,重叠部分是四边形PQEN.y=(2﹣x+2x)×x=x2+x③如图3中,当1<x<2时,重叠部分是四边形PNEQ.y=(2﹣x+2)×[x﹣2(x﹣1)]=x2﹣3x+4;综上所述,y =.(3)①如图4中,当直线AM经过BC中点E时,满足条件.则有:tan∠EAB=tan∠QPB,∴=,解得x=.②如图5中,当直线AM经过CD的中点E 时,满足条件.此时tan∠DEA=tan∠QPB,∴=,解得x=,综上所述,当x=或时,直线AM将矩形ABCD的面积分成1:3两部分.第11页(共11页)。

【重点高中】福建泉州五中2019中考提前自主招生数学模拟试卷(6套)附解析

【重点高中】福建泉州五中2019中考提前自主招生数学模拟试卷(6套)附解析

绝密★启用前重点高中提前招生模拟考试数学试卷(1)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(共10小题,每题4分)1.下列等式中,不一定成立的是()A.=2B.C.a=﹣D.2.中国人民银行授权中国外汇交易中心公布,2014年1月14日银行间外汇市场人民币汇率中间价为:1美元对人民币 6.0930元,某上市公司持有美元资产为980万美元,用科学记数法表示其美元资产折合成人民币为()元(保留两位有效数字)A.5.97×107 B.6.0×107C.5.97×108 D.6.0×1083.如图,一条信息可通过网络线由上(A点)往下(沿箭头方向)向各站点传送,例如信息要到b2点可由经a1的站点送达,也可由经a2的站点送达,共有两条传送途径,则信息由A 点传达到d3的不同途径中,经过站点b3的概率为()A.B.C.D.4.已知x+y=,|x|+|y|=5,则x﹣y的值为()A.B.C.D.5.二次函数y=ax2+bx+c的图象如图所示(a、b、c为常数),则函数y=(4ac﹣b2)x+abc和y=在同一平面直角坐标系中的图象,可能是()A.B.C.D.6.关于x的一元二次方程mx2+x+1=0有两个不相等的同号实数根,则m的取值范围是()A.m且m≠0 B.﹣C.﹣且m≠0 D.07.由于货源紧缺,小王、小李两名商贩连续两次以不同的价格在同一公司购进了A型香米,两次的购买单价分别为a、b(a<b,单位:元/千克),小王的采购方式为:每次购进c 千克大米;小李的采购方式为:每次购进d元的大米(d>c),若只考虑采购单价,下列结论正确的是()A.小王合算 B.小李合算C.一样合算 D.无法确定谁更合算8.函数y=|x2+2x﹣3|图象的草图如图所示,则关于x的方程|x2+2x﹣3|=a(a为常数)的根的情况,描述错误的是()A.方程可能没有实数根B.方程可能有三个互不相等的实数根C.若方程只有两个实数根,则a的取值范围为:a=0D.若方程有四个实数根,记为x1、x2、x3、x4,则x1+x2+x3+x4=﹣49.如图,DE是△ABC的中位线,F为DE上一点,且EF=2DF,BF的延长线交AC于点H,CF的延长线交AB于点G,则S四边形AGFH:S△BFC=()A.1:10 B.1:5 C.3:10 D.2:510.如图,AB是⊙O的直径,AC是⊙O的弦,点D是的中点,弦DE⊥AB,垂足为点F,DE交AC于点G,EH为⊙O的切线,交AC的延长线于H,AF=3,FB=,则tan∠DEH=()A.B.C.D.第Ⅱ卷(非选择题)二.填空题(共10小题,每题4分)11.计算:(π﹣3.14)0﹣2﹣2×+(tan60°﹣2)2013(4sin30°+)2014+=.12.已知实数x,y满足方程(x2﹣4x+6)(9y2+6y+6)=10,则y x=.13.如图,正方体(图1)的展开图如图2所示,在图1中M、N分别是FG、GH的中点,CM、CN、MN是三条线段;请在图2中画出CM、CN、MN这三条线段.14.如图,在正方形ABCD中,E、F分别为AB、BC的中点,连结CE交DB、DF于G、H,则EG:GH:HC=.15.已知直线l1:y=x﹣a﹣3和直线l2:y=﹣2x+5a相交于点A(m,n),其中a为常数,且m>n>0,化简|1﹣a|﹣=.16.在平面直角坐标系内有两点A、B,其坐标为A(﹣1,﹣1),B(2,4),点M为x轴上的一个动点,若要使MB﹣MA的值最大,则点M的坐标为.17.若y关于x的函数y=(a﹣2)x2﹣2(2a﹣1)x+a(a为常数)的图象与坐标轴只有两个不同交点,则a可取的值为.18.如图,已知圆O的面积为3π,AB为圆O的直径,∠AOC=80°,∠BOD=20°,点P为直径AB上任意一点,则PC+PD的最小值是.19.已知两个反比例函数y=,y=,第一象限内的点P1、P2、P3、…、P2015在反比例函数y=的图象上,它们的横坐标分别为x1、x2、x3、…、x2015,纵坐标分别是1、3、5、…,共2015个连续奇数,过P1、P2、P3、…、P2015分别作y轴的平行线,与y=的图象交点依次为Q1(x'1,y'1)、Q2(x'2,y'2)、…、Q2015(x'2015,y'2015),则P2015Q2015的长度是.20.将连续正整数按以下规律排列,则位于第7行第7列的数x是.三.解答题(共6小题,共70分)21.若关于x的不等式组只有4个整数解,求a的取值范围.22.跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价﹣进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.23.如图,OA和OB是⊙O的半径,并且OA⊥OB.P是OA上任意一点,BP的延长线交⊙O于点Q,点R在OA的延长线上,且RP=RQ.(1)求证:RQ是⊙O的切线;(2)当RA≤OA时,试确定∠B的取值范围;(3)求证:OB2=PB?PQ+OP2.24.如图1,在平面直角坐标系中,边长为1的正方形OABC的顶点B在y轴的正半轴上,O为坐标原点.现将正方形OABC绕点O按顺时针方向旋转,旋转角为θ(0o≤θ≤45o).(1)当点A落到y轴正半轴上时,求边BC在旋转过程中所扫过的面积;(2)若线段AB与y轴的交点为M(如图2),线段BC与直线y=x的交点为N.当θ=22.5°时,求此时△BMN内切圆的半径;(3)设△MNB的周长为l,试判断在正方形OABC旋转的过程中l值是否发生变化,并说明理由.25.(1)已知n=﹣那么1+2+3+…+n=﹣+﹣+﹣+…+﹣,即1+2+3+…+n=﹣=.模仿上述求和过程,设n2=﹣,确定a与b的值,并计算12+22+32+…+n2的结果.(2)图1中,抛物线y=x2,直线x=1与x轴围成底边长为1的曲边三角形,其面积为S,现利用若干矩形面积和来逼近该值.①将底边3等分,构建3个矩形(见图2),求其面积为S3;②将底边n等分,构建n个矩形(如图3),求其面积和S n并化简;③考虑当n充分大时S n的逼近状况,并给出S的准确值.(3)计算图4中抛物线y=2x2与直线y=2x+4所围成的阴影部分面积.26.如图所示,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,点P不与点0、点A重合.连接CP,过点P作PD 交AB于点D.(1)求点B的坐标;(2)当点P运动什么位置时,△OCP为等腰三角形,求这时点P的坐标;(3)当点P运动什么位置时,使得∠CPD=∠OAB,且,求这时点P的坐标.重点高中提前招生模拟考试数学试卷(1)参考答案与试题解析一.选择题(共10小题)1.下列等式中,不一定成立的是()A.=2B.C.a=﹣D.【考点】65:分式的基本性质;73:二次根式的性质与化简.【分析】根据二次根式的性质对各选项进行逐一分析即可.【解答】解:A、左边==2=右边,故本选项正确;B、当c=0时,无意义,故本选项错误;C、左边=a=a=﹣=右边,故本选项正确;D、左边===右边,故本选项正确.故选:B.【点评】本题考查的是二次根式的性质与化简,熟知二次根式具有非负性是解答此题的关键.2.中国人民银行授权中国外汇交易中心公布,2014年1月14日银行间外汇市场人民币汇率中间价为:1美元对人民币 6.0930元,某上市公司持有美元资产为980万美元,用科学记数法表示其美元资产折合成人民币为()元(保留两位有效数字)A.5.97×107 B.6.0×107C.5.97×108 D.6.0×108【考点】1L:科学记数法与有效数字.【分析】根据汇率可求980万美元折合成人民币的钱数,再保留两位有效数字即可求解.【解答】解:980万美元=980000美元,980000×6.0930≈6.0×107元.故选:B.【点评】此题考查了科学记数法与有效数字,对于用科学记数法表示的数,有效数字的计算方法以及与精确到哪一位是需要识记的内容,经常会出错.3.如图,一条信息可通过网络线由上(A点)往下(沿箭头方向)向各站点传送,例如信息要到b2点可由经a1的站点送达,也可由经a2的站点送达,共有两条传送途径,则信息由A点传达到d3的不同途径中,经过站点b3的概率为()A.B.C.D.【考点】X6:列表法与树状图法.【分析】根据题意画出树状图,进而利用概率公式,求出答案.【解答】解:画树状图得:所以共有6种情况,则经过站点b3的概率为:.故选:A.【点评】本题考查树状图法求概率,关键是得到到达目的地应走的路口,列齐所有的可能情况.4.已知x+y=,|x|+|y|=5,则x﹣y的值为()A.B.C.D.【考点】28:实数的性质.【分析】根据绝对值的性质,可得答案.【解答】解:当x>0,y>0时,x+y=5与x+y=2矛盾,当x<0,y<0时,x+y=﹣5与x+y=2矛盾,当x>0,y<0时,x﹣y=5,当x<0,y>0时,x﹣y=﹣5,故选:D.【点评】本题考查了实数的性质,利用绝对值得性质是解题关键,要分类讨论,以防遗漏.5.二次函数y=ax2+bx+c的图象如图所示(a、b、c为常数),则函数y=(4ac﹣b2)x+abc和y=在同一平面直角坐标系中的图象,可能是()A.B.C.D.【考点】F3:一次函数的图象;G2:反比例函数的图象;H2:二次函数的图象.【分析】由抛物线开口方向得到a>0,由抛物线与y轴交于x轴下方得c<0,由抛物线的对称轴得b<0,所以abc>0;根据抛物线与x轴有2个交点可得4ac﹣b2<0,得出一次函数的图象经过第一、二、四象限;利用对称轴的位置和不等式性质即可得到2a+b>0,得出反比例函数的图象位于第一、三象限;即可得出结论.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线与y轴交于(0,c),∴c<0,∵抛物线的对称轴为直线x=﹣>0,∴b<0,∴abc>0;∵抛物线与x轴有2个交点,∴b2﹣4ac>0,∴4ac﹣b2<0;∴函数y=(4ac﹣b2)x+abc经过第一、二、四象限;∵0<﹣<1,而a>0,∴﹣b<2a,即2a+b>0,∴函数y=的图象位于第一、三象限;故选:C.【点评】本题考查了二次函数与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c 决定抛物线与y轴交点,抛物线与y轴交于(0,c).当△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.6.关于x的一元二次方程mx2+x+1=0有两个不相等的同号实数根,则m的取值范围是()A.m且m≠0 B.﹣C.﹣且m≠0 D.0【考点】AA:根的判别式.【分析】根据方程有两个不相等的同号实数根结合根的判别式即可得出关于m的一元一次不等式组,解不等式组即可得出结论.【解答】解:∵关于x的一元二次方程mx2+x+1=0有两个不相等的同号实数根,∴,解得:0<m<.故选:D.【点评】本题考查了根的判别式,根据根的判别式结合根与系数的关系找出关于m的一元一次不等式组是解题的关键.7.由于货源紧缺,小王、小李两名商贩连续两次以不同的价格在同一公司购进了A型香米,两次的购买单价分别为a、b(a<b,单位:元/千克),小王的采购方式为:每次购进c千克大米;小李的采购方式为:每次购进d 元的大米(d>c),若只考虑采购单价,下列结论正确的是()A.小王合算 B.小李合算C.一样合算 D.无法确定谁更合算【考点】6C:分式的混合运算.【专题】11:计算题;513:分式.【分析】分别表示出小王与小李两次购买香米的平均价格,利用作差法比较即可.【解答】解:根据题意得:小王两次购买香米的平均价格为=元/千克,小李两次购买香米的平均价格为=元/千克,∴﹣==,∵(a﹣b)2>0,2(a+b)>0,∴﹣>0,即>,则小李的购买方式合算.故选:B.【点评】此题考查了分式的混合运算,以及作差法比较大小,熟练掌握运算法则是解本题的关键.8.函数y=|x2+2x﹣3|图象的草图如图所示,则关于x的方程|x2+2x﹣3|=a (a为常数)的根的情况,描述错误的是()A.方程可能没有实数根B.方程可能有三个互不相等的实数根C.若方程只有两个实数根,则a的取值范围为:a=0D.若方程有四个实数根,记为x1、x2、x3、x4,则x1+x2+x3+x4=﹣4【考点】HA:抛物线与x轴的交点.【分析】关于x的方程|x2+2x﹣3|=a可视为函数y=|x2+2x﹣3|与函数y=a 的交点问题,且函数y=|x2+2x﹣3|的顶点坐标为(﹣1,4),再根据a的取值范围即可得出结论.【解答】解:如图所示,关于x的方程|x2+2x﹣3|=a可视为函数y=|x2+2x ﹣3|与函数y=a的交点问题,且函数y=|x2+2x﹣3|的顶点坐标为(﹣1,4),由函数图象可知,当a<0时,y=|x2+2x﹣3|与函数y=a没有交点,故原方程没有实数根,故A正确;当a=4时,函数y=|x2+2x﹣3|与函数y=a有三个交点,故方程有三个不相等的实数根,故B正确;当a=0或a>4时,函数y=|x2+2x﹣3|与函数y=a有两个交点,故方程有两个互不相等的实数根,故C错误;当0<a<4时,函数y=|x2+2x﹣3|与函数y=a有四个交点,故方程有四个互不相等的实数根,根据函数的对称性可知,x1+x2+x3+x4=﹣2﹣2=﹣4,故D正确.故选:C.【点评】此题考查的是二次函数与一次函数的交点问题,根据函数交点的个数可判断相应方程解的情况,特别注意函数图形的正确性,把方程看作是两个函数图象的交点是解答此题的关键.9.如图,DE是△ABC的中位线,F为DE上一点,且EF=2DF,BF的延长线交AC于点H,CF的延长线交AB于点G,则S四边形AGFH:S△BFC=()A.1:10 B.1:5 C.3:10 D.2:5【考点】KX:三角形中位线定理;S9:相似三角形的判定与性质.【专题】11:计算题.【分析】设DF=x,EF=2x,S△GDF=S,则DE=3x,由三角形中位线性质得BC=2DE=6x,先证明△GDF∽△GBC,利用相似三角形的性质得S△GBC=36S,则利用三角形面积公式得到S△BGF=6S,S△BFC=30S,接着利用====得到==,则S△CFH=S△BCF=15S,所以S△BCH=45S,然后利用同样方法计算出S△BAH=S△BCH=15S,于是得到S四边形AGFH=9S,然后计算S四边形AGFH:S△BFC的值.【解答】解:设DF=x,EF=2x,S△GDF=S,则DE=3x,∵DE是△ABC的中位线,∴BC=2DE=6x,∵DE∥BC,∴△GDF∽△GBC,==,∴=()2,即=()2=,∴S△GBC=36S,∵==,∴S△BGF=6S,∴S△BFC=30S,∵EF∥BC,∴====,∴==,∴S△CFH=S△BCF=15S,∴S△BCH=45S,而AE=CE,∴AH:HC=1:3,∴S△BAH=S△BCH=15S,∴S四边形AGFH=S△BAH﹣S△BGF=15S﹣6S=9S,∴S四边形AGFH:S△BFC=9S:30S=3:10.故选:C.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.在应用相似三角形的性质时,主要利用相似三角形的性质进行几何计算.也考查了三角形面积公式.10.如图,AB是⊙O的直径,AC是⊙O的弦,点D是的中点,弦DE ⊥AB,垂足为点F,DE交AC于点G,EH为⊙O的切线,交AC的延长线于H,AF=3,FB=,则tan∠DEH=()A.B.C.D.【考点】M2:垂径定理;M4:圆心角、弧、弦的关系;MC:切线的性质;T7:解直角三角形.【分析】连接OE,如图2,根据切线的性质得OE⊥EH,则∠OEF+∠DEH=90°,而∠OEF+∠FOE=90°,根据等角的余角相等得∠FOE=∠DEH,求出OF、EF,在Rt△OEF中,根据tan∠DEH=tan∠EOF=计算即可.【解答】解:连接OE,如图2,∵EH为⊙O的切线,∴OE⊥EH,∴∠OEF+∠DEH=90°,而∠OEF+∠FOE=90°,∴∠FOE=∠DEH,∵AF=3,FB=,∴AB=AF+BF=,∴OB=AB=,∴OF=OB﹣FB=,在Rt△OEF中,OE=,OF=,∴EF===2.∴tan∠DEH=tan∠EOF===.故选:A.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了垂径定理和解直角三角形.二.填空题(共10小题)11.计算:(π﹣3.14)0﹣2﹣2×+(tan60°﹣2)2013(4sin30°+)2014+=1.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】根据实数的混合运算法则和运算顺序计算即可.【解答】解:原式=1﹣×(﹣4)+(﹣2)2013×(4×+)2014+=1+1+(﹣2)2013×(+2)2013(+2)+1+=2﹣2﹣+1+=1,故答案为:1【点评】本题主要考查实数的混合运算、立方根的运算、绝对值的化简及特殊锐角的三角函数值、实数的大小比较等,正确掌握基本的运算法则是解题的关键.12.已知实数x,y满足方程(x2﹣4x+6)(9y2+6y+6)=10,则y x=.【考点】AF:高次方程.【专题】17:推理填空题.【分析】根据(x2﹣4x+6)(9y2+6y+6)=10,可得:[(x﹣2)2+2][(3y+1)2+5]=10,据此求出x、y的值各是多少;然后应用代入法,求出y x的值是多少即可.【解答】解:∵(x2﹣4x+6)(9y2+6y+6)=10,∴[(x﹣2)2+2][(3y+1)2+5]=10,∴x﹣2=0,3y+1=0,解得x=2,y=﹣,∴y x==.故答案为:.【点评】此题主要考查了高次方程的解法和应用,要熟练掌握,解答此题的关键是灵活应用完全平方公式.13.如图,正方体(图1)的展开图如图2所示,在图1中M、N分别是FG、GH的中点,CM、CN、MN是三条线段;请在图2中画出CM、CN、MN这三条线段.【考点】I6:几何体的展开图.【分析】先分别找到M、N、C在正方体的展开图中的对应点,再在展开图中连接即可.【解答】解:作图如下:故答案为:.【点评】本题考查了正方体的展开图,熟练掌握正方体平面展开图的特征是解决此类问题的关键.注意找准M、N、C在正方体的展开图中的对应点.14.如图,在正方形ABCD中,E、F分别为AB、BC的中点,连结CE交DB、DF于G、H,则EG:GH:HC=5:4:6.【考点】LE:正方形的性质;S9:相似三角形的判定与性质.【分析】过点G作GP∥BC交DF于P,设GH=2a,则由平行线的性质得出,进而即可得出结论.【解答】解:过点G作GP∥BC交DF于P,如图所示:则,设GH=2a,则HC=3a,∴EG=a,∴EG:GH:HC=5:4:6.故答案为:5:4:6.【点评】本题主要考查了平行线分线段成比例的性质以及正方形的一些性质问题,要求学生能够利用其性质求解一些简单的计算问题.15.已知直线l1:y=x﹣a﹣3和直线l2:y=﹣2x+5a相交于点A(m,n),其中a为常数,且m>n>0,化简|1﹣a|﹣=1.【考点】73:二次根式的性质与化简;FF:两条直线相交或平行问题.【分析】由直线l1:y=x﹣a﹣3和直线l2:y=﹣2x+5a相交于点A(m,n),即可得出关于m、n的二元一次方程,解方程即可得出m、n的值,再结合m>n>0,即可得出a的取值范围,进而即可得出代数式|1﹣a|﹣的值.【解答】解:根据题意得:,解得:,∵m>n>0,∴,∴a>2,∴|1﹣a|﹣=a﹣1﹣(a﹣2)=1.故答案为:1.【点评】本题考查了两条直线相交或平行问题以及二次根式的性质与化简,根据m、n之间的关系找出a的取值范围是解题的关键.16.在平面直角坐标系内有两点A、B,其坐标为A(﹣1,﹣1),B(2,4),点M为x轴上的一个动点,若要使MB﹣MA的值最大,则点M的坐标为(﹣2,0).【考点】D5:坐标与图形性质;PA:轴对称﹣最短路线问题.【分析】利用轴对称图形的性质可作点A关于x轴的对称点A′,连接A′B,交x轴于点M,点M即为所求.【解答】解:作点A(﹣1,﹣1)关于x轴的对称点A′(﹣1,1),作直线A′B交x轴于点M,由对称性知:MA′=MA,∴MB﹣MA=MB﹣MA′=A′B,若N是x轴上异于M的点,则NA′=NA,这时NB﹣NA=NB﹣NA′<A′B=MB﹣MA′,所以,点M就是使MB﹣MA的值最大的点,MB﹣MA的最大值是A′B,设直线A′B的解析式为:y=kx+b,把A′(﹣1,1),B(2,4)代入得:,解得:,∴直线A′B的解析式为y=x+2,∵点M为直线A′B与x轴的交点,当y=0时,x+2=0,x=﹣2,∴点M的坐标为(﹣2,0).故答案为:(﹣2,0).【点评】本题是求最值问题,考查了在直线上求作一点,使到直线两侧点的距离差最大,涉及待定系数法求一次函数的解析式及在三角形中任意两边之差小于第三边的应用,正确作出一个点的对称点是解题的关键.17.若y关于x的函数y=(a﹣2)x2﹣2(2a﹣1)x+a(a为常数)的图象与坐标轴只有两个不同交点,则a可取的值为2或0.【考点】HA:抛物线与x轴的交点.【分析】分二次函数或一次函数两种情形讨论即可.【解答】解:①如果是二次函数则无解.②如果是一次函数则a﹣2=0,∴a=2,a=0时,函数为y=﹣2x2+x与坐标轴只有两个交点,综上所述a=2或0时,y关于x的函数y=(a﹣2)x2﹣2(2a﹣1)x+a(a为常数)的图象与坐标轴只有两个不同交点.故答案为2或0.【点评】本题考查一次函数、二次函数与坐标轴的交点,记住△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点,是解题的关键是,属于中考常考题型.18.如图,已知圆O的面积为3π,AB为圆O的直径,∠AOC=80°,∠BOD=20°,点P为直径AB上任意一点,则PC+PD的最小值是3.【考点】M5:圆周角定理;PA:轴对称﹣最短路线问题.【分析】先设圆O的半径为r,由圆O的面积为3π求出r的值,再作点C 关于AB的对称点C′,连接OC′,DC′,则DC′的长即为PC+PD的最小值,由轴对称的性质得出∠AOC′的度数,故可得出∠BOC′的度数,再由锐角三角函数的定义即可得出DC′的长.【解答】解:设圆O的半径为r,∵⊙O的面积为3π,2,即r=.∴3π=πr作点C关于AB的对称点C′,连接OC′,DC′,则DC′的长即为PC+PD的最小值,∵∠AOC=80°,∴∠AOC=∠AOC′=80°,∴∠BOC′=100°,∵∠BOD=20°,∴∠DOC′=∠BOC′+∠BOD=100°+20°=120°,∵OC′=OD,∴∠ODC′=30°∴DC′=2OD?cos30°=2×=3,即PC+PD的最小值为3.故答案为:3.【点评】本题考查的是圆周角定理及轴对称﹣最短路线问题,根据题意作出点C关于直线AB的对称点是解答此题的关键.19.已知两个反比例函数y=,y=,第一象限内的点P1、P2、P3、…、P2015在反比例函数y=的图象上,它们的横坐标分别为x1、x2、x3、…、x2015,纵坐标分别是1、3、5、…,共2015个连续奇数,过P1、P2、P3、…、P2015分别作y轴的平行线,与y=的图象交点依次为Q1(x'1,y'1)、Q2(x'2,y'2)、…、Q2015(x'2015,y'2015),则P2015Q2015的长度是.【考点】G6:反比例函数图象上点的坐标特征.【分析】根据点P2015的纵坐标利用反比例函数图象上点的坐标特征即可得出点P2015的坐标,由P2015Q2015∥y轴结合反比例函数图象上点的坐标特征即可得出点Q2015的坐标,由此即可得出线段P2015Q2015的长度.【解答】解:∵点P2015的纵坐标为2×2015﹣1=4029,点P2015的在反比例函数y=的图象上,∴点P2015的坐标为(,4029),∵P2015Q2015∥y轴,∴点Q2015的坐标为(,),∴P2015Q2015=4029﹣=.故答案为:.【点评】本题考查了反比例函数图象上点的坐标特征,根据点P2015的纵坐标利用反比例函数图象上点的坐标特征求出点P2015、Q2015的坐标是解题的关键.20.将连续正整数按以下规律排列,则位于第7行第7列的数x是85.【考点】37:规律型:数字的变化类.【分析】先根据第一行的第一列的数,以及第二行的第二列的数,第三行的第三列的数,第四行第四列的数,进而得出变化规律,由此得出第七行第七列的,从而求出答案.【解答】方法一:解:第一行第一列的数是 1;第二行第二列的数是 5=1+4;第三行第三列的数是 13=1+4+8;第四行第四列的数是 25=1+4+8+12;…第n行第n列的数是 1+4+8+12+…+4(n﹣1)=1+4[1+2+3+…+(n﹣1)]=1+2n(n﹣1);∴第七行第七列的数是 1+2×7×(7﹣1)=85;故答案为:85.方法二:n=1,s=1;n=2,s=5;n=3,s=13,设s=an2+bn+c,∴,∴,∴s=2n2﹣2n+1,把n=7代入,s=85.方法三:,,,,,,∴a7=25+=85.【点评】此题考查了数字的变化类,这是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.三.解答题(共20小题)21.若关于x的不等式组只有4个整数解,求a的取值范围.【考点】CC:一元一次不等式组的整数解.【分析】首先利用不等式的基本性质解不等式组,再从不等式的解集中找出适合条件的整数解,在确定字母的取值范围即可.【解答】解:由①得:x<21,由②得:x>2﹣3a,∵不等式组只有4个整数解,∴不等式组的解集为:2﹣3a<x<21,即不等式组只有4个整数解为20、19、18、17,且满足16≤2﹣3a<17,∴﹣5<a≤﹣.【点评】本题考查不等式组的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.22.跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价﹣进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.【考点】B7:分式方程的应用;CE:一元一次不等式组的应用.【专题】12:应用题;22:方案型.【分析】(1)关键语是“用80元购进甲种零件的数量与用100元购进乙种零件的数量相同”可根据此列出方程.(2)本题中“根据进两种零件的总数量不超过95个”可得出关于数量的不等式方程,根据“使销售两种零件的总利润(利润=售价﹣进价)超过371元”看俄得出关于利润的不等式方程,组成方程组后得出未知数的取值范围,然后根据取值的不同情况,列出不同的方案.【解答】解:(1)设每个乙种零件进价为x元,则每个甲种零件进价为(x ﹣2)元.由题意得:.解得:x=10.检验:当x=10时,x(x﹣2)≠0∴x=10是原分式方程的解.每个甲种零件进价为:x﹣2=10﹣2=8答:每个甲种零件的进价为8元,每个乙种零件的进价为10元.(2)设购进乙种零件y个,则购进甲种零件(3y﹣5)个.由题意得:解得:23<y≤25∵y为整数∴y=24或25.∴共有2种方案.方案一:购进甲种零件67个,乙种零件24个;方案二:购进甲种零件70个,乙种零件25个.【点评】本题考查了分式方程的应用、一元一次不等式组的应用,列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.本题要注意(2)中未知数的不同取值可视为不同的方案.23.如图,OA和OB是⊙O的半径,并且OA⊥OB.P是OA上任意一点,BP的延长线交⊙O于点Q,点R在OA的延长线上,且RP=RQ.(1)求证:RQ是⊙O的切线;(2)当RA≤OA时,试确定∠B的取值范围;(3)求证:OB2=PB?PQ+OP2.【考点】MR:圆的综合题.【分析】(1)连接OQ.欲证明RQ是⊙O的切线,只要证明∠OQR=90°.(2)求出两个特殊位置的∠B的值即可解决问题.(3)如图2中,延长AO交⊙于M.由PA?PM=PB?PQ(相交弦定理,也可以连接BM、AQ证明△PBM∽△PAQ得到),推出(OB﹣OP)(OB+OP)=PB?PQ,可得OB2﹣OP2=PB?PQ.【解答】(1)证明:连接OQ.∵OA⊥OB,∴∠2+∠B=90°,∵OB=OQ,∴∠B=∠4,∵RP=RQ,∴∠1=∠3=∠2,∴∠3+∠4=90°,∴OQ⊥RQ,∴RQ是⊙O的切线.(2)解:如图1中,①当点R与A重合时,易知∠B=45°.②当AR=OA时,在Rt△ORQ中,∵∠OQR=90°,OR=2OQ,∴∠R=30°,∵RQ=RP,∴∠RPQ=∠RQP=75°,∴∠OPB=75°,∴∠B=90°﹣∠OPB=15°,综上所述,15°≤∠B<45°.(3)如图2中,延长AO交⊙于M.∵PA?PM=PB?PQ(相交弦定理,也可以连接BM、AQ证明△PBM∽△PAQ得到),∴(OB﹣OP)(OB+OP)=PB?PQ,∴OB2﹣OP2=PB?PQ.即OB2=PB?PQ+OP2.【点评】本题考查圆综合题、切线的判定和性质、等腰三角形的性质、相交弦定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.24.如图1,在平面直角坐标系中,边长为1的正方形OABC的顶点B在y 轴的正半轴上,O为坐标原点.现将正方形OABC绕点O按顺时针方向旋转,旋转角为θ(0o≤θ≤45o).(1)当点A落到y轴正半轴上时,求边BC在旋转过程中所扫过的面积;(2)若线段AB与y轴的交点为M(如图2),线段BC与直线y=x的交点为N.当θ=22.5°时,求此时△BMN内切圆的半径;(3)设△MNB的周长为l,试判断在正方形OABC旋转的过程中l值是否发生变化,并说明理由.。

2019年重点高中提前招生数学试卷及答案

2019年重点高中提前招生数学试卷及答案

2019重点高中提前招生数学试卷题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共6小题,5*6=30)1.若,则的值为()A.B.C.D.2.如图,在四边形ABCD中,∠B=135°,∠C=120°,AB=,BC=,CD=,则AD边的长为()A.B.C.D.3.在一列数x1,x2,x3,…中,已知x1=1,且当k≥2时,(取整符号[a]表示不超过实数a的最大整数,例如[2.6]=2,[0.2]=0),则x2010等于()A.1B.2C.3D.44.如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B (2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A为对称中心作点P(0,2)的对称点P1,以B为对称中心作点P1的对称点P2,以C为对称中心作点P2的对称点P3,以D为对称中心作点P3的对称点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是()A.(2010,2)B.(2010,﹣2)C.(2012,﹣2)D.(0,2)5.如图,线段AP⊥PB,而且AP=2,PB=12,点C1,C2在线段PB上,满足PC2=1.5,BC1=6.设,那么()A.m>n B.m=n C.m+n=5D.m<n6.如图,⊙O沿凸多边形A1A2A3…A n﹣1A n的外侧(圆与边相切)作无滑动的滚动.假设⊙O的周长是凸多边形A1A2A3…A n﹣1A n的周长的一半,那么当⊙O回到出发点时,它自身滚动的圈数为()A.1B.2C.3D.4第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共6小题,5*6=30)7.一辆客车,一辆货车和一辆小轿车在同一条直线上朝同一方向行驶,在某一时刻,货车在中,客车在前,小轿车在后,且它们的距离相等.走了10分钟,小轿车追上了货车;又走了5分钟,小轿车追上了客车.问过分钟,货车追上了客车.8.如图,在平面直角坐标系xOy中,多边形OABCDE的顶点坐标分别是O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0).若直线l经过点M(2,3),且将多边形OABCDE分割成面积相等的两部分,则直线l的函数表达式是.9.如图,射线AM,BN都垂直于线段AB,点E为AM上一点,过点A作BE的垂线AC分别交BE,BN于点F,C,过点C作AM的垂线CD,垂足为D,若CD=CF,则=.10.如图,O为矩形ABCD的中心,将直角三角板的直角顶点与O点重合,转动三角板使两直角边始终与BC,AB相交,交点分别为M,N,如果AB=4,AD=6,OM=x,ON=y,则y与x的关系是.11.如图,点A,C都在函数的图象上,点B,D都x轴上,且使得△OAB,△BCD都是等边三角形,则点D的坐标为.12.已知对于任意正整数n,都有a1+a2+…+a n=n3,则=.评卷人得分三.解答题(共5小题,60分)13.(10分)规定符号[x]表示不超过x的最大整数,例,求:方程2﹣x2=[x]大于﹣3的x的解14.(10分)如图(1)至图(3),C为定线段AB外一动点,以AC、BC为边分别向外侧作正方形CADF和正方形CBEG,分别作DD1⊥AB、EE1⊥AB,垂足分别为D1、E1.当C的位置在直线AB的同侧变化过程中,(1)如图(1),当∠ACB=90°,AC=4,BC=3时,求DD1+EE1的值;(2)求证:不论C的位置在直线AB的同侧怎样变化,DD1+EE1的值为定值;(3)求证:不论C的位置在直线AB的同侧怎样变化,线段DE的中点M为定点.15.(12分)实数a,b,c满足a≤b≤c,且ab+bc+ca=0,abc=1.求最大的实数k,使得不等式|a+b|≥k|c|恒成立.16.(14分)证明:对任意三角形,一定存在两条边,它们的长u,v满足1≤.17.(14分)操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.图1,2,3是旋转三角板得到的图形中的3种情况.研究:(1)三角板绕点P旋转,观察线段PD和PE之间有什么数量关系,并结合图2加以证明;(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由;(3)若将三角板的直角顶点放在斜边AB上的M处,且AM:MB=1:3,和前面一样操作,试问线段MD和ME之间有什么数量关系?并结合图4加以证明.参考答案与试题解析1.解:∵,∴得.故选:D.2.解:如图,过点A,D分别作AE,DF垂直于直线BC,垂足分别为E,F.由已知可得BE=AE=,CF=,DF=2,于是EF=4+.过点A作AG⊥DF,垂足为G.在Rt△ADG中,根据勾股定理得AD=====.故选:D.3.解:已知x1=1,当k=2时,x2=x1+1﹣4([]﹣[0])=2;当k=3时,x3=x2+1﹣4([]﹣[])=3;当k=4时,=4;当k=5时,=1;当k=6时,=2;…∵2010=502×4+2∴x2010=x2=2,故选:B.4.解:根据题意,以A为对称中心作点P(0,2)的对称点P1,即A是PP1的中点,又由A的坐标是(1,1),结合中点坐标公式可得P1的坐标是(2,0);同理P2的坐标是(2,﹣2),记P2(a2,b2),其中a2=2,b2=﹣2.根据对称关系,依次可以求得:P3(﹣4﹣a2,﹣2﹣b2),P4(2+a2,4+b2),P5(﹣a2,﹣2﹣b2),P6(4+a2,b2),令P6(a6,b2),同样可以求得,点P10的坐标为(4+a6,b2),即P10(4×2+a2,b2),由于2010=4×502+2,所以点P2010的坐标是(2010,﹣2),故选:B.5.解:∵线段AP⊥PB,且AP=2,PB=12,PC2=1.5,BC1=6.故根据勾股定理可求出:AC2=2.5,BC2=10.5,AC1=2,BC1=6.∴.故选:D.6.解:由于凸多边形周长是圆周长的2倍,另外凸多边形的外角和是360°,所以⊙O回到出发点时共滚动2+1=3圈.故选:C.7.解:设小轿车速度为a,货车为b,客车为c,某一刻的相等间距为m,则=10①,=10+5②,化简可得:2(10c﹣10a)=15c﹣15b,所以:a=4b﹣3c假设再过t分钟,货车追上客车,则10a﹣10b=(15+t)(b﹣c)15+t=10(a﹣b)/(b﹣c)将a代入15+t=10×3=30,解得:t=15.所以再过15分钟,货车追上了客车.8.解:如图,延长BC交x轴于点F;连接OB,AF;连接CE,DF,且相交于点N.由已知得点M(2,3)是OB,AF的中点,即点M为矩形ABFO的中心,所以直线l 把矩形ABFO分成面积相等的两部分.又因为点N(5,2)是矩形CDEF的中心,所以,过点N(5,2)的直线把矩形CDEF分成面积相等的两部分.于是,直线MN即为所求的直线l.设直线l的函数表达式为y=kx+b,则解得,故所求直线l的函数表达式为.故答案为.9.解:设AF=a,FC=b;∵AM⊥AB,BN⊥AB,∴AM∥BN;∴△AEF∽△CBF;∴AE:BC=AF:FC=a:b;Rt△ABC中,BF⊥AC,由射影定理,得:AB2=AF•AC=a(a+b);∵AM⊥AB,BN⊥AB,CD⊥AM,∴四边形ABCD是矩形,∴CD=AB=CF=b;∴b2=a(a+b),即a2+ab﹣b2=0,()2+()﹣1=0解得=(负值舍去);∴==.10.解:作OP垂直AB于点P,OQ垂直BC于点Q.∵∠PON+∠POM=90°,∠POM+∠MOQ=90°∴∠PON=∠MOQ,又∵∠NPO=∠MQO,∴△ONP∽△OMQ,OP:OQ==ON:OM.所以y=.故答案为y=11.解:如图,分别过点A,C作x轴的垂线,垂足分别为E,F.设OE=a,BF=b,则AE=a,CF=,∴点A,C的坐标为,(a,),(2a+b,),∴,解得,∴点D的坐标为(,0).12.解:∵当n≥2时,有a1+a2+…+a n﹣1+a n=n3,a1+a2+…+a n﹣1=(n﹣1)3,两式相减,得a n=3n2﹣3n+1,∴==(﹣),∴++…+,=(1﹣)+(﹣)+…+(﹣),=(1﹣),=.故答案为:.13.解:∵2﹣x2≤2,∴[x]≤2;又由x>﹣3,∴[x]≥﹣3,即:﹣3≤[x]≤2(6分)当[x]=﹣3时,原方程化为2﹣x2=﹣3,∴x=±,检验适合(8分)当[x]=﹣2时,原方程化为2﹣x2=﹣2,∴x=±2,检验x=﹣2适合(10分)当[x]=﹣1时,原方程化为2﹣x2=﹣1,∴x=±,检验都不适合(12分)当[x]=0时,原方程化为2﹣x2=0,∴x=±,检验都不适合(14分)当[x]=1时,原方程化为2﹣x2=1,∴x=±1,检验x=1适合(16分)当[x]=2时,原方程化为2﹣x2=2,∴x=0,检验不适合(18分)综上可得满足条件的方程的解为或x=﹣2或x=1.(20分)14.解:(1)∵DD1⊥AB、EE1⊥AB,∴∠DD1A=∠EE1B=∠ACB=90°,∵四边形ACFD与BEGC是正方形,∴∠DAC=∠CBE=90°,∴∠DAD1+∠CAB=∠CAB+∠CBA=∠CBA+∠EBE1=90°,∴∠DAD1=∠ABC,∠EBE1=∠BAC,∴△DD1A∽△ACB,△EE1B∽△BCA,∴,,∴,;∴DD1+EE1=5;(2)过点C作CK⊥AB于K,∵DD1⊥AB、EE1⊥AB,∴∠DD1A=∠EE1B=∠AKC=∠BKC=90°,∴∠DAD1+∠CAB=∠CAE+∠ACK=∠CBK+∠BCK=∠CBK+∠EBE1=90°,∴∠DAD1=∠ACK,∠EBE1=∠BCK,∵AD=AC,BC=BE,∴△ADD1≌△CAK,△EBE1≌△BCK,∴DD1=AK,EE1=BK,∴DD1+EE1=AB,∴不论C的位置在直线AB的同侧怎样变化,DD1+EE1的值为定值;(3)设M为DE的中点,Q为D1E1的中点,则:且MQ⊥AB,当四边形DD1E1E为矩形时,以上结论仍然成立.∴△ADD1≌△CAK,△EBE1≌△BCK,又∵D1A=CK=E1B,∴D1E1的中点就是AB的中点.∴不论C的位置在直线AB的同侧怎样变化,线段DE的中点M为定点,∴此定点M恒在“点C的同侧,与AB的中点Q距离为长的点上”.15.解:不等式|a+b|≥4|c|对满足题设条件的实数a,b,c恒成立.由已知条件知,a,b,c都不等于0,且c>0.因为abc=1,有ab=>0;又因为ab+bc+ca=0,所以a+b=﹣<0,所以a≤b<0.由一元二次方程根与系数的关系知,a,b是一元二次方程x2+x+=0的两个实数根,于是△=﹣≥0,所以c3≤.因此|a+b|=﹣(a+b)=≥4c=4|c|,不等式|a+b|≥4|c|对满足题设条件的实数a,b,c恒成立,所以k≤4,最大的实数k为4.16.证明:设任意△ABC的三边长为a,b,c,不妨设a>b>c.若结论不成立,则必有①≥.②记b=c+s,a=b+t=c+s+t,显然s,t>0代入得≥,≥,令x=,y=则≥.③由a<b<c,得c+s+t<c+s+c,即t<c,于是.y=<1由②得=1+x≥,④由③,④得y≥(﹣1)(1+x)≥=1,此式与y<1矛盾.从而命题得证.17.解:(1)连接PC.∵△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP=∠ACB=45°.∴∠ACP=∠B=45°.又∵∠DPC+∠CPE=∠BPE+∠CPE=90°,∴∠DPC=∠BPE.∴△PCD≌△PBE.∴PD=PE;(2)共有四种情况:①当点C与点E重合,即CE=0时,PE=PB;②CE=2﹣,此时PB=BE;③当CE=1时,此时PE=BE;④当E在CB的延长线上,且CE=2+时,此时PB=EB;(3)MD:ME=1:3.过点M作MF⊥AC,MH⊥BC,垂足分别是F、H.∴MH∥AC,MF∥BC.∴四边形CFMH是平行四边形.∵∠C=90°,∴▱CFMH是矩形.∴∠FMH=90°,MF=CH.∵,HB=MH,∴.∵∠DMF+∠DMH=∠DMH+∠EMH=90°,∴∠DMF=∠EMH.∵∠MFD=∠MHE=90°,∴△MDF∽△MEH.∴.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

M
Q
N
P
2019年省重点高中提前招生试卷――数学
一、选择题:(本大题共6小题,每小题5分,满分30分)
1、若y <1是不等式a -3(a -y ) <y -4的解集,则a 的取值为( ) A .a >3 B 、a =3 C 、a <3 D 、a =4
2、在平面直角坐标系xOy 中,满足不等式2
2
22x y x y +≤+的整数点坐标()x y ,的个数为( ) A 、10 B 、9 C 、7 D 、5
3、在平面直角坐标系中,点A 的坐标是(1,0),点B 的坐标是(3,3)--,点C 是y 轴上一动点,要使△ABC 为等腰三角形,则符合要求的点C 的位置共有( ) A 、2个 B 、3个 C 、4个 D 、5个
4、如图,直角梯形MNPQ ,∠MNP =90°,PM ⊥NQ ,若 22PM NQ =,则=NP
MQ
( ) A 、21 B 、22 C 、4 D 、3
2
5、如图,三个半径为3的圆两两外切,且△ABC 的每一边都与其中的两个圆相切,则△ABC 的周长是( )
A 、12+63
B 、18+63
C 、18+123
D 、12+123 6、如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5,则CD 的长为( ) A 、23 B 、4 C 、52 D 、4.5 二、填空题(本大题共5小题,每小题5分,满分25分) 7、如果关于x 的方程2239
3042
x kx k k ++
-+=的两个实数根分别为1x ,2x ,那么
2012
2
20111x x 的值为 .
8、如图,直角三角形AOB 中,O 为坐标原点,∠AOB =90°,∠B =30°,若点A 在反比例函数y =
x
1
(x >0)图像上运动,那么点B 必在函数_________________的图像上运动。

(填写该函数表达式) 9、如图,半径为r 的圆O 沿折线ABCDE 作无滑动的滚动,如果2AB BC CD DE r π====,150,120ABC CDE BCD ∠=∠=∠=,那么,圆O 自点A 至点E 转动了__________周.
10、依次将正整数1,2,3,……的平方数排成一串:149162536496481100121144……,排
在第1个位置的数字是1,排在第5个位置的数字是6,排在第10个位置的数字是4,排在第2008个位置的数字是_________________ 11、如果正数x ,y ,z 可以是一个三角形的三边长,那么称x y z (,,)是三角形数.若a b c (,,)
和111a b c (,,)
均为三角形数,且a ≤b ≤c ,则a
c 的取值范围是 .
三、解答题(本大题共2小题,共25分) 12、(12分)如图,⊙O 的内接四边形ABCD 中,AC ,BD 是它的对角线,AC 的中点I 是△ABD
的内心. 求证:(1)OI 是△IBD 的外接圆的切线;(2)AB +AD =2BD .
13、(13分)如图,在平面直角坐标系中,直角梯形OABC 的顶点A 、B 的坐标分别是(5,0)、(3,2),点D 在线段OA 上,BD =BA , 点Q 是线段BD 上一个动点,点P 的坐标是(0,3),设直线PQ 的解析式为
y kx b =+.
(1)求k 的取值范围;
(2)当k 为取值范围内的最大整数时,若抛物线2
5y ax ax =-的顶点在直线PQ 、OA 、
AB 、BC 围成的四边形内部,求a 的取值范围.
Q
P x
y D
C
B
A
O
数学答案
1.B
2.B
3.D
4.A
5.B
6.B
7、32-
8、3
y x
-=
9、 14
3 10、1
11、 1253≤<-c a
12、
解:(1)如图,根据三角形内心的性质和同弧上圆周角的性质知
CID IAD IDA ∠=∠+∠,CDI CDB BDI BAC IDA IAD IDA ∠=∠+∠=∠+∠=∠+∠. 所以CID CDI ∠=∠, CI = CD .
同理,CI = CB .故点C 是△IBD 的外心.连接OA ,OC ,因为I 是AC 的中点,
且OA = OC ,所以OI ⊥AC ,即OI ⊥CI .故OI 是△IBD 外接圆的切线. (2)如图,过点I 作IE ⊥AD 于点E ,设OC 与BD 交于点F . 由BC CD =,知OC ⊥BD .
因为∠CBF =∠IAE ,BC = CI = AI ,所以Rt BCF Rt AIE △≌△.所以BF = AE . 又因为I 是△ABD 的内心,所以22AB AD BD AE BD BD BF BD +-=+-==. 故2AB AD BD +=.
13、
解:(1)直线y kx b =+经过P (0,3),∴ 3b =. ∵B (3,2),A (5,0),BD =BA ,∴ 点D 的坐标是(1,0), ∴ BD 的解析式是1y x =-, 1 3.x ≤≤
依题意,得 1,3.y x y kx =-⎧⎨=+⎩
,∴4
,1x k =-
∴ 41 3.1k -≤
≤解得1
3.3
k --≤≤………………………………………… (2) 1
3,3
k --≤≤且k 为最大整数,∴1k =-.
则直线PQ 的解析式为3y x =-+.……………………………………………
又因为抛物线2
5y ax ax =-的顶点坐标是525,2
4a ⎛⎫
-
⎪⎝⎭,对称轴为52x =.
解方程组⎪⎩⎪⎨⎧=+-=.25
,3x x y 得⎪⎪⎩
⎪⎪⎨⎧
==.21,25y x 即直线PQ 与对称轴为52x =的交点坐标为51(,)22,

125224a <-<.解得 82
2525
a -<<-.…………………………………… Q
P
x
y D
C B
A
O。

相关文档
最新文档